JP2008081730A - Biodiesel fuel - Google Patents

Biodiesel fuel Download PDF

Info

Publication number
JP2008081730A
JP2008081730A JP2007174965A JP2007174965A JP2008081730A JP 2008081730 A JP2008081730 A JP 2008081730A JP 2007174965 A JP2007174965 A JP 2007174965A JP 2007174965 A JP2007174965 A JP 2007174965A JP 2008081730 A JP2008081730 A JP 2008081730A
Authority
JP
Japan
Prior art keywords
bdf
biodiesel fuel
oils
methyl
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007174965A
Other languages
Japanese (ja)
Other versions
JP5561452B2 (en
Inventor
Katsumi Hirano
勝巳 平野
Shinichi Tsukii
慎一 月井
Motoyuki Sugano
元行 菅野
Kiyoshi Mashita
清 真下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2007174965A priority Critical patent/JP5561452B2/en
Publication of JP2008081730A publication Critical patent/JP2008081730A/en
Application granted granted Critical
Publication of JP5561452B2 publication Critical patent/JP5561452B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biodiesel fuel with low clogging point and applicable in cold districts even in case of using a waste edible oil containing such as an animal fat as a raw material and further excellent in storage stability and combustion characteristics. <P>SOLUTION: The biodiesel oil containing methyl palmitate and methyl stearate contained in animal fat at rates of 10-25% makes excellent low-temperature characteristics, storage stability and combustion characteristics in a range of practical use, and a method for manufacturing it is provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はバイオディーゼル燃料に関する。特に動物性油脂を原料とし、動物性油脂本来
の目詰まり点よりも低い目詰まり点を有するバイオディーゼル燃料に関する。また、動物
性油脂由来の燃料の目詰まり点を予測する方法に関する。
The present invention relates to biodiesel fuel. In particular, the present invention relates to a biodiesel fuel having a clogging point lower than the original clogging point of animal fats and oils, starting from animal fats and oils. Moreover, it is related with the method of estimating the clogging point of the fuel derived from animal fats and oils.

近年、石油の確認可採年数が約40年とその枯渇が危惧されている中で、石油代替燃料
としてバイオディーゼル燃料(以下、単にBDFということがある)が注目されている。
BDFは油脂の主成分であるトリアシルグリセリドをメタノールとエステル交換した脂肪
酸メチルエステル(以下、単にFAMEということがある)である。BDFは軽油とほぼ
同等の発熱量と類似した物理性状を有するためにディーゼル燃料として有望であり、軽油
に比べてSOxや黒煙の排出量を大幅に低減できる特長を有する。現在、欧州を中心にバ
ージンの植物性油脂を原料とした大規模なBDF製造が一部実用化されている。一方、日
本ではバージンの植物性油脂のみならず、廃食物油を原料としたBDFの製造方法が検討
されているものの、植物性廃食物油が主であり、国内で排出される廃食物油の大部分であ
る動物性油脂からのBDFの製造方法に関しては、いまだ十分な検討はなされていない。
また、動物性油脂を含有している廃食物油を原料とする場合、原料が多様であることから
製造したBDFの燃料性状が不均一となり、石油代替燃料として実用化するには未だ問題
があった。従って、動物性油脂を含む廃食物油に対して燃料性状を均一化するBDF製造
プロセスの構築が必要である。本発明者らは、これまで動物性油脂が既存の植物性油脂B
DF製造法により植物性油脂とほぼ同収率でBDFを製造できることを報告した(非特許
文献1)。
中森秀紀、平野勝巳ら、第16回廃棄物学会研究発表会講演論文集、p702−704(2005)
In recent years, biodiesel fuel (hereinafter sometimes simply referred to as “BDF”) has attracted attention as an alternative fuel for oil in the face of fear that the oil will be depleted for about 40 years.
BDF is a fatty acid methyl ester obtained by transesterifying triacylglyceride, which is a main component of fats and oils, with methanol (hereinafter sometimes simply referred to as FAME). BDF is promising as a diesel fuel because it has a physical property similar to that of light oil and similar to calorific value, and has the feature of significantly reducing SOx and black smoke emissions compared to light oil. Currently, large-scale BDF production using virgin vegetable oils as raw materials is being put into practical use mainly in Europe. On the other hand, in Japan, not only virgin vegetable oils and fats but also BDF production methods using waste food oil as a raw material are being studied, but vegetable waste food oil is mainly used. As for the manufacturing method of BDF from most animal fats and oils, sufficient examination has not been made yet.
In addition, when waste food oil containing animal fats and oils is used as a raw material, the fuel properties of the manufactured BDF are uneven due to the variety of raw materials, and there are still problems in putting it into practical use as an alternative fuel for petroleum. It was. Therefore, it is necessary to construct a BDF production process that makes fuel properties uniform with respect to waste food oil containing animal fats and oils. The present inventors have heretofore confirmed that animal fats and oils have been used for existing vegetable fats and oils B
It has been reported that BDF can be produced in substantially the same yield as vegetable oil by the DF production method (Non-patent Document 1).
Hideki Nakamori, Katsumi Hirano et al., Proceedings of the 16th Annual Meeting of the Waste Society, p702-704 (2005)

動物性油脂BDFと植物性油脂BDFの燃料性状を比較した結果、動物性油脂BDFは
目詰まり点が高く、寒冷地では使用できないことが判明した。この問題点に鑑みて本発明
の目的は、原料に動物性油脂を含むような廃食物油を用いた場合であっても、一定の性状
、特に目詰まり点が低いBDFを提供することを課題とする。
また、実用的な燃焼特性及び貯蔵安定性に優れた動物性油脂BDFの提供を別の課題とする。
As a result of comparing the fuel properties of animal fat BDF and vegetable fat BDF, it was found that animal fat BDF has a high clogging point and cannot be used in cold regions. In view of this problem, the object of the present invention is to provide a BDF having a certain property, particularly a low clogging point, even when waste food oil containing animal fat is used as a raw material. And
Another object is to provide animal fats and oils BDF excellent in practical combustion characteristics and storage stability.

本発明者らは、上記課題を解決するために動植物性油脂BDFの凝固過程に着目して鋭
意研究をした結果、驚くべきことに動物性油脂に含まれるパルミチン酸メチルとステアリ
ン酸メチルを合計した含有率と目詰まり点に一定の相関関係があることを見出し、低温特
性に優れたBDFを完成するに至った。
また、動物性油脂BDFの燃焼特性及び貯蔵安定性についても検討を行った結果、上記パルミチン酸メチルとステアリン酸メチルを合計した含有率を所定の範囲とすることにより実用可能なBDFを完成することができた。
すなわち、上記BDFに関する本発明は以下の構成を有する。
1)動物性油脂を原料として、メチルエステル化して得られる脂肪酸エステルを含むバイオディーゼル燃料であって、バイオディーゼル燃料中におけるパルミチン酸メチルとステアリン酸メチルを合計した含有率が25重量%以下であることを特徴とするバイオディーゼル
燃料。
2)動物性油脂を原料として、メチルエステル化して得られる脂肪酸エステルを含むバイオディーゼル燃料であって、目詰まり点が5℃以下であることを特徴とするバイオディーゼル燃料。
3)動物性油脂を原料として、メチルエステル化して得られる脂肪酸エステルを含むバイオディーゼル燃料であって、バイオディーゼル燃料中におけるパルミチン酸メチルとステアリン酸メチルを合計した含有率が10重量%以上である前記1)に記載のバイオディーゼル燃料。
4)さらに軽油を含む前記1)〜3)のいずれかに記載のバイオディーゼル燃料。
5)動物性油脂をメタノールとエステル交換反応してバイオディーゼル燃料を製造する方法において、バイオディーゼル燃料中におけるパルミチン酸メチルとステアリン酸メチルの合計の含有率を調整することを特徴とするバイオディーゼル燃料の製造方法。
6)パルミチン酸メチルとステアリン酸メチルの合計の含有率の調整が、晶析又は他の成分との混合によるものである前記5)に記載のバイオディーゼル燃料の製造方法。
7)動物性油脂を原料として、メチルエステル化して得られる脂肪酸エステルを含むバイオディーゼル燃料について、バイオディーゼル燃料中におけるパルミチン酸メチルとステアリン酸メチルの各含有量を測定し、合計した含有率を求め、下記式(1)に代入することによって目詰まり点を予測する方法。
As a result of intensive studies focusing on the coagulation process of animal and vegetable fats and oils BDF in order to solve the above problems, the present inventors surprisingly summed methyl palmitate and methyl stearate contained in animal fats and oils. The present inventors have found that there is a certain correlation between the content rate and the clogging point, and completed BDF excellent in low temperature characteristics.
In addition, as a result of examining the combustion characteristics and storage stability of animal fats and oils BDF, a practical BDF is completed by setting the total content of methyl palmitate and methyl stearate within a predetermined range. I was able to.
That is, the present invention relating to the BDF has the following configuration.
1) Biodiesel fuel containing fatty acid ester obtained by animal esterification using animal fats and oils as a raw material, and the total content of methyl palmitate and methyl stearate in the biodiesel fuel is 25% by weight or less Biodiesel fuel characterized by that.
2) A biodiesel fuel containing a fatty acid ester obtained by animal esterification using animal fats and oils, and having a clogging point of 5 ° C. or less.
3) Biodiesel fuel containing fatty acid ester obtained by animal esterification using animal fats and oils as a raw material, and the total content of methyl palmitate and methyl stearate in the biodiesel fuel is 10% by weight or more The biodiesel fuel as described in 1) above.
4) The biodiesel fuel according to any one of 1) to 3), further comprising light oil.
5) A biodiesel fuel characterized by adjusting the total content of methyl palmitate and methyl stearate in a biodiesel fuel in a method for producing biodiesel fuel by transesterification of animal fats with methanol. Manufacturing method.
6) The method for producing a biodiesel fuel as described in 5) above, wherein the adjustment of the total content of methyl palmitate and methyl stearate is performed by crystallization or mixing with other components.
7) For biodiesel fuel containing fatty acid esters obtained by methyl esterification using animal fats and oils as raw materials, measure each content of methyl palmitate and methyl stearate in the biodiesel fuel and determine the total content The method of predicting a clogging point by substituting into the following formula (1).

