JP2008082323A - Two-shaft gas turbine - Google Patents

Two-shaft gas turbine Download PDF

Info

Publication number
JP2008082323A
JP2008082323A JP2007128757A JP2007128757A JP2008082323A JP 2008082323 A JP2008082323 A JP 2008082323A JP 2007128757 A JP2007128757 A JP 2007128757A JP 2007128757 A JP2007128757 A JP 2007128757A JP 2008082323 A JP2008082323 A JP 2008082323A
Authority
JP
Japan
Prior art keywords
pressure turbine
intermediate duct
turbine
strut
struts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007128757A
Other languages
Japanese (ja)
Inventor
Masato Kataoka
正人 片岡
Eisaku Ito
栄作 伊藤
Vincent Laurello
ヴィンセント・ロウレロ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JP2008082323A publication Critical patent/JP2008082323A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-shaft gas turbine capable of improving turbine performance and reducing the size by reducing the pressure loss of a gas flow passage and shortening the length of the flow passage by effective integration of a strut cover and a first-stage stator vane of a low pressure turbine. <P>SOLUTION: The bearing case connects an annular gas flow passage outlet 15 in a high pressure turbine 12 and an annular gas flow passage inlet 16 of the low pressure turbine 13 by an annular intermediate duct 17, and a bearing 19 for journaling a rotor 18 of the high pressure turbine is mounted on the bearing case 20. The bearing case 20 is supported by a plurality of struts 23 interposed in a circumference direction by passing the intermediate duct between an outer circumference surface of the bearing case and an inner circumference surface of a cabin wall for surrounding the intermediate duct. The strut cover 22 which the struts of the intermediate duct can pass through has a function of the first-stage stator vane in the low pressure turbine. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、同一軸線上に配列された複数の軸からなるガスタービンに関する。   The present invention relates to a gas turbine including a plurality of shafts arranged on the same axis.

ガスタービンは、空気圧縮機と燃焼器とタービンとを備えて構成されている(図示略)。このガスタービンによれば、空気圧縮機で圧縮された圧縮空気が、燃焼器に供給され、別途供給されてくる燃料と混合して燃焼される。燃焼によって発生された燃焼ガスは、タービンへと供給される。このタービン内で燃焼ガスのエネルギーが引き出され、空気圧縮機の回転駆動力と、発電機(図示略)に発電させるための駆動力とに供される。そして、このタービンに回転駆動力を発生させた後の燃焼ガスは、排気ディフューザを介して排気される。   The gas turbine includes an air compressor, a combustor, and a turbine (not shown). According to this gas turbine, the compressed air compressed by the air compressor is supplied to the combustor, and is mixed with the separately supplied fuel and burned. The combustion gas generated by the combustion is supplied to the turbine. The energy of the combustion gas is extracted in the turbine and used for the rotational driving force of the air compressor and the driving force for causing the generator (not shown) to generate power. The combustion gas after the rotational driving force is generated in the turbine is exhausted through the exhaust diffuser.

ところで、ジェットエンジンをはじめ、ジェットエンジン転用型のガスタービンとして、例えば図7に示すように、高圧タービン100における円環状のガス流路出口101と低圧タービン102における円環状のガス流路入口103とを円環状の中間ダクト104で連結すると共に、前記高圧タービン100のロータを軸支するジャーナル軸受105を、同ジャーナル軸受105の外周面と前記中間ダクト104を囲繞する車室壁106の内周面との間に、同中間ダクト104をストラットカバー107を介して貫通して、円周方向でかつ放射状に複数本介設されるストラット108により支持するようにした二軸ガスタービンが良く知られている(特許文献1〜3参照)。   By the way, as a jet engine diversion type gas turbine including a jet engine, as shown in FIG. 7, for example, an annular gas passage outlet 101 in the high-pressure turbine 100 and an annular gas passage inlet 103 in the low-pressure turbine 102 Are connected by an annular intermediate duct 104, and a journal bearing 105 that supports the rotor of the high-pressure turbine 100 is connected to an outer peripheral surface of the journal bearing 105 and an inner peripheral surface of a casing wall 106 that surrounds the intermediate duct 104. A two-shaft gas turbine is well known in which the intermediate duct 104 passes through the strut cover 107 and is supported by a plurality of struts 108 that are provided in the circumferential direction and radially. (See Patent Documents 1 to 3).

即ち、前記高圧タービン100は、空気圧縮機(図示略)を駆動するための高温・高圧の燃焼ガスを発生させるガス発生機(ガスジェネレータ)として、また、低圧タービン102は、発電機等の負荷(図示略)を駆動してエネルギーを回収するパワータービンとしてそれぞれ機能するのである。尚、図7中109は低圧タービン102の一段静翼で、110は一段動翼である。   That is, the high-pressure turbine 100 is a gas generator (gas generator) that generates high-temperature and high-pressure combustion gas for driving an air compressor (not shown), and the low-pressure turbine 102 is a load such as a generator. It functions as a power turbine that recovers energy by driving (not shown). In FIG. 7, reference numeral 109 denotes a single-stage stationary blade of the low-pressure turbine 102, and 110 denotes a single-stage moving blade.

