JP2008081390A - Method for producing regenerated particle coated with silica, regenerated particle coated with silica, and inclusion paper and coated paper using the particle - Google Patents

Method for producing regenerated particle coated with silica, regenerated particle coated with silica, and inclusion paper and coated paper using the particle Download PDF

Info

Publication number
JP2008081390A
JP2008081390A JP2007066206A JP2007066206A JP2008081390A JP 2008081390 A JP2008081390 A JP 2008081390A JP 2007066206 A JP2007066206 A JP 2007066206A JP 2007066206 A JP2007066206 A JP 2007066206A JP 2008081390 A JP2008081390 A JP 2008081390A
Authority
JP
Japan
Prior art keywords
silica
coated
regenerated particles
regenerated
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007066206A
Other languages
Japanese (ja)
Other versions
JP4087431B2 (en
Inventor
Hiroyuki Osumi
博之 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Paper Corp
Original Assignee
Daio Paper Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daio Paper Corp filed Critical Daio Paper Corp
Priority to JP2007066206A priority Critical patent/JP4087431B2/en
Publication of JP2008081390A publication Critical patent/JP2008081390A/en
Application granted granted Critical
Publication of JP4087431B2 publication Critical patent/JP4087431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce regenerated particles each coated with silica having high whiteness and low abrasion property by utilizing regenerated particles or the aggregate of the regenerated particles, obtained by using deinking froth as a main raw material. <P>SOLUTION: The regenerated particles each coated with silica are obtained by preparing regenerated particles having an average diameter of 0.1-10 μm or the aggregate of the regenerated particles by using the deinking froth as a main raw material, then suspending the regenerated particles or the aggregate of the regenerated particles in an alkali silicate solution, and adding a mineral acid to the resulting suspension to coat the surface of each regenerated particle or of each particle of the aggregate of the regenerated particles with silica. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、脱墨フロスを主原料とする再生粒子又は再生粒子凝集体を利用したシリカ被覆再生粒子の製造方法、及びこの方法によって得られたシリカ被覆再生粒子に関し、特に内添用の填料や塗工用顔料として好適なシリカ被覆再生粒子に関する。さらに、シリカ被覆再生粒子を使用したシリカ被覆再生粒子内添紙及び塗工紙も提供するものである。   The present invention relates to a method for producing silica-coated regenerated particles using regenerated particles or regenerated particle aggregates mainly composed of deinked floss, and silica-coated regenerated particles obtained by this method. The present invention relates to a silica-coated regenerated particle suitable as a coating pigment. Furthermore, the present invention also provides a silica-coated regenerated particle-containing additive paper and coated paper using silica-coated regenerated particles.

古紙リサイクル工程を含む各種パルプ製造工程や製紙工程において発生する排水中には、カオリンクレー、タルク、炭酸カルシウム、ホワイトカーボン、チタンなどの無機粒子をかなりの比率で含んでいる。これら排水中の固形分処理方法として、従来は、沈殿又は浮上などを利用した固液分離法により固形分が分取され、これを脱水処理して製紙スラッジとし、さらに焼却処理して減容化するとともに、残った焼却灰をセメント原料や炉の保温材として利用するか埋立て処理していた。
近年、環境保全、リサイクルの観点から、古紙の利用が飛躍的に増加し、古紙パルプ製造工程から排出されるCODやSS原因物質が他の製紙スラッジと比較して多いため、古紙パルプ製造工程で排出される製紙スラッジを再利用することが提案されている。
その一つとして特開平10−29818号(特許文献1)には、製紙プラントまたは紙または古紙を処理するプラントの排出物から得られた製紙スラッジを焼成することで、有機物を含まない粒状炭酸カルシウム含有無機材料を提供する方法が提案されている。この方法では、製紙スラッジを比較的低い温度(600〜800℃)で焼成し、得られた生成物を水性溶媒中に再懸濁し、酸処理または二酸化炭素含有ガスを通すことにより、溶出したカルシウム分の炭酸化を行う。この再生炭酸カルシウムは内添用の填料として再利用できることが記載されている。
しかしこのように製紙スラッジを焼成して得られた生成物を内添用の填料として再利用する場合における最も大きな問題点は、原料とする製紙スラッジが、抄紙工程でワイヤーを通過して流出したもの、パルプ化工程での洗浄過程で発生した固形分を含む排水から回収したもの、排水処理工程において、沈殿又は浮上などを利用した固形分分離装置によりその固形分を分離、回収したもの、古紙処理工程での混入異物除去したもの等の各種スラッジが混在している点である。
これらの製紙スラッジのうち、例えば、抄紙工程でワイヤーを通過して流出したものは、紙力剤等が混入しており、また、抄紙工程における抄造物の変更によって品質に変動が生じる。さらに、排水スラッジであれば凝集剤が混入しており、さらに工場全体の抄造物、生産量の変動、又は生産設備の工程内洗浄などにより大きな変動が生じる。パルプ化工程での洗浄過程から生じる製紙スラッジにおいては、チップ水分やパルプ製造条件で変動が生じるなど、填料、顔料とすることができないさまざまな物質が混入し、品質変動が生じる。したがって、全ての製紙スラッジを無選別に使用しようとすると、得られる内添用の填料・顔料の品質が大きく低下し、しかも品質の変動が極めて大きく、不安定なものとなる。
すなわち、特許文献1の方法で得られる再生粒子は、焼成して得られた種となる生成物が不安定なものであるため、炭酸カルシウムを再生しても性状が安定せず、填料や塗工用の顔料として使用するには品質が適しない場合が多く、品質安定性に欠けるものであった。
他方、軽質炭酸カルシウムとアルカリ性のケイ酸金属塩水溶液を混合した液に、その煮沸温度以下の温度で、鉱酸を添加し液pHを7〜9として得られる、軽質炭酸カルシウム−シリカ複合物における、軽質炭酸カルシウムとケイ酸との重量比率を30:70〜55:45とする方法の一つとして特開2005−219945号(特許文献2)や、無機微粒子を珪酸アルカリ水溶液に添加・分散し、スラリーを調製した後に加熱攪拌しながら、液温を60〜100℃の範囲に保持し酸を添加し、シリカゾルを生成させ、混合液のpHを中性〜弱アルカリ性の範囲に調整することにより、無機微粒子・シリカ複合粒子を製造する、さらに、これをパルプスラリーに填料として内添し、紙を製造する方法として特開2003−49389号(特許文献3)が提案されている。
特許文献2に記載の方法は、種となる無機粒子に炭酸カルシウムを使用し、炭酸カルシウム粒子の表面に非晶質のシリカを析出させる方法であり、特許文献1と比べ、種となる無機粒子が軽質炭酸カルシウム(水酸化カルシウム懸濁液と二酸化炭素の反応によって沈降させた軽質炭酸カルシウム)であるため性状・形状ともほぼ均質な点で優れている。
しかしながら、軽質炭酸カルシウムを種とした非晶質のシリカ析出は、相異なる無機成分であるため軽質炭酸カルシウムの表面にシリカが析出するよりも遊離した非晶質シリカの生成が主体となり、軽質炭酸カルシウムの被覆効率が低くシリカ被覆に長時間が必要であると共に、薬品歩留りが低く製造原価が高くなる問題が発現するため、特開昭58−115022に記載の製造方法のように、水酸化カルシウム〜軽質炭酸カルシウムを製造する反応工程中に珪酸アルカリ水溶液を混合し軽質炭酸カルシウムの析出と同じくしてシリカ被覆を行わせ、シリカ被覆効率を向上させようと試みたものである。
特許文献3に記載の方法は、炭酸カルシウム、タルク、クレイ、カオリン、焼成カオリン、二酸化チタン、水酸化アルミニウムの単独または2種以上の混合物である無機微粒子を珪酸アルカリ水溶液に添加・分散しスラリーを調製した後に加熱攪拌しながら、液温を60〜100℃の範囲に保持し酸を添加し、シリカゾルを生成させ、混合液のpHを中性〜弱アルカリ性の範囲に調整することにより形成される無機微粒子・シリカ複合粒子の製造方法であるが、その原料となる炭酸カルシウム、タルク、クレイ、カオリン、焼成カオリン、二酸化チタン、水酸化アルミニウム等にシリカを被覆する製法のため、個々の原料無機粒子の性状をシリカ被覆で向上させ得るものの、多孔性が飛躍的に向上するものでもなく、バージンの無機粒子を使用するため、製造コストが高く、実使用するには困難である。
特開2002−233851号(特許文献4)には、近年の環境保全、リサイクルの観点から、古紙リサイクル過程で排出される製紙スラッジを再利用し、製紙スラッジを比較的低い温度で焼成し、得られた焼成灰を水酸化カルシウム含有水性溶媒中に再懸濁し、二酸化炭素または二酸化炭素含有ガスを通すことにより、焼成灰粒子の周囲を軽質炭酸カルシウムで被覆する軽質炭酸カルシウム被覆粒子の製造技術が開示されている。
焼却灰をほぼ軽質炭酸カルシウムに覆った粒子が得られるので、炭酸カルシウムにほぼ近い物性の粒子が得られるとされる。
しかしこの方法は、先に述べた特許文献1と同様に、原料とする製紙スラッジが、抄紙工程でワイヤーを通過して流出したもの、パルプ化工程での洗浄過程で発生した固形分を含む排水から回収したもの、排水処理工程において、沈殿又は浮上などを利用した固形分分離装置によりその固形分を分離、回収したもの、古紙処理工程での混入異物除去したもの等の各種スラッジが混在している点が問題となるのである。
すなわち、炭酸カルシウムの析出は、焼成灰中に含まれるカルシウム元素を種として軽質炭酸カルシウムを析出するようにしているので、焼却灰中の種として作用するカルシウム元素が少ない場合には適応できない。その結果、焼成灰の周囲に部分的に軽質炭酸カルシウムが析出した粒子や、焼却灰と軽質炭酸カルシウムとが混在したものが得られ、これを製紙の填料や塗工用顔料として用いた場合、白色度、摩耗性などについて満足する特性が得られないことが、本発明者の取り組みでわかった。
特開平10−29818号公報 特開2005−219945号公報 特開2003−49389号公報 特開2002−233851号公報
Wastewater generated in various pulp manufacturing processes and paper manufacturing processes including the waste paper recycling process contains a considerable proportion of inorganic particles such as kaolin clay, talc, calcium carbonate, white carbon, and titanium. As a method for treating the solid content in these wastewaters, conventionally, the solid content is separated by solid-liquid separation using precipitation or flotation, and this is dewatered to make paper sludge, and further incinerated to reduce the volume. At the same time, the remaining incineration ash was used as a raw material for cement and as a heat insulating material for the furnace, or was landfilled.
In recent years, the use of waste paper has increased dramatically from the viewpoint of environmental protection and recycling, and COD and SS-causing substances discharged from the waste paper pulp manufacturing process are larger than other paper sludges. It has been proposed to recycle discharged paper sludge.
As one of them, JP-A-10-29818 (Patent Document 1) discloses granular calcium carbonate containing no organic matter by firing papermaking sludge obtained from the discharge of a papermaking plant or a plant for processing paper or waste paper. A method for providing a contained inorganic material has been proposed. In this method, the paper sludge is calcined at a relatively low temperature (600-800 ° C.), and the resulting product is resuspended in an aqueous solvent and passed through an acid treatment or a carbon dioxide containing gas to elute calcium. Carbonate for a minute. It is described that this regenerated calcium carbonate can be reused as a filler for internal addition.
However, the biggest problem in recycling the product obtained by firing paper sludge in this way as a filler for internal addition is that the paper sludge used as a raw material flows out through the wire in the paper making process. Recovered from wastewater containing solids generated during the washing process in the pulping process, recovered and separated from solids using a solids separator that uses precipitation or flotation in the wastewater treatment process, waste paper Various sludges, such as those from which foreign substances have been removed in the treatment process, are mixed.
Among these papermaking sludges, for example, those that flow out through the wire in the papermaking process are mixed with a paper strength agent and the quality varies due to changes in the papermaking product in the papermaking process. Further, in the case of drainage sludge, a flocculant is mixed, and further, large fluctuations occur due to papermaking in the whole factory, fluctuations in production, or in-process washing of production facilities. In papermaking sludge generated from the washing process in the pulping process, various substances that cannot be used as fillers and pigments are mixed, such as fluctuations in chip moisture and pulp production conditions, resulting in quality fluctuations. Therefore, if all the papermaking sludge is used without selection, the quality of the resulting filler / pigment for internal addition is greatly reduced, and the quality fluctuation is extremely large and unstable.
That is, the regenerated particles obtained by the method of Patent Document 1 are unstable in the product obtained as a seed obtained by firing, so that the properties are not stabilized even when calcium carbonate is regenerated, and fillers and coatings are not obtained. In many cases, the quality is not suitable for use as an industrial pigment, and the quality is not stable.
On the other hand, in a light calcium carbonate-silica composite obtained by adding mineral acid to a liquid obtained by mixing light calcium carbonate and an aqueous alkali metal silicate salt solution at a temperature equal to or lower than the boiling temperature, and having a liquid pH of 7-9. As a method for setting the weight ratio of light calcium carbonate to silicic acid to 30:70 to 55:45, Japanese Patent Application Laid-Open No. 2005-219945 (Patent Document 2) and inorganic fine particles are added to and dispersed in an alkali silicate aqueous solution. By preparing a slurry and heating and stirring while maintaining the liquid temperature in the range of 60 to 100 ° C., adding an acid, generating a silica sol, and adjusting the pH of the mixed liquid to a neutral to weak alkaline range JP-A-2003-49389 (patent document) discloses a method for producing inorganic fine particles / silica composite particles, and further adding them internally to a pulp slurry as a filler to produce paper. Document 3) it has been proposed.
The method described in Patent Document 2 is a method in which calcium carbonate is used as the seed inorganic particles, and amorphous silica is precipitated on the surface of the calcium carbonate particles. Compared with Patent Document 1, the seed inorganic particles Is light calcium carbonate (light calcium carbonate precipitated by the reaction of calcium hydroxide suspension and carbon dioxide), which is excellent in terms of almost uniform properties and shape.
However, since amorphous silica precipitation using light calcium carbonate as a seed is a different inorganic component, the formation of free amorphous silica is more dominant than the precipitation of silica on the surface of light calcium carbonate. Since the coating efficiency of calcium is low and a long time is required for silica coating, and the problem that the chemical yield is low and the production cost is high appears, calcium hydroxide as in the production method described in JP-A-58-115022 ~ An attempt was made to improve the silica coating efficiency by mixing an alkali silicate aqueous solution during the reaction process for producing light calcium carbonate and applying silica coating in the same manner as the precipitation of light calcium carbonate.
In the method described in Patent Document 3, inorganic fine particles, which are calcium carbonate, talc, clay, kaolin, calcined kaolin, titanium dioxide, and aluminum hydroxide, or a mixture of two or more thereof are added to and dispersed in an aqueous alkali silicate solution. It is formed by maintaining the liquid temperature in the range of 60 to 100 ° C. with addition of an acid while producing and stirring with heating after the preparation, generating a silica sol, and adjusting the pH of the mixed liquid to a neutral to weak alkaline range. This is a method for producing inorganic fine particles / silica composite particles, but for the production method of coating silica on calcium carbonate, talc, clay, kaolin, calcined kaolin, titanium dioxide, aluminum hydroxide, etc. which are the raw materials, individual raw inorganic particles Although the properties of the silica can be improved by silica coating, the porosity is not dramatically improved and virgin inorganic particles are used. To a high manufacturing cost, it is difficult to actual use.
In JP 2002-233851 (Patent Document 4), from the viewpoint of environmental conservation and recycling in recent years, paper sludge discharged in the process of recycling used paper is reused, and paper sludge is fired at a relatively low temperature. A technology for producing light calcium carbonate-coated particles is obtained by resuspending the calcined ash in an aqueous solvent containing calcium hydroxide and passing carbon dioxide or a gas containing carbon dioxide to coat the periphery of the calcined ash particles with light calcium carbonate. It is disclosed.
Since particles with incineration ash almost covered with light calcium carbonate are obtained, it is said that particles having physical properties almost similar to calcium carbonate are obtained.
However, this method is similar to Patent Document 1 described above, in which papermaking sludge as a raw material flows out through a wire in a papermaking process, and wastewater containing solids generated in a washing process in a pulping process. Various types of sludge, such as those collected from the wastewater treatment process, separated and collected by solid content separation equipment using sedimentation or flotation, etc. This is a problem.
That is, the precipitation of calcium carbonate is not applicable when the amount of calcium element acting as a seed in the incinerated ash is small because light calcium carbonate is precipitated using the calcium element contained in the fired ash as a seed. As a result, particles with light calcium carbonate partially deposited around the baked ash, and a mixture of incinerated ash and light calcium carbonate are obtained, and when this is used as a paper filler or coating pigment, It has been found by the inventor's efforts that satisfactory characteristics such as whiteness and wear cannot be obtained.
JP-A-10-29818 JP 2005-219945 A JP 2003-49389 A JP 2002-233851 A