本発明によれば、動物性油脂を原料として含む場合であっても、植物性油脂を原料とす
る場合と同様に、低温特性に優れたBDFを製造することができる。また、原料が廃食物油のように多様なものであっても、一定水準の性質を有する燃料を製造することができ、わが国の廃食物油の再利用を促進することができる。さらに、パルミチン酸メチルとステアリン酸メチルを合計した含有率をコントロールすることにより所望の目詰まり点を有する燃料を製造することができ、日本国内あるいは世界の異なる基準に合わせたBDFを提供することができる。
また、本発明によれば、動物性油脂が本来有する優れた燃料特性を生かし、さらに貯蔵
安定性にも優れた実用的なBDFを提供することができる。
According to the present invention, even when animal fats and oils are included as raw materials, BDF excellent in low-temperature characteristics can be produced as in the case of using vegetable fats and oils as raw materials. Moreover, even if the raw material is as diverse as waste food oil, it is possible to produce a fuel having a certain level of properties and promote the reuse of waste food oil in Japan. Furthermore, by controlling the total content of methyl palmitate and methyl stearate, it is possible to produce a fuel having a desired clogging point, and to provide a BDF that meets different standards in Japan or the world it can.
Further, according to the present invention, it is possible to provide a practical BDF that takes advantage of the excellent fuel characteristics inherent in animal fats and oils and that is also excellent in storage stability.

本発明に用いる油脂の原料は、植物性油脂、動物性油脂、それらの混合物を利用するこ
とができる。また、バージンの油だけでなく、廃食物油などいずれも用いることができる
。特に、そのままでは目詰まり点が不明な、混合物である廃食物油などに本発明を用いれ
ば、廃食物油の再利用につながり大きな効果が期待できる。
Vegetable oils and fats, animal fats and oils, and mixtures thereof can be used as the oil and fat materials used in the present invention. Further, not only virgin oil but also waste food oil can be used. In particular, if the present invention is used for waste food oil that is a mixture whose clogging point is unknown as it is, it can lead to reuse of the waste food oil and a great effect can be expected.

本発明でいう動物性油脂とは、動物性の油脂、例えば豚、牛、鶏などの構成成分である
油脂をいい、動物性油脂由来成分とはこれらをそのままあるいは、物理的、化学的処理を
加えて成分の組成を変更したものも含む意である。動物性油脂由来成分は、アルカリ条件
下、メタノールとエステル交換する反応により脂肪酸メチルエステルが得られる。動物性
油脂由来の脂肪酸メチルエステルは、密度、セタン価、発熱量ともに軽油と同等であり、
石油代替燃料として用いることができる
Animal fats and oils as used in the present invention refers to animal fats and oils, for example, fats and oils that are constituents of pigs, cows, chickens, etc., and animal fats and oils are used as they are or as they are physically or chemically treated. In addition, it is intended to include those in which the composition of the components is changed. Fatty acid methyl ester is obtained from the animal oil-derived component by a reaction of transesterification with methanol under alkaline conditions. Fatty acid methyl ester derived from animal fats is equivalent to light oil in density, cetane number, and calorific value.
Can be used as an alternative oil

本発明でいうバイオディーゼル燃料(BDF)とは、それ単独で、あるいは軽油など他
の燃料と混合することで燃料として用いられるものであって、特にその由来を動植物性油
脂とするものが好ましく用いられる。本明細書では、動物性油脂を原料として製造される
BDFを単に動物性油脂BDFということがある。他の燃料と混合する場合の割合は、燃料として要求される性能を満たす範囲であれば特に限定されない。
The biodiesel fuel (BDF) referred to in the present invention is used as a fuel by itself or by mixing with other fuels such as light oil, and those that are derived from animal or vegetable oils and fats are particularly preferably used. It is done. In the present specification, BDF produced using animal fats and oils as raw materials may be simply referred to as animal fats and oils BDF. The ratio in the case of mixing with other fuel is not particularly limited as long as it satisfies the performance required as a fuel.

本発明は、BDFに含まれるパルミチン酸メチルとステアリン酸メチルを合計した含有
率と目詰まり点に一定の相関関係があることを見出したことに基づく発明である。当初、
低温下での目詰まりの原因は、温度低下に伴う動粘度の変化も要因として検討したが、後
述する実施例より、温度低下に伴う動粘度の変化は、動物性油脂BDFにおいても大豆油
BDFとほぼ同等であることがわかり、目詰まりの原因は流動性の悪化ではないことが判
明した。
動物性油脂由来のBDFの構成成分は、ミスチリン酸メチル(C14Me)、パルミチ
ン酸メチル(C16Me)、パルミトレイン酸メチル(C16:1Me)、マルガリン酸
メチル(C17Me)、ステアリン酸メチル(C18Me)、オレイン酸メチル(C18
:1Me)、リノール酸メチル(C18:2Me)、リノレン酸メチル(C18:3Me
)、ドコセン酸メチル(C22:1Me)などであるが、このうちパルミチン酸メチル(
C16Me)とステアリン酸メチル(C18Me)を合計した含有率と目詰まり点の間に
以下の関係式(1)、(2)が成り立つことを見出した。ここで、式(1)は、式(2)を凝固開始温度Tの式に変形したものである。以下の式で固体の濃度は、C16MeとC18Meの合計含有率に相当する。後述する実施例より、BDFの目詰まり点は凝固を開始する温度と相関が高いことから、本願では凝固開始温度を目詰まり点の指標として用いた。
以下の式で固相の活量係数は、理論式を実測値に合わせるためのいわゆる補正係数であ
り、後述する試験より、本発明では0.75が適当であった。純成分sの融解熱は、C1
6Meの融解熱55350J/mol、C18Meの融解熱64430J/mol(日本
油化学会編,第四版 油化学便覧,(丸善),p278(2001)に記載)を固相の構
成成分比であるC16Me:C18Me=57.5:42.5で相加平均した値であり、
58969.80J/molである(同上)。純成分sの凝固開始温度は、C16Me:
C18Me=57.5:42.5の割合で調整した試料の凝固開始温度の測定値(24.
8℃+273.15=297.95K)である。
The present invention is based on the finding that there is a certain correlation between the total content of methyl palmitate and methyl stearate contained in BDF and the clogging point. Initially,
The cause of clogging at a low temperature was examined by considering the change in kinematic viscosity accompanying a decrease in temperature, but from the examples described later, the change in kinematic viscosity accompanying a decrease in temperature was observed in both animal oil BDF and soybean oil BDF. It was found that the cause of clogging was not the deterioration of fluidity.
The components of BDF derived from animal fats are methyl myristate (C14Me), methyl palmitate (C16Me), methyl palmitate (C16: 1Me), methyl margarate (C17Me), methyl stearate (C18Me), oleic acid Methyl (C18
: 1Me), methyl linoleate (C18: 2Me), methyl linolenate (C18: 3Me)
), Methyl docosenoate (C22: 1Me), etc., of which methyl palmitate (
It was found that the following relational expressions (1) and (2) hold between the total content of C16Me) and methyl stearate (C18Me) and the clogging point. Here, Expression (1) is obtained by transforming Expression (2) into an expression of the solidification start temperature T. In the following formula, the solid concentration corresponds to the total content of C16Me and C18Me. Since the clogging point of the BDF has a high correlation with the temperature at which solidification starts, the solidification start temperature is used as an index for the clogging point in the present application.
In the following formula, the activity coefficient of the solid phase is a so-called correction coefficient for adjusting the theoretical formula to the actual measurement value, and 0.75 was appropriate in the present invention from the test described later. The heat of fusion of pure component s is C1
The heat of fusion of 6Me 55350 J / mol, the heat of fusion of C18Me 64430 J / mol (edited by the Japan Oil Chemists' Society, 4th edition, Petrochemical Handbook, (Maruzen), p278 (2001)) is the component ratio of solid phase C16Me : C18Me = 57.5: A value obtained by arithmetic averaging at 42.5,
58969.80 J / mol (same as above). The solidification start temperature of the pure component s is C16Me:
The measured value of the solidification start temperature of the sample adjusted at a ratio of C18Me = 57.5: 42.5 (24.
8 ° C. + 273.15 = 297.95K).

