JP2008082413A - Insulated rolling bearing - Google Patents

Insulated rolling bearing Download PDF

Info

Publication number
JP2008082413A
JP2008082413A JP2006261750A JP2006261750A JP2008082413A JP 2008082413 A JP2008082413 A JP 2008082413A JP 2006261750 A JP2006261750 A JP 2006261750A JP 2006261750 A JP2006261750 A JP 2006261750A JP 2008082413 A JP2008082413 A JP 2008082413A
Authority
JP
Japan
Prior art keywords
peripheral surface
outer ring
ceramic
rolling bearing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006261750A
Other languages
Japanese (ja)
Inventor
Tatsuo Nakajima
達雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006261750A priority Critical patent/JP2008082413A/en
Publication of JP2008082413A publication Critical patent/JP2008082413A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulated rolling bearing with excellent insulation properties capable of being manufactured at a low cost, capable of arranging an insulation layer with reduced processing man-hours and free from defect of a chamfer part. <P>SOLUTION: This insulated rolling bearing comprises an inner ring 1, an outer ring 2, and a plurality of rolling elements 4 interposed between raceway surfaces of these inner and outer rings. The insulation layer 7 is formed on at least one of the inner peripheral surface 1a of the inner ring 1 and the outer peripheral surface 2a of the outer ring 2. The insulation layer 7 comprises a layer of a ceramics film 7b formed on an inner diameter surface of the inner ring or an outer diameter surface of the outer ring in at least one peripheral surface by an AD (aerosol deposition) method and a layer of a coating 7a formed on at least one peripheral surface by a sol-gel method by using metal alkoxide solution while covering the layer of the ceramics film 7b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、汎用モータ、発電機用ジェネレータ、鉄道車両の主電動機等、主に軸受内部を電流が流れるような構造の装置に用いられる絶縁転がり軸受に関する。   The present invention relates to an insulated rolling bearing used for an apparatus having a structure in which a current mainly flows inside a bearing, such as a general-purpose motor, a generator for a generator, and a main motor of a railway vehicle.

鉄道車両の主電動機に用いられる転がり軸受は、主電動機の電流を車輪からレールへ接地する接地用集電装置が不完全な場合に、主電動機の電流が転がり軸受の内外輪および転動体を通って、車輪とレール間に流れる。このとき、軸受転動体と外輪転走面との間または内輪転走面との間で放電が生じ、放電部分に電食を生じることがある。その他の発電機用ジェネレータ等、軸受内部を電流が流れるような構造の装置に用いられる軸受においても、同様に電食を生じることがある。このような電食を防止する有効な手段としては、従来、軸受軌道輪の外表面にセラミックス等の絶縁体の溶射被膜を形成することが知られている。   Rolling bearings used in the main motors of railroad vehicles use the current of the main motor that passes through the inner and outer rings of the rolling bearings and rolling elements when the grounding current collector that grounds the current of the main motor from the wheels to the rail is incomplete. Flowing between the wheel and the rail. At this time, electric discharge may occur between the bearing rolling element and the outer ring rolling surface or between the inner ring rolling surface and electrolytic corrosion may occur in the discharge portion. Similarly, in a bearing used in a device having a structure in which a current flows inside the bearing, such as a generator for other generators, electrolytic corrosion may occur. As an effective means for preventing such electrolytic corrosion, it is conventionally known to form a thermal spray coating of an insulator such as ceramics on the outer surface of the bearing race.

しかし、溶射技術を用いて軸受の外径面および幅面にセラミックス層を設ける方法は、熱処理して硬化させた軸受綱の溶射加工時の熱による焼き戻り防止のために、ワークを冷却しながらセラミックス層を成膜せねばならず、非常に煩雑であり、生産性の低下を招いていた。さらに、溶射法で軸受外径面および幅面にセラミックス層を設けようとすると、下地処理としてニッケルアルミ等の層を予め溶射する必要があり、これも生産性の低下を招く原因となっている。   However, the method of providing ceramic layers on the outer diameter and width of the bearing using thermal spraying technology is to prevent the tempering of the bearing steel cured by heat treatment during the thermal spraying process, while cooling the workpiece while cooling the ceramics. Layers had to be deposited, which was very cumbersome and reduced productivity. Furthermore, if an attempt is made to provide ceramic layers on the bearing outer diameter surface and width surface by the thermal spraying method, it is necessary to thermally spray a layer of nickel aluminum or the like as a base treatment, which also causes a decrease in productivity.