そこで本発明は、古紙の処理工程における脱墨処理工程で排出される脱墨フロスを主原料とし、前記主原料を脱水工程、乾燥工程、焼成工程、粉砕工程を経て得られた再生粒子又は再生粒子凝集体を利用して、この再生粒子又は再生粒子凝集体粒子の周囲(外面)をシリカで被覆して、白色度、吸油度が高く、低摩耗性のシリカ被覆再生粒子を提供することを目的とする。
また本発明は、シリカ被覆再生粒子の核として作用する再生粒子又は再生粒子凝集体が、カルシウム、ケイ素、アルミニウムを構成成分とする無機粒子又は無機粒子凝集体であり、好適には、シリカ被覆再生粒子の構成成分におけるカルシウム、ケイ素、アルミニウムの割合が、酸化物換算で10〜80:10〜80:5〜29の質量割合で含有し、かつ、前記再生粒子の構成成分のうち、前記カルシウム、前記ケイ素及び前記アルミニウムの合計含有割合が再生粒子構成成分中の90質量%以上であるシリカ被覆再生粒子の製造方法を提供することを目的とする。
さらに本発明は上述したシリカ被覆再生粒子を利用した内添紙または塗工紙であって、必要な性能を充分な発揮する内添紙または塗工紙も提供することを目的とする。
Therefore, the present invention uses the deinking floss discharged in the deinking process in the used paper processing process as a main raw material, and the main raw material is regenerated particles or regenerated obtained through a dehydration process, a drying process, a baking process, and a pulverization process. Using the particle aggregate, the regenerated particles or the periphery (outer surface) of the regenerated particle aggregate particles are coated with silica to provide silica-coated regenerated particles having high whiteness, high oil absorption and low wear. Objective.
Further, in the present invention, the regenerated particles or regenerated particle aggregates that act as nuclei of the silica-coated regenerated particles are inorganic particles or inorganic particle aggregates containing calcium, silicon, and aluminum as constituent components, and preferably silica-coated regenerated particles The proportion of calcium, silicon and aluminum in the constituent components of the particles is contained in a mass ratio of 10 to 80:10 to 80: 5 to 29 in terms of oxide, and among the constituent components of the regenerated particles, the calcium, It is an object of the present invention to provide a method for producing silica-coated regenerated particles in which the total content of silicon and aluminum is 90% by mass or more in the regenerated particle constituents.
Furthermore, an object of the present invention is to provide an internally added paper or coated paper using the above-mentioned silica-coated regenerated particles and exhibiting necessary performance sufficiently.

上記目的を達成する本発明者らは、古紙の処理工程における脱墨処理工程で排出される脱墨フロスを主原料とし、前記主原料を脱水工程、乾燥工程、焼成工程、粉砕工程を経て、すなわち好適には炭化工程やいわゆる白化工程を採ることなく、得られた再生粒子又は再生粒子凝集体、すなわち、粉砕工程後に架橋吸着を利用する凝集剤を添加して凝集を図るものでなく、焼成工程において凝集体とした再生粒子又は再生粒子凝集体を利用して、当該再生粒子又は再生粒子凝集体を核としてシリカ被覆再生粒子を製造する条件について鋭意研究した。その結果、次記の態様が好ましいことを見出した。
すなわち、脱墨フロスを主原料とする再生粒子又は再生粒子凝集体を得るに当り、脱墨フロス中に含有される炭酸カルシウムの分解を最小限度に抑えるために焼成工程で500〜800℃(より好ましくは500〜700℃)の焼成温度、0.05%以上(より好ましくは0.15〜20%)の酸素濃度存在下で焼成を行う。
焼成工程後、粉砕工程前段で水溶液に分散させた際に水溶液は、焼成時に炭酸カルシウムが熱分解して生成した酸化カルシウムによりpHが10〜12程度になる。粉砕工程の前または/および後にてPHを8〜11程度に調整したうえで、所望の粒度に粉砕後の再生粒子又は再生粒子凝集体と、珪酸アルカリ水溶液とを接触させ、60〜100℃に加熱し、さらに鉱酸を加える、懸濁、加熱、鉱酸の添加順序は特定されたものではないが、懸濁、加熱、鉱酸の添加を順次行うことで、再生粒子又は再生粒子凝集体表面にシリカを析出させることができる。
再生粒子又は再生粒子凝集体を含む水性懸濁液中に珪酸アルカリ水溶液を混合し、鉱酸と反応させることにより、脱墨フロスを主原料とする再生粒子又は再生粒子凝集体粒子を核とするシリカ生成反応が進み、脱墨フロスを主原料とする再生粒子又は再生粒子凝集体粒子表面をシリカが覆った粒子が得られることにより、白色度の高いシリカ被覆再生粒子が得られることを見出したものである。
本発明に係る再生粒子又は再生粒子凝集体及びシリカ被覆再生粒子は、不定形な粒状構造を有する主として凝集体である。その形状を文言で特定しがたいが、あえて言えば、金魚の一種のランチュウの肉瘤に似ており、「略球状であり、大小の略球状が3次元フラクタルな構造」を有しており、「略球状粒子のフラクタルな凝集体」と呼べるものであり、「金魚のランチュウの肉瘤状に似た不定形な大小の略球状粒子の凝集体(略球状3次元フラクタル形状)」とも言えるものである。
The inventors of the present invention achieving the above-mentioned object uses the deinking floss discharged in the deinking process in the used paper processing process as a main raw material, and the main raw material is subjected to a dehydration process, a drying process, a baking process, and a pulverization process. In other words, without taking the carbonization step or the so-called whitening step, the obtained regenerated particles or regenerated particle aggregates, that is, a flocculant using cross-linking adsorption after the pulverization step is not added to achieve agglomeration. Using the regenerated particles or regenerated particle agglomerates as aggregates in the process, the inventors studied diligently about the conditions for producing silica-coated regenerated particles using the regenerated particles or regenerated particle aggregates as nuclei. As a result, it has been found that the following aspect is preferable.
That is, when obtaining regenerated particles or regenerated particle aggregates mainly composed of deinking floss, 500 to 800 ° C. (more in the baking step) in order to minimize the decomposition of calcium carbonate contained in the deinking floss. The firing is preferably performed at a firing temperature of 500 to 700 ° C. and in the presence of an oxygen concentration of 0.05% or more (more preferably 0.15 to 20%).
When the aqueous solution is dispersed in the aqueous solution before the pulverization step after the firing step, the pH of the aqueous solution becomes about 10 to 12 due to the calcium oxide generated by thermal decomposition of the calcium carbonate during the firing. After adjusting the PH to about 8 to 11 before or after the pulverization step, the regenerated particles or the regenerated particle aggregate after pulverization to a desired particle size is brought into contact with the alkali silicate aqueous solution, and the temperature is adjusted to 60 to 100 ° C Heating, adding mineral acid, suspension, heating, addition order of mineral acid is not specified, but regenerated particles or regenerated particle agglomerates by sequentially performing suspension, heating, and addition of mineral acid Silica can be deposited on the surface.
Aqueous silicate aqueous solution is mixed in an aqueous suspension containing regenerated particles or regenerated particle aggregates and reacted with mineral acid, thereby using regenerated particles or regenerated particle aggregate particles mainly made of deinked floss as a core. It has been found that silica-coated regenerated particles with high whiteness can be obtained by progressing silica formation reaction and obtaining particles in which regenerated particles mainly composed of deinked floss or regenerated particle aggregate particles are covered with silica. Is.
The regenerated particles or regenerated particle aggregates and silica-coated regenerated particles according to the present invention are mainly aggregates having an irregular granular structure. It is difficult to specify the shape in words, but to put it darely, it resembles a kind of goldfish ranchu, and has a “substantially spherical shape, a large and small spherical shape having a three-dimensional fractal structure”. It can be called “fractal aggregates of substantially spherical particles”, and it can also be said to be “aggregates of irregularly large and small spherical particles (substantially spherical three-dimensional fractal shape) resembling a goldfish ranchu meat-like shape”. is there.

かかる本発明によれば次記の態様が提供される。
<請求項1項記載の発明>
脱墨フロスを主原料としかつ平均粒子径が0.1〜10μm再生粒子を得て、この再生粒子を珪酸アルカリ水溶液中に懸濁するとともに鉱酸を添加し、再生粒子の周囲をシリカで被覆してシリカ被覆再生粒子を得ることを特徴とするシリカ被覆再生粒子の製造方法。
According to the present invention, the following aspects are provided.
<Invention of Claim 1>
Regenerated particles with deinking floss as the main raw material and an average particle size of 0.1 to 10 μm are obtained. To obtain silica-coated regenerated particles.

<請求項2項記載の発明>
前記再生粒子と珪酸アルカリ水溶液の液温60〜100℃の混合液に、混合液のpHが8.0〜11.0の範囲になるように鉱酸の添加を行う請求項1記載のシリカ被覆再生粒子の製造方法。
<Invention of Claim 2>
The silica coating according to claim 1, wherein a mineral acid is added to a mixture of the regenerated particles and the alkali silicate aqueous solution at a temperature of 60 to 100 ° C so that the pH of the mixture is in the range of 8.0 to 11.0. A method for producing regenerated particles.