上記関係式(1)をグラフで表したものを図5に示す。本図によれば、例えば、京都市のBDF規格である凝固開始温度(T)が−5℃の場合を達成するためには、C16MeとC18Meを合計した含有率は、15%以下とする必要があることがわかる。また、例えば欧州の場合、地域によりかなり温度差があるために明確ではないが、BDFの凝固開始温度は−20〜5℃を要求される。従って、この場合のC16MeとC18Meを合計した含有率は、−20℃以下であれば、4%以下、5℃以下であれば25%以下とする必要があることがわかる。   FIG. 5 shows a graph representing the relational expression (1). According to this figure, for example, in order to achieve the case where the solidification start temperature (T), which is the BDF standard of Kyoto City, is −5 ° C., the total content of C16Me and C18Me needs to be 15% or less. I understand that there is. In Europe, for example, the solidification start temperature of BDF is required to be −20 to 5 ° C. although it is not clear because there is a considerable temperature difference depending on the region. Therefore, it can be seen that the total content of C16Me and C18Me in this case needs to be 4% or less if it is −20 ° C. or less and 25% or less if it is 5 ° C. or less.

このように本発明は、バイオディーゼル燃料の使用地域での必要とされる低温特性を満
たすようにパルミチン酸メチルとステアリン酸メチルを合計した含有率が調整されている
ことを特徴とする。低温特性を上げるためには、該合計含有率は、例えば、25重量%以下が好ましく、15重量%以下がさらに好ましく、10重量%以下が最も好ましい場合がある。なお、合計含有率が25重量%より高いと凝固開始温度は5℃より高くなってしまい、低温特性の面から望ましくない。
また、換言すれば、本発明のバイオディーゼル燃料は、目詰まり点が5℃以下であるこ
とが好ましく、0℃以下がさらに好ましく、−5℃以下が最も好ましい場合がある。
As described above, the present invention is characterized in that the total content of methyl palmitate and methyl stearate is adjusted so as to satisfy the low temperature characteristics required in the region where biodiesel fuel is used. In order to improve the low temperature characteristics, the total content is preferably, for example, 25% by weight or less, more preferably 15% by weight or less, and most preferably 10% by weight or less. When the total content is higher than 25% by weight, the solidification start temperature becomes higher than 5 ° C., which is not desirable from the viewpoint of low temperature characteristics.
In other words, the biodiesel fuel of the present invention preferably has a clogging point of 5 ° C. or lower, more preferably 0 ° C. or lower, and most preferably −5 ° C. or lower.

本発明のBDFは、そのままでも燃料として用いることができるが、低温域でも固化せ
ずに液体性状を有する燃料であることから、他の液体燃料と混合して用いることができる
。他の液体燃料としては、市販の燃料である軽油や重油などを挙げることができる。その
うちでも、ディーゼルエンジン用の燃料としては軽油が好ましく用いられる。
Although the BDF of the present invention can be used as a fuel as it is, it is a fuel having a liquid property without being solidified even in a low temperature range, and therefore can be used by mixing with other liquid fuels. Examples of other liquid fuels include light oil and heavy oil, which are commercially available fuels. Among them, light oil is preferably used as the fuel for the diesel engine.

また、本発明のBDFは、燃焼特性の面からは、パルミチン酸メチルとステアリン酸メチルを合計した含有率は、10%以上必要であり、13%以上がさらに望ましい。10%未満であると着火性が悪くなり、また含有率は高い方がより着火性が良いからである。
従って、前述の低温特性と燃焼特性の両方を満たす実用的な範囲としては、パルミチン酸メチルとステアリン酸メチルを合計した含有率は、10%以上25%以下であることが望ましく、13%以上25%以下がさらに望ましく、13%以上15%以下が最も望ましい。
なお、貯蔵安定性は動物性油脂BDFのパルミチン酸メチルとステアリン酸メチルを合計した含有率に左右されることはないことが本発明によりわかった。すなわち、貯蔵安定性は、リノレン酸メチルの酸化による動粘度の上昇に起因することが判明したが、動物性油脂BDFは元来リノレン酸メチルの絶対含有量が少ないからである。従って、上述の低温特性と燃焼特性からパルミチン酸メチルとステアリン酸メチルを合計した含有率を調整することで、貯蔵安定性、低温特性及び燃焼特性に優れた実用的なBDFが得られる。
In the BDF of the present invention, from the viewpoint of combustion characteristics, the total content of methyl palmitate and methyl stearate needs to be 10% or more, and more preferably 13% or more. This is because if the content is less than 10%, the ignitability deteriorates, and the higher the content, the better the ignitability.
Therefore, as a practical range satisfying both the low temperature characteristics and the combustion characteristics, the total content of methyl palmitate and methyl stearate is preferably 10% or more and 25% or less, and 13% or more and 25%. % Or less is more desirable, and 13% or more and 15% or less is most desirable.
In addition, it turned out that storage stability does not depend on the content rate which added the palm oil acid methyl and methyl stearate of animal fats and oils BDF. That is, it has been found that the storage stability is due to an increase in kinematic viscosity due to oxidation of methyl linolenate, but animal fats and oils BDF originally have a low absolute content of methyl linolenate. Therefore, by adjusting the total content of methyl palmitate and methyl stearate from the above-mentioned low temperature characteristics and combustion characteristics, a practical BDF excellent in storage stability, low temperature characteristics and combustion characteristics can be obtained.

本発明のバイオディーゼル燃料(BDF)の製造方法は、動物性油脂をアルカリ条件下
メタノールとエステル交換して脂肪酸メチルエステル(FAME)を製造するに際し、B
DF中におけるパルミチン酸メチルとステアリン酸メチルの合計の含有率が25重量%以
下となるように調整することにより行われる。BDF中のC16MeとC18Meを合計
した含有率は、上記のとおり、要求される目詰まり点(凝固開始温度)によって異なるが
、含有率を低下させるには、他の成分との混合により希釈する方法、又は晶析により、固
体として析出させて除く方法が挙げられる。
希釈は、例えば、原料段階で、動物性油脂を植物性油脂などで希釈し、これらの混合油
脂をメタノールとエステル交換することにより、C16MeとC18Meが動物性油脂の
みの場合より少ないFAMEを得ることができる。また、あるいは動物性油脂からFAM
Eを得た後、C16MeとC18Me以外のFAMEを混合して希釈する方法が挙げられ
る。前者の希釈する液体としては、大豆油、菜種油、ひまわり油などの植物性油脂が挙げ
られ、後者の希釈する液体としては、C16Me及びC18Meの含有率の低い植物油脂
由来BDF又は軽油が挙げられる。
また、晶析は、例えば、反応槽内の中心に撹拌翼、槽の下部及び上部を冷媒により独立
して温度制御可能に構成された晶析装置を用いて行われる。本装置の内部にBDFを投入
し、槽上部を10℃から−10℃に温度制御することにより、C16Me及びC18Me
を析出させることができる。
The method for producing biodiesel fuel (BDF) according to the present invention is a method for producing fatty acid methyl ester (FAME) by transesterifying animal oil with methanol under alkaline conditions.
It is carried out by adjusting the total content of methyl palmitate and methyl stearate in DF to be 25% by weight or less. As described above, the total content of C16Me and C18Me in BDF varies depending on the required clogging point (solidification start temperature). To reduce the content, a method of diluting by mixing with other components Alternatively, a method of depositing and removing as a solid by crystallization may be used.
For dilution, for example, at the raw material stage, animal fats and oils are diluted with vegetable fats and oils, and these mixed fats and oils are transesterified with methanol to obtain a FAME that has fewer C16Me and C18Me than animal fats and oils alone. Can do. Or from animal fats and oils, FAM
After obtaining E, a method of mixing and diluting FAME other than C16Me and C18Me can be mentioned. The former diluting liquid includes vegetable oils such as soybean oil, rapeseed oil and sunflower oil, and the latter diluting liquid includes vegetable oil-derived BDF or light oil having a low content of C16Me and C18Me.
Crystallization is performed using, for example, a crystallizer configured such that the temperature can be independently controlled by a refrigerant in the center of the reaction vessel, with a stirring blade and the lower and upper portions of the vessel. By introducing BDF into the inside of this device and controlling the temperature of the upper part of the tank from 10 ° C. to −10 ° C., C16Me and C18Me
Can be deposited.

本発明により、動物性油脂由来成分を含むBDFの目詰まり点を評価又は予測する方法
は、次のように行われる。まず、そのパルミチン酸メチルとステアリン酸メチルの各含有
量を測定し、合計し、BDF全体に対する割合、つまり、含有率を求め、これを上記式(
2)にあてはめることによって目詰まり点(凝固開始温度)を算出し、評価又は予測する
According to the present invention, a method for evaluating or predicting the clogging point of BDF containing animal fat-derived components is performed as follows. First, the contents of methyl palmitate and methyl stearate are measured and summed, and the ratio to the total BDF, that is, the content is obtained.
2) The clogging point (solidification start temperature) is calculated by applying to 2) and evaluated or predicted.