特開2004−190664号公報JP 2004-190664 A 米国特許第4989406号明細書US Pat. No. 4,889,406 米国特許第4197702号明細書U.S. Pat. No. 4,197,702

しかしながら、上述したような従来の二軸ガスタービンにあっては、高圧タービン100と低圧タービン102の一連のガス流路に、ストラット108が高温ガスに加熱されるのを防ぐ複数個のストラットカバー107が介在されるため、これらが低圧タービン102のガス流路入口103に、一段動翼110に対して、そのガス流れに沿って多数配される一段静翼109と共に、ガス流路内で空気力学上の損失を与えるという問題点があった。   However, in the conventional twin-shaft gas turbine as described above, a plurality of strut covers 107 that prevent the struts 108 from being heated to high-temperature gas in a series of gas flow paths of the high-pressure turbine 100 and the low-pressure turbine 102. Are interposed in the gas flow path inlet 103 of the low-pressure turbine 102, together with the first stage stationary blades 109 arranged along the gas flow with respect to the first stage moving blade 110, and aerodynamics in the gas flow path. There was a problem of giving the above loss.

また、ストラットカバー107と一段静翼109がタンデムに配されることから、ガス流路長が増大し、延いては低圧タービン102のロータ軸方向の長さが増大してガスタービンの大型化を招いていたという欠点もあった。   In addition, since the strut cover 107 and the one-stage stationary blade 109 are arranged in tandem, the gas flow path length increases, and the length of the low-pressure turbine 102 in the rotor axial direction increases, thereby increasing the size of the gas turbine. There was also a drawback of being invited.

そこで、本発明の目的は、ストラットカバーと低圧タービンの一段静翼との効果的な統合により、ガス流路の圧力損失を低減すると共に流路長を短縮して、タービン性能の向上とコンパクト化が図れる二軸ガスタービンを提供することにある。   Therefore, the object of the present invention is to improve the turbine performance and make it compact by reducing the pressure loss of the gas flow path and shortening the flow path length by effectively integrating the strut cover and the first stage stationary blade of the low pressure turbine. An object of the present invention is to provide a two-shaft gas turbine capable of achieving the above.

上記の課題を解決するための本発明に係る二軸ガスタービンは、高圧タービンにおける円環状のガス流路出口と低圧タービンにおける円環状のガス流路入口とを円環状の中間ダクトで連結すると共に、前記高圧タービンのロータを軸支する軸受が装着された軸受ケースを、同軸受ケースの外周面と前記中間ダクトを囲繞する車室壁の内周面との間に、同中間ダクトを貫通して、円周方向に複数本介設されるストラットにより支持するようにした二軸ガスタービンにおいて、前記中間ダクトの前記ストラットが貫通し得るストラットカバーに、前記低圧タービンにおける一段静翼の機能を持たせたことを特徴とする。   A twin-shaft gas turbine according to the present invention for solving the above-described problems is formed by connecting an annular gas flow path outlet in a high-pressure turbine and an annular gas flow path inlet in a low-pressure turbine with an annular intermediate duct. A bearing case on which a bearing for supporting the rotor of the high-pressure turbine is mounted is inserted between the outer peripheral surface of the bearing case and the inner peripheral surface of the casing wall surrounding the intermediate duct. In a two-shaft gas turbine that is supported by a plurality of struts provided in the circumferential direction, the strut cover through which the struts of the intermediate duct can pass has a function of a one-stage stationary blade in the low-pressure turbine. It is characterized by that.

また、前記中間ダクトは、円周方向へ複数個に分割形成されてその各々に前記ストラットカバーを設けると共に、これらストラットカバーの内の任意の数のストラットカバーに前記ストラットを貫通させることを特徴とする。   The intermediate duct is divided into a plurality of parts in the circumferential direction, each of which is provided with the strut cover, and the struts are penetrated through an arbitrary number of the strut covers. To do.

また、前記中間ダクトは20個に分割形成され、その内の10個のストラットカバーに一個おきに前記ストラットを貫通させることを特徴とする。   Further, the intermediate duct is divided into 20 pieces, and the struts are inserted through every other 10 strut covers.

また、前記ストラットカバーは、その前縁部における断面外形状が、ガス流れ方向に沿って肉厚が徐々に増大する翼形形状をなしていることを特徴とする。   Further, the strut cover is characterized in that an outer cross-sectional shape at a front edge portion thereof has an airfoil shape in which the thickness gradually increases along the gas flow direction.