<請求項3項記載の発明>
前記脱墨フロスを主原料とする再生粒子は、古紙パルプ製造工程の脱墨処理工程において排出される脱墨フロスを主原料に、500〜800℃で、酸素存在下で焼成した脱墨フロスを主原料とする再生粒子を、平均粒子径が0.1〜10μmとなるように湿式粉砕したものである請求項1または2記載のシリカ被覆再生粒子の製造方法。
<Invention of Claim 3>
The regenerated particles using the deinked floss as the main raw material are deinked floss baked in the presence of oxygen at 500 to 800 ° C. using the deinked floss discharged in the deinking process of the used paper pulp manufacturing process as the main raw material. The method for producing silica-coated regenerated particles according to claim 1 or 2, wherein the regenerated particles used as a main raw material are wet-pulverized so that the average particle diameter is 0.1 to 10 µm.

<請求項4項記載の発明>
前記脱墨フロスを主原料とする再生粒子は、カルシウム、ケイ素、アルミニウムを構成成分とする無機粒子のであり、得られるシリカ被覆再生粒子は、その構成成分におけるカルシウム、ケイ素、アルミニウムの割合が、酸化物換算で10〜80:10〜80:5〜29の質量割合で含有する請求項1〜3のいずれか1項記載のシリカ被覆再生粒子の製造方法。
<Invention of Claim 4>
The regenerated particles mainly composed of the deinking floss are inorganic particles containing calcium, silicon, and aluminum as constituents, and the resulting silica-coated regenerated particles have a ratio of calcium, silicon, and aluminum in the constituents being oxidized. The method for producing silica-coated regenerated particles according to any one of claims 1 to 3, which is contained in a mass ratio of 10 to 80:10 to 80: 5 to 29 in terms of product.

<請求項5項記載の発明>
脱墨フロスを主原料とし、脱水工程、乾燥工程、焼成工程及び粉砕工程を経て再生粒子を得て、この再生粒子を珪酸アルカリ水溶液中に懸濁するとともに鉱酸を添加し、再生粒子の周囲をシリカで被覆して得られるシリカ被覆再生粒子であって、
得られるシリカ被覆再生粒子は、その構成成分におけるカルシウム、ケイ素、アルミニウムの割合が、酸化物換算で10〜80:10〜80:5〜29の質量割合で含有し、平均粒子径が0.1〜10μmであることを特徴とするシリカ被覆再生粒子。
<Invention of Claim 5>
Using deinked floss as the main raw material, regenerated particles are obtained through the dehydration process, drying process, firing process and pulverization process, and the regenerated particles are suspended in an aqueous solution of alkali silicate and added with mineral acid, Silica-coated regenerated particles obtained by coating with silica,
The obtained silica-coated regenerated particles contain calcium, silicon, and aluminum in the constituent components in a mass ratio of 10 to 80:10 to 80: 5 to 29 in terms of oxide, and the average particle size is 0.1. Silica-coated regenerated particles characterized by having a particle size of 10 μm to 10 μm.

<請求項6項記載の発明>
前記脱墨フロスを主原料とするシリカ被覆再生粒子は、再生粒子を粒子種として、粒子種の表層がシリカで被覆された、不定形な粒状構造を有するであり、吸油度が50〜180ml/100g(JIS K 5101)である請求項5記載のシリカ被覆再生粒子。
<Invention of Claim 6>
The silica-coated regenerated particles mainly composed of the deinked floss have an irregular granular structure in which the regenerated particles are used as particle types and the surface layer of the particle types is coated with silica, and the oil absorption is 50 to 180 ml / The silica-coated regenerated particles according to claim 5, which is 100 g (JIS K 5101).

<請求項7項記載の発明>
請求項5または6記載のシリカ被覆再生粒子を内添用填料として用いたことを特徴とするシリカ被覆再生粒子内添紙。
<Invention of Claim 7>
A silica-coated regenerated particle-containing paper, wherein the silica-coated regenerated particle according to claim 5 or 6 is used as a filler for internal addition.

<請求項8項記載の発明>
紙の少なくとも一方の面に1層又は複数層の塗工層を設けてなる顔料とバインダーを主成分とする塗工紙であって、前記塗工層は請求項5または6記載のシリカ被覆再生粒子を含むことを特徴とする塗工紙。
<Invention of Claim 8>
A coated silica paper according to claim 5 or 6, wherein the coated paper is mainly composed of a pigment and a binder in which one or a plurality of coating layers are provided on at least one surface of the paper, and the coating layer is the silica coating regeneration. Coated paper characterized by containing particles.

本発明によれば、脱墨フロスを利用して実用的かつ高品質の再生粒子又は再生粒子凝集体のシリカ被覆再生粒子を提供することができる。特に本発明の製造方法によって製造された再生粒子又は再生粒子凝集体のシリカ被覆再生粒子は、嵩高く白色度、吸油度、不透明度が高いので内添用填料又は塗工用顔料として有用であり、これを用いたシリカ被覆再生粒子内添紙又は塗工紙は通常のシリカを用いたものと殆ど変らない特性を有している。   According to the present invention, practical and high-quality regenerated particles or regenerated particle aggregated silica-coated regenerated particles can be provided using deinking floss. In particular, the silica-coated regenerated particles of regenerated particles or regenerated particle aggregates produced by the production method of the present invention are useful as an internal filler or coating pigment because they are bulky and have high whiteness, oil absorption, and opacity. The silica-coated regenerated particle-incorporated paper or coated paper using this has characteristics that are hardly different from those using ordinary silica.

次に、本発明の実施の形態を説明する。
まず、脱墨フロスを主原料とする再生粒子又は再生粒子凝集体の原料と焼成方法について説明する。本発明のシリカ被覆再生粒子の製造方法において用いられる脱墨フロスを主原料とする再生粒子又は再生粒子凝集体は、古紙から脱墨処理を行い古紙パルプを製造する脱墨処理工程における、脱墨処理工程で発生する脱墨フロスを主原料とし、脱水工程、乾燥工程、焼成工程を経て得られた再生粒子又は再生粒子凝集体を利用することができる。
特に古紙のリサイクル工程で排出される脱墨フロスが、製紙原料由来の材料からなり、鉄分やその他重金属等の不純物の混入が少ないため好適である。これら脱墨フロスには、無機物として炭酸カルシウム、カオリン、タルク、シリカ、二酸化チタン等が含有される。
Next, an embodiment of the present invention will be described.
First, the raw material of the regenerated particles or the regenerated particle aggregates using deinking floss as the main raw material and the firing method will be described. The regenerated particles or regenerated particle aggregates mainly composed of deinked floss used in the method for producing silica-coated regenerated particles of the present invention are deinked in a deinking process for deinking from waste paper to produce waste paper pulp. A deinked floss generated in the treatment process is used as a main raw material, and regenerated particles or regenerated particle aggregates obtained through a dehydration process, a drying process, and a firing process can be used.
Deinking floss discharged in the recycling process of waste paper is particularly suitable because it is made of a material derived from papermaking raw materials and contains less impurities such as iron and other heavy metals. These deinking froths contain calcium carbonate, kaolin, talc, silica, titanium dioxide and the like as inorganic substances.

〔原料〕
古紙パルプ製造工程では、安定した品質の古紙パルプを連続的に生産する目的から、使用する古紙の選定、選別を行い、一定品質の古紙を使用する。
そのため、古紙パルプ製造工程に持ち込まれる無機物の種類やその比率、量が基本的に一定になる。しかも、再生粒子又は再生粒子凝集体の製造方法において未燃物の変動要因となるビニルやフィルムなどのプラスチック類が古紙中に含まれていた場合においても、これらの異物は脱墨フロスを得る脱墨工程に至る前段階で除去することができる。従って、脱墨フロスは、工場排水工程や製紙原料調整工程等、他の工程で発生するスラッジと比べ、極めて安定した品質の再生粒子又は再生粒子凝集体を製造するための原料となる。
本発明で云う脱墨フロスとは、古紙パルプを製造する古紙処理工程において、主に、古紙に付着したインクを取り除く脱墨工程で、パルプ繊維から分離されるものをいう。
〔material〕
In the used paper pulp manufacturing process, for the purpose of continuously producing used paper pulp with stable quality, used paper is selected and selected and used with a certain quality.
For this reason, the types, ratios, and amounts of inorganic substances brought into the used paper pulp manufacturing process are basically constant. In addition, even when plastics such as vinyl and film, which cause fluctuations in unburned materials in the method for producing regenerated particles or regenerated particle aggregates, are contained in the waste paper, these foreign substances are removed from the deinked floss. It can be removed before the ink process. Accordingly, the deinking floss is a raw material for producing regenerated particles or regenerated particle aggregates of extremely stable quality as compared with sludge generated in other processes such as a factory drainage process and a papermaking raw material adjustment process.
The deinking floss referred to in the present invention refers to what is separated from the pulp fiber in the deinking process for removing ink adhering to the used paper in the used paper processing process for producing the used paper pulp.

〔脱水工程〕
脱墨フロスの更なる脱水は、公知の脱水手段を適宜に使用できる。本形態における一例では、脱墨フロスは、脱水手段たる例えばロータリースクリーンによって、脱墨フロスから水を分離して脱水する。ロータリースクリーンにおいて、水分95〜98%に脱水した脱墨フロスは、好適には例えばスクリュープレスに送り、更に40%〜70%に脱水することができる。
以上のように、脱墨フロスの脱水を多段工程で行い急激な脱水を避けると、無機物の流出が抑制でき脱墨フロスのフロックが硬くなりすぎるおそれがない。脱水処理においては、脱墨フロスを凝集させる凝集剤等の脱水効率を向上させる助剤を添加しても良いが、凝集剤には、鉄分を含まないものを使用することが好ましい。鉄分が含有されると、鉄分の酸化により再生粒子又は再生粒子凝集体の白色度を下げる問題を引き起こす。
脱墨フロスの脱水工程は、本発明における再生粒子又は再生粒子凝集体製造工程に隣接することが、生産効率の面で好ましいが、予め古紙パルプ製造工程に隣接して設備を設け、脱水を行った物を搬送することも可能である。
[Dehydration process]
For further dehydration of the deinking floss, known dehydration means can be used as appropriate. In one example of the present embodiment, the deinking floss is dehydrated by separating water from the deinking floss by a rotary screen serving as a dehydrating means. In the rotary screen, the deinking floss dehydrated to a moisture content of 95 to 98% is preferably sent to, for example, a screw press and further dehydrated to 40% to 70%.
As described above, if the deinking floss is dehydrated in a multi-stage process and abrupt dehydration is avoided, the outflow of the inorganic substance can be suppressed and there is no possibility that the deinking floss floc becomes too hard. In the dehydration treatment, an auxiliary agent for improving the dehydration efficiency such as an aggregating agent for aggregating the deinking floss may be added, but it is preferable to use an aggregating agent that does not contain iron. When iron content is contained, the oxidation of iron causes a problem of lowering the whiteness of the regenerated particles or regenerated particle aggregates.
The deinking froth dewatering step is preferably adjacent to the regenerated particle or regenerated particle aggregate manufacturing step in the present invention from the viewpoint of production efficiency, but it is preliminarily provided with a facility adjacent to the waste paper pulp manufacturing step to perform dewatering. It is also possible to transport the waste.