〔試験例1〕BDFの製造
1.遊離脂肪酸除去
試料として、牛脂試薬(和光純薬工業株式会社製)、豚脂(三木屋商店有限会社製)、
大豆油試薬(和光純薬工業株式会社製)を用いた。これらについて以下に示す酸価分析を
行い、中和に必要な水酸化ナトリウム理論量を算出した。この酸価分析値の1.1倍の水
酸化ナトリウムを純水10mlに加え、試料150gと共に80℃で30秒間撹拌した後
、3000rpmで5分間遠心分離を行い、得られた上層を以下の試験において、処理油として用いた。
2.酸価分析方法
試料20gを三角フラスコに計り取り、中性溶剤100ml(ジエチルエーテル:99
.5vol%エタノール=1:1)にフェノールフタレイン指示薬0.3mlを加え、0
.1mol/L水酸化カリウム−エタノール溶液で中和したものを加えて溶解させた。固
体試料の場合は湯浴上で溶解した後、溶剤を加えた。0.1mol/L水酸化カリウム標
準液で滴定し、指示薬の変色が30秒間続いたときを中和の終点と定めた。
酸価=(5.611×A×F)/B (3)
ただし A:0.1mol/L水酸化カリウム標準溶液使用量[ml]
F:0.1mol/L水酸化カリウム標準溶液のファクター
B:試料採取量[g]
[Test Example 1] Production of BDF Free fatty acid removal As samples, beef tallow reagent (manufactured by Wako Pure Chemical Industries, Ltd.), pork tallow (manufactured by Mikiya Shoten Co., Ltd.),
Soybean oil reagent (manufactured by Wako Pure Chemical Industries, Ltd.) was used. About these, the acid value analysis shown below was performed and the sodium hydroxide theoretical amount required for neutralization was computed. Sodium hydroxide, 1.1 times the acid value analysis value, was added to 10 ml of pure water, stirred with 150 g of sample at 80 ° C. for 30 seconds, centrifuged at 3000 rpm for 5 minutes, and the obtained upper layer was tested as follows. Used as a treatment oil.
2. Acid value analysis method 20 g of a sample was weighed into an Erlenmeyer flask, and 100 ml of neutral solvent (diethyl ether: 99
. Add 5 ml of phenolphthalein indicator to 5 vol% ethanol = 1: 1)
. What was neutralized with a 1 mol / L potassium hydroxide-ethanol solution was added and dissolved. In the case of a solid sample, the solvent was added after dissolving on a hot water bath. Titration was performed with a 0.1 mol / L potassium hydroxide standard solution, and the end point of neutralization was determined when the color change of the indicator continued for 30 seconds.
Acid value = (5.611 × A × F) / B (3)
However, A: 0.1 mol / L potassium hydroxide standard solution usage [ml]
F: Factor of 0.1 mol / L potassium hydroxide standard solution
B: Sample collection amount [g]

3.粗製BDFの製造
各試料の処理油100g、メタノール30g、水酸化ナトリウム0.45gをセパラブ
ルフラスコ(柴田科学株式会社製)に投入し、ホットスターラーを用いて60℃で30分
間加熱撹拌した。この際、セパラブルフラスコカバー(柴田科学株式会社製)の上部にジ
ムロート冷却器を設けて揮発するメタノールを還流した。反応終了後、直ちに分液漏斗に
移して30分間静置分離した。得られた上層からメタノールを留去し、粗製BDFとした
3. Production of Crude BDF 100 g of treated oil of each sample, 30 g of methanol, and 0.45 g of sodium hydroxide were put into a separable flask (manufactured by Shibata Kagaku Co., Ltd.), and heated and stirred at 60 ° C. for 30 minutes using a hot stirrer. At this time, a Dimroth cooler was provided on the top of the separable flask cover (manufactured by Shibata Kagaku Co., Ltd.) to reflux the volatile methanol. Immediately after completion of the reaction, the mixture was transferred to a separatory funnel and allowed to stand for 30 minutes. Methanol was distilled off from the obtained upper layer to obtain crude BDF.

4.粗製BDFの精製
前記で得られた各粗製BDFに対して50wt%の純水を加え、ホットスターラーを用
いて70℃で5分間加熱撹拌した。その後、分液漏斗に移して30分間静置分離し、上層
と下層に分けた。上層に対して上記操作を1回繰り返し、得られた上層を各BDFとした
4). Purification of crude BDF 50 wt% pure water was added to each crude BDF obtained above, and the mixture was heated and stirred at 70 ° C. for 5 minutes using a hot stirrer. Then, it moved to the separatory funnel, and left still and separated for 30 minutes, and it divided into the upper layer and the lower layer. The above operation was repeated once for the upper layer, and the obtained upper layer was designated as each BDF.

〔試験例2〕 低温特性試験
1.各BDFの動粘度分析
動粘度の分析は、JIS−K2283に準拠して行った。
図1にJIS−K2283の「動粘度および混合比の推定方法」に規定された計算法(日
本規格協会編,JISハンドブック25石油,(日本規格協会),p893−900(2
005))に基づき作図した各BDFの温度と動粘度の関係を示す。なお、参考のために
京都市のBDFの規格を併記した。
図1より、牛脂BDFおよび豚脂BDFの動粘度は京都市のBDFの規格内であり、温
度低下に伴う動粘度の変化は大豆油BDFとほぼ同等であることがわかった。すなわち、
目詰まりの原因は流動性の悪化ではないことが本試験により判明した。
[Test Example 2] Low-temperature characteristic test Analysis of kinematic viscosity of each BDF Analysis of kinematic viscosity was performed according to JIS-K2283.
FIG. 1 shows a calculation method defined in “Method of Estimating Kinematic Viscosity and Mixing Ratio” in JIS-K2283 (edited by the Japanese Standards Association, JIS Handbook 25 Petroleum, (Japan Standards Association), p893-900 (2
005)) shows the relationship between the temperature and kinematic viscosity of each BDF. For reference, the BDF standards of Kyoto City are also shown.
From FIG. 1, it was found that the kinematic viscosities of beef tallow BDF and pork tallow BDF are within the standards of BDF in Kyoto City, and the change in kinematic viscosity accompanying a decrease in temperature is almost equivalent to that of soybean oil BDF. That is,
This test revealed that the cause of clogging was not the deterioration of fluidity.

2. 各BDFの目詰まり点分析
目詰まり点の分析はJIS−K2288に準拠して行った。図2に各BDFのDSC降
温曲線を示す。なお、参考のために各BDFの目詰まり点を併記した。
図2より、各BDFは目詰まり点とほぼ同等の温度から凝固を開始することがわかった
。以上のことから、目詰まりの原因は固体の析出であることが判明した。本試験結果より
BDFの目詰まり点は凝固を開始する温度と相関が高いことから、本願では凝固開始温度
を目詰まり点の指標として用いた。図2より、各BDFはそれぞれ2つの凝固ピークが出
現することがわかる。これは、多成分のFAMEで構成される各BDFの固液平衡状態が
固相中での相互溶解がない共晶型であることを意味することから、凝固温度が成分により
2つに分かれると考えられる。
(DSC分析)
各BDFはエスアイアイ・ナノテクノロジー株式会社製EXSTAR6100 DSC
を用い、示差走査熱量測定を行った。なお、DSC降温曲線においてピークが出現し始め
た温度を凝固開始温度とした。
<測定条件等>
測定範囲 −40〜+40mW
測定感度 0.2μW
測定条件 窒素流量 50ml/min
降温速度 5℃/min
サンプリング回数 3回/秒
2. Clogging point analysis of each BDF The clogging point analysis was performed according to JIS-K2288. FIG. 2 shows a DSC cooling curve for each BDF. For reference, the clogging points of each BDF are also shown.
From FIG. 2, it was found that each BDF starts to solidify at a temperature substantially equal to the clogging point. From the above, it was found that the cause of clogging was solid precipitation. From this test result, since the clogging point of BDF has a high correlation with the temperature at which solidification starts, the solidification start temperature is used as an index of the clogging point in the present application. FIG. 2 shows that each BDF has two coagulation peaks. This means that the solid-liquid equilibrium state of each BDF composed of multi-component FAME is a eutectic type in which there is no mutual dissolution in the solid phase. Conceivable.
(DSC analysis)
Each BDF is EXSTAR6100 DSC made by SII Nano Technology Co., Ltd.
Was used for differential scanning calorimetry. In addition, the temperature at which the peak began to appear in the DSC temperature decrease curve was defined as the solidification start temperature.
<Measurement conditions>
Measurement range -40 to + 40mW
Measurement sensitivity 0.2μW
Measurement conditions Nitrogen flow rate 50ml / min
Temperature drop rate 5 ℃ / min
Sampling frequency 3 times / second

3.各BDFの脂肪酸組成分析
日本油化学会の基準油脂分析試験法の脂肪酸組成分析(FID昇温ガスクロマトグラフ
法)に準拠し、FAME組成を定量した。
図3に各BDFの脂肪酸組成(FAME組成)分析結果を示す。なお、参考のためにF
AMEの凝固開始温度を併記した。図3より、炭素数が14以上の飽和FAMEは各BD
Fに比べ凝固開始温度が高いことから、析出する固体は各BDFの主成分であるパルミチ
ン酸メチル(C16Me)およびステアリン酸メチル(C18Me)と想定された。
3. Fatty acid composition analysis of each BDF The FAME composition was quantified in accordance with the fatty acid composition analysis (FID temperature rising gas chromatograph method) of the standard oil analysis test method of the Japan Oil Chemical Society.
The fatty acid composition (FAME composition) analysis result of each BDF is shown in FIG. For reference, F
The solidification start temperature of AME is also shown. From FIG. 3, saturated FAMEs having 14 or more carbon atoms are BDs.
Since the solidification start temperature was higher than that of F, the precipitated solids were assumed to be methyl palmitate (C16Me) and methyl stearate (C18Me), which are the main components of each BDF.

