JP2008080634A - High-density molding method of waste plastic - Google Patents

High-density molding method of waste plastic Download PDF

Info

Publication number
JP2008080634A
JP2008080634A JP2006262950A JP2006262950A JP2008080634A JP 2008080634 A JP2008080634 A JP 2008080634A JP 2006262950 A JP2006262950 A JP 2006262950A JP 2006262950 A JP2006262950 A JP 2006262950A JP 2008080634 A JP2008080634 A JP 2008080634A
Authority
JP
Japan
Prior art keywords
molding
plastic
waste plastic
lot
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006262950A
Other languages
Japanese (ja)
Other versions
JP4648887B2 (en
Inventor
Takashi Sato
孝志 佐藤
Nobuyuki Kuwabara
信幸 桑原
Yasuhiko Mori
泰彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006262950A priority Critical patent/JP4648887B2/en
Publication of JP2008080634A publication Critical patent/JP2008080634A/en
Application granted granted Critical
Publication of JP4648887B2 publication Critical patent/JP4648887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-density molding method of waste plastic capable of stabilizing an apparent density and suppressing molding defect due to fusion of molded products to each other even when waste plastic having different constituents is used. <P>SOLUTION: In the manufacturing method of a molded product, a lot composed of a plurality of packages of the waste plastic having a thermoplastic resin containing polyethylene and polypropylene is supplied to a molding device 10 as a plastic for molding. The lot has a plurality of kinds and the content of the thermoplastic resin in the waste plastic for each lot is different. The content of the thermoplastic resin in the waste plastic is previously measured for each lot. Two or more lots are selected from the lot, and supplied in a conveying container 21 of a molding device 10 as a plastic for molding so that the content of the thermoplastic resin becomes 40 mass% or more. While exhausting the gas in the conveying container 21 to the outside, the molded product is manufactured by setting the temperature of the plastic for molding to be 180°C or more and 220°C or less in passing through the mold 23 with a heating means. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、コークスの製造、または高炉の原料に使用可能な廃プラスチックの高密度成形方法に関する。 The present invention relates to a method for high-density molding of waste plastic that can be used, for example, in the production of coke or the raw material of a blast furnace.

従来、家庭用または工業用として多種類のプラスチックが使用されているが、最終的にこれらは、一般廃棄物または産業廃棄物(以下、単に廃プラスチックという)として廃棄されていた。これらの廃プラスチックには、例えば、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂等の熱可塑性樹脂、または熱硬化性樹脂が含まれている。このため、廃プラスチックを焼却処理すると、含まれている塩素等が公害の原因となるため、適切に処理してこれらを資源として再利用することが試みられている。
例えば、特許文献1には、ポリエチレンとポリプロピレンの含有比率を規定した廃プラスチックを、100〜140℃の温度範囲で圧縮し成形する技術が開示されている。
また、特許文献2には、見かけ密度が0.7〜1.2kg/リットルの高密度な廃プラスチックの成形物を製造する方法が開示されている。なお、高密度の成形物を得るため、圧縮成形の際の廃プラスチックの加熱温度を160℃超250℃以下(好ましくは220℃以下)とし、加熱の際に廃プラスチックから発生するガスを排気除去している。
Conventionally, many kinds of plastics are used for household use or industrial use, but finally, these were discarded as general waste or industrial waste (hereinafter simply referred to as waste plastic). These waste plastics include, for example, thermoplastic resins such as polystyrene resins, polyvinyl chloride resins, polyolefin resins, and polyester resins, or thermosetting resins. For this reason, when waste plastics are incinerated, contained chlorine and the like cause pollution, and therefore, it has been attempted to treat them appropriately and reuse them as resources.
For example, Patent Document 1 discloses a technique for compressing and molding a waste plastic that defines a content ratio of polyethylene and polypropylene in a temperature range of 100 to 140 ° C.
Patent Document 2 discloses a method for producing a high-density waste plastic molding having an apparent density of 0.7 to 1.2 kg / liter. In order to obtain a high-density molded product, the heating temperature of the waste plastic at the time of compression molding is over 160 ° C. and 250 ° C. or less (preferably 220 ° C. or less), and the gas generated from the waste plastic during the heating is removed by exhaust. is doing.

特開2001−232634号公報JP 2001-232634 A 特開2005−126486号公報JP 2005-126486 A

しかしながら、特許文献1の方法では、廃プラスチックを成形する温度が100〜140℃と低いため、成形物の見かけ密度が0.66kg/リットル程度と低くなる。このため、例えば、得られた成形物をコークス炉で使用する場合、成形物と石炭との接触面積が大きくなって強度が低く品質の悪いコークスができ易くなったり、またコークス炉の容積は決まっているため成形物の占める割合が増えるに伴って製造されるコークス量が減り生産性が悪くなるという問題があった。
また、特許文献1では、成形物の成形性向上のため、ポリエチレンとポリプロピレンの含有比率を規定している。しかし、廃プラスチックは、例えば、自治体あるいは自治体連合体(以下、単に自治体ともいう)毎に回収されたものであるため、廃プラスチックに含まれるポリエチレンとポリプロピレンの量が、全自治体で一定でなく変動し、得られた成形物の成形性を良好にすることが困難な場合があった。
更に、成形装置の長寿命化(成形機の磨耗)の観点では、混入する無機物量を規定しているが、その効果はあるものの成形装置の長寿命化には改善の余地があった。
一方、特許文献2の方法では、高密度な廃プラスチックの成形物を製造することは可能である。しかし、廃プラスチックは、例えば、各自治体で回収されたものであるため、廃プラスチックの成分構成が、全自治体で一定でなく変動し、例えば、見かけ密度の変動または廃プラスチックの成形性の悪化が発生する(変動が著しい場合は、廃プラスチックが成形されずに粉化したり、また溶融が著しく押出し成形後に行う成形物の切断が不可能となったり、更には所定長さに切断された成形物同士が融着する等の不具合が発生する)。
However, in the method of Patent Document 1, since the temperature for molding the waste plastic is as low as 100 to 140 ° C., the apparent density of the molded product is as low as about 0.66 kg / liter. For this reason, for example, when the obtained molded product is used in a coke oven, the contact area between the molded product and coal becomes large, making it easy to produce coke with low strength and poor quality, and the volume of the coke oven is determined. Therefore, there is a problem that the amount of coke produced decreases as the proportion of the molded product increases and the productivity deteriorates.
Moreover, in patent document 1, in order to improve the moldability of a molded product, the content ratio of polyethylene and polypropylene is specified. However, because waste plastics are collected, for example, by local governments or local government associations (hereinafter also simply referred to as local governments), the amount of polyethylene and polypropylene contained in waste plastics is not constant in all municipalities. However, it may be difficult to improve the moldability of the obtained molded product.
Further, from the viewpoint of extending the life of the molding apparatus (wearing of the molding machine), the amount of the inorganic substance to be mixed is specified. However, although there is an effect, there is room for improvement in extending the life of the molding apparatus.
On the other hand, according to the method of Patent Document 2, it is possible to produce a high-density waste plastic molding. However, since waste plastics are collected by local governments, for example, the constituent composition of waste plastics is not constant throughout the local governments. For example, apparent density fluctuations or waste plastic moldability deteriorates. (If the fluctuation is significant, the waste plastic will be pulverized without being molded, or the melting will be significant and it will be impossible to cut the molded product after extrusion molding. Furthermore, the molded product will be cut to a predetermined length. Inconveniences such as mutual fusion occur).