〔乾燥工程〕
脱墨フロスを脱水して得た脱水物は、トラックやベルトコンベア等の搬送手段によって定量供給機16まで搬送し、この定量供給機16から乾燥手段17に供給する。
この乾燥手段は、脱水物が供給される乾燥容器と、この乾燥容器の底部に備わり供給された脱水物をかきあげる一対のロールと、この一対のロール相互間から上方に熱風を吹き上げる熱風吹上手段と、から主になる。また、熱風吹上手段は、乾燥容器の底部に給送流路56が接続され、この給送流路を通して、乾燥容器内に熱風が吹き込まれる構成となっている。
すなわち、本乾燥手段は、脱水物を、一対のロールという有形的な手段によって、強くかつ大まかにほぐし、これに加えて熱風という無形的な手段によって、弱くかつ精細にほぐすことにより、大きい・小さい、硬い・柔らかい等さまざまな性質を有する脱水物の水分率の制御と粒揃えを安定的に行うことができる。
特に、乾燥容器内に供給する脱水物を、水分率40〜70質量%に脱水している場合は、熱風の温度を、100〜200℃にするのが好ましく、120〜180℃にするのがより好ましく、130〜170℃にするのが特に好ましい。脱水物の水分率が40〜60質量%の場合は、100℃の熱風でも十分に乾燥することができる。他方、熱風の温度は200℃以下とすることが好ましい。熱風の温度が200℃を超える場合は、大きい・小さい、硬い・柔らかい等さまざまな性質を有する脱水物の粒揃えが進行するよりも早く乾燥が進むため、粒子表面と内部の水分率の差を少なく均一にすることが困難になる。
以上の脱水物の乾燥は、焼成工程前の乾燥物の水分率が2〜20質量%となるように乾燥するのが好ましく、乾燥物の水分率が3〜15質量%となるように乾燥するのがより好ましく、乾燥物の水分率が3〜10質量%となるように乾燥するのが特に好ましい。脱水物を、水分率が2質量%未満の範囲まで乾燥すると、後行する焼成において、過焼する問題が生じる。他方、脱水物を、水分率が20質量%を超える範囲で乾燥すると、後行する焼成を確実に行うことが困難になる。
乾燥物の粒揃えは、粒子径355〜2000μmのものが70質量%以上となるように調整するのが好ましく、粒子径355〜2000μmのものが75質量%以上となるように調整するのがより好ましく、粒子径355〜2000μmのものが80質量%以上となるように調整するのが特に好ましい。
また、乾燥物を、粒子径355μm〜2000μm以上のものが70質量%以上となるように製造すると、つまり小径な粒子の乾燥物を除去すると、部分的な過焼が防止され、焼成が均一になる。従って、得られる再生粒子又は再生粒子凝集体の品質を均一にするという観点における実用化可能性に、有益である。更に、本形態のように、分級を乾燥後とすると、小径な粒子の乾燥物を確実に除去することができ、また、処理効率も向上する。
[Drying process]
The dehydrated product obtained by dehydrating the deinking floss is transported to the constant supply unit 16 by transporting means such as a truck or a belt conveyor, and is supplied from the constant supply unit 16 to the drying unit 17.
The drying means includes a drying container to which a dehydrated product is supplied, a pair of rolls for scoring the supplied dehydrated material provided at the bottom of the drying container, and a hot air blowing means for blowing hot air upward between the pair of rolls. From, become the main. Further, the hot air blowing means is configured such that a feeding flow path 56 is connected to the bottom of the drying container, and hot air is blown into the drying container through the feeding flow path.
In other words, the drying means is large and small by loosening the dehydrated product strongly and roughly by a tangible means such as a pair of rolls, and in addition weakly and finely by an intangible means such as hot air. The moisture content of the dehydrated product having various properties, such as hard and soft, can be controlled and the grain size can be stably controlled.
In particular, when the dehydrate to be supplied into the drying container is dehydrated to a moisture content of 40 to 70% by mass, the temperature of the hot air is preferably 100 to 200 ° C, and preferably 120 to 180 ° C. More preferred is 130 to 170 ° C. When the moisture content of the dehydrated product is 40 to 60% by mass, it can be sufficiently dried even with hot air at 100 ° C. On the other hand, the temperature of the hot air is preferably 200 ° C. or lower. When the temperature of the hot air exceeds 200 ° C, the drying proceeds faster than the particle alignment of dehydrated materials with various properties such as large, small, hard and soft, so the difference in moisture content between the particle surface and the inside It becomes difficult to make it small and uniform.
The above dehydrated product is preferably dried so that the moisture content of the dried product before the firing step is 2 to 20% by mass, and is dried so that the moisture content of the dried product is 3 to 15% by mass. It is more preferable to dry the dried product so that the moisture content is 3 to 10% by mass. When the dehydrated product is dried to a range where the moisture content is less than 2% by mass, there is a problem of over-burning in subsequent baking. On the other hand, if the dehydrated product is dried in a range where the moisture content exceeds 20% by mass, it is difficult to reliably perform subsequent firing.
The particle size of the dried product is preferably adjusted so that the particle size of 355 to 2000 μm is 70% by mass or more, more preferably adjusted so that the particle size of 355 to 2000 μm is 75% by mass or more. It is particularly preferable to adjust the particle size of 355 to 2000 μm so that it is 80% by mass or more.
Further, when the dried product is manufactured so that the particle size of 355 μm to 2000 μm or more is 70% by mass or more, that is, when the dried product of small particles is removed, partial over-burning is prevented and firing is uniform. Become. Therefore, it is useful for practical application in terms of making the quality of the obtained regenerated particles or regenerated particle aggregates uniform. Furthermore, when the classification is performed after drying as in this embodiment, the dried product of small-diameter particles can be surely removed, and the processing efficiency is improved.

〔焼成工程〕
サイクロン内を底部まで落下した乾燥物は、移送流路を通して、かつこの移送流路の途中に備わる排風ファンで勢いを増して、サイクロン式の第1焼成段階を構成する燃焼炉に送られる。
この焼成炉では、乾燥物を、旋回落下させることで粒子の微細化を抑制し、また、この過程で、焼成し未燃分を調整する。
本焼成炉での焼成は、製紙用として有用に利用できるレベルの白色度を有するシリカ被覆再生粒子を得るために、その再生粒子又は再生粒子凝集体の焼成における酸素濃度としては0.05%以上、好ましくは0.05〜20%に、さらに好ましくは0.15〜20%、特に好ましくは5〜15%に調整され、更に、未燃率が5〜30質量%となるように行うのが好ましく、8〜25質量%となるように行うのがより好ましく、10〜30質量%となるように行うのが特に好ましい。
焼成における酸素濃度が0.05%未満では、有機物の焼成が進まず炭化する問題が生じ、炭化により表層部から芯部にいたる燃焼が均等に行われがたくなり、得られる再生粒子又は再生粒子凝集体が灰黒色になる又は、白色度が向上しない問題が生じる。また、酸素濃度が20%以上になると、焼成が進みすぎる過焼により極めて硬い再生粒子又は再生粒子凝集体が生じ、抄紙用語の摩耗や破損を招く問題が生じる恐れがある。
焼成における未燃率についても、5質量%未満では、焼成における粒子表面の過焼が生じ表面が硬くなるとともに、内部の酸素不足が生じ、再生粒子又は再生粒子凝集体の白色度が低下する問題が生じる。他方、焼成を、未燃率が30質量%を超えると、後行する燃焼焼成後においても未燃分が残る問題、更にはこの未燃分が残るのを防止するためとして粒子表面が過焼するまで燃焼焼成してしまい、向き粒子表面が硬くなる問題が生じる。
本焼成炉の形態は、特に限定されないが、サイクロン式であることが好ましい。サイクロン式によると、前述のとおり、粒子の微細化を抑制することで未燃率を均一かつ確実に調節することができる。
焼成温度範囲は、510〜750℃の範囲で行うことが好ましく、第1段階焼成は、焼成炉上端部の温度を510〜750℃とし、燃焼焼成炉25内の温度を化焼成炉上端部の温度より低い500〜700℃とするのが好ましく、焼成炉上端部の温度を550〜730℃とし、燃焼焼成炉内の温度を焼成炉上端部の温度より低い510〜680℃とするのがより好ましく、焼成炉上端部の温度を580〜700℃とし、燃焼焼成炉内の温度を焼成炉上端部の温度より低い550〜660℃とするのが特に好ましい。
脱墨フロス中にシリカが含まれる場合には、シリカがカルシウムおよびアルミニウムと反応し、硬度の高いケイ酸アルミニウムカルシウム等が生成するのを防止するために硬度の高い物質が生成しない条件(例えば、500℃以下)で焼成することもできるが、このような条件では、有機化合物を完全燃焼させることが難しいために、500℃以上が好ましい。
他方、焼成温度が1000℃を超えると脱墨フロス中に含まれる炭酸カルシウム、カオリン、タルク等無機物の分解および焼結が進み、焼成して得られた脱墨フロスを主原料とする再生粒子又は再生粒子凝集体を本発明において所望される粒子径まで粉砕するのに多大のエネルギーや時間を要するので1000℃以下が好ましく、焼成炉上端部の温度を600〜680℃とし、燃焼焼成炉内の温度を焼成炉上端部の温度より低い580〜650℃とすると、製造される製紙用微細粒子が再生填料や顔料として使用するに好適なものとなる。
燃焼焼成炉内の温度を焼成炉上端部の温度より10〜50℃低くすることで、製紙用微細粒子表面の過焼を防止しながら、未燃物を燃焼させることができる。
焼成炉で得た焼成物は、第2焼成段階である燃焼焼成炉に送り、燃焼焼成する。燃焼焼成炉は、ロータリーキルン炉、流動床炉、ストーカー炉、サイクロン炉、半乾留・負圧燃焼式炉等、公知の装置を用いることができるが、本発明においては、温度変化が少ない環境下で過大な物理的圧力を掛けることなく攪拌しながら満遍なく燃焼させることができる方策として、ロータリーキルン炉が好ましい。
[Baking process]
The dried material that has fallen to the bottom in the cyclone is sent to a combustion furnace that constitutes the first firing stage of the cyclone type by increasing the momentum through the transfer flow path and by the exhaust fan provided in the middle of the transfer flow path.
In this firing furnace, the dried product is swirled and dropped to suppress particle refinement, and in this process, firing is performed to adjust the unburned content.
Firing in this calcining furnace is 0.05% or more as the oxygen concentration in firing the regenerated particles or regenerated particle aggregates in order to obtain silica-coated regenerated particles having a level of whiteness that can be usefully used for papermaking. It is preferably adjusted to 0.05 to 20%, more preferably 0.15 to 20%, particularly preferably 5 to 15%, and the unburnt rate is further adjusted to 5 to 30% by mass. It is more preferable to carry out so that it may become 8-25 mass%, and it is especially preferable to carry out so that it may become 10-30 mass%.
When the oxygen concentration in the firing is less than 0.05%, there is a problem that the firing of the organic matter does not proceed and carbonization occurs. There arises a problem that the aggregate becomes grayish black or the whiteness is not improved. On the other hand, when the oxygen concentration is 20% or higher, excessive firing causes excessively hard regenerated particles or regenerated particle aggregates, which may cause a problem of wear and breakage of papermaking terms.
When the unburned rate in firing is less than 5% by mass, over-burning of the particle surface in firing occurs, the surface becomes hard, oxygen deficiency in the interior occurs, and the whiteness of the regenerated particles or regenerated particle aggregates decreases. Occurs. On the other hand, if the unburned rate exceeds 30% by mass, the surface of the particles is overfired in order to prevent the unburned matter from remaining after the subsequent burning and firing. Until it is burned and fired, the problem arises that the surface of the particles becomes hard.
Although the form of this baking furnace is not specifically limited, It is preferable that it is a cyclone type. According to the cyclone type, as described above, the unburned rate can be adjusted uniformly and reliably by suppressing the refinement of the particles.
The firing temperature range is preferably in the range of 510 to 750 ° C., and in the first stage firing, the temperature of the upper end of the firing furnace is set to 510 to 750 ° C., and the temperature in the combustion firing furnace 25 is set to the upper end of the chemical firing furnace. The temperature is preferably 500 to 700 ° C. lower than the temperature, the temperature at the upper end of the firing furnace is set to 550 to 730 ° C., and the temperature in the combustion firing furnace is set to 510 to 680 ° C. lower than the temperature at the upper end of the firing furnace. It is particularly preferable that the temperature at the upper end of the firing furnace is 580 to 700 ° C., and the temperature inside the combustion firing furnace is 550 to 660 ° C. lower than the temperature at the upper end of the firing furnace.
In the case where silica is contained in the deinking floss, a condition in which a substance having a high hardness is not generated in order to prevent the silica from reacting with calcium and aluminum to form a high hardness aluminum calcium silicate (for example, Although it can be fired at 500 ° C. or lower), it is difficult to completely burn the organic compound under such conditions, and therefore 500 ° C. or higher is preferable.
On the other hand, when the firing temperature exceeds 1000 ° C., decomposition and sintering of inorganic substances such as calcium carbonate, kaolin, talc, and the like contained in the deinking floss proceed, and the regenerated particles whose main raw material is the deinking floss obtained by baking or Since much energy and time are required to pulverize the regenerated particle aggregate to the desired particle size in the present invention, the temperature is preferably 1000 ° C. or lower, and the temperature at the upper end of the firing furnace is set to 600 to 680 ° C. When the temperature is 580 to 650 ° C., which is lower than the temperature at the upper end of the firing furnace, the produced fine papermaking particles are suitable for use as a recycled filler or pigment.
By making the temperature in the combustion firing furnace lower by 10 to 50 ° C. than the temperature at the upper end of the firing furnace, the unburned material can be combusted while preventing over-firing of the fine particle surface for papermaking.
The fired product obtained in the firing furnace is sent to the combustion firing furnace, which is the second firing stage, and is fired and fired. As the combustion firing furnace, a known apparatus such as a rotary kiln furnace, a fluidized bed furnace, a stalker furnace, a cyclone furnace, a semi-dry distillation / negative pressure combustion furnace, and the like can be used. A rotary kiln furnace is preferred as a measure that can be uniformly burned while stirring without applying an excessive physical pressure.

〔粉砕工程〕
次に脱墨フロスを主原料とする再生粒子又は再生粒子凝集体の粉砕工程について説明する。本発明では、上述のような焼成によって得られた脱墨フロスを主原料とする再生粒子又は再生粒子凝集体を平均粒子径が0.1〜10μm、好適には0.5〜5μmとなるように粉砕する。かかる粒径に粉砕を行うことにより、後述するシリカ生成反応において、核として作用するカルシウム化合物が少ない脱墨フロスを主原料とする再生粒子又は再生粒子凝集体や、焼成した脱墨フロスを主原料とする再生粒子又は再生粒子凝集体であっても、再生粒子又は再生粒子凝集体を核としてその表面にシリカが生成し、再生粒子又は再生粒子凝集体粒子がほぼ完全にシリカで覆われた粒子を得ることができる。
脱墨フロスを主原料とする再生粒子又は再生粒子凝集体の粉砕方法としては、乾式粉砕機による粉砕、または湿式粉砕機による粉砕が可能であり、乾式粉砕機、湿式粉砕機をそれぞれ、又は片方のみ複数段設けることやこれらを適宜組み合わせて粉砕することができる。脱墨フロスを主原料とする再生粒子又は再生粒子凝集体の平均粒子径が0.1〜10μmとなるように粉砕する。湿式粉砕前に乾式粉砕等の手段によりにより予め小粒子化しておくことが粉砕効率上、より好ましい。
乾式粉砕機としては、例えば、数mmのものを数十μmにまで粉砕する粉砕機としてロールクラッシャ、ローラーミル、スタンプミル、エッジランナ、カッタミル、ロッドミルなどを例示することができる。また数μm以下に粉砕する粉砕機としてローラーミル、ジェットミル、乾式ボールミル、衝撃式粉砕機などが使用できる。
湿式粉砕機としては、湿式ボールミル、振動ミル、攪拌槽型ミル、流通管型ミル、コボールミルなどが使用できる。湿式粉砕では脱墨フロスを主原料とする再生粒子又は再生粒子凝集体に水を加えてスラリー化するが、この際、均一に分散するために分散剤を添加してもよい。分散剤を添加することによって、スラリーを高濃度化しても粘度上昇を防止することができるほか、湿式粉砕による粘度上昇を防止し、粉砕効率やハンドリング性を向上させることができる。
なお、湿式粉砕前後にオープン型振動スクリーン、多管式振動加圧フィルタや機械式加圧フィルタなどのスクリーニング装置を介して難粉砕性の焼結物を除去することもできる。このような分級工程を経ることにより、焼成工程で生成した高硬度粒子や粒径の大きな粒子を取り除くことができる。これによりその後のシリカ被覆処理工程において粒度の揃った白色度の高い低摩耗度のシリカ被覆再生粒子を得ることができる。またシリカ被覆処理前に分級しておくことにより、シリカ被覆後の分級にかかる負荷を低減することができる。
[Crushing process]
Next, the pulverization process of regenerated particles or regenerated particle aggregates using deinking floss as a main raw material will be described. In the present invention, the regenerated particles or regenerated particle aggregates mainly composed of deinked floss obtained by firing as described above have an average particle size of 0.1 to 10 μm, preferably 0.5 to 5 μm. Grind into. By pulverizing to such a particle size, a regenerated particle or a regenerated particle aggregate mainly composed of deinked floss with a small amount of calcium compound acting as a nucleus in a silica formation reaction described later, or a calcined deinked floss as a main material Even when the regenerated particles or regenerated particle aggregates are used, silica is generated on the surface of the regenerated particles or regenerated particle aggregates, and the regenerated particles or regenerated particle aggregate particles are almost completely covered with silica. Can be obtained.
As a method for pulverizing regenerated particles or regenerated particle aggregates mainly composed of deinked floss, pulverization with a dry pulverizer or pulverization with a wet pulverizer is possible, and either a dry pulverizer or a wet pulverizer is used. Only a plurality of stages can be provided, or these can be pulverized in an appropriate combination. It grind | pulverizes so that the average particle diameter of the reproduction | regeneration particle | grains or reproduction | regeneration particle | grain aggregate which uses deinking froth as a main raw material may be set to 0.1-10 micrometers. In view of grinding efficiency, it is more preferable to make the particles smaller by means such as dry grinding before wet grinding.
Examples of the dry pulverizer include a roll crusher, a roller mill, a stamp mill, an edge runner, a cutter mill, a rod mill and the like as pulverizers that pulverize several millimeters to tens of μm. A roller mill, a jet mill, a dry ball mill, an impact pulverizer, or the like can be used as a pulverizer for pulverizing to several μm or less.
As the wet pulverizer, a wet ball mill, a vibration mill, a stirring tank mill, a flow tube mill, a coball mill, or the like can be used. In the wet pulverization, water is added to the regenerated particles or regenerated particle aggregates containing deinked floss as a main raw material to form a slurry. At this time, a dispersant may be added to uniformly disperse the particles. By adding a dispersant, an increase in viscosity can be prevented even when the concentration of the slurry is increased, an increase in viscosity due to wet pulverization can be prevented, and pulverization efficiency and handling properties can be improved.
It should be noted that the hard-to-grind sintered product can be removed through a screening apparatus such as an open-type vibrating screen, a multi-tube vibrating pressure filter, or a mechanical pressure filter before and after wet grinding. By passing through such a classification step, high-hardness particles and particles having a large particle size generated in the firing step can be removed. Thereby, low-abrasion silica-coated regenerated particles with high whiteness and uniform particle size can be obtained in the subsequent silica coating treatment step. Moreover, the load concerning the classification after silica coating can be reduced by classifying before the silica coating treatment.

(シリカ被覆処理工程)
次にシリカ被覆処理工程について説明する。上述のようにして粉砕した脱墨フロスを主原料とする再生粒子又は再生粒子凝集体を珪酸アルカリ水溶液中に混合する。珪酸アルカリ水溶液は特に限定されないが、珪酸ナトリウム溶液(3号水ガラス)が入手に容易である点で望ましい。珪酸アルカリ溶液の濃度は水溶液中の珪酸分(SiO2換算)で3〜10質量%が好適である。10質量%を超えると形成される再生粒子又は再生粒子凝集体とシリカが被覆された複合体は無機微粒子・シリカ複合凝集体ではなく、前記の再生粒子又は再生粒子凝集体がホワイトカーボンで被覆されてしまい、芯部の再生粒子又は再生粒子凝集体の、多孔性、光学的特性が全く発揮されなくなってしまう。また、3質量%未満では複合粒子中のシリカ成分が低下するため、シリカが被覆された再生粒子又は再生粒子凝集体粒子が形成しにくくなってしまう。
再生粒子又は再生粒子凝集体と珪酸アルカリ水溶液、鉱酸の混合工程は、上述のように調製した珪酸アルカリ水溶液に粉砕後の脱墨フロスを主原料とする再生粒子又は再生粒子凝集体を加え、シリカ被覆化の反応を行う。本発明で使用される鉱酸としては希硫酸、希塩酸、希硝酸などの鉱酸の希釈液等が挙げられるが、価格、ハンドリングの点で希硫酸が最も望ましい。さらに、希硫酸を使用する場合の添加時の濃度は、0.2〜4.0モル濃度が望ましい。また、鉱酸添加量が多いほど短時間内にシリカが析出するので、それらの条件に合わせて添加速度を調整することが望ましい。5分以内の添加は、均一な反応系の構成が不十分になる。
本発明で用いる再生粒子には、所定の範囲でカルシウム、アルミニウムを構成元素として含有しており、過度の濃度の鉱酸添加は、再生粒子の変質を生じる恐れがある。
本発明での再生粒子又は再生粒子凝集体のシリカ被覆再生粒子の製造時の反応温度に関しては、60〜100℃の範囲が望ましい。本発明者らの鋭意検討の結果から、本発明に使用する再生粒子又は再生粒子凝集体との反応温度はシリカの生成、結晶成長速度および形成された再生粒子又は再生粒子凝集体のシリカ被覆再生粒子の力学的強度に影響を及ぼす。反応温度が60℃未満ではシリカの生成・成長速度が遅く、形成された再生粒子又は再生粒子凝集体のシリカ被覆再生粒子の被覆性に劣り、被覆の剥落が生じやすく、填料内添紙の抄造時にかかる剪断力で被覆が壊れ易い。100℃を超えると、水系反応であるためオートクレーブを使用しなければならないため反応工程が複雑になってしまう。最適反応温度は60〜80℃である。
また、再生粒子又は再生粒子凝集体のシリカ被覆再生粒子を製造する場合、再生粒子又は再生粒子凝集体を珪酸アルカリ水溶液に添加、分散しスラリーを調製するが、このスラリー濃度は、3〜35質量%が望ましい。スラリー濃度を調整することにより、形成される再生粒子又は再生粒子凝集体のシリカ被覆再生粒子の粒径がコントロールされると同時に再生粒子又は再生粒子凝集体とシリカの組成比率が決まる。
本発明では、再生粒子又は再生粒子凝集体を珪酸アルカリ水溶液に添加・分散しスラリーを調製した後に攪拌しながら、液温を60〜100℃の範囲に保持し鉱酸を添加した混合液を調整し、シリカゾルを生成させ、前記混合液のpHを中性〜弱アルカリ性、好ましくは混合液を8〜11の範囲に調整することにより再生粒子又は再生粒子凝集体のシリカ被覆再生粒子を製造し、スラリーをろ過・水洗するとウェットケーキが得られる。
(Silica coating treatment process)
Next, the silica coating process will be described. The regenerated particles or regenerated particle aggregates mainly composed of the deinked floss crushed as described above are mixed in an aqueous alkali silicate solution. The aqueous alkali silicate solution is not particularly limited, but is desirable in that a sodium silicate solution (No. 3 water glass) is easily available. The concentration of the alkali silicate solution is preferably 3 to 10% by mass in terms of the silicic acid content in the aqueous solution (in terms of SiO 2 ). The composite formed by coating the regenerated particles or the regenerated particle aggregates and silica that exceeds 10% by mass is not inorganic fine particles / silica composite aggregates, but the regenerated particles or regenerated particle aggregates are coated with white carbon. As a result, the porosity and optical properties of the regenerated particles or regenerated particle aggregates in the core are not exhibited at all. Moreover, since the silica component in a composite particle will fall if it is less than 3 mass%, it will become difficult to form the reproduction | regeneration particle | grains or reproduction | regeneration particle | grain aggregate particle | grains by which the silica was coat | covered.
In the mixing step of regenerated particles or regenerated particle aggregates and alkali silicate aqueous solution, mineral acid, regenerated particles or regenerated particle agglomerates mainly using deinked floss after pulverization are added to the alkali silicate aqueous solution prepared as described above, A silica coating reaction is performed. Mineral acids used in the present invention include dilute sulfuric acid, dilute hydrochloric acid, dilute nitric acid and other mineral acids, and dilute sulfuric acid is the most desirable in terms of price and handling. Further, the concentration when adding dilute sulfuric acid is preferably 0.2 to 4.0 molar. Moreover, since silica precipitates in a short time, so that there is much mineral acid addition amount, it is desirable to adjust an addition rate according to those conditions. Addition within 5 minutes makes the structure of the uniform reaction system insufficient.
The regenerated particles used in the present invention contain calcium and aluminum as constituent elements within a predetermined range, and addition of an excessive concentration of mineral acid may cause alteration of the regenerated particles.
Regarding the reaction temperature at the time of producing the silica-coated regenerated particles of regenerated particles or regenerated particle aggregates in the present invention, a range of 60 to 100 ° C. is desirable. As a result of the present inventors' extensive studies, the reaction temperature with the regenerated particles or regenerated particle aggregates used in the present invention is the silica generation, the crystal growth rate, and the regenerated particles or regenerated particle aggregates formed on the silica coating regeneration. Affects the mechanical strength of the particles. When the reaction temperature is less than 60 ° C., the silica formation / growth rate is slow, the coated particles of the regenerated particles or aggregates of the regenerated particles are inferior in the coating properties of the silica-coated regenerated particles, and the coating is easily peeled off. Sometimes the coating is fragile due to shear forces. If it exceeds 100 ° C., the reaction process becomes complicated because an autoclave must be used because it is an aqueous reaction. The optimum reaction temperature is 60-80 ° C.
In addition, when producing silica-coated regenerated particles of regenerated particles or regenerated particle aggregates, the regenerated particles or regenerated particle aggregates are added to and dispersed in an alkali silicate aqueous solution, and the slurry concentration is 3 to 35 mass. % Is desirable. By adjusting the slurry concentration, the particle size of the regenerated particles or regenerated particle aggregates that are coated with silica is controlled, and at the same time, the composition ratio of regenerated particles or regenerated particle aggregates and silica is determined.
In the present invention, regenerated particles or regenerated particle aggregates are added and dispersed in an aqueous alkali silicate solution to prepare a slurry, and while stirring, the liquid temperature is maintained in the range of 60 to 100 ° C. and a mixed liquid to which mineral acid is added is prepared. And producing silica-coated regenerated particles of regenerated particles or regenerated particle aggregates by adjusting the pH of the mixed solution to neutral to weakly alkaline, preferably adjusting the mixed solution to a range of 8 to 11, When the slurry is filtered and washed with water, a wet cake is obtained.