また、溶射法で得られたセラミックス層は、多孔質となるため結露などでの水分の侵入による絶縁抵抗の低下を封孔処理で対策する必要がある。封孔処理については合成樹脂、重合性有機溶剤、並びにフッ素系界面活性剤およびパーフルオロ基含有有機ケイ素化合物からなる群から選ばれる少なくとも1種を含有する封孔処理剤を用いる方法(特許文献1参照)や、浸透性良好な絶縁樹脂による封孔処理層を下層とし、浸透性が完全でない絶縁樹脂による封孔処理層を上層とする組合せ層を形成することにより封孔する方法(特許文献2参照)等が知られている。しかし、これらの封孔処理方法を用いる場合は、非常にコスト高となるという問題がある。   Further, since the ceramic layer obtained by the thermal spraying method is porous, it is necessary to take measures against the decrease in insulation resistance due to the ingress of moisture due to condensation or the like by sealing treatment. For the sealing treatment, a method using a sealing resin containing at least one selected from the group consisting of a synthetic resin, a polymerizable organic solvent, and a fluorosurfactant and a perfluoro group-containing organosilicon compound (Patent Document 1). And a method of sealing by forming a combination layer having a sealing treatment layer with an insulating resin having good permeability as a lower layer and an upper layer with a sealing treatment layer with an insulating resin having poor permeability (Patent Document 2) For example). However, when these sealing methods are used, there is a problem that the cost becomes very high.

一方、これらの問題に対処すべく、本発明者はアルミナセラミックス層を外輪の外周面等(外径面からチャンファー部を通り幅面まですべて)にエアロゾルデポジション(以下、ADと記す)法で形成したセラミックス絶縁軸受を提案している(特願2006−62638)。このように軸受外輪に絶縁層を設けて絶縁軸受とするには、導通が考えられる軸受外輪の外径面、表側幅面、表側チャンファー部、裏側幅面および裏側チャンファー部すべてに欠陥無くセラミックス絶縁層を形成する必要がある。   On the other hand, in order to deal with these problems, the present inventor has applied an alumina ceramic layer to the outer peripheral surface of the outer ring or the like (all from the outer diameter surface to the width surface through the chamfer portion) by an aerosol deposition (hereinafter referred to as AD) method. The formed ceramic insulated bearing is proposed (Japanese Patent Application No. 2006-62638). In order to provide an insulating bearing by providing an insulating layer on the bearing outer ring in this way, ceramic insulation is possible without any defects on the outer diameter surface, front side width surface, front side chamfer portion, back side width surface and back side chamfer portion of the bearing outer ring where conduction can be considered. It is necessary to form a layer.

しかしながら、軸受外径面、幅面およびチャンファー部を一度に成膜できないため、軸受外径面、表側幅面、表側チャンファー部、裏側幅面および裏側チャンファー部について独立に成膜せねばならず加工工数が甚大であった。チャンファー部は、軸受外径面のように研磨加工されていないため粗い面となっており、AD法でのセラミックス層の成膜では欠陥が生じやすかった。このため、チャンファー部を研磨加工しようとするとコスト増を招いた。
特開2003−183806号公報 特許第3009516号公報
However, since the bearing outer diameter surface, width surface and chamfer part cannot be formed at once, the bearing outer diameter surface, front side width surface, front side chamfer part, back side width surface and back side chamfer part must be formed independently. The man-hours were enormous. The chamfer part is rough because it is not polished like the outer surface of the bearing, and defects are likely to occur when the ceramic layer is formed by the AD method. For this reason, an attempt to polish the chamfer portion caused an increase in cost.
Japanese Patent Laid-Open No. 2003-183806 Japanese Patent No. 3009516

本発明はこのような問題に対処するためになされたもので、絶縁層を設ける加工工数が少なく低コストで製造できるとともに、チャンファー部の欠陥も生じず、優れた絶縁性を有する絶縁転がり軸受を提供することを目的とする。   The present invention has been made in order to cope with such a problem, and can be manufactured at a low cost with a small number of processing steps for providing an insulating layer, and there is no defect in the chamfer part, and an insulating rolling bearing having excellent insulating properties. The purpose is to provide.

本発明の絶縁転がり軸受は、内輪および外輪と、これら内外輪の軌道面間に介在する複数の転動体とを備えてなり、上記内輪の内周面および上記外輪の外周面から選ばれた少なくとも一つの周面に絶縁層を有する絶縁転がり軸受であって、上記絶縁層は、上記少なくとも一つの周面上における上記内輪の内径面または上記外輪の外径面に、AD法により形成されたセラミックス被膜の層と、該セラミックス被膜の層を覆いつつ上記少なくとも一つの周面に、金属アルコキシド溶液を用いてゾル−ゲル法により形成された被膜の層とからなることを特徴とする。   The insulated rolling bearing of the present invention comprises an inner ring and an outer ring, and a plurality of rolling elements interposed between the raceway surfaces of the inner and outer rings, and at least selected from the inner peripheral surface of the inner ring and the outer peripheral surface of the outer ring. An insulating rolling bearing having an insulating layer on one peripheral surface, wherein the insulating layer is a ceramic formed by an AD method on the inner diameter surface of the inner ring or the outer diameter surface of the outer ring on the at least one peripheral surface. A coating layer and a coating layer formed by a sol-gel method using a metal alkoxide solution on the at least one peripheral surface while covering the ceramic coating layer.

上記セラミックス被膜を形成するための、エアロゾル原料となるセラミックス微粒子の平均粒子径は 0.01〜2μm であることを特徴とする。
また、上記セラミックス被膜は、窒化珪素の微粒子をエアロゾル原料として使用した被膜であることを特徴とする。
The average particle diameter of ceramic fine particles used as an aerosol raw material for forming the ceramic coating is 0.01 to 2 μm.
The ceramic coating is a coating using silicon nitride fine particles as an aerosol raw material.