本発明はかかる事情に鑑みてなされたもので、構成成分が異なる廃プラスチックを使用しても、例えば、見かけ密度を安定させ、成形物同士の融着による成形不良を抑制できる廃プラスチックの高密度成形方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and even if waste plastics having different constituent components are used, for example, the density of waste plastics can stabilize the apparent density and suppress molding defects due to fusion between molded products. An object is to provide a forming method.

前記目的に沿う本発明に係る廃プラスチックの高密度成形方法は、ポリエチレンおよびポリプロピレンのいずれか1または2を含む熱可塑性樹脂を有する廃プラスチックが梱包された複数の梱包物からなるロットを、成形用プラスチックとして、該成形用プラスチックを入れる搬送容器と、該搬送容器内の該成形用プラスチックを加熱する加熱手段と、該加熱手段で加熱された該成形用プラスチックを該搬送容器から外部へ押し出すスクリューと、該搬送容器の下流側端部に設けられ該搬送容器内から押し出される前記成形用プラスチックを成形する開口部を備えた金型とを有する成形装置へ供給し、該金型の前記開口部から押し出して成形物を製造する廃プラスチックの成形方法において、
前記ロットは複数種類あって、しかも該ロット毎に前記廃プラスチック中の前記熱可塑性樹脂の含有量が異なっており、該ロット毎に該廃プラスチック中の前記熱可塑性樹脂の含有量を予め測定し、前記ロットの中から2種以上のロットを選択して、該熱可塑性樹脂の含有量を40質量%以上とした前記成形用プラスチックを前記成形装置の前記搬送容器内へ供給し、該搬送容器内のガスを外部へ排気しながら、前記加熱手段によって前記金型通過時の前記成形用プラスチックの温度を180℃以上220℃以下にして、前記成形物を製造する。
The high-density molding method for waste plastic according to the present invention that meets the above-mentioned object is a method for molding a lot consisting of a plurality of packages in which waste plastic having a thermoplastic resin containing either 1 or 2 of polyethylene and polypropylene is packed. As a plastic, a transport container for storing the molding plastic, a heating means for heating the molding plastic in the transport container, and a screw for extruding the molding plastic heated by the heating means from the transport container to the outside And supplying to a molding apparatus having a mold provided with an opening for molding the molding plastic which is provided at the downstream end of the transport container and is extruded from the transport container, and from the opening of the mold In the molding method of waste plastics that are extruded to produce molded products,
There are a plurality of types of lots, and the content of the thermoplastic resin in the waste plastic is different for each lot, and the content of the thermoplastic resin in the waste plastic is measured in advance for each lot. Selecting two or more lots from the lot and supplying the molding plastic having a thermoplastic resin content of 40% by mass or more into the transport container of the molding apparatus, While the gas inside is exhausted to the outside, the temperature of the molding plastic when passing through the mold is set to 180 ° C. or higher and 220 ° C. or lower by the heating means to manufacture the molded product.

本発明に係る廃プラスチックの高密度成形方法において、前記各ロットは、前記廃プラスチックを回収する団体毎に回収したものであり、前記梱包物は、廃棄される前記廃プラスチックを圧縮し梱包したものであることが好ましい。
本発明に係る廃プラスチックの高密度成形方法において、前記スクリューの下流側で前記金型の上流側における前記成形用プラスチックの押出し圧力の変動を0.7MPa以上1.3MPa以下の範囲内とすることが好ましい。
In the high-density molding method for waste plastic according to the present invention, each lot is collected for each group that collects the waste plastic, and the package is a product obtained by compressing and packaging the waste plastic to be discarded. It is preferable that
In the waste plastic high-density molding method according to the present invention, the fluctuation of the extrusion pressure of the molding plastic on the downstream side of the screw and the upstream side of the mold is within a range of 0.7 MPa to 1.3 MPa. Is preferred.

本発明に係る廃プラスチックの高密度成形方法において、前記成形用プラスチックの前記成形装置への供給は、選択した前記ロットの前記梱包物を予め混合装置で混合した後に行うことが好ましい。
本発明に係る廃プラスチックの高密度成形方法において、前記成形用プラスチックの前記成形装置への供給は、選択した前記ロットの前記梱包物を前記成形装置へ供給する搬送手段に混ぜて(例えば、交互に)載置して行うことが好ましい。
In the high-density molding method for waste plastic according to the present invention, it is preferable that the molding plastic is supplied to the molding apparatus after the package of the selected lot is mixed in advance by a mixing apparatus.
In the waste plastic high-density molding method according to the present invention, the molding plastic is supplied to the molding apparatus by mixing the package of the selected lot with a conveying means that supplies the molding apparatus (for example, alternately). It is preferable to carry out mounting.