4.添加BDFの調製
牛脂BDF1.6gに対して、オレイン酸メチル(以下、C18:1Me、シグマアル
ドリッチジャパン株式会社製)又はステアリン酸メチル(C18Me、東京化成工業株式
会社製)を0.4g添加し、それぞれFAMEの標準試薬を20wt%含有する牛脂BD
Fを調製した。さらに、C18:1Me又はC18Me標準試薬の含有率を20wt%か
ら50wt%および80wt%に変化させたものを調製した。これらの試料は10分間超
音波照射下で攪拌し、DSC分析を行った。結果を図4に示す。これによれば、C18M
eの添加率が増えるに従って、凝固開始温度が上昇していることからC18Meが凝固の
原因であることがわかる。対照的にC18:1Meの添加率が増えるに従って、凝固開始
温度は低下していることから、C18:1Meは凝固の原因ではないことがわかる。
4). Preparation of added BDF To 1.6 g of beef tallow BDF, 0.4 g of methyl oleate (hereinafter, C18: 1Me, manufactured by Sigma Aldrich Japan Co., Ltd.) or methyl stearate (C18Me, manufactured by Tokyo Chemical Industry Co., Ltd.) is added, Beef tallow BD containing 20 wt% of FAME standard reagent
F was prepared. Furthermore, what changed the content rate of C18: 1Me or C18Me standard reagent from 20 wt% to 50 wt% and 80 wt% was prepared. These samples were stirred for 10 minutes under ultrasonic irradiation and subjected to DSC analysis. The results are shown in FIG. According to this, C18M
It can be understood that C18Me is the cause of solidification because the solidification start temperature increases as the addition rate of e increases. In contrast, as the addition rate of C18: 1Me increases, the solidification start temperature decreases, indicating that C18: 1Me is not the cause of solidification.

5.C16MeおよびC18Meの合計含有率と凝固開始温度の関係
図5に各BDFのFAME組成から算出したC16MeおよびC18Meの合計含有率
と凝固開始温度(実測値)の関係を破線及びプロットで示す。ここでいう各BDFとは、
牛脂、豚脂、鶏脂、大豆油、牛脂と大豆油の混合油脂から製造したBDFおよび牛脂BD
FにC18:1Meの混合率を変化させ添加したBDFを指す。
なお、参考のために京都市のBDFの規格と、固体の濃度をC16MeおよびC18Meの合計含有率、固相の活量係数を1とみなして共晶型における固液平衡の関係式である下記式(1)、(2)より求めた凝固開始温度の計算値を実線で示した(化学工学会監修,分離,(培風館),p16-18(1995))。
式中、固体の濃度は、C16MeとC18Meの合計含有率に相当する。固相の活量係
数は、理論式を実測値に合わせるためのいわゆる補正係数であり、本発明では0.75が
適当であった。純成分sの融解熱は、C16Meの融解熱55350J/mol、C18
Meの融解熱64430J/mol(日本油化学会編,第四版 油化学便覧,(丸善),
p278(2001)に記載)を固相の構成成分比であるC16Me:C18Me=57
.5:42.5で相加平均した値であり、58969.80J/molである(同上)。
純成分sの凝固開始温度は、C16Me:C18Me=57.5:42.5の割合で調整
した試料の凝固開始温度の測定値(24.8+273.15=297.95K)である。
5. Relationship between the total content of C16Me and C18Me and the solidification start temperature FIG. 5 shows the relationship between the total content of C16Me and C18Me calculated from the FAME composition of each BDF and the solidification start temperature (actual measurement value) with a broken line and a plot. Each BDF here is
BDF and beef tallow BD produced from beef tallow, pork tallow, chicken tallow, soybean oil, mixed oil of beef tallow and soybean oil
BDF added by changing the mixing ratio of C18: 1Me to F.
For reference, the BDF standard of Kyoto City, the solid-liquid equilibrium relational expression in the eutectic type, assuming that the solid content is the total content of C16Me and C18Me, and the activity coefficient of the solid phase is 1. The calculated value of the solidification start temperature obtained from the equations (1) and (2) is shown by a solid line (supervised by the Chemical Engineering Society, separation, (Baifukan), p16-18 (1995)).
In the formula, the solid concentration corresponds to the total content of C16Me and C18Me. The activity coefficient of the solid phase is a so-called correction coefficient for adjusting the theoretical formula to the actually measured value, and 0.75 is appropriate in the present invention. The heat of fusion of the pure component s is the heat of fusion of C16Me 55350 J / mol, C18
Heat of fusion of 64430 J / mol (edited by Japan Oil Chemists' Society, 4th edition, Petrochemical Handbook, (Maruzen),
p278 (2001)) is the component ratio of the solid phase C16Me: C18Me = 57
. 5: The value obtained by arithmetic averaging at 42.5, which is 58969.80 J / mol (same as above).
The solidification start temperature of the pure component s is a measured value (24.8 + 273.15 = 297.95 K) of the solidification start temperature of the sample adjusted at a ratio of C16Me: C18Me = 57.5: 42.5.

また、上記式(2)を凝固開始温度Tの式に変形し、下記式(1)に示す。
Moreover, the said Formula (2) is deform | transformed into the formula of the solidification start temperature T, and is shown to following formula (1).

図5より、凝固開始温度の実測値(プロット及び破線)と計算値(実線)は同様の傾向
を示すことがわかる。さらに、計算値は固相の活量係数を0.75と仮定して補正を行う
と実測値とほぼ一致した。すなわち、式(1)より凝固開始温度はC16MeおよびC1
8Meの合計含有率によって一意的に決定すると考えられる。以上のことから、C16M
eおよびC18Meが凝固して目詰まりを生起させるため、目詰まり点はC16Meおよ
びC18Meの合計含有率に依存することが判明した。図5における凝固開始温度の計算
値(補正あり)より、C16MeおよびC18Me合計含有率を15%以下に低減することにより目詰まり点を−5℃以下(京都市BDF規格)に低下させることができた。
From FIG. 5, it can be seen that the actual measurement value (plot and broken line) and calculated value (solid line) of the solidification start temperature show the same tendency. Further, the calculated values almost coincided with the actually measured values when corrected assuming that the activity coefficient of the solid phase is 0.75. That is, from the formula (1), the solidification start temperature is C16Me and C1.
It is considered to be uniquely determined by the total content of 8Me. From the above, C16M
It was found that the clogging point depends on the total content of C16Me and C18Me because e and C18Me solidify and cause clogging. From the calculated value (with correction) of the solidification start temperature in FIG. 5, the clogging point can be lowered to −5 ° C. or less (Kyoto City BDF standard) by reducing the total content of C16Me and C18Me to 15% or less. It was.

6.添加物種類別の凝固開始温度とC16MeおよびC18Meの合計含有率との関係
図6に各BDFのFAME組成から算出したC16MeおよびC18Meの合計含有率
と凝固開始温度(実測値)の関係をプロットで示す。ここでいう各BDFとは、牛脂、豚
脂、鶏脂、大豆油から製造したBDFにC18:1Me、C18:2Me、C18Me、
軽油の混合率を変化させ添加したBDFを指す。また、牛脂モデルBDFとは、牛脂BDFの脂肪酸組成に合わせ、単独の標準試薬を混合したBDFを指す。本結果によれば、原料となる油脂の種類に関わらず、また添加物の種類に関わらず、どの動物性油脂の場合も、ほぼ同一直線上にのり、C16MeとC18Meの合計含有率と凝固開始温度との間には、添加物及び原料油脂の種類に関わらずに一定の関係があるといえることがわかった。
6). FIG. 6 is a plot showing the relationship between the total content of C16Me and C18Me calculated from the FAME composition of each BDF and the solidification start temperature (actually measured value) in terms of the solidification start temperature for each additive type and the total content of C16Me and C18Me. . Each BDF here refers to BDF manufactured from beef tallow, pork tallow, chicken tallow, soybean oil, C18: 1Me, C18: 2Me, C18Me,
BDF added by changing the mixing ratio of light oil. The beef tallow model BDF refers to BDF in which a single standard reagent is mixed in accordance with the fatty acid composition of beef tallow BDF. According to this result, regardless of the type of fats and oils used as raw materials and the types of additives, all animal fats and oils are almost on the same straight line, and the total content of C16Me and C18Me and the start of solidification are obtained. It has been found that there is a certain relationship between the temperature and the temperature regardless of the types of additives and raw oils and fats.

〔試験例3〕 C16MeとC18Meの合計含有率の調整
1.希釈による調整
前記「試験例2、4.添加BDF調製」と同様の方法により、動物性油脂由来のBDFに
対してC18:1Meを添加することにより、C18Me及びC16Meの濃度を希釈す
ることができた。
[Test Example 3] Adjustment of total content of C16Me and C18Me Adjustment by dilution By adding C18: 1Me to BDF derived from animal fats and oils by the same method as in “Test Example 2, 4. Preparation of added BDF”, the concentrations of C18Me and C16Me can be diluted. It was.