本発明の絶縁転がり軸受は、軸受外輪の外周面(外径面に加えて、幅面やチャンファー部を含む)等に、ゾル−ゲル法により形成された金属アルコキシドの被膜の層と、該被膜の下地としてAD法により外径面に直接形成されたセラミックス被膜の層とからなる絶縁層を有するので、幅面およびチャンファー部は金属アルコキシドの被膜により絶縁され、特に高い絶縁破壊特性が要求される外径面は金属アルコキシドの被膜およびセラミックス被膜により十分に絶縁される。また、セラミックス被膜の形成は、外径面のみでよいため、幅面やチャンファー部を含む外周面すべてにAD法でセラミックス被膜を形成する場合よりも加工工数を大幅に軽減できた。また、粗い面のチャンファー部も金属アルコキシドの被膜で緻密かつ均一に成膜・絶縁されるためピンホールや欠陥の問題は解決できた。
また、ワークの冷却不要、ニッケルアルミ等の下地処理不要および封孔処理不要などにより、溶射法を用いる場合と比較して製造コストが大幅に安くなる。
The insulated rolling bearing of the present invention includes a metal alkoxide coating layer formed by a sol-gel method on an outer peripheral surface of a bearing outer ring (including a width surface and a chamfer part in addition to an outer diameter surface), and the coating film. As an underlayer, an insulating layer composed of a ceramic film layer directly formed on the outer diameter surface by the AD method is used, so that the width surface and the chamfer part are insulated by a metal alkoxide film, and particularly high dielectric breakdown characteristics are required. The outer diameter surface is sufficiently insulated by a metal alkoxide coating and a ceramic coating. Further, since the ceramic coating can be formed only on the outer diameter surface, the number of processing steps can be greatly reduced as compared with the case where the ceramic coating is formed on the entire outer peripheral surface including the width surface and the chamfer portion by the AD method. In addition, since the chamfered portion of the rough surface is densely and uniformly formed and insulated by the metal alkoxide film, the problem of pinholes and defects can be solved.
In addition, the manufacturing cost is significantly reduced compared with the case of using the thermal spraying method because the workpiece is not cooled, the base treatment such as nickel aluminum is not necessary, and the sealing treatment is unnecessary.

本発明の絶縁転がり軸受の一実施例を図1に基づいて説明する。図1は外輪外周面に金属アルコキシド被膜とセラミックス被膜の層とからなる絶縁層を形成した絶縁転がり軸受の断面図である。なお、絶縁層を構成する金属アルコキシド被膜およびセラミックス被膜は非常に薄い、数μm〜数十μmの被膜であるが、図1においては説明便宜上、実際よりも厚く図示している。
図1に示すように、絶縁転がり軸受は、内輪1と外輪2との間に保持器3に保持された多数の転動体4を介在させ、外輪2をハウジング5等に収納し、軸6を内輪1の内径に固定する軸受であって、外輪2の外周面2aに絶縁層7が形成されている。絶縁層7は、AD法により形成されるセラミックス被膜7bと、ゾル−ゲル法により、セラミックス被膜7bを覆いつつ外周面2aに形成される金属アルコキシドの被膜7aとからなる構造である。内輪1、外輪2および転動体4は、軸受鋼等の金属材からなる。
An embodiment of the insulated rolling bearing according to the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view of an insulating rolling bearing in which an insulating layer composed of a metal alkoxide coating and a ceramic coating is formed on the outer peripheral surface of the outer ring. Note that the metal alkoxide film and ceramic film constituting the insulating layer are very thin films of several μm to several tens of μm, but in FIG.
As shown in FIG. 1, the insulated rolling bearing has a large number of rolling elements 4 held by a cage 3 interposed between an inner ring 1 and an outer ring 2, and the outer ring 2 is accommodated in a housing 5 or the like, and a shaft 6 is The bearing is fixed to the inner diameter of the inner ring 1, and an insulating layer 7 is formed on the outer peripheral surface 2 a of the outer ring 2. The insulating layer 7 has a structure composed of a ceramic film 7b formed by the AD method and a metal alkoxide film 7a formed on the outer peripheral surface 2a while covering the ceramic film 7b by the sol-gel method. The inner ring 1, the outer ring 2 and the rolling element 4 are made of a metal material such as bearing steel.