請求項1〜5記載の廃プラスチックの高密度成形方法は、熱可塑性樹脂の含有量が異なる複数のロットから2種以上のロットを選択し、熱可塑性樹脂の含有量を40質量%以上とした成形用プラスチックにより成形物を製造するので、高密度の成形物を製造するために、従来使用できなかった種類のロットも使用することが可能となり、高密度成形が可能なロットの種類を従来よりも広げることができる。
また、熱可塑性樹脂の含有量が40質量%以上となる成形用プラスチックを成形装置へ供給し、この熱可塑性樹脂が溶け易くなる180℃以上220℃以下に加熱するので、廃プラスチックの高密度成形が可能となり、成形物の成形性も良好にできる。
これにより、例えば、高密度の成形物を安定してコークス工場に供給できる。また、高密度の成形物を安定して使用できるため、コークス強度に与える影響も少なくてすみ、品質が良好なコークスを生産性よく製造でき、高炉操業の支援にも役立つ。
The high density molding method of waste plastics according to claims 1 to 5, wherein two or more lots are selected from a plurality of lots having different thermoplastic resin contents, and the thermoplastic resin content is 40% by mass or more. Since molded products are manufactured with molding plastics, it is possible to use lots of types that could not be used in the past to manufacture high-density molded products. Can also be expanded.
In addition, the molding plastic with a thermoplastic resin content of 40% by mass or more is supplied to a molding apparatus and heated to 180 ° C. or higher and 220 ° C. or lower so that the thermoplastic resin is easily melted. The moldability of the molded product can be improved.
Thereby, for example, a high-density molded product can be stably supplied to a coke factory. In addition, since a high-density molded product can be used stably, it has little influence on coke strength, can produce coke with good quality with high productivity, and is useful for supporting blast furnace operation.

特に、請求項2記載の廃プラスチックの高密度成形方法は、高密度成形するために必要な熱可塑性樹脂を有する廃プラスチックを排出する団体(例えば、自治体)の数を、従来よりも拡大できるので、リサイクル事業における社会的貢献度を、従来よりも更に向上できる。
請求項3記載の廃プラスチックの高密度成形方法は、成形用プラスチックの押出し圧力を設定するので、例えば、成形物同士の過度の融着と成形物の発泡を抑制し、高密度の成形物を歩留まり良く製造できる。
In particular, the high-density molding method for waste plastic according to claim 2 can increase the number of organizations (for example, local governments) that discharge waste plastic having a thermoplastic resin necessary for high-density molding as compared with the conventional method. The social contribution in the recycling business can be further improved than before.
The waste plastic high-density molding method according to claim 3 sets the extrusion pressure of the molding plastic. For example, excessive fusion between the molded products and foaming of the molded products are suppressed, and a high-density molded product is formed. Can be manufactured with good yield.

請求項4記載の廃プラスチックの高密度成形方法は、選択したロットの梱包物中の廃プラスチックを、成形装置へ供給する前に予め混合するので、安定した品質の成形物を製造できる。
請求項5記載の廃プラスチックの高密度成形方法は、選択したロットの梱包物を、搬送手段に混ぜて載置して成形装置へ供給するので、例えば、混合専用の装置を使う必要がなく、梱包物をそのまま成形装置へ供給でき、作業性が良好である。
In the method for high-density molding of waste plastic according to claim 4, since the waste plastic in the package of the selected lot is mixed in advance before being supplied to the molding apparatus, a molded product of stable quality can be produced.
The method for high-density molding of waste plastic according to claim 5, because the package of the selected lot is mixed with the conveying means and placed and supplied to the molding device, for example, there is no need to use a dedicated mixing device, The package can be supplied to the molding apparatus as it is, and the workability is good.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る廃プラスチックの高密度成形方法を適用する廃プラスチックの構成成分ごとの軟化温度の説明図、図2は同廃プラスチック中に含まれる塩化ビニル乾留時のガス発生量を示す説明図、図3は廃プラスチック中に含まれるポリエチレンおよびポリプロピレンの量と成形用プラスチックの見かけ密度との関係を示す説明図、図4、図5は本発明の一実施の形態に係る廃プラスチックの高密度成形方法で使用する廃プラスチックリサイクル設備の説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory view of the softening temperature for each constituent component of waste plastic to which the high density molding method of waste plastic according to one embodiment of the present invention is applied, and FIG. 2 is vinyl chloride contained in the waste plastic. FIG. 3 is an explanatory view showing the amount of gas generated during dry distillation, FIG. 3 is an explanatory view showing the relationship between the amount of polyethylene and polypropylene contained in the waste plastic and the apparent density of the molding plastic, and FIGS. It is explanatory drawing of the waste plastic recycling equipment used with the high-density molding method of the waste plastic which concerns on embodiment.

図1〜図5に示すように、本発明の一実施の形態に係る廃プラスチックの高密度成形方法は、ポリエチレンおよびポリプロピレンのいずれか1または2を含む熱可塑性樹脂を有する廃プラスチックが梱包された複数の梱包物からなるロットを、成形用プラスチックとして成形装置10へ供給し成形物を製造する方法である。なお、前記した熱可塑性樹脂は、軟化温度が180℃以下のものであれば、その全てをポリエチレンおよびポリプロピレンのいずれか1または2で構成しなくてもよく(この場合、熱可塑性樹脂を100質量%として、これに含まれるポリエチレンおよびポリプロピレンのいずれか1または2が70質量%以上)、またポリエチレンおよびポリプロピレンのいずれか1または2で全部を構成(100質量%)してもよい。以下、詳しく説明する。 As shown in FIGS. 1 to 5, the waste plastic high-density molding method according to one embodiment of the present invention is packaged with a waste plastic having a thermoplastic resin containing either 1 or 2 of polyethylene and polypropylene. In this method, a lot made of a plurality of packages is supplied as molding plastic to the molding apparatus 10 to produce a molded product. In addition, as long as the above-mentioned thermoplastic resin has a softening temperature of 180 ° C. or less, it is not necessary to constitute all of it with either 1 or 2 of polyethylene and polypropylene (in this case, 100 mass of the thermoplastic resin). %, Any one or two of polyethylene and polypropylene contained therein may be 70% by mass or more, or any one or two of polyethylene and polypropylene may constitute the whole (100% by mass). This will be described in detail below.