2.晶析による調整
図7に晶析装置の一例を示す。500mLの反応槽内の中心に撹拌翼、底部に冷媒が設
置されている。また槽上部の外側を冷媒が循環している。このような装置の内部にBDF
300gを投入し、槽上部を10℃から−10℃まで徐冷し、槽底部を10℃から−5℃
に温度制御を行いつつ撹拌して、120分間反応させてC16Me及びC18Meを析出
させた。晶析前後のFAME組成を表1に示す。C16Meは、晶析前は24.6%であ
ったところ、晶析後は、5.0%に減少した。また、C18Meは晶析前は18.0%で
あったところ、晶析後は4.1%に減少した。この結果、晶析によりこれらの合計した含
有率を42.6%から9.1%に減少させることができた。豚脂についても同様の試験を
行ったところ、牛脂の場合と同様の結果を得た。
2. Adjustment by crystallization FIG. 7 shows an example of a crystallization apparatus. A stirring blade is installed at the center of the 500 mL reaction tank, and a refrigerant is installed at the bottom. A refrigerant circulates outside the tank upper portion. BDF inside such a device
300 g was charged, the top of the tank was gradually cooled from 10 ° C. to −10 ° C., and the bottom of the tank was 10 ° C. to −5 ° C.
The mixture was stirred while controlling the temperature and reacted for 120 minutes to precipitate C16Me and C18Me. Table 1 shows FAME compositions before and after crystallization. C16Me was 24.6% before crystallization, but decreased to 5.0% after crystallization. C18Me was 18.0% before crystallization, but decreased to 4.1% after crystallization. As a result, the total content of these substances could be reduced from 42.6% to 9.1% by crystallization. When the same test was conducted on pork fat, the same results as in the case of beef tallow were obtained.

〔試験例4〕 他の燃料との混合
1.牛脂BDFと軽油との混合
牛脂BDFの含有率が20wt%および50wt%および80wt%になるように牛脂
BDFと2号軽油を混合した。これらの試料は10分間超音波照射下で攪拌し、DSC分
析を行った。結果を図8に示す。
これより、牛脂BDF単独では、凝固開始温度がほぼ10℃であるが、牛脂軽油混合B
DFでは、軽油の含有率が増えるにしたがって凝固開始温度が低下し、軽油80%、牛脂
BDF20%ではほぼ−5℃であった。ここで用いた牛脂BDFのC16MeとC18M
eの合計含有率は44.8%である。牛脂BDFの含有率が20wt%および50wt%
および80wt%は、C16MeとC18Meの合計含有率に換算するとそれぞれ、9.
00、22.41、35.85%である。
[Test Example 4] Mixing with other fuels Mixed beef tallow BDF and light oil Tallow BDF and No. 2 light oil were mixed so that the content of beef tallow BDF was 20 wt%, 50 wt% and 80 wt%. These samples were stirred for 10 minutes under ultrasonic irradiation and subjected to DSC analysis. The results are shown in FIG.
From this, beef tallow BDF alone has a solidification start temperature of about 10 ° C, but beef tallow light oil mixed B
In DF, the solidification start temperature decreased as the light oil content increased, and was approximately −5 ° C. for light oil 80% and beef tallow BDF 20%. C16Me and C18M of beef tallow BDF used here
The total content of e is 44.8%. Beef tallow BDF content is 20wt% and 50wt%
And 80 wt% are respectively 9.9 converted to the total content of C16Me and C18Me.
00, 22.41, 35.85%.

2.牛脂BDFと大豆油BDFとの混合
牛脂試薬と大豆油試薬を予め重量比2:1又は1:2に混合して前記1.〜3.と同様
の操作を行い、牛脂大豆油混合BDFを製造した。このBDFについてDSC分析を行っ
た。結果を図9に示す。
これより、牛脂BDF単独では、凝固開始温度がほぼ10℃であるが、牛脂大豆混合
BDFでは、大豆BDFの含有率が増えるにしたがって凝固開始温度が低下し、大豆油B
DF100%ではほぼ−5℃であった。
2. Mixing of beef tallow BDF and soybean oil BDF Beef tallow reagent and soybean oil reagent are previously mixed in a weight ratio of 2: 1 or 1: 2, and ~ 3. The same operation was performed to produce beef tallow soybean oil mixed BDF. DSC analysis was performed on this BDF. The results are shown in FIG.
Thus, beef tallow BDF alone has a solidification start temperature of about 10 ° C., but beef tallow soy mixed BDF decreases the coagulation start temperature as soybean BDF content increases, soy oil B
In DF100%, it was about -5 degreeC.

〔試験例5〕 貯蔵安定性試験
1.過酸化物価(POV)、動粘度測定
各BDF 60gを100mlの三角フラスコに入れ、40℃のインキュベーター(三商株式会社製、SIB−35)内で0、4、8、12、16週間静置して貯蔵した。貯蔵された各BDFに対し、基準油脂分析試験法2.5.2.1に基づいた過酸化物価(POV)測定(酢酸−イソオクタン法)および動粘度測定を行った。また、貯蔵された各BDFをプロパノール/ヘキサン(5:4)に溶解し、高速液体クロマトグラフ質量分析(LC−MS)を行った。分析条件を以下に示す。さらに、質量分析計(LCQ、Thermo Electron社製)を用い、APCI法にて質量分析を行った。結果を図10〜12に示す。
(LC−MS分析条件)
装置:Waters社製、Alliance2695
カラム:L−columnODS(2.1mm×150mm、粒子径5μm)
移動層:
A:水、B:アセトニトリル、C:プロパノール/ヘキサン(5:4)
30%A+70%Bを0分間、100%Bを10分間、50%B+50%Cを20分間でグラジエントした後、50%B+50%Cで20分間保持した。
[Test Example 5] Storage stability test Peroxide value (POV), kinematic viscosity measurement 60 g of each BDF was put into a 100 ml Erlenmeyer flask and allowed to stand for 0, 4, 8, 12, 16 weeks in an incubator at 40 ° C. (manufactured by Sansho Corporation, SIB-35). And stored. For each stored BDF, a peroxide value (POV) measurement (acetic acid-isooctane method) and a kinematic viscosity measurement based on the standard oil and fat analysis test method 2.5.2.1 were performed. Each stored BDF was dissolved in propanol / hexane (5: 4) and subjected to high performance liquid chromatography / mass spectrometry (LC-MS). The analysis conditions are shown below. Furthermore, mass spectrometry was performed by APCI method using a mass spectrometer (LCQ, manufactured by Thermo Electron). The results are shown in FIGS.
(LC-MS analysis conditions)
Apparatus: Waters, Alliance 2695
Column: L-column ODS (2.1 mm × 150 mm, particle diameter 5 μm)
Moving layer:
A: water, B: acetonitrile, C: propanol / hexane (5: 4)
Gradient was 30% A + 70% B for 0 minute, 100% B for 10 minutes, 50% B + 50% C for 20 minutes, and then held at 50% B + 50% C for 20 minutes.

2.結果
図10に各BDFにおける動粘度の経時変化を示す。なお、図中に京都市BDF規格を併記した。これより、牛脂BDFは時間経過に伴う過酸化物(POV)の生成がほとんど見られず、また動粘度も変化せずほぼ一定である。一方、大豆油BDFは4週間後から過酸化物が生成し、それに伴い動粘度も上昇している。さらに、大豆油BDFの動粘度は16週間後には京都市のBDF規格外になっている。このことから動粘度はBDFから生成した過酸化物が要因となり、上昇したのではないかと考えられる。従って、牛脂BDFは大豆BDFに比べ貯蔵安定性に優れているといえる。
2. Results FIG. 10 shows changes with time in kinematic viscosity in each BDF. In the figure, the Kyoto City BDF standard is also shown. From this, beef tallow BDF shows almost no generation of peroxide (POV) with time, and kinematic viscosity does not change and is almost constant. On the other hand, in the soybean oil BDF, a peroxide is generated after 4 weeks, and the kinematic viscosity is increased accordingly. Furthermore, the kinematic viscosity of soybean oil BDF is outside the BDF standard of Kyoto City after 16 weeks. From this, it is considered that the kinematic viscosity increased due to the peroxide generated from BDF. Therefore, it can be said that beef tallow BDF is superior in storage stability to soybean BDF.

次にPOV生成についてさらに検討を加えた。図11に大豆油BDFの貯蔵0週間及び4週間後におけるLC−MS分析を行って得られたトータルイオンクロマトグラムを示す。4週間後に新たなピークが出現しており(10〜15min)、この新たなピークに対する質量分析を行って得られたマススペクトル解析結果を図12に示す。これより、検出されたスペクトルはリノレン酸メチル(C18:3Me)のハイドロパーオキサイドまたはジハイドロパーオキサイドのフラグメントイオンと推定された。リノレン酸メチルは2重結合を3つ有することから反応性が高いことが知られており(藤谷健,あぶらの話,(裳華房),p84-87(1996))、そのため、貯蔵されている期間に酸化してハイドロパーオキサイドに変化したためと考えられる。   Next, further studies were made on POV generation. FIG. 11 shows total ion chromatograms obtained by performing LC-MS analysis at 0 weeks and 4 weeks after storage of soybean oil BDF. A new peak appears after 4 weeks (10 to 15 min), and FIG. 12 shows the results of mass spectrum analysis obtained by performing mass analysis on this new peak. From this, the detected spectrum was presumed to be a hydroperoxide or dihydroperoxide fragment ion of methyl linolenate (C18: 3Me). Methyl linolenate is known to be highly reactive because it has three double bonds (Ken Fujitani, Story of Oil), (Tatsukabo), p84-87 (1996)). It is thought that it was oxidized to hydroperoxide during a certain period.