本発明において金属アルコキシドの被膜7aを形成する外輪2の外周面2aは、外輪2の外径面aのみでなく、少なくとも外輪を保持するハウジング5等と外輪2とが接触する範囲の全面であり、図1に示すように、外輪2の外径面aから幅面bにわたる範囲で、チャンファー部(面取部)cも含めた範囲の面である。
また、本発明においてセラミックス被膜7bは、図1に示すように、上記金属アルコキシドの被膜7aの下地層として外輪2の外径面aにAD法により形成される。絶縁軸受では、該部分において高い絶縁破壊特性が要求されるので、該部分にセラミックス被膜7bを形成することでこの要求に応じ得る。なお、幅面bやチャンファー部cは、上記金属アルコキシドの被膜7aにより十分絶縁される。
In the present invention, the outer peripheral surface 2a of the outer ring 2 forming the metal alkoxide coating 7a is not only the outer diameter surface a of the outer ring 2, but at least the entire surface of the outer ring 2 in contact with the housing 5 or the like holding the outer ring. As shown in FIG. 1, the outer ring 2 is a surface in a range including the outer diameter surface a to the width surface b and including a chamfer portion (chamfered portion) c.
In the present invention, as shown in FIG. 1, the ceramic coating 7b is formed on the outer diameter surface a of the outer ring 2 by the AD method as an underlayer of the metal alkoxide coating 7a. Insulated bearings are required to have high dielectric breakdown characteristics in the portion, and this requirement can be met by forming the ceramic coating 7b in the portion. The width surface b and the chamfer portion c are sufficiently insulated by the metal alkoxide film 7a.

図1においては、外輪2の外周面2aに絶縁層を形成する場合を例示しているが、絶縁層7は、上記外輪2の外周面2aの他、内輪1の内周面1aに形成されていてもよい。この場合、金属アルコキシドの被膜7aは内輪1の内径面、幅面、チャンファー部の全面に、セラミックス被膜7bは、金属アルコキシドの被膜7aの下地層として内輪1の内径面に形成される。   Although FIG. 1 illustrates the case where an insulating layer is formed on the outer peripheral surface 2 a of the outer ring 2, the insulating layer 7 is formed on the inner peripheral surface 1 a of the inner ring 1 in addition to the outer peripheral surface 2 a of the outer ring 2. It may be. In this case, the metal alkoxide coating 7a is formed on the inner diameter surface, the width surface, and the chamfer portion of the inner ring 1, and the ceramic coating 7b is formed on the inner diameter surface of the inner ring 1 as a base layer of the metal alkoxide coating 7a.

本発明においてAD法は、原料セラミックスの微粒子をガス中に分散させたエアロゾルを基材である軸受外輪等に向けてエアロゾル噴射ノズルより噴射し、エアロゾルをこの基材表面に高速で衝突させ、微粒子の構成材料からなる被膜を基材上に形成させる方法である。セラミックス微粒子は、衝突により粉砕し、清浄な新生表面を形成し、低温接合を生じさせるので、室温で微粒子同士の接合を実現できる。
エアロゾル中ではセラミックスの微粒子は分散状態を維持している。溶射法から得られる被膜が多孔質であるのに対し、AD法により得られる被膜は、上記のようにエアロゾルに分散した微粒子から被膜を形成するので、得られる被膜は極めて緻密なセラミックス層となる。このため、該被膜からなる絶縁層を備えた絶縁転がり軸受は、結露などで水分にさらされても、水分が浸透できる空孔を持たないセラミックス層に保護されるので通電することがなく、絶縁抵抗の低下を招くこともない。
またAD法では、溶射法と異なり高温処理が不要であるため、高温にさらされることによる原料セラミックスの変態による絶縁性の低下を招くこともない。例えば、絶縁性に優れたαアルミナを用いても溶射法ではγアルミナに変態して絶縁性が低下するため、膜厚を増加させる必要があるが、AD法でαアルミナを用いると絶縁性の高いαアルミナのままで成膜できるので、膜厚を増加させずに絶縁性の高いセラミックス層が得られる。
In the present invention, the AD method is a method in which an aerosol in which fine particles of raw material ceramics are dispersed in a gas is sprayed from an aerosol spray nozzle toward a bearing outer ring or the like as a base material, and the aerosol collides with the base material surface at a high speed. This is a method of forming a coating film made of the above constituent material on a substrate. The ceramic fine particles are pulverized by collision to form a clean new surface and cause low-temperature bonding, so that bonding between the fine particles can be realized at room temperature.
In the aerosol, the ceramic fine particles are maintained in a dispersed state. The coating obtained by the thermal spraying method is porous, whereas the coating obtained by the AD method forms the coating from the fine particles dispersed in the aerosol as described above, so that the resulting coating becomes an extremely dense ceramic layer. . For this reason, an insulating rolling bearing provided with an insulating layer made of the coating is protected by a ceramic layer having no pores through which moisture can permeate even if it is exposed to moisture due to condensation, etc. There is no reduction in resistance.
In addition, unlike the thermal spraying method, the AD method does not require high-temperature treatment, and therefore does not cause a decrease in insulation due to transformation of the raw material ceramic due to exposure to a high temperature. For example, even if α-alumina with excellent insulating properties is used, the thermal spraying method transforms to γ-alumina and lowers the insulating properties. Therefore, it is necessary to increase the film thickness. Since the film can be formed with high α alumina, a ceramic layer having high insulation can be obtained without increasing the film thickness.