例えば、家庭から排出される廃プラスチックは、トラック等によって廃プラスチックリサイクル設備へ搬送されてくる。
家庭から排出される廃プラスチックは、一般に団体の一例である自治体あるいは自治体連合体(以下、単に自治体ともいう)毎に回収され、中継地(例えば、保管所)を経て、廃プラスチックリサイクル設備に運搬される。この際、廃プラスチックの運搬と保管を容易にするため、回収された廃プラスチックを、例えば、1辺が1m程度の立方体の形状に圧縮し梱包している。これが梱包物である。
For example, waste plastic discharged from a home is conveyed to a waste plastic recycling facility by a truck or the like.
Waste plastic discharged from households is generally collected for each local government or local government association (hereinafter also simply referred to as a local government), which is an example of an organization, and is transported to a waste plastic recycling facility via a transit point (for example, a storage). Is done. At this time, in order to facilitate transportation and storage of the waste plastic, the recovered waste plastic is compressed and packed into a cubic shape having a side of about 1 m, for example. This is the package.

このように、廃プラスチックリサイクル設備には、複数の自治体および複数の自治体連合体から、梱包物が搬入されてくる。この梱包物中に含まれる廃プラスチックは、自治体毎に、例えば、プラスチックの使用状況と廃プラスチックの回収形態が異なっているため、熱可塑性樹脂の含有量が大きく異なる。しかし、同一の自治体の中では、梱包物の熱可塑性樹脂の含有量に変動がありながらも、概ね一定であることを本願発明者らは新たに知見した。
そこで、熱可塑性樹脂の含有量が異なるまとまりを区別するため、熱可塑性樹脂の含有量が近い複数の梱包物をまとめてロットとしている。従って、特定の自治体毎あるいは自治体連合体毎に回収した複数の梱包物を一つのロットとすることが好ましい。
As described above, the waste plastic recycling facility is loaded with packages from a plurality of local governments and a plurality of local government associations. The waste plastic contained in the package is greatly different in the content of the thermoplastic resin because, for example, the state of use of the plastic and the form of collection of the waste plastic are different for each municipality. However, the inventors of the present application have newly found that the content of the thermoplastic resin in the package is substantially constant in the same local government, although the content varies.
Therefore, in order to distinguish the batches having different thermoplastic resin contents, a plurality of packages having similar thermoplastic resin contents are collected as a lot. Therefore, it is preferable that a plurality of packages collected for each specific municipality or each municipality association be made into one lot.

また、本願発明者らは、回収した廃プラスチックから見かけ密度が0.7kg/リットル以上の高密度の成形物を成形するにあたり、成形が安定しないメカニズムの解明に取り組んだ。この安定しない成形とは、例えば、廃プラスチック同士が融着しないこと、また廃プラスチックから発生するガスによる成形装置の腐食により、成形装置の部品交換のために操業休止を余儀なくされること等を意味する。
このメカニズムの解明に際し、本願発明者らは、腐食の原因として腐食性ガスの生成原因に着目した。即ち、塩素含有プラスチックの分解による腐食性ガスの発生影響が出ない(設備が腐食して損耗しない程度の)領域で、かつ成形性が確保できる成形用プラスチックの成形時温度を、180℃以上220℃以下に設定し、その温度で溶けるポリエチレンおよびポリプロピレンのいずれか1または2の熱可塑性樹脂量を、全廃プラスチック量の40質量%以上とすることで、良好な品質の成形物が得られることを発見した。なお、成形時の温度を例えば250℃とすると、成形装置に使用する例えば搬送容器とスクリューは、3ヶ月程度で取替えが必要な程度に顕著に腐食し損耗するが、本実施の形態のように、成形時の温度を前記した温度範囲内に調整することで、長期(例えば、6〜18ヶ月、更にはそれ以上の期間)に渡って取替えが不要となる。
In addition, the inventors of the present application have sought to elucidate the mechanism by which molding is not stable when molding a high-density molded article having an apparent density of 0.7 kg / liter or more from the recovered waste plastic. This unstable molding means, for example, that the waste plastics do not fuse together, and that the molding equipment is corroded by gas generated from the waste plastic, and that the operation of the molding equipment must be suspended for replacement of the molding equipment. To do.
In elucidating this mechanism, the present inventors paid attention to the cause of the generation of corrosive gas as the cause of corrosion. That is, the molding temperature of the molding plastic that can ensure the moldability in an area where the generation of corrosive gas due to the decomposition of the chlorine-containing plastic does not occur (where the equipment is not corroded and worn) is 180 ° C. By setting the amount of thermoplastic resin of either 1 or 2 of polyethylene and polypropylene that melts at that temperature to 40% by mass or more of the total amount of waste plastic, a molded product of good quality can be obtained. discovered. If the temperature during molding is 250 ° C., for example, the conveying container and the screw used in the molding apparatus are significantly corroded and worn to the extent that replacement is required in about three months. By adjusting the temperature at the time of molding within the above-described temperature range, replacement is not required over a long period (for example, a period of 6 to 18 months or even longer).

前記した温度設定の検討結果を図1、図2に示す。なお、図1中のPEはポリエチレン、PPはポリプロピレン、PSはポリスチレン、PETはポリエチレンテレフタレートであり、図1、図2中のPVCはポリ塩化ビニルである。
図1、図2から明らかなように、成形時温度の上限値を220℃としたのは、塩化ビニルの分解が著しく進まない温度であることに起因する。この分解が進むと、腐食性ガスが発生して好ましくない。
一方、成形時温度の下限値を180℃としたのは、成形性確保の面から、成形用プラスチック中のポリエチレンとポリプロピレンが完全に溶け、他の不溶成分を包み込むのに必要な温度であることに起因する。また、成形時温度が180℃未満の場合、ポリプロピレンの溶融が悪く、成形用プラスチックの見かけ密度を、更に高密度である0.85kg/リットル以上に向上できない。
以上のことから、成形用プラスチックの加熱温度を180℃以上220℃以下としたが、望ましくは、下限を190℃、上限を200℃とした。
The examination results of the temperature setting described above are shown in FIGS. 1 is polyethylene, PP is polypropylene, PS is polystyrene, and PET is polyethylene terephthalate. PVC in FIGS. 1 and 2 is polyvinyl chloride.
As apparent from FIGS. 1 and 2, the upper limit of the molding temperature is set to 220 ° C. because it is a temperature at which the decomposition of vinyl chloride does not proceed remarkably. If this decomposition proceeds, corrosive gas is generated, which is not preferable.
On the other hand, the lower limit of the molding temperature is set to 180 ° C., from the viewpoint of ensuring moldability, the temperature required for the polyethylene and polypropylene in the molding plastic to completely melt and to enclose other insoluble components. caused by. On the other hand, when the molding temperature is less than 180 ° C., the polypropylene is poorly melted, and the apparent density of the molding plastic cannot be increased to a higher density of 0.85 kg / liter or more.
From the above, the heating temperature of the molding plastic was set to 180 ° C. or higher and 220 ° C. or lower, but desirably the lower limit was 190 ° C. and the upper limit was 200 ° C.