以上のことから、BDFの貯蔵安定性はリノレン酸メチル(C18:3Me)の含有率に依存することが示された。表2より動物油脂BDFは植物油脂BDFに比べてリノレン酸メチルの含有率が低く、貯蔵安定性に優れていることが判明した。なお、低温特性改善のためにC16MeおよびC18Meを低減すると、リノレン酸メチル含有率が相対的に上昇するが、その量は微量であるために貯蔵安定性には影響しないと考えられる。   From the above, it was shown that the storage stability of BDF depends on the content of methyl linolenate (C18: 3Me). From Table 2, it was found that animal fats and oils BDF had a low content of methyl linolenate compared to vegetable fats and oils BDF and were excellent in storage stability. In addition, when C16Me and C18Me are reduced for improving the low-temperature characteristics, the methyl linolenate content is relatively increased, but the amount is very small, so it is considered that the storage stability is not affected.

〔試験例6〕 燃焼特性評価試験
1.発熱量の測定
燃研式デジタル熱量計(小川サンプリング株式会社製、OSK100−5)を用い、BDFおよび軽油の高位発熱量を測定した。この際、発生した水分量を測定し、低位発熱量を算出した。
2.実機性能試験
供試機関には、ヤンマーディーゼル株式会社製の立型空冷4サイクル単気筒ディーゼル機関(L48A)を用いた。ディーゼル機関の機関仕様を表3に示す。なお、試験は機関回転数3000rpmおよび燃料噴射量0.2ml/s一定で行った。
[Test Example 6] Combustion characteristics evaluation test Measurement of calorific value The higher calorific value of BDF and diesel oil was measured using a Ikeno digital calorimeter (OSK100-5, manufactured by Ogawa Sampling Co., Ltd.). At this time, the amount of water generated was measured, and the lower heating value was calculated.
2. Actual machine performance test As a test engine, a vertical air-cooled four-cycle single-cylinder diesel engine (L48A) manufactured by Yanmar Diesel Co., Ltd. was used. Table 3 shows the engine specifications of the diesel engine. The test was performed at an engine speed of 3000 rpm and a constant fuel injection amount of 0.2 ml / s.

4.結果
(1)発熱量
図13にBDFの低位発熱量を、表4にBDFの元素分析値を示す。なお、参考のために軽油の発熱量を併記した。これより、牛脂BDFの低位発熱量は軽油に比べ若干劣るものの大豆油BDFとほぼ同等であることがわかる。また、表4より、牛脂BDFおよび大豆油BDFの元素分析値がほぼ同一であったことから、FAME組成による発熱量の変化はほとんどないと考えられる。従って、BDFは原料油脂の種類によらずほぼ同等の発熱量を有することが判明した。
4). Results (1) Calorific Value FIG. 13 shows the lower calorific value of BDF, and Table 4 shows the elemental analysis values of BDF. For reference, the calorific value of light oil is also shown. From this, it can be seen that the lower calorific value of beef tallow BDF is almost the same as that of soybean oil BDF although it is slightly inferior to light oil. Moreover, from Table 4, since the elemental analysis value of beef tallow BDF and soybean oil BDF was substantially the same, it is thought that there is almost no change of the emitted-heat amount by FAME composition. Therefore, it was found that BDF has almost the same calorific value regardless of the type of raw material fat.

(2)実機性能試験・着火性試験
図14に定常状態(燃焼室壁面温度約600℃)における各BDFの指圧線図を示す。なお、参考のために軽油の指圧線図を同図中に示す。
定常状態の指圧線図より、牛脂BDF、鶏脂BDFおよび大豆油BDFは軽油と同等以上の着火性および出力を発揮しており、ディーゼル燃料として十分に機能すると考えられる。
ここで、FAMEのセタン価を表5(Knothe,G.,Matheaus,A.,C.,Ryan,T.,W.,III,Fuel,82,971-975(2003))に示すが、FAMEの不飽和度が上昇すると、セタン価が減少している。飽和結合に対して不飽和結合は立体的に炭素−炭素結合が平面であるため、環状中間体が不安定であると考えられるからである。従って、牛脂BDF、鶏脂BDF、大豆油BDFは、この順序で飽和FAMEの含有率が高いため(表2より)、飽和FAMEの含有率の違い、すなわち、C16Me+C18Me合計含有率の違いにより着火性と出力に違いが生じるのではないかと推定できる。
そして、各BDFの定常状態の指圧線図における立ち上がり方を詳細に検討すると、大豆油BDFと軽油は、ほぼ同様の立ち上がりを示しているが、次に鶏脂BDFが早く、牛脂BDFが一番早い立ち上がりを示している。これらの飽和脂肪酸含有率(C16Me+C18Me合計含有率)は、大豆油BDF、鶏脂BDF、牛脂BDFでそれぞれ、13.3%、22.3%、42.6%であり、この順序が立ち上がりの早さ及び出力の差と同じ順序であることから、上記推定が正しいものであると裏づけられる。
以上より、軽油と同等の燃焼特性を得るためには、C16Me+C18Me合計含有率は10%以上必要であり、13%以上がさらに望ましいといえる。
(2) Actual machine performance test / ignitability test FIG. 14 shows a diagram of acupressure of each BDF in a steady state (combustion chamber wall surface temperature: about 600 ° C.). For reference, a diagram of light oil acupressure is shown in the figure.
From the steady-state acupressure diagram, beef tallow BDF, chicken tallow BDF, and soybean oil BDF exhibit ignitability and output equivalent to or better than diesel oil, and are considered to function sufficiently as diesel fuel.
Here, the cetane number of FAME is shown in Table 5 (Knothe, G., Mathaeus, A., C., Ryan, T., W., III, Fuel, 82, 971-975 (2003)). As the degree of saturation increases, the cetane number decreases. This is because the unsaturated bond is considered to be unstable because the carbon-carbon bond is sterically planar with respect to the saturated bond. Therefore, beef tallow BDF, chicken tallow BDF, and soybean oil BDF have a high content of saturated FAME in this order (from Table 2). It can be estimated that there will be a difference in output.
And when examining how to rise in the steady-state acupressure diagram of each BDF in detail, soybean oil BDF and light oil show almost the same rise, but next, chicken fat BDF is the fastest, and beef tallow BDF is the first. It shows an early rise. These saturated fatty acid contents (C16Me + C18Me total contents) are 13.3%, 22.3%, and 42.6% for soybean oil BDF, chicken fat BDF, and beef tallow BDF, respectively. This is the same order as the difference in power and output, thus confirming that the above estimation is correct.
From the above, in order to obtain combustion characteristics equivalent to that of light oil, the total content of C16Me + C18Me needs to be 10% or more, and 13% or more is more desirable.

本発明によれば、動物性油脂を原料として含む場合であっても、植物性油脂を原料とする場合と同様に、低温特性に優れた燃料を提供することができる。また、原料が廃食物油のように多様なものであっても、一定水準の性質を有する燃料を製造することができ、わが国の廃食物油の再利用を促進することができる。   According to the present invention, even when animal fats and oils are included as raw materials, fuel excellent in low-temperature characteristics can be provided as in the case of using vegetable fats and oils as raw materials. Moreover, even if the raw material is as diverse as waste food oil, it is possible to produce a fuel having a certain level of properties and promote the reuse of waste food oil in Japan.

各BDFの温度と動粘度の関係を示す図である。It is a figure which shows the relationship between the temperature of each BDF, and kinematic viscosity. 各BDFのDSC降温曲線を示す図である。It is a figure which shows the DSC temperature fall curve of each BDF. 各BDFのFAME組成を示す図である。It is a figure which shows the FAME composition of each BDF. FAME添加による牛脂BDFの凝固開始温度変化を示す図である。It is a figure which shows the solidification start temperature change of the beef tallow BDF by FAME addition. C16MeとC18Meの合計含有率と凝固開始温度の関係を示す図である。It is a figure which shows the relationship between the total content rate of C16Me and C18Me, and a solidification start temperature. 各BDFおよび添加物種類別の凝固開始温度を示す図である。It is a figure which shows the coagulation start temperature according to each BDF and additive kind. 晶析装置の概念図を示す図である。It is a figure which shows the conceptual diagram of a crystallizer. 牛脂BDFと軽油の混合率と凝固開始温度の関係を示す図である。It is a figure which shows the relationship between the mixing rate of beef tallow BDF and light oil, and the coagulation start temperature. 牛脂BDFと大豆油BDFの混合率と凝固開始温度の関係を示す図である。It is a figure which shows the relationship between the mixing rate of beef tallow BDF and soybean oil BDF, and coagulation start temperature. 各BDFの貯蔵期間経過に伴うPOV及び動粘度変化を示す図である。It is a figure which shows POV and kinematic viscosity change accompanying storage period progress of each BDF. 大豆油BDFのトータルイオンクロマトグラムを示す図である。It is a figure which shows the total ion chromatogram of soybean oil BDF. 4週間経過後の大豆油BDFにおける生成物質のマススペクトルを示す図である。It is a figure which shows the mass spectrum of the production | generation substance in soybean oil BDF after four-week progress. BDFの低位発熱量を示す図である。It is a figure which shows the low calorific value of BDF. 定常状態におけるBDFの指圧線図を示す図である。It is a figure which shows the acupressure diagram of BDF in a steady state.