本発明においてAD法によるセラミックス被膜を形成するための、エアロゾル原料となるセラミックス微粒子としては、絶縁性が良好なアルミナ、マグネシア、ジルコニア、チタニア等の酸化物セラミックスや窒化珪素等の微粒子が挙げられる。これらの中で破壊靭性値や圧縮強さの値が大きいことから、窒化珪素の微粒子が好ましい。
本発明に用いることができるセラミックス微粒子の平均粒子径は、0.01〜2μm であることが好ましい。0.01μm 未満では凝集しやすくエアロゾル化は困難であり、2μm をこえるとAD法での膜形成はできない(膜成長しない)。なお、本発明において平均粒子径は日機装株式会社製:レーザー式粒度分析計マイクロトラックMT3000によって測定した値である。
また、被膜形成を良好に行なうため、基材への衝突時に窒化珪素微粒子が容易に粉砕するように、ボールミル、ジェットミル等の粉砕機を用いてクラックを予め形成しておくことが好ましい。
Examples of the ceramic fine particles used as an aerosol raw material for forming a ceramic film by the AD method in the present invention include oxide ceramics such as alumina, magnesia, zirconia, and titania having good insulation properties and fine particles such as silicon nitride. Among these, since the fracture toughness value and the compressive strength value are large, fine particles of silicon nitride are preferable.
The average particle size of the ceramic fine particles that can be used in the present invention is preferably 0.01 to 2 μm. If it is less than 0.01 μm, it is easy to agglomerate and it is difficult to form an aerosol. In the present invention, the average particle diameter is a value measured by Nikkiso Co., Ltd .: Laser type particle size analyzer Microtrac MT3000.
In addition, in order to satisfactorily form a film, it is preferable to previously form a crack using a pulverizer such as a ball mill or a jet mill so that the silicon nitride fine particles are easily pulverized at the time of collision with the substrate.

本発明においてAD法によるセラミックス被膜の形成方法としては、軸受外輪等を固定してエアロゾル噴射ノズルを移動させて被膜を形成する方法、または、エアロゾル噴射ノズルを固定して軸受外輪等を移動させて被膜を形成する方法のいずれも採用できる。
これらの方法の中で、エアロゾルを安定な状態で吹きつけることができ、位置決め用XYテーブルおよび対象物回転用モータを併用し、軸受外輪等を回転させつつ軸方向に移動させることで、セラミックス被膜を容易に塗り重ねて形成できることから、後者の方法を用いることが好ましい。
In the present invention, as a method for forming a ceramic coating by the AD method, a method is used in which a coating is formed by fixing a bearing outer ring and the aerosol injection nozzle is moved, or a method in which a bearing outer ring is moved by fixing the aerosol injection nozzle. Any method of forming a film can be employed.
Among these methods, the aerosol can be sprayed in a stable state, and the ceramic coating is obtained by using the positioning XY table and the object rotation motor together and moving the bearing outer ring and the like in the axial direction while rotating. It is preferable to use the latter method because it is possible to easily coat and form the film.

本発明におけるAD法を図2に基づいて説明する。図2はAD法による被膜形成装置を示す図であり、外輪2の外径面に絶縁層を形成する場合を例示する。
図2に示すように、AD法による被膜形成装置11は真空チャンバー12を有する。真空チャンバー12内には、セラミックス被膜形成対象である絶縁転がり軸受の外輪2と、エアロゾル噴射ノズル18とが配設されている。エアロゾル噴射ノズル18にはエアロゾル発生装置17からエアロゾルが供給される。エアロゾルの搬送ガスとしては、不活性ガスを使用し、ガス供給設備16からエアロゾル発生装置17に供給されている。使用可能な不活性ガスとしては、アルゴン、窒素、ヘリウム等が挙げられる。
真空チャンバー12の内部は真空ポンプ13によって減圧される。セラミックス微粒子の混入を防止するため、真空ポンプ13の直前に微粒子フィルター19が設けられている。外輪2は、真空チャンバー12内において、対象物回転用モータ15により回転させられ(図中A)、位置決め用XYテーブル14により軸方向に移動させられる(図中B)。
The AD method in the present invention will be described with reference to FIG. FIG. 2 is a view showing a film forming apparatus by the AD method, and illustrates the case where an insulating layer is formed on the outer diameter surface of the outer ring 2.
As shown in FIG. 2, the film forming apparatus 11 by the AD method has a vacuum chamber 12. In the vacuum chamber 12, an outer ring 2 of an insulating rolling bearing, which is a ceramic film formation target, and an aerosol injection nozzle 18 are disposed. Aerosol is supplied from the aerosol generator 17 to the aerosol injection nozzle 18. As an aerosol carrier gas, an inert gas is used and supplied from the gas supply facility 16 to the aerosol generator 17. Usable inert gases include argon, nitrogen, helium and the like.
The inside of the vacuum chamber 12 is depressurized by a vacuum pump 13. In order to prevent mixing of ceramic fine particles, a fine particle filter 19 is provided immediately before the vacuum pump 13. The outer ring 2 is rotated in the vacuum chamber 12 by an object rotating motor 15 (A in the figure), and is moved in the axial direction by a positioning XY table 14 (B in the figure).