本発明の構成によれば、中間ダクトのストラットカバーに低圧タービン13における一段静翼(ノズル翼)の機能を付加したので、低圧タービンのガス流路入口には、従来有った一段静翼(ノズル翼)を配する必要がなく、直に一段動翼を配することができる。これにより、高圧タービンから低圧タービンに至るガス流路の圧力損失を効果的に低減すると共に低圧タービンにおける流路長を短縮して、タービン性能の向上とコンパクト化が図れる。   According to the configuration of the present invention, since the function of the first stage stationary blade (nozzle blade) in the low pressure turbine 13 is added to the strut cover of the intermediate duct, the conventional one stage stationary blade ( There is no need to arrange a nozzle blade), and a single stage moving blade can be arranged directly. As a result, the pressure loss in the gas flow path from the high pressure turbine to the low pressure turbine can be effectively reduced, and the flow path length in the low pressure turbine can be shortened to improve the turbine performance and make it compact.

以下、本発明に係る二軸ガスタービンを実施例により図面を用いて詳細に説明する。   Hereinafter, a twin-shaft gas turbine according to the present invention will be described in detail with reference to the drawings by way of examples.

図1は本発明の一実施例を示す二軸ガスタービンの要部断面図、図2Aは中間ダクト部の断面図、図2Bは中間ダクト部の斜視断面図、図3Aは中間ダクト部の分解断面図、図3Bは中間ダクト部の分解斜視断面図、図4Aは中間ダクト部の作用状態を示す分解断面図、図4Bは中間ダクト部の作用状態を示す分解斜視断面図、図5は二軸ガスタービンの全体構成概略図、図6は図1のVI−VI線断面図である。   1 is a cross-sectional view of a main portion of a twin-shaft gas turbine showing an embodiment of the present invention, FIG. 2A is a cross-sectional view of an intermediate duct portion, FIG. 2B is a perspective cross-sectional view of the intermediate duct portion, and FIG. 3B is an exploded perspective sectional view of the intermediate duct portion, FIG. 4A is an exploded sectional view showing the operational state of the intermediate duct portion, FIG. 4B is an exploded perspective sectional view showing the operational state of the intermediate duct portion, and FIG. FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 1.

図5に示すように、二軸ガスタービンは、空気圧縮機10と燃焼器11とガスジェネレータとしての高圧タービン12及びパワータービンとしての低圧タービン13とを備えて構成される。   As shown in FIG. 5, the twin-shaft gas turbine includes an air compressor 10, a combustor 11, a high-pressure turbine 12 as a gas generator, and a low-pressure turbine 13 as a power turbine.

この二軸ガスタービンによれば、空気圧縮機10で圧縮された圧縮空気が、燃焼器11に供給され、別途供給されてくる燃料と混合して燃焼される。燃焼によって発生された燃焼ガスは、高圧タービン12及び低圧タービン13へと供給される。そして、高圧タービン12で発生された高温・高圧の燃焼ガスで空気圧縮機10が例えば5000rpmで回転駆動される一方、低圧タービン13では例えば3000rpmで発電機14が回転駆動されて燃焼ガスのエネルギーが回収される。   According to this two-shaft gas turbine, the compressed air compressed by the air compressor 10 is supplied to the combustor 11 and mixed with the separately supplied fuel and burned. The combustion gas generated by the combustion is supplied to the high pressure turbine 12 and the low pressure turbine 13. The air compressor 10 is driven to rotate at, for example, 5000 rpm by high-temperature and high-pressure combustion gas generated by the high-pressure turbine 12, while the generator 14 is driven to rotate at, for example, 3000 rpm in the low-pressure turbine 13. Collected.

図1及び図2A,図2Bに示すように、前記高圧タービン12における円環状のガス流路出口15と低圧タービン13における円環状のガス流路入口16とが円環状の中間ダクト17で連結されると共に、前記高圧タービン12のロータ18を軸支する軸受19が装着された軸受ケース20が、同軸受ケース20の外周面と前記中間ダクト17を囲繞する中間車室壁21の内周面との間に、同中間ダクト17をストラットカバー22を介して貫通して、円周方向でかつ放射状に複数本介設されるストラット23により支持されるようになっている。   As shown in FIGS. 1, 2 </ b> A, and 2 </ b> B, an annular gas passage outlet 15 in the high pressure turbine 12 and an annular gas passage inlet 16 in the low pressure turbine 13 are connected by an annular intermediate duct 17. In addition, a bearing case 20 to which a bearing 19 that supports the rotor 18 of the high-pressure turbine 12 is mounted includes an outer peripheral surface of the bearing case 20 and an inner peripheral surface of an intermediate casing wall 21 that surrounds the intermediate duct 17. In between, the intermediate duct 17 is penetrated through the strut cover 22, and is supported by a plurality of struts 23 provided in the circumferential direction and radially.