(用途又は適用)
このような方法によって製造した本発明のシリカ被覆再生粒子は、バージンシリカと同程度の白色度を有し、しかも脱墨フロスを主原料とする再生粒子又は再生粒子凝集体であるために硬度が低く、これを製紙用の填料や顔料として使用した場合に抄紙機や塗工機等の摩耗性トラブルを回避できる。また本発明のシリカ被覆再生粒子は、元来ポーラスな再生填料の表面をシリカで被覆したものであることから比表面積が大きく、これを内添用の填料や塗工用顔料として使用すると、白色度と不透明度が高い紙を得ることもできる。
なお、本発明のシリカ被覆再生粒子は製紙用以外に、ゴム、プラスチック、塗料、インキ等のフィラーとして用いることができ、高い白色度と隠蔽性を付与することができる。
更に、シリカ被覆再生粒子の吸油度は、50〜180ml/100gの範囲が好ましい。これは、この範囲のシリカ被覆再生粒子を内添填料として使用する場合、紙層中において、シリカ被覆再生粒子が紙層中に含浸されるインクのビヒクル分や有機溶剤等を吸収し、用紙の印刷不透明度が低下するのを抑制し、また、インクのビヒクル分や有機溶剤等を吸収することで、インク乾燥性やニジミの防止効果が顕著になるためである。一方、吸油度が50ml/100g未満の場合には上記の効果が十分でなく、シリカ被覆再生粒子がインクの吸収・乾燥性を阻害する傾向が生じる場合が有るので注意が必要である。また吸油度が180ml/100gを超えると、インクの吸収性が高いためインクの沈みこみ、所謂発色性が劣る問題が生じる。
次に本発明のシリカ被覆再生粒子の内添用填料や塗工用顔料への適用について説明する。本発明のシリカ被覆再生粒子は、単独で又は通常の炭酸カルシウム、カオリンクレー、タルク、二酸化チタン、サチンホワイト、プラスチックピグメント等の通常の顔料と混合して用いることができる。
填料や塗工用顔料として使用する場合、例えば、上記通常の内添用填料や塗工用顔料の合計量に対して、本発明のシリカ被覆再生粒子を5〜100質量%、好適には10〜100質量%添加して使用することができる。
本発明のシリカ被覆再生粒子を用いてシリカ被覆再生粒子内添紙を製造する方法は、通常の填料内添紙の製造方法と同様であり、例えば本発明のシリカ被覆再生粒子と上記比率でほかの填料と混合したスラリーをパルプ原料スラリーに添加し、さらに必要に応じて紙力増強剤、サイズ剤、歩留り向上剤等の添加剤を加えた紙料とし、これを抄紙することにより得られる。パルプ原料に対する填料添加率は、1〜50質量%、好適には3〜30質量%とする。
紙料スラリーに添加する添加剤としては公知のものを用いることができ、例えば紙力増強剤としては澱粉類、植物性ガム、水性セルロース誘導体、ポリアクリルアミド等が、サイズ剤としてはロジン、澱粉、CMC(カルボキシルメチルセルロース)、ポリビニルアルコール、アルキルケテンダイマー、ASA(アルケニル無水コハク酸)、中性ロジン等が、また歩留り向上剤としてポリアクリルアミドおよび共重合体、第4級アンモニウム塩等が挙げられる。さらに必要に応じて染料、顔料等の色料を添加してもよい。
これら添加剤を添加、混合し紙料を公知の抄紙機で抄造することによりシリカ被覆再生粒子内添紙を製造することができる。坪量は特に限定されないが、通常10〜300g/m2程度とする。
さらに、本発明のシリカ被覆再生粒子を用いて塗工紙を製造する方法は、通常の塗工紙の製造方法と同様であり、例えば本発明のシリカ被覆再生粒子を前記比率でほかの顔料と混合し、分散剤を添加して得たスラリーを接着剤や他の添加剤を混合して塗料を調整し、これを中質紙、上質紙等の紙材上に塗工することにより得られる。ただし、塗工用顔料として使用する場合には塗工機における作業性、欠陥の防止を目的に平均粒子径を0.5〜5μm好ましくは1〜2μmに調整する必要がある。調整方法としては、1)シリカを被覆させる前の再生粒子又は再生粒子凝集体の粒子径を2μm以下に調整する。2)シリカ被覆再生粒子を粉砕機好ましくは湿式粉砕機で処理し、粒子径を調整する。以上の方法で粒子径を0.5〜5μmに調整することができる。
接着剤としては、例えばスチレン−ブタジエン共重合体、メチルメタクリレート−ブタジエン共重合体等の共役ジエン系共重合体ラテックス、アクリル酸エステルおよび/またはメタクリル酸エステルの重合体または共重合体等のアクリル系重合体ラテックス、エチレン−酢酸ビニル共重合体等のビニル系重合体ラテックス、又はこれらの各種重合体ラテックスをカルボキシル基等の官能基含有単量体で変性したアルカリ部分溶解性又はアルカリ非溶解性の重合体ラテックスが使用される。
さらに上記のような合成接着剤のほかに、例えば陽性化澱粉、酸化澱粉、酸素変性澱粉、熱化学変性澱粉、エーテル化澱粉、エステル化澱粉、冷水可溶澱粉等の澱粉類、カルボキシメチルセルロース、ヒドロキシメチルセルロース等のセルロース類、ポリビニルアルコール、オレフィン−無水マレイン酸樹脂などの水溶性合成接着剤等を適宜選択して併用できる。必要に応じて、顔料スラリーや塗料中には消泡剤、耐水化剤、流動性変性剤、着色剤、蛍光増白剤等の各種添加剤が添加される。また分散剤としてはケイ酸ソーダ、ヘキサメタリン酸ソーダ、ポリアクリル酸ソーダ等が挙げられる。
塗工は、塗工量に応じて、エアーナイフ、ブレード、ゲートロール、ロッド、バー、キャスト、グラビア、カーテン等の公知の塗工機(コーター)で行うことができる。塗工量は片面当たり乾燥重量で通常数〜数10g/m2程度である。
このようにして得られた乾燥後の塗工紙は、一般に印刷適性(例えば、高平滑や高光沢)を付与する目的で、カレンダに通紙して加圧仕上げが施される。この場合のカレンダ装置としては、例えばスーパーカレンダ、グロスカレンダ、ソフトコンパクトカレンダなどの金属またはドラムと弾性ロールの組み合わせになる各種カレンダが、オンマシン又はオフマシン仕様で適宜使用できる。
シリカ被覆再生粒子を用いて塗工紙を製造する場合においても、シリカ被覆再生粒子の吸油度は、50〜180ml/100gの範囲が好ましい。これは、接着剤と混合して使用する場合、その塗工液中においてシリカ被覆再生粒子が接着剤を吸収し、その真密度が低下するため沈降が抑制され、更にシリカ被覆再生粒子が塗工層中で偏った沈降を呈さなくなり、塗工層中で均一に分散される効果が顕著に現れるため非常に好ましい。しかし、吸油度が50mL/100g以下の場合には上記の効果が不十分であり、シリカ被覆再生粒子の真比重と塗工液の比重との差によりシリカ被覆再生粒子が沈降して塗工層中に不均一な分散状態になるので好ましくない。また、吸油度が180mL/100gを越える場合では、接着剤中に混合して塗料として使用すると、それらを塗工した後、乾燥中にシリカ被覆再生粒子が吸収した多量の塗料を放出して収縮するため、塗膜がひび割れを起こしたり、塗工層表面の平滑性が失われたりする不都合が生じるので好ましくない。
(Use or application)
The silica-coated regenerated particles of the present invention produced by such a method have a degree of whiteness similar to that of virgin silica and are regenerated particles or regenerated particle aggregates mainly composed of deinked floss, so that the hardness is high. Low, and when this is used as a filler or pigment for papermaking, it is possible to avoid wear problems such as in a paper machine or a coating machine. In addition, the silica-coated regenerated particles of the present invention have a large specific surface area because the surface of the porous regenerated filler is originally coated with silica, and when this is used as an internal filler or a coating pigment, Paper with a high degree of opacity can also be obtained.
The silica-coated regenerated particles of the present invention can be used as fillers for rubber, plastics, paints, inks, etc. in addition to papermaking, and can impart high whiteness and concealing properties.
Further, the oil absorption of the silica-coated regenerated particles is preferably in the range of 50 to 180 ml / 100 g. This is because when silica-coated regenerated particles in this range are used as an internal filler, the silica-coated regenerated particles in the paper layer absorb the ink content of the ink impregnated in the paper layer, the organic solvent, etc. This is because a decrease in printing opacity is suppressed, and the effect of preventing ink drying and blurring becomes conspicuous by absorbing the ink and the organic solvent. On the other hand, when the oil absorption is less than 50 ml / 100 g, the above effect is not sufficient, and care should be taken because the silica-coated regenerated particles may tend to inhibit the ink absorption and drying properties. On the other hand, if the oil absorption exceeds 180 ml / 100 g, the ink absorbability is high, so that the ink sinks and the so-called color developability is inferior.
Next, the application of the silica-coated regenerated particles of the present invention to an internally added filler or coating pigment will be described. The silica-coated regenerated particles of the present invention can be used alone or mixed with ordinary pigments such as ordinary calcium carbonate, kaolin clay, talc, titanium dioxide, satin white, and plastic pigment.
When used as a filler or a coating pigment, for example, the silica-coated regenerated particles of the present invention are 5 to 100% by mass, preferably 10%, based on the total amount of the above-mentioned usual internal filler and coating pigment. -100 mass% can be added and used.
The method for producing a silica-coated regenerated particle-containing paper using the silica-coated regenerated particles of the present invention is the same as the method for producing a normal filler-containing paper. It is obtained by adding the slurry mixed with the above filler to the pulp raw material slurry, and further adding paper additives such as a paper strength enhancer, a sizing agent, and a yield improver as necessary, and making paper. The filler addition rate with respect to the pulp raw material is 1 to 50% by mass, preferably 3 to 30% by mass.
As additives to be added to the paper slurry, known ones can be used. For example, starch, vegetable gum, aqueous cellulose derivative, polyacrylamide and the like are used as a paper strength enhancer, and rosin, starch, CMC (carboxyl methylcellulose), polyvinyl alcohol, alkyl ketene dimer, ASA (alkenyl succinic anhydride), neutral rosin and the like, and polyacrylamide and copolymers, quaternary ammonium salts and the like as the yield improver. Furthermore, you may add colorants, such as dye and a pigment, as needed.
By adding and mixing these additives and making a paper stock with a known paper machine, a silica-coated regenerated particle-containing paper can be produced. The basis weight is not particularly limited, but is usually about 10 to 300 g / m 2 .
Furthermore, the method for producing a coated paper using the silica-coated regenerated particles of the present invention is the same as the method for producing a normal coated paper. For example, the silica-coated regenerated particles of the present invention are mixed with other pigments in the above ratio. The slurry obtained by mixing and adding the dispersant is obtained by mixing the adhesive and other additives to prepare a coating material, and coating it on a paper material such as medium-quality paper or high-quality paper . However, when used as a coating pigment, it is necessary to adjust the average particle size to 0.5 to 5 μm, preferably 1 to 2 μm for the purpose of workability and prevention of defects in the coating machine. As an adjustment method, 1) The particle diameter of the regenerated particles or the regenerated particle aggregates before being coated with silica is adjusted to 2 μm or less. 2) The silica-coated regenerated particles are treated with a pulverizer, preferably a wet pulverizer, to adjust the particle size. The particle diameter can be adjusted to 0.5 to 5 μm by the above method.
As the adhesive, for example, conjugated diene copolymer latex such as styrene-butadiene copolymer and methyl methacrylate-butadiene copolymer, acrylic polymer such as acrylate ester and / or methacrylate ester polymer or copolymer, etc. Polymer latex, vinyl polymer latex such as ethylene-vinyl acetate copolymer, or various polymer latexes modified with a functional group-containing monomer such as a carboxyl group, partially soluble in alkali or insoluble in alkali A polymer latex is used.
In addition to the above synthetic adhesives, for example, starches such as positive starch, oxidized starch, oxygen-modified starch, thermochemically modified starch, etherified starch, esterified starch, cold water soluble starch, carboxymethylcellulose, hydroxy Celluloses such as methyl cellulose, water-soluble synthetic adhesives such as polyvinyl alcohol and olefin-maleic anhydride resin can be appropriately selected and used in combination. If necessary, various additives such as an antifoaming agent, a water-proofing agent, a fluidity modifier, a colorant, and a fluorescent brightening agent are added to the pigment slurry and paint. Examples of the dispersant include sodium silicate, sodium hexametaphosphate, sodium polyacrylate, and the like.
Coating can be performed with a known coating machine (coater) such as an air knife, blade, gate roll, rod, bar, cast, gravure, curtain, etc., depending on the coating amount. The coating amount is usually about several to several tens g / m 2 in terms of dry weight per side.
The coated paper obtained after drying is generally subjected to pressure finishing by passing it through a calendar for the purpose of imparting printability (for example, high smoothness and high gloss). As the calendar device in this case, for example, various calenders such as a super calender, a gloss calender, a soft compact calender, or a combination of a drum and an elastic roll can be appropriately used in an on-machine or off-machine specification.
Even in the case of producing coated paper using the silica-coated regenerated particles, the oil absorption of the silica-coated regenerated particles is preferably in the range of 50 to 180 ml / 100 g. This is because when mixed with an adhesive, the silica-coated regenerated particles absorb the adhesive in the coating solution, and the true density is reduced, so that settling is suppressed. This is very preferable because it does not exhibit uneven sedimentation in the layer, and the effect of being uniformly dispersed in the coating layer appears significantly. However, when the oil absorption is 50 mL / 100 g or less, the above effect is insufficient, and the silica-coated regenerated particles settle out due to the difference between the true specific gravity of the silica-coated regenerated particles and the specific gravity of the coating liquid. It is not preferable because it is in a non-uniform dispersion state. Also, when the oil absorption exceeds 180 mL / 100 g, when mixed in an adhesive and used as a paint, after coating them, a large amount of paint absorbed by the silica-coated regenerated particles is released during drying and shrinks. For this reason, it is not preferable because the coating film is cracked or the smoothness of the coating layer surface is lost.

以下、本発明の実施例を説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例および比較例に示す部または%は、特に断らない限り、それぞれ有効成分の質量部または質量%を示す。実施例および比較例において行った測定、分析、評価は次のとおりである。   Examples of the present invention will be described below, but the present invention is not limited to these examples. In addition, unless otherwise indicated, the part or% shown in an Example and a comparative example shows the mass part or mass% of an active ingredient, respectively. The measurement, analysis, and evaluation performed in Examples and Comparative Examples are as follows.

[再生粒子又は再生粒子凝集体のシリカ被覆再生粒子の平均粒子径の測定]
レーザー回折粒度分布測定装置〔マイクロトラック/日機装社〕を使用し、50%体積平均粒子径を測定した。測定試料の調製は、0.1%ヘキサメタ燐酸ソーダ水溶液に、再生粒子又は再生粒子凝集体のシリカ被覆再生粒子を添加し、超音波で1分間分散した。
[Measurement of average particle diameter of regenerated particles or regenerated particle aggregates coated silica particles]
A 50% volume average particle size was measured using a laser diffraction particle size distribution analyzer (Microtrack / Nikkiso Co., Ltd.). Preparation of a measurement sample was performed by adding regenerated particles or regenerated particle aggregated silica-coated regenerated particles to a 0.1% sodium hexametaphosphate aqueous solution and dispersing with ultrasonic waves for 1 minute.

[再生粒子又は再生粒子凝集体のシリカ被覆再生粒子の成分分析]
蛍光X線分析装置(RIGAKU SYSTEM3080E2)により成分分析を行った。
[Component analysis of regenerated particles or regenerated particle agglomerates of silica-coated regenerated particles]
Component analysis was performed with a fluorescent X-ray analyzer (RIGAKU SYSTEM3080E2).

[脱墨フロスを主原料とする再生粒子又は再生粒子凝集体へのシリカ被覆状態の確認]
走査型電子顕微鏡(SEM)写真、再生粒子又は再生粒子凝集体のシリカ被覆再生粒子のエネルギー分散型X線分光器(EDS)による元素分析から脱墨フロスを主原料とする再生粒子又は再生粒子凝集体をシリカが被覆しているかを碓認した。
被覆しているものを○、被覆していないものを×として示した。
[Confirmation of silica coating on regenerated particles or regenerated particle aggregates with deinked floss as the main raw material]
From the elemental analysis of silica-coated regenerated particles of scanning electron microscope (SEM), regenerated particles or regenerated particle aggregates by energy dispersive X-ray spectrometer (EDS) It was confirmed whether the aggregate was covered with silica.
What was covered was shown as ◯, and what was not covered as x.

[再生粒子又は再生粒子凝集体のシリカ被覆再生粒子の白色度測定]
乾燥再生粒子又は再生粒子凝集体のシリカ被覆再生粒子約5.0gを乳鉢で粗い粒子がなくなるまで粉砕したのち、粉体を白色度測定用ガラスセルに詰め、白色度を色差計(TC−8600A/東京電色社)で測定した。
[Measurement of whiteness of silica-coated regenerated particles of regenerated particles or regenerated particle aggregates]
After pulverizing about 5.0 g of silica-coated regenerated particles of dried regenerated particles or regenerated particle aggregates in a mortar until there are no coarse particles, the powder is packed in a glass cell for measuring whiteness, and the whiteness is measured with a color difference meter (TC-8600A). / Tokyo Denshoku).

[再生粒子又は再生粒子凝集体のシリカ被覆再生粒子含有紙の製造]
再生粒子又は再生粒子凝集体のシリカ被覆再生粒子をコーレスミキサーでスラリー化し、固形分濃度10%のスラリーを調製した。
抄紙条件:NBKP(フリーネス=CSF 520ml)10部、LBKP(フリーネス=CSF 480ml)90部を配合したパルプスラリーに、前記スラリーを固形分で15部、硫酸バンドを0.5部、カチオン化澱粉0.7部、中性ロジンサイズ剤1.0部、歩留向上剤0.1部をそれぞれ添加し、固形分濃度0.9%の紙料を調製した。この紙料を手抄き抄紙機でパルプシートを作成し、乾燥後、ラボスーパーカレンダーに通紙して、米坪が64g/m2の上質紙を得た。
得られた上質紙の評価結果を表2に示す。
[Production of Recycled Particles or Recycled Particle Aggregate-Silica Coated Recycled Particle-Containing Paper]
The silica-coated regenerated particles of regenerated particles or regenerated particle aggregates were slurried with a Coreless mixer to prepare a slurry with a solid content concentration of 10%.
Papermaking conditions: pulp slurry containing 10 parts of NBKP (freeness = CSF 520 ml) and 90 parts of LBKP (freeness = CSF 480 ml), 15 parts of the slurry in solid content, 0.5 part of sulfuric acid band, 0 parts of cationized starch 0.7 parts, 1.0 part of a neutral rosin sizing agent, and 0.1 part of a yield improver were added to prepare a paper material having a solid concentration of 0.9%. The paper stock was hand-made and a pulp sheet was prepared with a paper machine. After drying, the pulp sheet was passed through a lab super calendar to obtain a high-quality paper having a weight of 64 g / m 2 .
Table 2 shows the evaluation results of the quality paper obtained.

[塗工紙の製造]
再生粒子又は再生粒子凝集体のシリカ被覆再生粒子にそれぞれ分散剤(アロンA−6028/東亜合成化学工業)を顔料に対し固形分対比で1.5%でコーレスミキサーでスラリー化し、固形分50%のスラリーを調製した。
塗工条件:表に示す組成の塗被液を調製し、これを坪量64g/m2の上質原紙の片面に乾燥量12g/m2となるように片面ずつブレードコーターで塗工、乾燥、さらにスーパーカレンダ仕上げして両面塗工紙を得た。
得られた塗工紙の評価結果とブレード塗工適性評価結果を表3に示す。
なお、塗被液に用いた材料は、カオリン(HF−90:ヒューバー社)、炭酸カルシウム(ハイドロカーブ#90:オミヤ社)、澱粉(スターコート:日本食品加工社)、ラテックス(PA4098:日本A&L社)、分散剤(A−6028:東亜合成化学工業社)である。
[Manufacture of coated paper]
The silica-coated regenerated particles of regenerated particles or regenerated particle aggregates are each slurried with a Coreless mixer at a solid content ratio of 1.5% with respect to the pigment (Aron A-6028 / Toa Gosei Kagaku Kogyo Co., Ltd.). A slurry was prepared.
Coating conditions: the coated liquid having the composition shown in Table were prepared, which coating on one side by a blade coater to give a dry weight 12 g / m 2 on one surface of woodfree base paper having a basis weight of 64 g / m 2, dried, Furthermore, super-calender finishing was performed to obtain a double-sided coated paper.
Table 3 shows the evaluation results of the obtained coated paper and the blade coating suitability evaluation results.
The materials used for the coating solution are kaolin (HF-90: Huber), calcium carbonate (Hydrocurve # 90: Omiya), starch (star coat: Nippon Food Processing), latex (PA4098: Japan A & L). Company), dispersant (A-6028: Toa Gosei Chemical Co., Ltd.).

[再生粒子又は再生粒子凝集体のシリカ被覆再生粒子含有紙および塗工紙の金属摩耗性]
得られた再生粒子又は再生粒子凝集体のシリカ被覆再生粒子含有紙および塗工紙について、紙加工時の金属刃摩耗の目安となる以下の試験を行った。すなわち、シリカ被覆再生粒子内添紙又は塗工紙を一定角度に固定したステンレス製のカミソリナイフで10m引き裂き、カミソリ刃の顕微鏡拡大観察により摩耗量を測定した。
[Metal Abrasion of Recycled Particles or Recycled Particle Aggregate Silica-Coated Recycled Particle-Containing Paper and Coated Paper]
The obtained regenerated particles or regenerated particle agglomerated silica-coated regenerated particle-containing paper and coated paper were subjected to the following tests that serve as a guide for metal blade wear during paper processing. That is, 10 m was torn with a stainless steel razor knife in which silica-coated regenerated particle-incorporated paper or coated paper was fixed at a fixed angle, and the amount of wear was measured by microscopic observation of a razor blade.

[再生粒子又は再生粒子凝集体のシリカ被覆再生粒子含有紙および塗工紙の紙質]
白色度はJ.TAPPI No.69、不透明度はJ.TAPPI No.70、光沢度はJIS P 8142、密度はJIS P 8118、平滑度はJIS P 8118、透気度JIS P 8117に準じて測定した。
[Paper Quality of Recycled Particles or Recycled Particle Aggregate Silica-Coated Recycled Particle-Containing Paper and Coated Paper]
The degree of whiteness is TAPPI No. 69, the opacity is TAPPI No. 70, gloss was measured according to JIS P 8142, density was measured according to JIS P 8118, smoothness was measured according to JIS P 8118, and air permeability was measured according to JIS P 8117.

[塗工適性]
固形分濃度を60%に調整した塗被液をラボブレードコーターで、紙を使用せずバッキングロール上に10g/m2となるようにブレード角度を調整し、1000m/minで1時間塗工した後のブレードの摩耗度をブレード刃角の変化で評価した。未使用のブレード刃角は45°であり、刃角変化が大きいものほど塗被液のブレード摩耗が大きい。なお、ブレードはスウェーデン鋼製で厚み0.508mmを使用した。
[Coating suitability]
The coating liquid with a solid content adjusted to 60% was applied with a lab blade coater at a blade angle of 10 g / m 2 on a backing roll without using paper, and applied at 1000 m / min for 1 hour. The degree of wear of the subsequent blade was evaluated by the change in blade angle. The blade angle of the unused blade is 45 °, and the blade wear of the coating liquid increases as the blade angle changes greatly. The blade is made of Swedish steel and has a thickness of 0.508 mm.

[再生粒子又は再生粒子凝集体の製造例]
印刷用紙用の抄紙機および塗工機、さらに原料として使用する脱墨パルプ化設備を有する製紙工場の古紙処理工程における脱墨処理工程で排出される脱墨フロスを脱水機により固形分濃度が約50%となるように脱水した。脱水後の脱墨フロスを焼成炉にて1次焼成温度580℃で、酸素濃度が10%で、供給空気が4秒以上滞留する条件で燃焼させて、焼成灰を得た。これを湿式粉砕し、平均粒子径が1.6μmの再生粒子を調製した。再生粒子の白色度は81%であった。成分分析結果を表3に示す。
[Production example of regenerated particles or regenerated particle aggregates]
The deinking froth discharged from the deinking process in the used paper processing process of the paper mill with the papermaking machine and coating machine for printing paper and the deinking pulping equipment used as a raw material is about It dehydrated to 50%. The deinked floss after dehydration was burned in a firing furnace at a primary firing temperature of 580 ° C. under conditions where the oxygen concentration was 10% and the supply air was retained for 4 seconds or longer to obtain calcined ash. This was wet pulverized to prepare regenerated particles having an average particle size of 1.6 μm. The whiteness of the regenerated particles was 81%. Table 3 shows the component analysis results.

[再生粒子又は再生粒子凝集体のシリカ被覆再生粒子の吸油度]
ここで言うところの吸油度はJIS K 5101記載の練り合わせ法によるものである。すなわち105℃〜110℃で2時間乾燥した試料2g〜5gをガラス板に取り、精製アマニ油(酸化4以下のもの)をビュレットから少量ずつ試料の中央に滴下しその都度ヘラで練り合わせる。滴下練り合わせの操作を繰り返し、全体が初めて1本の棒状にまとまったときを終点として、精製アマニ油の滴下量を求め、次の式によって吸油度を算出する。
吸油量=[アマニ油量(ml)×100]/紙料(g)
[Oil absorption of silica-coated regenerated particles of regenerated particles or regenerated particle aggregates]
The oil absorption referred to here is based on the kneading method described in JIS K 5101. That is, 2 g to 5 g of a sample dried at 105 ° C. to 110 ° C. for 2 hours is taken on a glass plate, and refined linseed oil (oxidized 4 or less) is dropped little by little from the burette to the center of the sample and kneaded with a spatula each time. The dripping and kneading operation is repeated, and the amount of refined linseed oil dripped is determined with the end point when the whole is first assembled into a single rod shape, and the oil absorption is calculated by the following equation.
Oil absorption amount = [linseed oil amount (ml) × 100] / paper (g)

[再生粒子又は再生粒子凝集体のシリカ被覆再生粒子の製造例]
再生粒子又は再生粒子凝集体のスラリー(濃度10%)200gに珪酸ナトリウム水溶液60gを添加して、ホモミキサーを使用して回転数3000rpmで20分間、分散処理を行い再生粒子又は再生粒子凝集体と珪酸ナトリウム水溶液の分散スラリーを調製した。次に、このスラリーを攪拌機、温度センサー、還流冷却器の付いた1Lの四口フラスコに入れ、攪拌しながら油浴にて75℃に昇温した。次に容器内のスラリーを75℃に保ちながら、1規定の硫酸150mlを定量ポンプを使用して、滴下速度2.5ml/分で1時間かけて滴下し再生粒子又は再生粒子凝集体のシリカ被覆再生粒子を得た。このときの反応液のpHは8.8であった。さらに、No.2ろ紙を用いてろ過・水洗し再度ろ過することにより、再生粒子又は再生粒子凝集体のシリカ被覆再生粒子のウェットケーキが得られた。レーザー回折粒度分布測定装置〔マイクロトラック/日機装社〕を使用して、50%体積平均粒子径を測定したところ、平均粒径は8.6μmであった。
[Production Example of Recycled Particles or Recycled Particle Aggregate Silica-Coated Recycled Particles]
To 200 g of regenerated particles or regenerated particle aggregate slurry (concentration: 10%), 60 g of an aqueous sodium silicate solution is added, and dispersed using a homomixer at a rotation speed of 3000 rpm for 20 minutes. A dispersion slurry of an aqueous sodium silicate solution was prepared. Next, this slurry was put into a 1 L four-necked flask equipped with a stirrer, a temperature sensor, and a reflux condenser, and heated to 75 ° C. in an oil bath while stirring. Next, while maintaining the slurry in the container at 75 ° C., 150 ml of 1N sulfuric acid was dropped over 1 hour at a dropping rate of 2.5 ml / min using a metering pump, and the regenerated particles or regenerated particle aggregates were coated with silica. Regenerated particles were obtained. The pH of the reaction solution at this time was 8.8. Furthermore, no. Filtration, washing with water using two filter papers, and filtration again, a wet cake of regenerated particles or regenerated particle aggregated silica-coated regenerated particles was obtained. Using a laser diffraction particle size distribution analyzer (Microtrack / Nikkiso Co., Ltd.), the 50% volume average particle size was measured. The average particle size was 8.6 μm.

Figure 2008081390
Figure 2008081390

Figure 2008081390
Figure 2008081390

Figure 2008081390
Figure 2008081390

Claims (8)

脱墨フロスを主原料とし、脱水工程、乾燥工程、焼成工程及び粉砕工程を経て再生粒子を得て、この再生粒子を珪酸アルカリ水溶液中に懸濁するとともに鉱酸を添加し、再生粒子の周囲をシリカで被覆してシリカ被覆再生粒子を得ることを特徴とするシリカ被覆再生粒子の製造方法。   Using deinked floss as the main raw material, regenerated particles are obtained through the dehydration process, drying process, firing process and pulverization process, and the regenerated particles are suspended in an aqueous solution of alkali silicate and added with mineral acid, A method for producing silica-coated regenerated particles, characterized in that silica-coated regenerated particles are obtained by coating with silica. 前記再生粒子と珪酸アルカリ水溶液の液温60〜100℃の混合液に、前記混合液のpHが8.0〜11.0の範囲になるように鉱酸の添加を行う請求項1記載のシリカ被覆再生粒子の製造方法。   The silica according to claim 1, wherein a mineral acid is added to a mixture of the regenerated particles and the alkali silicate aqueous solution at a temperature of 60 to 100 ° C. so that the pH of the mixture is in the range of 8.0 to 11.0. A method for producing coated regenerated particles. 前記再生粒子は、古紙パルプ製造工程の脱墨処理工程において排出される脱墨フロスを主原料に、500〜800℃、0.05%以上の酸素濃度存在下で焼成した脱墨フロスを主原料とする再生粒子を、平均粒子径が0.1〜10μmとなるように湿式粉砕したものである請求項1または2記載のシリカ被覆再生粒子の製造方法。   The regenerated particles are mainly made from deinked floss discharged in the deinking process of the used paper pulp manufacturing process, and deinked floss baked in the presence of an oxygen concentration of 500 to 800 ° C. and 0.05% or more. The method for producing silica-coated regenerated particles according to claim 1 or 2, wherein the regenerated particles are wet pulverized so as to have an average particle size of 0.1 to 10 µm. 前記再生粒子は、カルシウム、ケイ素、アルミニウムを構成成分とする無機粒子のであり、得られるシリカ被覆再生粒子は、その構成成分におけるカルシウム、ケイ素、アルミニウムの割合が、酸化物換算で10〜80:10〜80:5〜29の質量割合で含有する請求項1〜3のいずれか1項記載のシリカ被覆再生粒子の製造方法。   The regenerated particles are inorganic particles containing calcium, silicon and aluminum as constituent components, and the obtained silica-coated regenerated particles have a ratio of calcium, silicon and aluminum in the constituent components of 10 to 80:10 in terms of oxides. The method for producing silica-coated regenerated particles according to any one of claims 1 to 3, which is contained at a mass ratio of -80: 5-29. 脱墨フロスを主原料とし、脱水工程、乾燥工程、焼成工程及び粉砕工程を経て再生粒子を得て、この再生粒子を珪酸アルカリ水溶液中に懸濁するとともに鉱酸を添加し、再生粒子の周囲をシリカで被覆して得られるシリカ被覆再生粒子であって、
得られるシリカ被覆再生粒子は、その構成成分におけるカルシウム、ケイ素、アルミニウムの割合が、酸化物換算で10〜80:10〜80:5〜29の質量割合で含有し、平均粒子径が0.1〜10μmであることを特徴とするシリカ被覆再生粒子。
Using deinked floss as the main raw material, regenerated particles are obtained through the dehydration process, drying process, firing process and pulverization process, and the regenerated particles are suspended in an aqueous solution of alkali silicate and added with mineral acid, Silica-coated regenerated particles obtained by coating with silica,
The obtained silica-coated regenerated particles contain calcium, silicon, and aluminum in the constituent components in a mass ratio of 10 to 80:10 to 80: 5 to 29 in terms of oxide, and the average particle size is 0.1. Silica-coated regenerated particles characterized by having a particle size of 10 μm to 10 μm.
前記シリカ被覆再生粒子は、前記再生粒子を粒子種として、粒子種の表層がシリカで被覆された、不定形な粒状構造を有する構成であり、吸油度が50〜180ml/100g(JIS K 5101)である請求項5記載のシリカ被覆再生粒子。   The silica-coated regenerated particles have a structure having an irregular granular structure in which the regenerated particles are used as particle types and the surface layer of the particle types is coated with silica, and the oil absorption is 50 to 180 ml / 100 g (JIS K 5101). The silica-coated regenerated particles according to claim 5. 請求項5または6記載の前記シリカ被覆再生粒子を内添用填料として用いたことを特徴とするシリカ被覆再生粒子内添紙。   A silica-coated regenerated particle-containing paper, wherein the silica-coated regenerated particles according to claim 5 or 6 are used as a filler for internal addition. 紙の少なくとも一方の面に1層又は複数層の塗工層を設けてなる顔料とバインダーを主成分とする塗工紙であって、前記塗工層は請求項5または6記載の前記シリカ被覆再生粒子を含むことを特徴とする塗工紙。   The coated silica paper according to claim 5 or 6, wherein the coated paper is mainly composed of a pigment and a binder, each of which is provided with one or more coating layers on at least one surface of the paper, wherein the coating layer is a coating paper. Coated paper characterized by containing regenerated particles.
JP2007066206A 2006-08-31 2007-03-15 Method for producing silica-coated regenerated particles, silica-coated regenerated particles, internal paper and coated paper using the same Active JP4087431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066206A JP4087431B2 (en) 2006-08-31 2007-03-15 Method for producing silica-coated regenerated particles, silica-coated regenerated particles, internal paper and coated paper using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006237016 2006-08-31
JP2007066206A JP4087431B2 (en) 2006-08-31 2007-03-15 Method for producing silica-coated regenerated particles, silica-coated regenerated particles, internal paper and coated paper using the same

Publications (2)

Publication Number Publication Date
JP2008081390A true JP2008081390A (en) 2008-04-10
JP4087431B2 JP4087431B2 (en) 2008-05-21

Family

ID=39352600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066206A Active JP4087431B2 (en) 2006-08-31 2007-03-15 Method for producing silica-coated regenerated particles, silica-coated regenerated particles, internal paper and coated paper using the same

Country Status (1)

Country Link
JP (1) JP4087431B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059578A (en) * 2008-09-04 2010-03-18 Daio Paper Corp Coated paper using reclaimed filler
JP2010159522A (en) * 2009-01-09 2010-07-22 Daio Paper Corp Coated paper having excellent printing gloss
JP2011127247A (en) * 2009-12-17 2011-06-30 Daio Paper Corp Coated paper
JP2011207662A (en) * 2010-03-30 2011-10-20 Daio Paper Corp Method for producing silica composite particle, and silica composite particle
JP2011213504A (en) * 2010-03-31 2011-10-27 Daio Paper Corp Process for producing silica composited mixed inorganic particle and silica composited mixed inorganic particle
JP2011251867A (en) * 2010-06-01 2011-12-15 Daio Paper Corp Method for producing silica composite particle
JP2012121752A (en) * 2010-12-07 2012-06-28 Daio Paper Corp Composite particle, composite particle internally added paper, and coated paper
JP2012201565A (en) * 2011-03-25 2012-10-22 Daio Paper Corp Method for producing silica composite reclaimed particle, and silica composite reclaimed particle
JP2013119692A (en) * 2011-12-08 2013-06-17 Daio Paper Corp Manufacturing method for paper and paper obtained by the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5525212B2 (en) * 2009-08-28 2014-06-18 大王製紙株式会社 Method for producing silica composite regenerated particles
JP5525211B2 (en) * 2009-08-28 2014-06-18 大王製紙株式会社 Method for producing silica composite regenerated particles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059578A (en) * 2008-09-04 2010-03-18 Daio Paper Corp Coated paper using reclaimed filler
JP2010159522A (en) * 2009-01-09 2010-07-22 Daio Paper Corp Coated paper having excellent printing gloss
JP4542188B2 (en) * 2009-01-09 2010-09-08 大王製紙株式会社 Coated paper with excellent printing gloss
JP2011127247A (en) * 2009-12-17 2011-06-30 Daio Paper Corp Coated paper
JP2011207662A (en) * 2010-03-30 2011-10-20 Daio Paper Corp Method for producing silica composite particle, and silica composite particle
JP2011213504A (en) * 2010-03-31 2011-10-27 Daio Paper Corp Process for producing silica composited mixed inorganic particle and silica composited mixed inorganic particle
JP2011251867A (en) * 2010-06-01 2011-12-15 Daio Paper Corp Method for producing silica composite particle
JP2012121752A (en) * 2010-12-07 2012-06-28 Daio Paper Corp Composite particle, composite particle internally added paper, and coated paper
JP2012201565A (en) * 2011-03-25 2012-10-22 Daio Paper Corp Method for producing silica composite reclaimed particle, and silica composite reclaimed particle
JP2013119692A (en) * 2011-12-08 2013-06-17 Daio Paper Corp Manufacturing method for paper and paper obtained by the same

Also Published As

Publication number Publication date
JP4087431B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP4087431B2 (en) Method for producing silica-coated regenerated particles, silica-coated regenerated particles, internal paper and coated paper using the same
JP2008156773A (en) Coated paperboard and method for producing the same
JP2004534911A (en) Process for recycling cleaner rejects
JP4239034B2 (en) Manufacturing method of inorganic particles and manufacturing plant thereof
JP2000178024A (en) Precipitated calcium carbonate using sludge from paper industry and its production
JP4607351B2 (en) Light calcium carbonate-coated particles using calcined ash, method for producing the same, and paper using the same
JP2004100088A (en) Method for producing filler from papermaking sludge and paper filled with the same
JP4257550B2 (en) Method for producing white inorganic particles
JP4540660B2 (en) Book paper and manufacturing method thereof
JP4020947B1 (en) Recycled particle agglomerated paper
JP5695875B2 (en) COMPOSITE PARTICLES, COMPOSITE PARTICLE MANUFACTURING METHOD, COMPOSITE PARTICLE ADDITIVE PAPER AND COATING
JP2008231613A (en) Printing paper
JP5346237B2 (en) Cold offset printing paper containing papermaking filler
JP5972641B2 (en) Newspaper
JP5346235B2 (en) Cold offset printing paper containing papermaking filler
JP2010236112A (en) Newsprint paper
JP3907688B1 (en) Recycled particle agglomerated paper containing regenerated particle agglomerates
JP2012188468A (en) Method for producing composite particle, composite particle, composite particle-internally added paper, and coated paper
JP5946672B2 (en) Newspaper
JP2012117177A (en) Newsprint paper
JP4831163B2 (en) Method for producing coated paper
JP5419620B2 (en) Heatset offset printing paper
JP4660907B2 (en) Method for producing pigment coated paper
JP2007146355A (en) Method for producing regenerated particle aggregate-filled paper
JP6259497B2 (en) Newspaper

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4087431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250