また、図3から明らかなように、全廃プラスチック中のポリエチレンとポリプロピレン(熱可塑性樹脂)の合計量を、40質量%以上にすることで、成形用プラスチックの見かけ密度を0.85kg/リットル以上に向上させることができる。この図3において、全廃プラスチック中の熱可塑性樹脂の合計量が40質量%の場合、ポリエチレンの含有量は約24質量%であり、ポリプロピレンの含有量は約16質量%である。
なお、全廃プラスチック中の熱可塑性樹脂の含有量の上限値については規定していないが、各自治体から排出される実際の廃プラスチックの構成成分を考慮すれば、例えば、60質量%、更には70質量%程度である。
また、各自治体から排出される実際の廃プラスチックの構成成分を考慮すれば、廃プラスチック中に含まれるポリエチレン量は、例えば、15質量%以上35質量%以下程度であり、ポリプロピレン量は、例えば、10質量%以上25質量%以下程度である。
In addition, as apparent from FIG. 3, by making the total amount of polyethylene and polypropylene (thermoplastic resin) in all waste plastics 40% by mass or more, the apparent density of the molding plastic is 0.85 kg / liter or more. Can be improved. In FIG. 3, when the total amount of the thermoplastic resin in the total waste plastic is 40% by mass, the polyethylene content is about 24% by mass and the polypropylene content is about 16% by mass.
In addition, although the upper limit of the content of the thermoplastic resin in the total waste plastic is not stipulated, considering the actual constituent components of the waste plastic discharged from each local government, for example, 60% by mass, and further 70 It is about mass%.
In addition, considering the actual components of waste plastic discharged from each municipality, the amount of polyethylene contained in the waste plastic is, for example, about 15% by mass to 35% by mass, and the amount of polypropylene is, for example, It is about 10 mass% or more and 25 mass% or less.

しかしながら、廃プラスチック中のポリエチレンとポリプロピレンの合計量が40質量%を超える自治体数は、一部の自治体(3割程度)であり、残りは40質量%未満であることが、調査の結果判明した。
そこで、ポリエチレンとポリプロピレンの含有量が多い自治体と少ない自治体の廃プラスチックを混合することに着目し、結果として7割の自治体が排出する廃プラスチックを高密度成形できることに想到した。即ち、各自治体で収集した廃プラスチックの各構成成分の比率を事前に調査し、高密度成形に適した構成成分の比率(ポリエチレンおよびポリプロピレンのいずれか1または2が40質量%以上)に事前にブレンドして調整することで、高密度成形可能な自治体の範囲を広げ、あわせて高密度成形機、即ち成形装置10の高位安定稼動を維持することができる。
However, as a result of the survey, it was found that the number of municipalities in which the total amount of polyethylene and polypropylene in waste plastic exceeds 40% by mass is part of local governments (about 30%) and the rest is less than 40% by mass. .
Therefore, we focused on mixing waste plastics from municipalities with high and low polyethylene and polypropylene contents, and as a result, we came to the idea that waste plastics emitted by 70% of local governments can be molded at high density. That is, the proportion of each component of waste plastic collected in each local government is investigated in advance, and the proportion of the component suitable for high-density molding (either 1 or 2 of polyethylene and polypropylene is 40% by mass or more) in advance. By blending and adjusting, the range of local governments capable of high-density molding can be expanded, and high-density molding machines, that is, the molding apparatus 10 can be maintained at a high level and stable operation.

そこで、熱可塑性樹脂量の含有量が40質量%以上となるように、自治体毎に回収したロットの中から、2種以上のロットを選択する。この選択は、ロット毎に廃プラスチック中の熱可塑性樹脂の含有量を、溶媒による抽出法で予め測定して行う。
なお、本実施の形態では、例えば、特開平9−24293号公報に記載の方法に準拠して測定した。より具体的には、以下の手順で行っている。
まず、梱包物を30mm四方の篩目を通過するように破砕し、この破砕物から測定用サンプルを数kg採取して、約100gまで縮分する。次に、この縮分したものを、粒径3mm以下に破砕し、105℃で4時間乾燥した後、更に約20gまで縮分する。そして、この縮分したものを凍結させ500μmに粉砕した後、70℃で5時間真空乾燥し、更に1gまで縮分する。このように縮分したものを、特開平9−24293号公報の段落0007〜段落0015に記載する方法で測定した。
Therefore, two or more types of lots are selected from the lots collected for each local government so that the thermoplastic resin content is 40% by mass or more. This selection is performed by previously measuring the content of the thermoplastic resin in the waste plastic for each lot by an extraction method using a solvent.
In the present embodiment, the measurement is performed in accordance with, for example, the method described in JP-A-9-24293. More specifically, the following procedure is used.
First, the package is crushed so as to pass through a 30 mm square sieve, and several kg of a measurement sample is collected from the crushed material and is reduced to about 100 g. Next, this reduced product is crushed to a particle size of 3 mm or less, dried at 105 ° C. for 4 hours, and further reduced to about 20 g. The reduced product is frozen and pulverized to 500 μm, then vacuum dried at 70 ° C. for 5 hours, and further reduced to 1 g. What was reduced in this way was measured by the method described in JP-A-9-24293, paragraphs 0007 to 0015.