前記高圧タービン12のガス流路には、二段に亙って、車室内壁24Aに支持された静翼25とロータ18に支持された動翼26とが交互に配設されている。図中24Bは高圧タービン12の車室外壁で前記中間車室壁21とボルト結合される。一方、前記低圧タービン13のガス流路には、複数段に亙って、車室内壁27Aに支持された静翼28とロータ(図示略)に支持された動翼29とが交互に配設されている。図中27Bは低圧タービン13の車室外壁で前記中間車室壁21とボルト結合される。   In the gas flow path of the high-pressure turbine 12, the stationary blades 25 supported by the vehicle interior wall 24A and the moving blades 26 supported by the rotor 18 are alternately arranged in two stages. In the figure, reference numeral 24B denotes a casing outer wall of the high-pressure turbine 12 and is bolted to the intermediate casing wall 21. On the other hand, in the gas flow path of the low-pressure turbine 13, a stationary blade 28 supported by the vehicle interior wall 27A and a moving blade 29 supported by a rotor (not shown) are alternately arranged over a plurality of stages. Has been. In the figure, reference numeral 27B denotes a casing outer wall of the low-pressure turbine 13 and is bolted to the intermediate casing wall 21.

前記ストラット23は、その両端部がスタッドボルト30及びナット31と複数本の締付ボルト(図示略)で、それぞれ軸受ケース20と中間車室壁21に固定される。   Both ends of the strut 23 are fixed to the bearing case 20 and the intermediate casing wall 21 by stud bolts 30, nuts 31, and a plurality of fastening bolts (not shown), respectively.

そして、本実施例では、前記中間ダクト17の前記ストラット23が貫通し得るストラットカバー22が、前記低圧タービン13における一段静翼の機能を有している。従って、低圧タービン13におけるガス流路入口16には、通常であれば、一段静翼が配されるのであるが、本実施例では、一段動翼29が配されている。   In this embodiment, the strut cover 22 through which the strut 23 of the intermediate duct 17 can penetrate has a function of a one-stage stationary blade in the low-pressure turbine 13. Therefore, normally, a single-stage stationary blade is disposed at the gas flow path inlet 16 in the low-pressure turbine 13, but in the present embodiment, a single-stage moving blade 29 is disposed.

具体的には、前記中間ダクト17は、円周方向へ例えば20個に分割形成されてその各々に前記ストラットカバー22を一体的に形成すると共に、これらストラットカバー22の内の例えば10個のストラットカバー22に前記ストラット23を貫通させている。つまり、ストラットカバー22の一つおきにストラット23を貫通させているのである。   Specifically, the intermediate duct 17 is divided into, for example, 20 pieces in the circumferential direction, and the strut cover 22 is formed integrally with each of the intermediate ducts 17. For example, 10 struts of these strut covers 22 are formed. The strut 23 is passed through the cover 22. That is, every other strut cover 22 has the struts 23 penetrated.

前記分割された中間ダクト17の各セグメントは、その内周側が取付部材32a,32bを介して軸受ケース20に支持され、外周側がサポート部材33a,33bを介して中間車室壁21に支持される。図示例では、ガス流れ上流側のサポート部材33aは連結部材34を介して間接的に中間車室壁21に支持されている。   Each segment of the divided intermediate duct 17 is supported by the bearing case 20 on the inner peripheral side via the mounting members 32a and 32b, and supported on the intermediate casing wall 21 by the support members 33a and 33b. . In the illustrated example, the support member 33 a on the upstream side of the gas flow is indirectly supported by the intermediate casing wall 21 via the connecting member 34.

図6に示すように、前記ストラットカバー22は、その前縁部における断面外形状が、ガス流れ方向に沿って肉厚が徐々に増大する翼形形状をなしている。つまり、前縁部でのガス流れを壁面に沿って滑らかに沿わせることで衝撃波の発生を回避し、低圧タービン13の一段動翼29に対し、ノズル翼としての機能をフルに発揮し得るようになっている。   As shown in FIG. 6, the strut cover 22 has an airfoil shape in which the outer shape of the cross section at the front edge portion gradually increases in thickness along the gas flow direction. In other words, the generation of shock waves can be avoided by causing the gas flow at the front edge portion to smoothly follow the wall surface, and the nozzle blades can be fully exerted on the single-stage blade 29 of the low-pressure turbine 13. It has become.

尚、図3A,図3Bは、図2A,図2Bの状態から中間車室壁21を分離した状態を示し、また、図4A,図4Bは、図3A,図3Bの状態からストラット23を引き抜いた状態を示し、二軸ガスタービンの組付時やストラット23及び/又は中間ダクト17の各セグメントの交換時等の作業手順を知るためのものである。   3A and 3B show a state where the intermediate casing wall 21 is separated from the state shown in FIGS. 2A and 2B. FIGS. 4A and 4B show the struts 23 pulled out from the state shown in FIGS. 3A and 3B. This is for knowing the work procedure such as when the twin-shaft gas turbine is assembled or when the segments of the strut 23 and / or the intermediate duct 17 are replaced.

このようにして、本実施例では、中間ダクト17のストラットカバー22に低圧タービン13における一段静翼(ノズル翼)の機能を付加したので、低圧タービン13のガス流路入口16には、従来有った一段静翼(ノズル翼)を配する必要がなく、直に一段動翼29を配することができる。   In this way, in the present embodiment, the function of the one-stage stationary blade (nozzle blade) in the low pressure turbine 13 is added to the strut cover 22 of the intermediate duct 17, so that the gas flow path inlet 16 of the low pressure turbine 13 has a conventional one. It is not necessary to arrange a single-stage stationary blade (nozzle blade), and the single-stage moving blade 29 can be disposed directly.

これにより、高圧タービン12から低圧タービン13に至るガス流路の圧力損失を効果的に低減すると共に低圧タービン13における流路長を短縮して、タービン性能の向上とコンパクト化が図れる。   Thereby, the pressure loss of the gas flow path from the high-pressure turbine 12 to the low-pressure turbine 13 can be effectively reduced, and the flow path length in the low-pressure turbine 13 can be shortened to improve the turbine performance and make it compact.

また、本実施例では、中間ダクト17を円周方向へ複数個に分割形成し、その各々にストラットカバー22を一体的に形成すると共に、これらストラットカバー22の内の任意の数のストラットカバー22にストラット23を貫通させているので、ストラット23の設置数を適宜変更することができると共に、ストラット23や分割形成された中間ダクト17の各セグメントの交換作業等も容易に行える。   Further, in this embodiment, the intermediate duct 17 is divided into a plurality of parts in the circumferential direction, and the strut cover 22 is integrally formed on each of them, and any number of the strut covers 22 among these strut covers 22 is formed. Since the struts 23 are penetrated, the number of the struts 23 can be changed as appropriate, and the replacement work of the segments of the struts 23 and the divided intermediate duct 17 can be easily performed.

尚、本発明は上記実施例に限定されず、本発明の要旨を逸脱しない範囲で、中間ダクト17の分割数やストラット23の本数変更やストラットカバー22の断面外形状変更等各種変更が可能であることはいうまでもない。   The present invention is not limited to the above-described embodiments, and various modifications such as changing the number of divisions of the intermediate duct 17, the number of struts 23, and changing the cross-sectional shape of the strut cover 22 are possible without departing from the spirit of the present invention. Needless to say.

本発明の一実施例を示す二軸ガスタービンの要部断面図である。It is principal part sectional drawing of the biaxial gas turbine which shows one Example of this invention. 中間ダクト部の断面図である。It is sectional drawing of an intermediate | middle duct part. 中間ダクト部の斜視断面図である。It is a perspective sectional view of an intermediate duct part. 中間ダクト部の分解断面図である。It is an exploded sectional view of an intermediate duct part. 中間ダクト部の分解斜視断面図である。It is a disassembled perspective sectional view of an intermediate duct part. 中間ダクト部の作用状態を示す分解断面図である。It is a disassembled sectional view which shows the action state of an intermediate | middle duct part. 中間ダクト部の作用状態を示す分解斜視断面図である。It is a disassembled perspective sectional view which shows the action state of an intermediate | middle duct part. 二軸ガスタービンの全体構成概略図である。1 is an overall configuration schematic diagram of a two-shaft gas turbine. 図1のVI−VI線断面図である。It is the VI-VI sectional view taken on the line of FIG. 従来の二軸ガスタービンの要部断面図である。It is principal part sectional drawing of the conventional biaxial gas turbine.

符号の説明Explanation of symbols

10 空気圧縮機、11 燃焼器、12 高圧タービン、13 低圧タービン、14 発電機、15 ガス流路出口、16 ガス流路入口、17 中間ダクト、18 ロータ、19 軸受、20 軸受ケース、21 中間車室壁、22 ストラットカバー、23 ストラット、24A 高圧タービンの車室内壁、24B 高圧タービンの車室外壁、25 静翼、26 動翼、27A 低圧タービンの車室内壁、27B 低圧タービンの車室外壁、28 静翼、29 動翼、30 スタッドボルト、31 ナット、32a,32b 取付部材、33a,33b サポート部材、34 連結部材。   DESCRIPTION OF SYMBOLS 10 Air compressor, 11 Combustor, 12 High pressure turbine, 13 Low pressure turbine, 14 Generator, 15 Gas flow path outlet, 16 Gas flow path inlet, 17 Intermediate duct, 18 Rotor, 19 Bearing, 20 Bearing case, 21 Intermediate wheel Chamber Wall, 22 Strut Cover, 23 Strut, 24A High Pressure Turbine Interior Wall, 24B High Pressure Turbine Interior Wall, 25 Stator Blade, 26 Moving Blade, 27A Low Pressure Turbine Interior Wall, 27B Low Pressure Turbine Interior Wall, 28 Stator blade, 29 Rotor blade, 30 Stud bolt, 31 Nut, 32a, 32b Mounting member, 33a, 33b Support member, 34 Connecting member.

Claims (4)

高圧タービンにおける円環状のガス流路出口と低圧タービンにおける円環状のガス流路入口とを円環状の中間ダクトで連結すると共に、
前記高圧タービンのロータを軸支する軸受が装着された軸受ケースを、同軸受ケースの外周面と前記中間ダクトを囲繞する車室壁の内周面との間に、同中間ダクトを貫通して、円周方向に複数本介設されるストラットにより支持するようにした二軸ガスタービンにおいて、
前記中間ダクトの前記ストラットが貫通し得るストラットカバーに、前記低圧タービンにおける一段静翼の機能を持たせたことを特徴とする二軸ガスタービン。
An annular gas passage outlet in the high pressure turbine and an annular gas passage inlet in the low pressure turbine are connected by an annular intermediate duct,
A bearing case mounted with a bearing that supports the rotor of the high-pressure turbine is passed through the intermediate duct between the outer peripheral surface of the bearing case and the inner peripheral surface of the casing wall surrounding the intermediate duct. In a two-shaft gas turbine that is supported by a plurality of struts interposed in the circumferential direction,
A two-shaft gas turbine characterized in that a strut cover through which the strut of the intermediate duct can pass has a function of a single stage stationary blade in the low-pressure turbine.
前記中間ダクトは、円周方向へ複数個に分割形成されてその各々に前記ストラットカバーを設けると共に、これらストラットカバーの内の任意の数のストラットカバーに前記ストラットを貫通させることを特徴とする請求項1に記載の二軸ガスタービン。   The intermediate duct is divided into a plurality of parts in a circumferential direction, each of which is provided with the strut cover, and the struts penetrate through an arbitrary number of strut covers. Item 2. The twin-shaft gas turbine according to item 1. 前記中間ダクトは20個に分割形成され、その内の10個のストラットカバーに一個おきに前記ストラットを貫通させることを特徴とする請求項2に記載の二軸ガスタービン。   3. The twin-shaft gas turbine according to claim 2, wherein the intermediate duct is divided into 20 parts, and the struts are passed through every other 10 strut covers. 5. 前記ストラットカバーは、その前縁部における断面外形状が、ガス流れ方向に沿って肉厚が徐々に増大する翼形形状をなしていることを特徴とする請求項1に記載の二軸ガスタービン。   2. The twin-shaft gas turbine according to claim 1, wherein the strut cover has an airfoil shape in which an outer cross-sectional shape at a front edge portion thereof gradually increases in thickness along a gas flow direction. .
JP2007128757A 2006-09-28 2007-05-15 Two-shaft gas turbine Pending JP2008082323A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/528,690 US20100303608A1 (en) 2006-09-28 2006-09-28 Two-shaft gas turbine

Publications (1)

Publication Number Publication Date
JP2008082323A true JP2008082323A (en) 2008-04-10

Family

ID=39154786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007128757A Pending JP2008082323A (en) 2006-09-28 2007-05-15 Two-shaft gas turbine

Country Status (4)

Country Link
US (1) US20100303608A1 (en)
JP (1) JP2008082323A (en)
CN (1) CN101153546B (en)
DE (1) DE102007025006A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253818A2 (en) 2009-05-19 2010-11-24 Hitachi Ltd. Two-shaft gas turbine
WO2014105572A1 (en) * 2012-12-29 2014-07-03 United Technologies Corporation Combination flow divider and bearing support
JP2015504140A (en) * 2012-01-20 2015-02-05 ターボメカTurbomeca Turboshaft engine hot section bearing support and associated turboshaft engine
JP2016508198A (en) * 2012-12-31 2016-03-17 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Multi-piece frame for turbine exhaust case
JP2016527431A (en) * 2013-07-15 2016-09-08 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Turbine vane with variable fillet
US20210254546A1 (en) * 2020-02-17 2021-08-19 Mitsubishi Heavy Industries, Ltd. Two-shaft gas turbine
JP2022158583A (en) * 2021-04-02 2022-10-17 三菱重工業株式会社 gas turbine

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8347500B2 (en) * 2008-11-28 2013-01-08 Pratt & Whitney Canada Corp. Method of assembly and disassembly of a gas turbine mid turbine frame
US8061969B2 (en) 2008-11-28 2011-11-22 Pratt & Whitney Canada Corp. Mid turbine frame system for gas turbine engine
US20100132371A1 (en) * 2008-11-28 2010-06-03 Pratt & Whitney Canada Corp. Mid turbine frame system for gas turbine engine
DE102008062588B4 (en) 2008-12-16 2010-11-25 Siemens Aktiengesellschaft Method for stabilizing the mains frequency of an electrical power network
CN101963073B (en) * 2009-07-22 2012-05-23 中国科学院工程热物理研究所 Counterrotating turbine with overhung rotor blade structure
US9279341B2 (en) 2011-09-22 2016-03-08 Pratt & Whitney Canada Corp. Air system architecture for a mid-turbine frame module
US9458721B2 (en) * 2011-09-28 2016-10-04 United Technologies Corporation Gas turbine engine tie rod retainer
CN104040117A (en) * 2012-01-09 2014-09-10 联合工艺公司 Gas turbine engine with geared architecture
WO2014105604A1 (en) * 2012-12-29 2014-07-03 United Technologies Corporation Angled cut to direct radiative heat load
US9631517B2 (en) 2012-12-29 2017-04-25 United Technologies Corporation Multi-piece fairing for monolithic turbine exhaust case
WO2014105617A1 (en) * 2012-12-29 2014-07-03 United Technologies Corporation Installation mounts for a turbine exhaust case
EP2938860B1 (en) * 2012-12-31 2018-08-29 United Technologies Corporation Turbine exhaust case multi-piece frame
US9316153B2 (en) * 2013-01-22 2016-04-19 Siemens Energy, Inc. Purge and cooling air for an exhaust section of a gas turbine assembly
WO2016010554A1 (en) * 2014-07-18 2016-01-21 Siemens Energy, Inc. Turbine assembly with detachable struts
EP3040523B1 (en) * 2014-12-17 2018-02-07 United Technologies Corporation Integrated seal supports
US9784133B2 (en) 2015-04-01 2017-10-10 General Electric Company Turbine frame and airfoil for turbine frame
US9771828B2 (en) 2015-04-01 2017-09-26 General Electric Company Turbine exhaust frame and method of vane assembly
US10273812B2 (en) 2015-12-18 2019-04-30 Pratt & Whitney Canada Corp. Turbine rotor coolant supply system
US11193385B2 (en) * 2016-04-18 2021-12-07 General Electric Company Gas bearing seal
FR3055655B1 (en) * 2016-09-06 2019-04-05 Safran Aircraft Engines INTERMEDIATE CASE OF TURBOMACHINE TURBINE
US10550726B2 (en) * 2017-01-30 2020-02-04 General Electric Company Turbine spider frame with additive core
US11401835B2 (en) * 2017-06-12 2022-08-02 General Electric Company Turbine center frame
DE102017221684A1 (en) 2017-12-01 2019-06-06 MTU Aero Engines AG Turbomachinery flow channel
FR3097259B1 (en) * 2019-06-12 2021-05-21 Safran Helicopter Engines ANNULAR PART OF A BEARING SUPPORT FOR A TURBOMACHINE

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB926947A (en) * 1961-11-27 1963-05-22 Rolls Royce Improvements relating to gas turbine engine casings
US3250512A (en) * 1962-11-09 1966-05-10 Rolls Royce Gas turbine engine
JPS5898604A (en) * 1981-12-08 1983-06-11 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Turbine exhaust case assembly of axial flow type gas turbine engine
JPS6441621A (en) * 1987-08-06 1989-02-13 Gen Electric Frame assembly for gas turbine engine
JPH02245428A (en) * 1988-12-29 1990-10-01 General Electric Co <Ge> Turbine engine assembly
US4979872A (en) * 1989-06-22 1990-12-25 United Technologies Corporation Bearing compartment support
JPH05133243A (en) * 1991-05-13 1993-05-28 General Electric Co <Ge> Light-weight engine turbine-bearing support assembly resisting radial load and axial load
JPH0681674A (en) * 1992-06-09 1994-03-22 General Electric Co <Ge> Turbine flow-path assembly, through which combustion gas is passed
JP2004190664A (en) * 2002-12-09 2004-07-08 Mitsubishi Heavy Ind Ltd Gas turbine
JP2005009479A (en) * 2003-02-07 2005-01-13 General Electric Co <Ge> Gas turbine engine frame having strut connected to ring with morse pin

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736069A (en) * 1968-10-28 1973-05-29 Gen Motors Corp Turbine stator cooling control
US4013377A (en) * 1975-10-08 1977-03-22 Westinghouse Electric Corporation Intermediate transition annulus for a two shaft gas turbine engine
GB1557096A (en) * 1977-05-26 1979-12-05 Rolls Royce Rotor support structure for a gas turbine engine
US4304522A (en) * 1980-01-15 1981-12-08 Pratt & Whitney Aircraft Of Canada Limited Turbine bearing support
US4965994A (en) * 1988-12-16 1990-10-30 General Electric Company Jet engine turbine support
CN1167207A (en) * 1997-02-03 1997-12-10 周展开 Inverse setting (spindle setting) combustion chamber type double-axle gas-turbine
US6439841B1 (en) * 2000-04-29 2002-08-27 General Electric Company Turbine frame assembly
US6547518B1 (en) * 2001-04-06 2003-04-15 General Electric Company Low hoop stress turbine frame support
US6983608B2 (en) * 2003-12-22 2006-01-10 General Electric Company Methods and apparatus for assembling gas turbine engines
US7278821B1 (en) * 2004-11-04 2007-10-09 General Electric Company Methods and apparatus for assembling gas turbine engines

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB926947A (en) * 1961-11-27 1963-05-22 Rolls Royce Improvements relating to gas turbine engine casings
US3250512A (en) * 1962-11-09 1966-05-10 Rolls Royce Gas turbine engine
JPS5898604A (en) * 1981-12-08 1983-06-11 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Turbine exhaust case assembly of axial flow type gas turbine engine
JPS6441621A (en) * 1987-08-06 1989-02-13 Gen Electric Frame assembly for gas turbine engine
JPH02245428A (en) * 1988-12-29 1990-10-01 General Electric Co <Ge> Turbine engine assembly
US4979872A (en) * 1989-06-22 1990-12-25 United Technologies Corporation Bearing compartment support
JPH05133243A (en) * 1991-05-13 1993-05-28 General Electric Co <Ge> Light-weight engine turbine-bearing support assembly resisting radial load and axial load
JPH0681674A (en) * 1992-06-09 1994-03-22 General Electric Co <Ge> Turbine flow-path assembly, through which combustion gas is passed
JP2004190664A (en) * 2002-12-09 2004-07-08 Mitsubishi Heavy Ind Ltd Gas turbine
JP2005009479A (en) * 2003-02-07 2005-01-13 General Electric Co <Ge> Gas turbine engine frame having strut connected to ring with morse pin

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253818A2 (en) 2009-05-19 2010-11-24 Hitachi Ltd. Two-shaft gas turbine
JP2015504140A (en) * 2012-01-20 2015-02-05 ターボメカTurbomeca Turboshaft engine hot section bearing support and associated turboshaft engine
WO2014105572A1 (en) * 2012-12-29 2014-07-03 United Technologies Corporation Combination flow divider and bearing support
GB2523953A (en) * 2012-12-29 2015-09-09 United Technologies Corp Combination flow divider and bearing support
JP2016504524A (en) * 2012-12-29 2016-02-12 ピーダブリュー パワー システムズ,インコーポレイテッド Connection of shunt and bearing support
JP2016508198A (en) * 2012-12-31 2016-03-17 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Multi-piece frame for turbine exhaust case
US10054009B2 (en) 2012-12-31 2018-08-21 United Technologies Corporation Turbine exhaust case multi-piece frame
JP2016527431A (en) * 2013-07-15 2016-09-08 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Turbine vane with variable fillet
US20210254546A1 (en) * 2020-02-17 2021-08-19 Mitsubishi Heavy Industries, Ltd. Two-shaft gas turbine
JP2022158583A (en) * 2021-04-02 2022-10-17 三菱重工業株式会社 gas turbine
US11708771B2 (en) 2021-04-02 2023-07-25 Mitsubishi Heavy Industries, Ltd. Gas turbine with reduced axial displacement under thermal expansion
JP7352590B2 (en) 2021-04-02 2023-09-28 三菱重工業株式会社 gas turbine

Also Published As

Publication number Publication date
CN101153546A (en) 2008-04-02
DE102007025006A1 (en) 2008-04-10
US20100303608A1 (en) 2010-12-02
CN101153546B (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP2008082323A (en) Two-shaft gas turbine
JP4588306B2 (en) Aircraft gas turbine engine with non-intermeshing counter-rotating low pressure turbine
EP1365154B1 (en) Counterrotatable booster compressor assembly for a gas turbine engine
US8511969B2 (en) Interturbine vane with multiple air chambers
US7458773B2 (en) Turbomachine with contrarotating fans
JP5181114B2 (en) High pressure ratio rear fan assembly and gas turbine engine
JP4204349B2 (en) Counter-rotatable booster compressor assembly for gas turbine engines
EP2692998B1 (en) Turbine exhaust structure and gas turbine
JP5802380B2 (en) Multistage fan
CN109477389B (en) System and method for a seal for an inboard exhaust circuit in a turbine
US10823064B2 (en) Gas turbine engine
WO2018186925A2 (en) Couter rotating turbine with reversing reduction gear assembly
JP6399894B2 (en) Exhaust device and gas turbine
US20120272663A1 (en) Centrifugal compressor assembly with stator vane row
JP2017072136A (en) Engine having variable pitch outlet guide vanes
JP2011106461A (en) Gas turbine engine with outer fan
JP2016194297A (en) Turbine frame and airfoil for turbine frame
CN108005786B (en) Rotor shaft structure for gas turbine engine and method of assembling the same
JP2017096273A (en) Modular fan for gas turbine engine
US10294821B2 (en) Interturbine frame for gas turbine engine
EP3524795B1 (en) Axial compressor with inter-stage centrifugal compressor
JP2006112374A (en) Gas turbine plant
US20190186300A1 (en) Exhaust device and an associated method thereof
WO2024035537A1 (en) Gas turbine engine with turbine vane carrier cooling flow path
CN115698483A (en) Aircraft turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703