符号の説明Explanation of symbols

1 撹拌翼
2 冷媒
3 反応槽
4 晶析装置
1 Stirring blade 2 Refrigerant 3 Reaction tank 4 Crystallizer

Claims (7)

動物性油脂を原料として、メチルエステル化して得られる脂肪酸エステルを含むバイオデ
ィーゼル燃料であって、バイオディーゼル燃料中におけるパルミチン酸メチルとステアリ
ン酸メチルを合計した含有率が25重量%以下であることを特徴とするバイオディーゼル
燃料。
Biodiesel fuel containing fatty acid ester obtained by animal esterification using animal fats and oils as a raw material, and the total content of methyl palmitate and methyl stearate in biodiesel fuel is 25% by weight or less A featured biodiesel fuel.
動物性油脂を原料として、メチルエステル化して得られる脂肪酸エステルを含むバイオデ
ィーゼル燃料であって、目詰まり点が5℃以下であることを特徴とするバイオディーゼル
燃料。
A biodiesel fuel containing a fatty acid ester obtained by animal esterification using animal fats and oils, and having a clogging point of 5 ° C or lower.
動物性油脂を原料として、メチルエステル化して得られる脂肪酸エステルを含むバイオデ
ィーゼル燃料であって、バイオディーゼル燃料中におけるパルミチン酸メチルとステアリ
ン酸メチルを合計した含有率が10重量%以上である請求項1に記載のバイオディーゼル燃料。
A biodiesel fuel containing a fatty acid ester obtained by animal esterification using animal fats and oils as a raw material, wherein the total content of methyl palmitate and methyl stearate in the biodiesel fuel is 10% by weight or more. The biodiesel fuel according to 1.
さらに軽油を含む請求項1〜3のいずれかに記載のバイオディーゼル燃料。 Furthermore, the biodiesel fuel in any one of Claims 1-3 containing a light oil. 動物性油脂をメタノールとエステル交換反応してバイオディーゼル燃料を製造する方法に
おいて、バイオディーゼル燃料中におけるパルミチン酸メチルとステアリン酸メチルの合
計の含有率を調整することを特徴とするバイオディーゼル燃料の製造方法。
A method for producing biodiesel fuel by transesterification of animal fats with methanol, wherein the total content of methyl palmitate and methyl stearate in the biodiesel fuel is adjusted. Method.
パルミチン酸メチルとステアリン酸メチルの合計の含有率の調整が、晶析又は他の成分と
の混合によるものである請求項5に記載のバイオディーゼル燃料の製造方法。
The method for producing a biodiesel fuel according to claim 5, wherein the adjustment of the total content of methyl palmitate and methyl stearate is performed by crystallization or mixing with other components.
動物性油脂を原料として、メチルエステル化して得られる脂肪酸エステルを含むバイオデ
ィーゼル燃料について、バイオディーゼル燃料中におけるパルミチン酸メチルとステアリン酸メチルの各含有量を測定し、合計した含有率を求め、下記式(1)に代入することによって目詰まり点を予測する方法。
For biodiesel fuel containing fatty acid ester obtained by animal esterification using animal fats and oils as raw materials, each content of methyl palmitate and methyl stearate in biodiesel fuel is measured, and the total content is obtained, A method for predicting a clogging point by substituting it into equation (1).
JP2007174965A 2006-08-31 2007-07-03 Biodiesel fuel Expired - Fee Related JP5561452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007174965A JP5561452B2 (en) 2006-08-31 2007-07-03 Biodiesel fuel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006235277 2006-08-31
JP2006235277 2006-08-31
JP2007174965A JP5561452B2 (en) 2006-08-31 2007-07-03 Biodiesel fuel

Publications (2)

Publication Number Publication Date
JP2008081730A true JP2008081730A (en) 2008-04-10
JP5561452B2 JP5561452B2 (en) 2014-07-30

Family

ID=39352896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174965A Expired - Fee Related JP5561452B2 (en) 2006-08-31 2007-07-03 Biodiesel fuel

Country Status (1)

Country Link
JP (1) JP5561452B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2515399A (en) * 2013-06-19 2014-12-24 Argent Energy Group Ltd Biodiesel composition and related process and products
JPWO2018212049A1 (en) * 2017-05-19 2019-06-27 出光興産株式会社 Method of removing monoglyceride in biodiesel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2331761A (en) * 1999-03-15 1999-06-02 Procter & Gamble Pour point depression of heavy cut methyl esters via alkyl methacrylate copolymer
JP2004359766A (en) * 2003-06-03 2004-12-24 Malaysian Palm Oil Board Diesel oil having low pour point
JP2005060591A (en) * 2003-08-18 2005-03-10 National Agriculture & Bio-Oriented Research Organization Method for non-catalytic production of biological diesel fuel without generating by-product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2331761A (en) * 1999-03-15 1999-06-02 Procter & Gamble Pour point depression of heavy cut methyl esters via alkyl methacrylate copolymer
JP2004359766A (en) * 2003-06-03 2004-12-24 Malaysian Palm Oil Board Diesel oil having low pour point
JP2005060591A (en) * 2003-08-18 2005-03-10 National Agriculture & Bio-Oriented Research Organization Method for non-catalytic production of biological diesel fuel without generating by-product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012060021; DITTMAR T H, 外4名: 'Erzeugung von normiertem Biodiesel-Untersuchungen zur Kaltestabilitat von Fettsaurealkylestern' Erdoel Erdgas Kohl Vol.119, No.10, 200310, p.356-362 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2515399A (en) * 2013-06-19 2014-12-24 Argent Energy Group Ltd Biodiesel composition and related process and products
GB2515399B (en) * 2013-06-19 2015-12-30 Argent Energy Group Ltd Biodiesel composition and related process and products
US9738842B2 (en) 2013-06-19 2017-08-22 Argent Energy (Uk) Limited Process and apparatus for purifying a fatty mixture and related products including fuels
US9868918B2 (en) 2013-06-19 2018-01-16 Argent Energy (Uk) Limited Biodiesel composition and related process and products
US10323197B2 (en) 2013-06-19 2019-06-18 Argent Energy (Uk) Limited Process for producing biodiesel and related products
US10961473B2 (en) 2013-06-19 2021-03-30 Argent Energy (UK) Limited, Argent Engery Limited Process for producing biodiesel and related products
JPWO2018212049A1 (en) * 2017-05-19 2019-06-27 出光興産株式会社 Method of removing monoglyceride in biodiesel

Also Published As

Publication number Publication date
JP5561452B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
Park et al. Blending effects of biodiesels on oxidation stability and low temperature flow properties
Hincapié et al. Conventional and in situ transesterification of castor seed oil for biodiesel production
Ramos et al. Influence of fatty acid composition of raw materials on biodiesel properties
Issariyakul et al. Comparative kinetics of transesterification for biodiesel production from palm oil and mustard oil
Zuleta et al. Oxidative stability and cold flow behavior of palm, sacha-inchi, jatropha and castor oil biodiesel blends
Meher et al. Technical aspects of biodiesel production by transesterification—a review
Yaakob et al. A review on the oxidation stability of biodiesel
Kafuku et al. Biodiesel production from Croton megalocarpus oil and its process optimization
Berman et al. Castor oil biodiesel and its blends as alternative fuel
WANG et al. Influence of fatty acid composition of woody biodiesel plants on the fuel properties
Sivakumar et al. Bio-diesel production by alkali catalyzed transesterification of dairy waste scum
Soriano et al. Evaluation of biodiesel derived from Camelina sativa oil
de Freitas et al. Evaluation of the oxidative stability and cold filter plugging point of soybean methyl biodiesel/bovine tallow methyl biodiesel blends
Lin et al. Production of biodiesel from chicken wastes by various alcohol-catalyst combinations
Lin et al. Fuel properties of biodiesel produced from Camellia oleifera Abel oil through supercritical-methanol transesterification
Tomić et al. Effects of accelerated oxidation on the selected fuel properties and composition of biodiesel
Saha et al. Ultrasound assisted transesterification of high free fatty acids karanja oil using heterogeneous base catalysts
Jeong et al. Estimating and improving cold filter plugging points by blending biodiesels with different fatty acid contents
Suppalakpanya et al. Production of ethyl ester from crude palm oil by two-step reaction using continuous microwave system.
Boucher et al. Variables affecting homogeneous acid catalyst recoverability and reuse after esterification of concentrated omega-9 polyunsaturated fatty acids in vegetable oil triglycerides
JP5561452B2 (en) Biodiesel fuel
Jin et al. Comprehensive utilization of the mixture of oil sediments and soapstocks for producing FAME and phosphatides
Diger Kulaksiz et al. Sunflower oil deodorizer distillate as novel feedstock for biodiesel production and its characterization as a fuel
Dias et al. Using mixtures of waste frying oil and pork lard to produce biodiesel
Hoang et al. Biodiesel production from waste shortening oil from instant noodle factories

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140527

R150 Certificate of patent or registration of utility model

Ref document number: 5561452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees