JP2008085529A - Optical transmission system - Google Patents

Optical transmission system Download PDF

Info

Publication number
JP2008085529A
JP2008085529A JP2006261759A JP2006261759A JP2008085529A JP 2008085529 A JP2008085529 A JP 2008085529A JP 2006261759 A JP2006261759 A JP 2006261759A JP 2006261759 A JP2006261759 A JP 2006261759A JP 2008085529 A JP2008085529 A JP 2008085529A
Authority
JP
Japan
Prior art keywords
optical
bias
optical transmission
signal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006261759A
Other languages
Japanese (ja)
Inventor
Yuichi Ikeda
雄一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2006261759A priority Critical patent/JP2008085529A/en
Publication of JP2008085529A publication Critical patent/JP2008085529A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain optimal amplification characteristics regardless of optical transmission conditions by setting a bias most suitable for optical transmission at a photoelectric conversion part in an optical transmission system. <P>SOLUTION: The optical transmission system is provided with a photodiode 13 which photoelectrically converts an optical signal inputted via an optical cable 3, a power amplification part 14 for amplifying an RF signal which is outputted from the photodiode on the basis of a bias voltage, and a bias setting part 25 that generates the bias voltage on the basis of a voltage outputted from the photodiode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光ケーブルでの伝送損失を考慮し、伝送損失の大小に拘らず最適な歪み、雑音特性が得られる様にした光伝送システムに関するものである。   The present invention relates to an optical transmission system in which transmission loss in an optical cable is taken into consideration and optimum distortion and noise characteristics can be obtained regardless of the magnitude of the transmission loss.

データ送信システムに於いて、高速低損失で大容量のデータの送受信を可能とする光ケーブルが使用された光伝送システムが普及しており、光伝送システムは電気信号を光信号に変換する電気光変換部、光信号を電気信号に変換する光電気変換部を具備している。   In data transmission systems, optical transmission systems using optical cables that enable transmission and reception of high-capacity data with high speed and low loss are widespread, and optical transmission systems convert electrical signals into optical signals. A photoelectric conversion unit that converts an optical signal into an electrical signal.

図6は、従来の光伝送システムの概略を示している。   FIG. 6 shows an outline of a conventional optical transmission system.

図中、1は光伝送システムに於ける親局、2は子局を示し、前記親局1と前記子局2とは伝送経路である光ケーブル3,4により接続されている。尚、前記光ケーブル3は下り伝送路、前記光ケーブル4は上り伝送路を示している。   In the figure, 1 is a master station in the optical transmission system, 2 is a slave station, and the master station 1 and the slave station 2 are connected by optical cables 3 and 4 which are transmission paths. The optical cable 3 indicates a downstream transmission path, and the optical cable 4 indicates an upstream transmission path.

前記親局1は親局電気光変換部5、親局光電気変換部6を具備し、前記子局2は子局光電気変換部7、子局電気光変換部8を具備し、前記親局電気光変換部5と前記子局光電気変換部7とが前記光ケーブル3により接続され、前記親局光電気変換部6と前記子局電気光変換部8とが前記光ケーブル4により接続されている。   The master station 1 includes a master station electro-optic converter 5 and a master station photoelectric converter 6, and the slave station 2 includes a slave station photoelectric converter 7 and a slave station electro-optic converter 8. The station electrical / optical converter 5 and the slave station photoelectric converter 7 are connected by the optical cable 3, and the master station photoelectric converter 6 and the slave station electrical / optical converter 8 are connected by the optical cable 4. Yes.

前記親局電気光変換部5は受信した無線周波数信号(以下RF信号)を電力増幅部11で増幅を行った後、RF信号をレーザダイオード(以下LD)12に入力し、該LD12は前記RF信号を光信号に変換し前記光ケーブル3に送出する。   The master station electro-optic converter 5 amplifies the received radio frequency signal (hereinafter referred to as RF signal) by the power amplifying unit 11 and then inputs the RF signal to a laser diode (hereinafter referred to as LD) 12. The signal is converted into an optical signal and sent to the optical cable 3.

該光ケーブル3により伝送された光信号は、前記子局光電気変換部7で受信され、受信された光信号はフォトダイオード(以下PD)13によりRF信号に変換し、電力増幅部14に於いて増幅等所要の処理を行った後、光損失補正用の可変減衰器15を経て前記子局光電気変換部7の利得が一定となる様に調整されて出力される。   The optical signal transmitted by the optical cable 3 is received by the slave station photoelectric conversion unit 7, and the received optical signal is converted into an RF signal by a photodiode (hereinafter referred to as PD) 13, and then in the power amplification unit 14. After performing necessary processing such as amplification, the signal is adjusted and output through the variable attenuator 15 for optical loss correction so that the gain of the slave-station photoelectric conversion unit 7 becomes constant.

前記子局2の前記子局電気光変換部8は前記親局電気光変換部5と同様な構成を有し、又前記親局1の前記親局光電気変換部6は前記子局光電気変換部7と同様な構成を有し、前記子局2で受信されたRF信号は、前記子局電気光変換部8で光信号に変換され、光信号は前記光ケーブル4を経て前記親局1に伝送され、前記親局光電気変換部6に於いてRF信号に変換される。   The slave station electro-optic converter 8 of the slave station 2 has the same configuration as the master station electro-optic converter 5, and the master station photoelectric converter 6 of the master station 1 is the slave station photoelectric converter. The RF signal received by the slave station 2 is converted into an optical signal by the slave station electro-optical converter 8, and the optical signal is transmitted through the optical cable 4 and the master station 1. And is converted into an RF signal in the master-station photoelectric conversion unit 6.

光ケーブルは伝送損失が小さく、長距離伝送に利用される。光の伝送損失は通常固定値ではなく、0dB〜NdBの様に範囲を有している。又、光のパワーdBmと電気のパワーdBmでは、1:2の関係があり、光のパワーの0dB〜NdBの伝送損失は、電気のパワーの0dB〜2NdBの広いダイナミックレンジを持つことになる。前記光のパワーdBmと電気のパワーdBm間の利得の差は前記可変減衰器15によって吸収される。   Optical cables have low transmission loss and are used for long-distance transmission. The transmission loss of light is not normally a fixed value, but has a range of 0 dB to NdB. Further, there is a 1: 2 relationship between the optical power dBm and the electrical power dBm, and the transmission loss of 0 dB to NdB of the optical power has a wide dynamic range of 0 dB to 2 NdB of the electrical power. The gain difference between the optical power dBm and the electrical power dBm is absorbed by the variable attenuator 15.

一方、前記PD13で変換された直後のRF信号は、前記電力増幅部14に入力される。従って、該電力増幅部14では前記光のパワーdBmと電気のパワーdBm間の利得調整されない状態の広いダイナミックレンジを持つRF信号について増幅等の信号処理を行う様になっている。   On the other hand, the RF signal immediately after being converted by the PD 13 is input to the power amplifier 14. Therefore, the power amplifier 14 performs signal processing such as amplification on an RF signal having a wide dynamic range in which the gain between the optical power dBm and the electrical power dBm is not adjusted.

又、前記電力増幅部14、特に該電力増幅部14に於ける初段の増幅器の増幅特性は、装置全体の特性を大きく左右する。   Further, the amplification characteristics of the power amplifying unit 14, particularly the first-stage amplifier in the power amplifying unit 14, greatly affect the characteristics of the entire apparatus.

上記した従来の光伝送システムでは、前記子局光電気変換部7での信号処理、特に初段の増幅では上記した広いダイナミックレンジに対して、雑音特性がよく取れる様な1点に絞ってバイアス値を決定している。   In the conventional optical transmission system described above, the bias value is narrowed down to one point where noise characteristics can be obtained well with respect to the above-described wide dynamic range in the signal processing in the slave-station photoelectric conversion unit 7, particularly in the first stage amplification. Is determined.

この為、全ての範囲での光伝送条件に適応したバイアス値とはなってなく、初段増幅器は必ずしも最適な増幅特性になっているとは言えなかった。   For this reason, the bias value is not adapted to the optical transmission conditions in the entire range, and the first-stage amplifier cannot always be said to have optimum amplification characteristics.

図7は従来の初段の増幅器に於けるACLR特性(隣接チャネル漏洩電力)を示しており、光伝送損失が小さい状態(図7中、破線で囲った部分)では、入力電力が大きくなり、歪みを発生している。   FIG. 7 shows the ACLR characteristics (adjacent channel leakage power) in the conventional first-stage amplifier. When the optical transmission loss is small (the portion surrounded by the broken line in FIG. 7), the input power increases and distortion occurs. Is occurring.

尚、光伝送システム、及び光受信装置として、特許文献1に示されるものがある。   In addition, there exists a thing shown by patent document 1 as an optical transmission system and an optical receiver.

特開2006−20368号公報JP 2006-20368 A

本発明は斯かる実情に鑑み、光電気変換部に於いて、距離等光伝送条件に最適なバイアスを設定することで、光伝送条件に拘らず、最適な増幅特性が得られる様にしたものである。   In view of such circumstances, the present invention is such that an optimum amplification characteristic can be obtained regardless of the optical transmission conditions by setting an optimum bias for optical transmission conditions such as distance in the photoelectric conversion unit. It is.

本発明は、光ケーブルを介して入力される光信号を光電変換するフォトダイオードと、該フォトダイオードから出力されるRF信号をバイアス電圧に基づき増幅処理する電力増幅部と、前記フォトダイオードから出力される電圧に基づき前記バイアス電圧を発生するバイアス設定部を具備する光伝送システムに係るものである。   The present invention provides a photodiode that photoelectrically converts an optical signal input via an optical cable, a power amplifying unit that amplifies an RF signal output from the photodiode based on a bias voltage, and is output from the photodiode. The present invention relates to an optical transmission system including a bias setting unit that generates the bias voltage based on a voltage.

本発明によれば、光ケーブルを介して入力される光信号を光電変換するフォトダイオードと、該フォトダイオードから出力されるRF信号をバイアス電圧に基づき増幅処理する電力増幅部と、前記フォトダイオードから出力される電圧に基づき前記バイアス電圧を発生するバイアス設定部を具備するので、前記電力増幅部に印加されるバイアス電圧は、該電力増幅部に入力される信号に適した電圧値であり、前記電力増幅部には光伝送条件に最も最適なバイアス電圧が与えられ、歪み、雑音特性が最適化されるという優れた効果を発揮する。   According to the present invention, a photodiode that photoelectrically converts an optical signal input via an optical cable, a power amplifier that amplifies an RF signal output from the photodiode based on a bias voltage, and an output from the photodiode A bias setting unit that generates the bias voltage based on the voltage to be applied, the bias voltage applied to the power amplification unit is a voltage value suitable for a signal input to the power amplification unit, and the power The amplifying unit is provided with the optimum bias voltage for the optical transmission conditions, and exhibits excellent effects of optimizing distortion and noise characteristics.

以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1に於いて、本発明に係る光伝送システムの概略を説明する。尚、図1中、図6中で示したものと同等のものには同符号を付してある。   The outline of the optical transmission system according to the present invention will be described with reference to FIG. In FIG. 1, the same components as those shown in FIG. 6 are denoted by the same reference numerals.

親局1は親局電気光変換部21、親局光電気変換部22を具備し、子局2は子局光電気変換部23、子局電気光変換部24を具備し、前記親局電気光変換部21と前記子局光電気変換部23とが光ケーブル3により接続され、前記親局光電気変換部22と前記子局電気光変換部24とは光ケーブル4により接続されている。   The master station 1 includes a master station electro-optic conversion unit 21 and a master station photoelectric conversion unit 22, and the slave station 2 includes a slave station photoelectric conversion unit 23 and a slave station electro-optic conversion unit 24. An optical conversion unit 21 and the slave station photoelectric conversion unit 23 are connected by an optical cable 3, and the master station photoelectric conversion unit 22 and the slave station electrical / optical conversion unit 24 are connected by an optical cable 4.

前記親局電気光変換部21、前記親局光電気変換部22及び前記子局電気光変換部24は、図6で示した親局電気光変換部5、親局光電気変換部6、子局電気光変換部8と同等であるので以下説明を省略する。   The master station electro-optic converter 21, the master station photoelectric converter 22, and the slave station electro-optic converter 24 are the same as the master station electro-optic converter 5, the master station photoelectric converter 6, and the slave shown in FIG. Since it is equivalent to the local electro-optical converter 8, the description thereof is omitted below.

前記子局光電気変換部23について説明する。   The slave station photoelectric conversion unit 23 will be described.

該子局光電気変換部23はPD13、電力増幅部14、可変減衰器15及びバイアス設定部25を具備し、前記PD13には前記光ケーブル3により伝送された光信号が入力され、前記PD13は光信号をRF信号に光電変換する。RF信号は前記電力増幅部14により増幅等所要の信号処理を行う。尚、図中には該電力増幅部14を構成する初段の増幅器を示している。   The slave station photoelectric conversion unit 23 includes a PD 13, a power amplifying unit 14, a variable attenuator 15, and a bias setting unit 25, and an optical signal transmitted by the optical cable 3 is input to the PD 13. The signal is photoelectrically converted to an RF signal. The RF signal is subjected to necessary signal processing such as amplification by the power amplifier 14. In the figure, the first-stage amplifier constituting the power amplifying unit 14 is shown.

前記電力増幅部14で増幅されたRF信号は、前記可変減衰器15により光信号とRF信号間のダイナミックレンジの相違に基づく利得の差を補正し、前記子局光電気変換部23の利得が一定となる様に調整する。   The RF signal amplified by the power amplifying unit 14 corrects a gain difference based on the difference in dynamic range between the optical signal and the RF signal by the variable attenuator 15, and the gain of the slave station photoelectric conversion unit 23 is corrected. Adjust to be constant.

又、前記電力増幅部14に印加されるバイアス電圧は、前記バイアス設定部25によって設定される。   The bias voltage applied to the power amplifying unit 14 is set by the bias setting unit 25.

該バイアス設定部25はAD変換器26、演算部(CPU)27、記憶部28、DA変換器29、増幅器30を具備している。   The bias setting unit 25 includes an AD converter 26, a calculation unit (CPU) 27, a storage unit 28, a DA converter 29, and an amplifier 30.

図2は、光伝送損失と受光電圧との関係を示している。又、受光電圧に対して前記電力増幅部14に印加する適正なバイアス電圧を示している。尚、適正なバイアス電圧は、実験、計算等により予め求めておく。受光電圧と適正バイアス電圧との関係についてのテーブルデータ(光伝送損失補正バイアステーブル)を前記記憶部28に格納させておく。   FIG. 2 shows the relationship between the optical transmission loss and the received light voltage. In addition, an appropriate bias voltage applied to the power amplifying unit 14 with respect to the received light voltage is shown. An appropriate bias voltage is obtained in advance by experiment, calculation, or the like. Table data (optical transmission loss correction bias table) regarding the relationship between the received light voltage and the appropriate bias voltage is stored in the storage unit 28.

前記PD13からの出力信号(RF信号)を一部分岐し、前記AD変換器26に入力する。該AD変換器26ではA/D変換してデジタルの検出信号として前記演算部27に送出する。該演算部27では検出信号(受光電圧)と前記テーブルデータとを比較し、検出した受光電圧に対応するバイアス電圧を演算し、前記DA変換器29に出力する。該DA変換器29ではD/A変換したアナログバイアス信号を前記増幅器30に送出する。   A part of the output signal (RF signal) from the PD 13 is branched and input to the AD converter 26. The AD converter 26 performs A / D conversion and sends it to the arithmetic unit 27 as a digital detection signal. The calculation unit 27 compares a detection signal (light reception voltage) with the table data, calculates a bias voltage corresponding to the detected light reception voltage, and outputs it to the DA converter 29. The DA converter 29 sends an analog bias signal obtained by D / A conversion to the amplifier 30.

而して、前記バイアス設定部25は前記PD13が出力する電圧に基づきバイアス電圧を発生し、前記電力増幅部14に印加する。   Thus, the bias setting unit 25 generates a bias voltage based on the voltage output from the PD 13 and applies it to the power amplification unit 14.

前記増幅器30は、アナログバイアス信号を増幅して前記PD13が出力する受光電圧に対応した適正なバイアス電圧を前記電力増幅部14に印加する。前記PD13から出力されるRF信号は前記電力増幅部14で電圧に適正な増幅率で増幅される。前記電力増幅部14から出力されたRF信号は、前記可変減衰器15により前記子局光電気変換部23の利得が一定となる様に調整される。   The amplifier 30 amplifies an analog bias signal and applies an appropriate bias voltage corresponding to the received light voltage output from the PD 13 to the power amplifier 14. The RF signal output from the PD 13 is amplified by the power amplifier 14 at an amplification factor appropriate for the voltage. The RF signal output from the power amplifying unit 14 is adjusted by the variable attenuator 15 so that the gain of the sub-station photoelectric conversion unit 23 is constant.

上記した実施の形態に於いて、前記親局光電気変換部22に対しても前記バイアス設定部25を設けてもよい。   In the above-described embodiment, the bias setting unit 25 may be provided for the master-station photoelectric conversion unit 22 as well.

図3は、本発明を実施した場合のACLR特性を示しており、光伝送損失が小さい状態(図3中、破線で囲った部分)での歪みが解消されている。   FIG. 3 shows the ACLR characteristics when the present invention is implemented, and the distortion in the state where the optical transmission loss is small (the portion surrounded by the broken line in FIG. 3) is eliminated.

次に、前記バイアス設定部25によるバイアス電圧の設定の具体例を説明する。   Next, a specific example of bias voltage setting by the bias setting unit 25 will be described.

図2で示す光伝送損失補正バイアステーブルは、簡略化して前記記憶部28に格納させておくことができる。簡略化した光伝送損失補正バイアステーブルを図4に示す。   The optical transmission loss correction bias table shown in FIG. 2 can be simplified and stored in the storage unit 28. FIG. 4 shows a simplified optical transmission loss correction bias table.

図4に示される光伝送損失補正バイアステーブルでは、所要のステップに設定した受光電圧、例えば0.5Vのステップで受光電圧を設定し、各ステップに対応するバイアス値を設定する。該バイアス値は、予め得た回路特性、或は実測値に基づき求める。   In the optical transmission loss correction bias table shown in FIG. 4, the light reception voltage set at a required step, for example, the light reception voltage is set at a step of 0.5 V, and the bias value corresponding to each step is set. The bias value is obtained based on circuit characteristics obtained in advance or actually measured values.

図5は前記バイアス設定部25が図4で示す光伝送損失補正バイアステーブルに基づきバイアス電圧値を設定する流れを示している。   FIG. 5 shows a flow in which the bias setting unit 25 sets a bias voltage value based on the optical transmission loss correction bias table shown in FIG.

前記PD13が光信号を受光して受光電圧が出力されると、前記演算部27は前記記憶部28から光伝送損失補正バイアステーブルを読込み、該光伝送損失補正バイアステーブルから受光電圧に対応するバイアス値を求める。求められたバイアス値は、前記増幅器30を経て前記電力増幅部14に出力される。   When the PD 13 receives an optical signal and outputs a light reception voltage, the calculation unit 27 reads an optical transmission loss correction bias table from the storage unit 28, and a bias corresponding to the light reception voltage from the optical transmission loss correction bias table. Find the value. The obtained bias value is output to the power amplifier 14 through the amplifier 30.

尚、出力された受光電圧が、前記光伝送損失補正バイアステーブルで設定した受光電圧と合致していない場合、例えば受光電圧が0.6Vであった場合は、前記演算部27は0.5Vに対するバイアス値、1.0Vに対するバイアス値を読込み、0.5Vと1.0Vとの間を案分する等の補間処理により、0.6Vに対するバイアス値を演算により求める。   When the output light reception voltage does not match the light reception voltage set in the optical transmission loss correction bias table, for example, when the light reception voltage is 0.6V, the calculation unit 27 is set to 0.5V. The bias value with respect to 0.6V is calculated by an interpolation process such as reading the bias value and the bias value with respect to 1.0V, and appropriately dividing between 0.5V and 1.0V.

而して、受光電圧が0.6Vの場合でも前記バイアス設定部25は適正なバイアス値を出力する。   Thus, even when the received light voltage is 0.6V, the bias setting unit 25 outputs an appropriate bias value.

本発明の実施の形態に係る光伝送システムの概略構成図である。1 is a schematic configuration diagram of an optical transmission system according to an embodiment of the present invention. 該実施の形態に使用される光伝送損失補正バイアステーブルを示す図である。It is a figure which shows the optical transmission loss correction | amendment bias table used for this embodiment. 該実施の形態に於けるACLR特性を示す線図である。It is a diagram which shows the ACLR characteristic in this embodiment. 簡略化した光伝送損失補正バイアステーブルを示す図である。It is a figure which shows the simplified optical transmission loss correction bias table. 簡略化した光伝送損失補正バイアステーブルによりバイアス値を求める流れを示すフローチャートである。It is a flowchart which shows the flow which calculates | requires a bias value with the simplified optical transmission loss correction | amendment bias table. 従来の光伝送システムの概略構成図である。It is a schematic block diagram of the conventional optical transmission system. 従来の光伝送システムに於けるACLR特性を示す線図である。It is a diagram which shows the ACLR characteristic in the conventional optical transmission system.

符号の説明Explanation of symbols

1 親局
2 子局
3 光ケーブル
4 光ケーブル
13 PD
14 電力増幅部
15 可変減衰器
21 親局電気光変換部
22 親局光電気変換部
23 子局光電気変換部
24 子局電気光変換部
25 バイアス設定部
27 演算部
28 記憶部
1 Master station 2 Slave station 3 Optical cable 4 Optical cable 13 PD
DESCRIPTION OF SYMBOLS 14 Power amplification part 15 Variable attenuator 21 Parent station electro-optic conversion part 22 Parent station photoelectric conversion part 23 Slave station photoelectric conversion part 24 Slave station electric light conversion part 25 Bias setting part 27 Calculation part 28 Storage part

Claims (1)

光ケーブルを介して入力される光信号を光電変換するフォトダイオードと、該フォトダイオードから出力されるRF信号をバイアス電圧に基づき増幅処理する電力増幅部と、前記フォトダイオードから出力される電圧に基づき前記バイアス電圧を発生するバイアス設定部を具備することを特徴とする光伝送システム。   A photodiode that photoelectrically converts an optical signal input via an optical cable, a power amplifier that amplifies an RF signal output from the photodiode based on a bias voltage, and the voltage output from the photodiode An optical transmission system comprising a bias setting unit for generating a bias voltage.
JP2006261759A 2006-09-27 2006-09-27 Optical transmission system Pending JP2008085529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261759A JP2008085529A (en) 2006-09-27 2006-09-27 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006261759A JP2008085529A (en) 2006-09-27 2006-09-27 Optical transmission system

Publications (1)

Publication Number Publication Date
JP2008085529A true JP2008085529A (en) 2008-04-10

Family

ID=39355950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261759A Pending JP2008085529A (en) 2006-09-27 2006-09-27 Optical transmission system

Country Status (1)

Country Link
JP (1) JP2008085529A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001015348A1 (en) * 1999-08-25 2001-03-01 Hamamatsu Photonics K.K. Optical receiver and method of support and arrangement thereof
JP2006020368A (en) * 2005-09-21 2006-01-19 Toshiba Corp Optical transmission system and its optical receiving device
JP2006179981A (en) * 2004-12-20 2006-07-06 Sumitomo Electric Ind Ltd Optical receiver
JP2008022249A (en) * 2006-07-12 2008-01-31 Dx Antenna Co Ltd Amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001015348A1 (en) * 1999-08-25 2001-03-01 Hamamatsu Photonics K.K. Optical receiver and method of support and arrangement thereof
JP2006179981A (en) * 2004-12-20 2006-07-06 Sumitomo Electric Ind Ltd Optical receiver
JP2006020368A (en) * 2005-09-21 2006-01-19 Toshiba Corp Optical transmission system and its optical receiving device
JP2008022249A (en) * 2006-07-12 2008-01-31 Dx Antenna Co Ltd Amplifier

Similar Documents

Publication Publication Date Title
JP4654105B2 (en) Optical receiver circuit
JP5165792B2 (en) High sensitivity optical receiver using high gain amplifier and equalization circuit.
JP2009010741A (en) Preamplifier, and optical receiver
JP2009273110A (en) Polar-modulation transmitting apparatus and method
US20210409124A1 (en) Optical apparatus and optical receiving method
JP2011029891A (en) Optical receiver and method for optical reception
JP2012134962A (en) Adaptive power efficient receiver architecture
CN113517874B (en) Fast response automatic gain control circuit for transimpedance amplifier
JP2009177577A (en) Burst signal reception method, burst signal receiver, station side terminal, and pon system
JP4754388B2 (en) Optical transmission system
JP2011091687A (en) Transimpedance amplifier
JP6182897B2 (en) Optical receiver and optical receiving method
JP2008085529A (en) Optical transmission system
JP2007189294A (en) System, circuit and method for signal detection, and program
CN109257101B (en) Optical module
JP2008141498A (en) Optical transmitter
JP2006086365A (en) Apparatus and method of controlling optical amplifier
US7120848B2 (en) Apparatus and method for forward error correction
JP3320225B2 (en) Optical fiber amplifier
JP2009200124A (en) Photodetector and light detecting method
JP2012178624A (en) Signal generator
JP2008187550A (en) Level control apparatus and method thereof, and transmitter using the same
JP2008153934A (en) Optical transmission system
JP2010066116A (en) High-frequency power measurement circuit
JPWO2004095736A1 (en) Reception error rate controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220