エアロゾル噴射ノズル18は、セラミックス微粒子を、長方形等の開口部を有するノズル先端から、外輪2の外径面に噴射するものである。なお、エアロゾル噴射ノズル18は、1本であっても複数本であってもよい。また、エアロゾル噴射ノズル18は、真空チャンバー12内で変位可能に構成してもよい。
固定したエアロゾル噴射ノズル18から、対象物回転用モータ15により所定回転数で回転している外輪2に、セラミックス微粒子を原料とするエアロゾルが噴射され、外輪2の外径面にセラミックス被膜が塗り重ねられて形成される。同時に、位置決め用XYテーブル14により外輪2を軸方向に移動させることで、軸方向にも均一に被膜が形成される。
The aerosol injection nozzle 18 injects ceramic fine particles from the nozzle tip having an opening such as a rectangle onto the outer diameter surface of the outer ring 2. In addition, the aerosol injection nozzle 18 may be one or plural. The aerosol injection nozzle 18 may be configured to be displaceable in the vacuum chamber 12.
From the fixed aerosol spray nozzle 18, aerosol made of ceramic fine particles is sprayed onto the outer ring 2 rotating at a predetermined number of revolutions by the object rotating motor 15, and a ceramic coating is applied to the outer diameter surface of the outer ring 2. Formed. At the same time, the outer ring 2 is moved in the axial direction by the positioning XY table 14, so that a film is uniformly formed in the axial direction.

AD法によるセラミックス被膜形成は、被膜厚さが 30μm 程度となるまで行なうことが好ましい。30μm 未満であると十分な絶縁抵抗が得られず、200μm をこえると製造コストが高くなる。
本発明では、外輪等の幅面およびチャンファー部は金属アルコキシド被膜により絶縁され、該部分はAD法でセラミックス被膜を形成する必要がないので、AD法による加工工数を大幅に軽減できる。
The ceramic film formation by the AD method is preferably performed until the film thickness reaches about 30 μm. If it is less than 30 μm, sufficient insulation resistance cannot be obtained, and if it exceeds 200 μm, the manufacturing cost increases.
In the present invention, the width surface of the outer ring or the like and the chamfer portion are insulated by the metal alkoxide coating, and the portion does not need to be formed with a ceramic coating by the AD method. Therefore, the processing man-hour by the AD method can be greatly reduced.

本発明における金属アルコキシドの被膜の形成は、金属アルコキシドの溶液を用いてゾル−ゲル法により行なう。ゾル−ゲル法は、原料(出発金属化合物)溶液を外輪等に塗布し、加水分解、縮重合などの化学反応を経てゲルを作製し、熱処理をすることにより内部に残された溶媒を取り除き、さらに緻密化を促進させて被膜等を形成する方法である。金属アルコキシドの溶液を用いゾル−ゲル法を行うことにより、下地となる軸受鋼等の金属に接合し、緻密・均一で絶縁性に優れる被膜が形成できる。   In the present invention, the metal alkoxide film is formed by a sol-gel method using a metal alkoxide solution. In the sol-gel method, a raw material (starting metal compound) solution is applied to an outer ring or the like, a gel is produced through a chemical reaction such as hydrolysis or condensation polymerization, and the solvent left inside is removed by heat treatment. Furthermore, it is a method of forming a film or the like by promoting densification. By performing a sol-gel method using a solution of a metal alkoxide, it is possible to form a dense, uniform and excellent insulating film by bonding to a base metal such as bearing steel.

本発明に用いることができる出発金属化合物としては、テトラメトキシシラン、テトラエトキシシラン(オルトケイ酸テトラエステル)、テトラブトキシシラン、アルミニウムエトキシド、アルミニウムn-ムブトキシド、アルミニウムs-ブトキシド、アルミニウムt-ブトキシド、アルミニウムイソブトキシド、アルミニウムイソプロポキシド等の単体、および、これらの混合液を使用することができる。
これらの中でも、被膜形成性に優れ、低コストであることからテトラエトキシシラン、アルミニウムイソプロポキシド等が好適である。
また、金属アルコキシド溶液中に、アルミナ、シリカ、マグネシア等のセラミックス粒子を分散させることにより、被膜の絶縁性を向上させることができる。
Examples of starting metal compounds that can be used in the present invention include tetramethoxysilane, tetraethoxysilane (orthosilicate tetraester), tetrabutoxysilane, aluminum ethoxide, aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, A simple substance such as aluminum isobutoxide, aluminum isopropoxide, or a mixture thereof can be used.
Among these, tetraethoxysilane, aluminum isopropoxide, and the like are preferable because they are excellent in film-forming properties and low in cost.
Moreover, the insulation of a film can be improved by disperse | distributing ceramic particles, such as an alumina, a silica, and magnesia, in a metal alkoxide solution.

上述のAD法により外径面にセラミックス被膜が形成された外輪の外周面(外径面に加えて、幅面やチャンファー部を含む)に、該セラミックス被膜を覆いつつ、上記ゾル−ゲル法により金属アルコキシドの被膜を形成することで、本発明の絶縁転がり軸受の外輪が得られる。   While covering the ceramic coating on the outer peripheral surface (including the outer diameter surface, the width surface and the chamfer part) of the outer ring having the ceramic coating formed on the outer diameter surface by the above-mentioned AD method, the sol-gel method By forming the metal alkoxide film, the outer ring of the insulated rolling bearing of the present invention can be obtained.

軸受外輪(軸受型番NU214、外径 125 mm )について、外輪外径面にAD法により窒化珪素微粒子(宇部興産社製、SN−E10平均粒径 0.55μm )をエアロゾル原料とするセラミックス被膜を 30μm の厚みで形成した。AD法は、図2に示すような位置決め用XYテーブルおよび対象物回転用モータを併用した軸受駆動装置を用いて、周速 60 mm/分で回転しつつ軸方向に移動する軸受外輪に、100 Pa 以下の減圧下で、開口サイズ 10 mm×2.0 mm のノズルを通して上記窒化珪素微粒子のエアロゾルを噴射して被膜形成を行なった。
この軸受外輪について、金属アルコキシド溶液を、軸受外輪内側のレース面をマスキングして保護した上で、軸受外輪外周面にスプレイ法により塗布し、空気中の水分で加水分解させ副生成物のアルコールを 1 時間風乾にて蒸発させた後、加熱大気炉中 150℃ 1 時間の条件で硬化させて金属アルコキシド被膜を形成した。さらに、この操作を3回繰り返して、膜厚 4μm の金属アルコキシド被膜とした。金属アルコキシド溶液としては、オルトケイ酸テトラエステル(和光純薬工業社製試薬)50 g およびアルミニウムイソプロポキシド 50 g(和光純薬工業社製試薬)および高純度アルミナ粉末AKP−50(住友化学工業社製)10 g をホモジナイザーで混合して調整した。
For the outer ring of the bearing (bearing model number NU214, outer diameter 125 mm), the outer ring outer diameter surface is coated with a ceramic coating made of silicon nitride fine particles (Ube Industries, SN-E10 average particle size 0.55 μm) as an aerosol raw material by 30 μm. It was formed with a thickness. The AD method uses a bearing drive device that uses a positioning XY table and a motor for rotating an object as shown in FIG. 2 for a bearing outer ring that moves in the axial direction while rotating at a peripheral speed of 60 mm / min. Under reduced pressure of Pa or less, the above silicon nitride fine particle aerosol was sprayed through a nozzle having an opening size of 10 mm × 2.0 mm to form a film.
For this bearing outer ring, the metal alkoxide solution is applied to the outer peripheral surface of the bearing outer ring by the spray method after masking the race surface inside the bearing outer ring, and hydrolyzed with moisture in the air to produce alcohol as a by-product. After evaporating by air drying for 1 hour, it was cured in a heated atmospheric furnace at 150 ° C. for 1 hour to form a metal alkoxide film. Further, this operation was repeated three times to obtain a metal alkoxide film having a thickness of 4 μm. As the metal alkoxide solution, orthosilicic acid tetraester (reagent manufactured by Wako Pure Chemical Industries) 50 g, aluminum isopropoxide 50 g (reagent manufactured by Wako Pure Chemical Industries), and high-purity alumina powder AKP-50 (Sumitomo Chemical Co., Ltd.) 10 g) was prepared by mixing with a homogenizer.

得られた軸受の絶縁抵抗を絶縁抵抗計で計測したところ 1000 V 印加で 2000 MΩ以上であった。またJIS K 6911に準じて絶縁破壊電圧を計測したところ 3.1 kV と十分な絶縁破壊特性を示した。   When the insulation resistance of the obtained bearing was measured with an insulation resistance meter, it was 2000 MΩ or more when 1000 V was applied. Moreover, when the breakdown voltage was measured according to JIS K 6911, it showed a sufficient breakdown characteristic of 3.1 kV.

本発明の絶縁転がり軸受は、絶縁層を設ける加工工数が少なく低コストで製造できるとともに、チャンファー部の欠陥も生じず、優れた絶縁性を有するので、各種産業機械に用いられる転がり軸受において電食防止転がり軸受、絶縁転がり軸受として好適に利用できる。   The insulated rolling bearing of the present invention can be manufactured at a low cost with a small number of processing steps for providing an insulating layer, and it has excellent insulation properties without causing defects in the chamfer part. It can be suitably used as an anti-corrosion rolling bearing or an insulating rolling bearing.

本発明の絶縁転がり軸受の一実施例を示す断面図である。It is sectional drawing which shows one Example of the insulated rolling bearing of this invention. AD法によるセラミックス被膜形成装置を示す図である。It is a figure which shows the ceramic film formation apparatus by AD method.

符号の説明Explanation of symbols

1 内輪
2 外輪
3 保持器
4 転動体
5 ハウジング
6 軸
7 絶縁層
7a 金属アルコキシド被膜
7b セラミックス被膜
11 被膜形成装置
12 真空チャンバー
13 真空ポンプ
14 位置決め用XYテーブル
15 対象物回転用モータ
16 ガス供給設備
17 エアロゾル発生装置
18 エアロゾル噴射ノズル
19 微粒子フィルター
DESCRIPTION OF SYMBOLS 1 Inner ring 2 Outer ring 3 Cage 4 Rolling body 5 Housing 6 Shaft 7 Insulating layer 7a Metal alkoxide film 7b Ceramic film 11 Film forming apparatus 12 Vacuum chamber 13 Vacuum pump 14 Positioning XY table 15 Object rotation motor 16 Gas supply equipment 17 Aerosol generator 18 Aerosol spray nozzle 19 Fine particle filter

Claims (3)

内輪および外輪と、これら内外輪の軌道面間に介在する複数の転動体とを備えてなり、前記内輪の内周面および前記外輪の外周面から選ばれた少なくとも一つの周面に絶縁層を有する絶縁転がり軸受であって、
前記絶縁層は、前記少なくとも一つの周面上における前記内輪の内径面または前記外輪の外径面に、エアロゾルデポジション法により形成されたセラミックス被膜の層と、該セラミックス被膜の層を覆いつつ前記少なくとも一つの周面に、金属アルコキシド溶液を用いてゾル−ゲル法により形成された被膜の層とからなることを特徴とする絶縁転がり軸受。
An inner ring and an outer ring, and a plurality of rolling elements interposed between the raceway surfaces of the inner and outer rings, and an insulating layer on at least one peripheral surface selected from the inner peripheral surface of the inner ring and the outer peripheral surface of the outer ring An insulated rolling bearing having
The insulating layer is formed on an inner diameter surface of the inner ring or an outer diameter surface of the outer ring on the at least one peripheral surface, and a ceramic coating layer formed by an aerosol deposition method and covering the ceramic coating layer An insulating rolling bearing comprising: a coating layer formed by a sol-gel method using a metal alkoxide solution on at least one peripheral surface.
前記セラミックス被膜を形成するための、エアロゾル原料となるセラミックス微粒子の平均粒子径は 0.01〜2μm であることを特徴とする請求項1記載の絶縁転がり軸受。   2. The insulated rolling bearing according to claim 1, wherein an average particle diameter of ceramic fine particles used as an aerosol raw material for forming the ceramic coating is 0.01 to 2 [mu] m. 前記セラミックス被膜は、窒化珪素の微粒子をエアロゾル原料として使用した被膜であることを特徴とする請求項1または請求項2記載の絶縁転がり軸受。   3. The insulating rolling bearing according to claim 1, wherein the ceramic coating is a coating using silicon nitride fine particles as an aerosol raw material.
JP2006261750A 2006-09-27 2006-09-27 Insulated rolling bearing Pending JP2008082413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261750A JP2008082413A (en) 2006-09-27 2006-09-27 Insulated rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006261750A JP2008082413A (en) 2006-09-27 2006-09-27 Insulated rolling bearing

Publications (1)

Publication Number Publication Date
JP2008082413A true JP2008082413A (en) 2008-04-10

Family

ID=39353492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261750A Pending JP2008082413A (en) 2006-09-27 2006-09-27 Insulated rolling bearing

Country Status (1)

Country Link
JP (1) JP2008082413A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157572A1 (en) * 2015-04-01 2016-10-06 日本精工株式会社 Roller bearing having insulation for prevention of electrolytic corrosion, and method for manufacturing same
US10823229B2 (en) 2017-03-24 2020-11-03 Aktiebolaget Skf Rolling-element bearing including an electrically insulating layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157572A1 (en) * 2015-04-01 2016-10-06 日本精工株式会社 Roller bearing having insulation for prevention of electrolytic corrosion, and method for manufacturing same
US10823229B2 (en) 2017-03-24 2020-11-03 Aktiebolaget Skf Rolling-element bearing including an electrically insulating layer

Similar Documents

Publication Publication Date Title
US8172463B2 (en) Rolling bearing with a ceramic coating and method for manufacturing the same
JP2008082415A (en) Insulated rolling bearing
EP2918698B1 (en) Compositions and methods for thermal spraying a hermetic rare earth environmental barrier coating
TW201726975A (en) Plasma resistant coating layer and method of forming the same
CN102123970B (en) Surface-treated ceramic member, method for producing same, and vacuum processing device
CN101884161A (en) Electrostatic chuck and formation method
KR100940812B1 (en) Method for manufacturing a ceramic coating material for thermal spray on the parts of semiconductor processing devices
CN109355612A (en) A method of yttria coating is prepared with air plasma spraying
JP2008514816A (en) Manufacturing method of hermetic crystalline mullite layer using thermal spraying method
JP2008082413A (en) Insulated rolling bearing
JP2007225074A (en) Insulated rolling bearing
JP2008095884A (en) Insulated rolling bearing
CN101395394A (en) Rolling bearing and method for manufacturing the same
JP2008082411A (en) Insulated rolling bearing
JP2008095887A (en) Insulated rolling bearing
JP2007239858A (en) Insulated rolling bearing
JP2007270899A (en) Electrolytic corrosion prevention constant velocity joint
JP2008032114A (en) Anticorrosive insulated rolling bearing
JP2007225076A (en) Insulated rolling bearing
CN111032341B (en) Heat insulation component
US20150104610A1 (en) Structure and paint for forming surface coat layer
KR101766970B1 (en) Functional Coating Film Manufacturing Method and Functional Coating Film
CN112714834B (en) Anti-electric erosion rolling bearing
JP2007253099A (en) Method for forming film
JP4975101B2 (en) High resistance ceramic thermal spray coating material and method for manufacturing electrostatic chuck including the same