ここで、自治体毎に集めたロット中に含まれる廃プラスチックの構成成分を測定した結果を表1に示す。この表1において、PSはポリスチレン、PVCはポリ塩化ビニル、PVDCはポリ塩化ビニリデン、PEはポリエチレン、PPはポリプロピレン、PETはポリエチレンテレフタレートである。また、表1中の低分子化合物とは、樹脂の添加剤(酸化防止剤、可塑剤等)などの低分子有機化合物と推定される。そして、不溶分とは、溶剤分画で使用した有機溶剤に不溶な紙、木、樹脂(熱硬化性樹脂)、無機フィラー等と推定される。なお、表1に記載した各構成成分の合計値は、100質量%に対して±0.1質量%の誤差が生じるが、これは、各構成成分の数値を四捨五入した際の誤差であり問題ない。 Here, Table 1 shows the result of measuring the constituent components of the waste plastic contained in the lot collected for each municipality. In Table 1, PS is polystyrene, PVC is polyvinyl chloride, PVDC is polyvinylidene chloride, PE is polyethylene, PP is polypropylene, and PET is polyethylene terephthalate. The low molecular weight compounds in Table 1 are presumed to be low molecular weight organic compounds such as resin additives (antioxidants, plasticizers, etc.). The insoluble matter is estimated to be paper, wood, resin (thermosetting resin), inorganic filler, etc. insoluble in the organic solvent used in the solvent fractionation. The total value of each component described in Table 1 has an error of ± 0.1% by mass with respect to 100% by mass, but this is an error when rounding the numerical value of each component and is problematic Absent.

Figure 2008080634
Figure 2008080634

表1から、自治体毎に回収されているロットは種類が異なり、しかもロット毎に廃プラスチック中の熱可塑性樹脂の含有量が異なっており、自治体毎にポリエチレンとポリプロピレンの含有量に特徴があることが分かる。これは、例えば、自治体内でのプラスチックの使用状況、自治体毎の廃プラスチックの回収ルール、自治体内での回収した廃プラスチックの処理方法の違いに起因する。
このため、各自治体のポリエチレンおよびポリプロピレン含有量は、各自治体毎に概ね安定していることが知見された。
From Table 1, lots collected by each municipality are of different types, and the content of the thermoplastic resin in the waste plastic varies from lot to lot, and the municipalities are characterized by the contents of polyethylene and polypropylene. I understand. This is due to, for example, differences in the usage status of plastics in local governments, the waste plastic collection rules for each local government, and the processing methods for the collected waste plastic in local governments.
For this reason, it was found that the content of polyethylene and polypropylene in each municipality was generally stable for each municipality.

以上の結果から、熱可塑性樹脂の含有量が40質量%以上になるように選択した2種以上のロットを、成形用プラスチックとして、図4に示す各種装置で事前処理を行った後、図5に示す成形装置10へ供給する。
ここで、熱可塑性樹脂の含有量の調整に際しては、表1に示すように、各自治体のロットの廃プラスチックの構成成分の比率を測定し、調整の際に使用する情報としてデータベース化しておくとよい。なお、熱可塑性樹脂の含有量の測定は、各ロットが入荷する毎に測定してもよいが、その含有量が安定している場合は、入荷する毎に測定する必要はない。
そして、高密度成形に適した原料条件になるよう、現在の在庫状況での組み合わせを考えながら操業する。その条件は、ポリエチレンおよびポリプロピレンのいずれか1または2を含む熱可塑性樹脂の含有量を40質量%以上とし、更に不溶分を15質量%以下とすることが好ましい。
From the above results, two or more types of lots selected so that the content of the thermoplastic resin is 40% by mass or more are pre-processed as molding plastics with various apparatuses shown in FIG. To the molding apparatus 10 shown in FIG.
Here, when adjusting the content of the thermoplastic resin, as shown in Table 1, the ratio of the constituent components of the waste plastic of each local government lot is measured, and a database is prepared as information used in the adjustment. Good. The measurement of the content of the thermoplastic resin may be performed every time each lot arrives. However, when the content is stable, it is not necessary to measure the content every time it is received.
And we will operate while considering the combination in the current stock situation so that the raw material conditions are suitable for high density molding. The conditions are preferably such that the content of the thermoplastic resin containing either 1 or 2 of polyethylene and polypropylene is 40% by mass or more, and the insoluble content is 15% by mass or less.

このように、ロットの組み合わせが決定されたら、図4に示すように、選択されたロットの梱包物を、例えば、フォークリフト11によって図示しない供給コンベア(搬送手段の一例)に順次載置し、この供給コンベアの下流側へ配置された開梱破袋機12へ投入する。これにより、廃プラスチックを包んだビニールが剥ぎ取られ、梱包物内部の廃プラスチックが出てくる。
このように開梱された廃プラスチックは、ベルトコンベア13によって下流側へ搬送されるが、このとき、例えば、目視により明らかに確認できるごみ(例えば、木、紙、または金属)は、人手を介して除去される(手選別)。
When the combination of lots is determined in this way, as shown in FIG. 4, the package of the selected lot is sequentially placed on a supply conveyor (an example of a conveying means) (not shown) by, for example, a forklift 11, It puts into the unpacking bag breaking machine 12 arrange | positioned in the downstream of a supply conveyor. As a result, the vinyl wrapped around the waste plastic is peeled off, and the waste plastic inside the package comes out.
The waste plastic unpacked in this way is conveyed downstream by the belt conveyor 13. At this time, for example, garbage (for example, wood, paper, or metal) that can be clearly confirmed by visual inspection is manually passed. Removed (hand sorting).

ごみが除去された廃プラスチックは、粗破砕機14によって破砕(例えば、150mm以下程度)された後、複数の機械選別機15、16(例えば、風力選別または磁力選別)を介し、更に風力選別を用いたPVC除去装置17にて、不要物が除去される。そして、不要物が除去された廃プラスチックを、二次破砕機18によって更に破砕(例えば、30mm以下程度)した後、図5に示す成形装置10へ供給する。
なお、各ロットの梱包物を供給コンベアに載置するに際しては、熱可塑性樹脂の量が40質量%以上を満足するように、異なる種類のロットの梱包物を混ぜて載置することが好ましい。これにより、成形装置10に供給される成形用プラスチックは、粗破砕機14および二次破砕機18による破砕処理と、機械選別機15、16による選別処理が行われるため、混合専用の装置を用いる必要がなくなる。
The waste plastic from which the dust has been removed is crushed by the coarse crusher 14 (for example, about 150 mm or less), and further subjected to wind sorting through a plurality of machine sorters 15 and 16 (for example, wind sorting or magnetic sorting). Unnecessary substances are removed by the PVC removing device 17 used. Then, the waste plastic from which unnecessary materials have been removed is further crushed (for example, about 30 mm or less) by the secondary crusher 18, and then supplied to the molding apparatus 10 shown in FIG.
In addition, when mounting the package of each lot on a supply conveyor, it is preferable to mix and mount the package of a different kind of lot so that the quantity of thermoplastic resin may satisfy 40 mass% or more. As a result, the molding plastic supplied to the molding apparatus 10 is subjected to a crushing process by the coarse crusher 14 and the secondary crusher 18 and a sorting process by the machine sorters 15 and 16, and therefore a dedicated mixing device is used. There is no need.

ここで、梱包物を混ぜて供給コンベアに載置する場合の具体例について説明する。
例えば、ポリエチレンとポリプロピレン(以下、熱可塑性樹脂という)の含有量が50質量%のロットAと、30質量%のロットBの場合は、ロットAとロットBを1対1の割合で混合することにより、熱可塑性樹脂の量が40質量%となるので、各ロットを構成する梱包物a、bを、a、b、a、b、a、b、a、b、a、bの順序で、供給コンベアに交互に載置する。
また、熱可塑性樹脂の含有量が少ないロットCと、熱可塑性樹脂の含有量が多いロットDを、熱可塑性樹脂の量が40質量%になるように3対7の割合で混合する場合は、c、d、d、c、d、d、c、d、d、dのように、投入過程(各部分)におけるロットCとロットDの混合割合が予め設定した割合(ここでは、3対7)に近づくように、各ロットを構成する梱包物c、dを、供給コンベアに混ぜて載置する。
Here, the specific example in the case of mixing a package and mounting in a supply conveyor is demonstrated.
For example, in the case of lot A containing 50% by mass of polyethylene and polypropylene (hereinafter referred to as thermoplastic resin) and lot B containing 30% by mass, lot A and lot B should be mixed in a ratio of 1: 1. Thus, the amount of the thermoplastic resin becomes 40% by mass, and therefore, the packages a and b constituting each lot are in the order of a, b, a, b, a, b, a, b, a, b. Place alternately on the supply conveyor.
In addition, when mixing lot C having a small thermoplastic resin content and lot D having a large thermoplastic resin content in a ratio of 3 to 7 so that the amount of the thermoplastic resin is 40% by mass, The ratio of the mixture of lot C and lot D in the input process (each part), such as c, d, d, c, d, d, c, d, d, d, is a preset ratio (here, 3 to 7). ), The packages c and d constituting each lot are mixed and placed on the supply conveyor.

このように、各ロットの梱包物を供給コンベアに載置するに際しては、混ぜてに載置することが作業性上好ましいが、梱包物を供給コンベアに混ぜて載置することなく、ロット毎に前記した各種装置で事前処理することもできる。
この場合、二次破砕機18で破砕処理されたロット毎の廃プラスチックを、図5に示す混合装置19へ、熱可塑性樹脂の量が40質量%以上を満足するようにそれぞれ供給し、予め混合した後、コンベア20を介して成形装置10へ供給することもできる。
As described above, when placing the package of each lot on the supply conveyor, it is preferable for mixing to be placed on the supply conveyor, but it is preferable for each lot without mixing and placing the package on the supply conveyor. Preprocessing can also be performed by the various devices described above.
In this case, waste plastic for each lot that has been crushed by the secondary crusher 18 is supplied to the mixing device 19 shown in FIG. 5 so that the amount of the thermoplastic resin satisfies 40% by mass or more, and mixed in advance. After that, it can be supplied to the molding apparatus 10 via the conveyor 20.

成形物を製造する成形装置10は、成形用プラスチックを入れる搬送方向に長い断面矩形状の中空となった搬送容器21と、この搬送容器21内部に配置され、搬送容器21内の成形用プラスチックを搬送容器21から外部へ押し出すスクリュー(図示しない)とを有している。なお、このスクリューは、例えば、回転軸の周囲に螺旋状に羽根が設けられたものを使用でき、2本のスクリューを隙間をあけて平行に配置しているが、1本であってもよい。
搬送容器21の上流側上部には、成形用プラスチックを圧縮しながら搬送容器21内へ送り出すコンパクター22が設けられている。
また、搬送容器21には、搬送容器21内の成形用プラスチックを加熱する加熱手段の一例であるヒータ(図示しない)が設けられており、スクリューによって搬送容器21の上流側から下流側へ送り出される搬送容器21内の成形用プラスチックを加熱できる。
A molding apparatus 10 that manufactures a molded product includes a transport container 21 that is hollow in a rectangular shape with a long cross section in the transport direction in which the molding plastic is placed, and the molding plastic in the transport container 21 that is disposed inside the transport container 21. It has a screw (not shown) that pushes out from the transfer container 21 to the outside. In addition, this screw can use what was provided with the blade | wings helically around the rotating shaft, for example, and although two screws are arrange | positioned in parallel with the clearance gap, it may be one. .
A compactor 22 is provided in the upper part on the upstream side of the transport container 21 to send out the molding plastic into the transport container 21 while compressing it.
Further, the transport container 21 is provided with a heater (not shown) which is an example of a heating means for heating the molding plastic in the transport container 21 and is sent from the upstream side to the downstream side of the transport container 21 by a screw. The molding plastic in the transport container 21 can be heated.

そして、搬送容器21の下流側端部には、断面円形(矩形でも良い)の開口部を備えた金型23が設けられ、ヒータで加熱された成形用プラスチックを、金型23の開口部を介して搬送容器21内から外部へ押し出し棒状に成形している。
なお、搬送容器21の長手方向途中位置には、搬送容器21内のガス(例えば、水蒸気)を外部へ排気する複数(1個でもよい)のベント24、25が設けられている。
これにより、成形用プラスチックを成形装置10のコンパクター22を介して搬送容器21内へ供給し、搬送容器21内のガスをベント24、25を介して外部へ排気しながら、ヒータによって金型23通過時の成形用プラスチックの温度を180℃以上220℃以下にして、成形物を製造する。
The downstream end of the transport container 21 is provided with a mold 23 having an opening having a circular cross section (or a rectangle), and the molding plastic heated by the heater is used as the opening of the mold 23. It is formed in the shape of a bar that is extruded from the inside of the transport container 21 to the outside.
A plurality of (or one) vents 24 and 25 for exhausting gas (for example, water vapor) in the transport container 21 to the outside are provided in the middle of the transport container 21 in the longitudinal direction.
Thus, the molding plastic is supplied into the transport container 21 through the compactor 22 of the molding apparatus 10, and the gas in the transport container 21 is exhausted to the outside through the vents 24 and 25 while passing through the mold 23 by the heater. The temperature of the molding plastic at that time is set to 180 ° C. or higher and 220 ° C. or lower to produce a molded product.

以上の方法により、廃プラスチック同士の融着を促進し、高密度の成形物の製造が可能となるが、例えば、成形物同士の融着が過剰になったり、成形物が発泡するという課題が新たに発生する。
この成形物同士の融着は、溶融物が過度に存在する場合に生じる現象で、成形用プラスチックの押出し圧力が低くなる。なお、本願発明者らの知見では、押出し圧力が設定圧力の−30%(本実施の形態において使用した成形装置10の設定圧力は1MPaであるため、0.7MPa)より低い数値である場合、成形物の製造は可能であるが、融着が顕著となり成形物の歩留まりが低下することが判明した。
By the above method, fusion between waste plastics can be promoted and a high-density molded product can be produced. For example, there is a problem that the fusion between molded products becomes excessive or the molded product foams. Newly occurs.
The fusion between the molded products is a phenomenon that occurs when the melt is excessively present, and the extrusion pressure of the molding plastic is lowered. In addition, in the knowledge of the present inventors, when the extrusion pressure is a numerical value lower than −30% of the set pressure (the set pressure of the molding apparatus 10 used in the present embodiment is 1 MPa, and therefore 0.7 MPa), Although it was possible to produce a molded product, it was found that fusion was remarkable and the yield of the molded product was reduced.

一方、成形物の発泡は、押出し圧力のかかる高圧の搬送容器21内から、圧力が低下する大気へ押出し成形される際に、溶融した廃プラスチック中のガスが、圧力差により顕著な発泡を起こすことにより発生する。なお、この現象は、搬送容器21内の発生ガスをベント24、25を介して排出することで、一定の抑制効果はあるものの、押出し前後の圧力差が大きいと生じる場合がある。
このように、発泡が生じると、成形物内部での空洞の発生が顕著になり、必要とする密度よりも低い密度を備えた成形物の割合が増加する。
なお、本願発明者らの知見では、押出し圧力が設定圧力の+30%以下、即ち1.3MPa以下であれば、発泡は抑制できることが分かっている。
On the other hand, foaming of the molded product causes remarkable foaming of the gas in the molten waste plastic due to the pressure difference when extrusion molding is performed from the inside of the high-pressure transport container 21 where the extrusion pressure is applied to the atmosphere where the pressure decreases. Caused by This phenomenon may occur when the pressure difference between before and after extrusion is large, although there is a certain suppression effect by discharging the generated gas in the transport container 21 through the vents 24 and 25.
Thus, when foaming occurs, the generation of cavities inside the molded product becomes significant, and the proportion of molded products having a density lower than the required density increases.
The inventors' knowledge has shown that foaming can be suppressed when the extrusion pressure is + 30% or less of the set pressure, that is, 1.3 MPa or less.

以上に示したように、圧力制御は有効である。この圧力制御は、例えば、以下に示す(1)〜(4)のいずれか1または2以上を行うことで可能である。
(1)搬送容器へ装入する成形用プラスチックの単位時間あたりの装入量(トン)の調整
(2)スクリューの回転数(成形用プラスチックの搬送速度)の調整
(3)ヒータ温度の調整
(4)廃プラスチック中に含まれる難溶融性のプラスチックの含有率が高い自治体の梱包物割合の調整
ここで、圧力を高める場合には、(1)装入量の上昇、(2)回転数の低下、(3)温度の低下、(4)難溶融性の自治体の梱包物割合の増加、の操業アクションをとればよい。
一方、圧力を低める場合には、(1)装入量の低下、(2)回転数の増加、(3)温度の上昇、(4)難溶融性の自治体の梱包物割合の低下、の操業アクションをとればよい。
As shown above, pressure control is effective. This pressure control is possible, for example, by performing one or more of (1) to (4) shown below.
(1) Adjustment of charging amount (ton) per unit time of molding plastic charged into the transfer container (2) Adjustment of screw rotation speed (conveying speed of molding plastic) (3) Adjustment of heater temperature ( 4) Adjustment of the percentage of packing materials in municipalities with high content of hard-to-melt plastic contained in waste plastic Here, when increasing pressure, (1) increase in charge, (2) rotation speed What is necessary is just to take the operation action of a reduction | decrease, (3) fall of temperature, and (4) increase of the package rate of a hard-to-melt local government.
On the other hand, when lowering the pressure, (1) reduction of charge, (2) increase in rotation speed, (3) increase in temperature, and (4) decrease in the percentage of poorly fusible local government packages. Take action.

次に、本発明の作用効果を確認するために行った実施例について説明する。
図6に、平成17年度に入荷した各自治体毎の梱包物の評価を示す。なお、図6は、梱包物中に含まれる熱可塑性樹脂量が40質量%以上で、そのままの状態で高密度化処理できる自治体をA、そのままの状態では熱可塑性樹脂量が40質量%未満で高密度化できないが、Aと混合することで処理できる自治体をBとし、Aと混合しても処理できない自治体をCとしている(全廃プラスチック量:4万2千トン)。
Next, examples carried out for confirming the effects of the present invention will be described.
Fig. 6 shows the evaluation of the package for each municipality that arrived in FY2005. 6 shows that the amount of the thermoplastic resin contained in the package is 40% by mass or more, and A is a municipality that can be densified as it is, and the amount of the thermoplastic resin is less than 40% by mass as it is. Although the density cannot be increased, the municipality that can be treated by mixing with A is designated as B, and the municipality that cannot be treated even when mixed with A is designated as C (total amount of plastic waste: 42,000 tons).

図6から明らかなように、平成17年度の実績では、入荷した全自治体のうち、31%の自治体(A)の梱包物は単独で高密度化可能であった。また、全自治体のうち、43%の自治体(B)の梱包物はそのままでは高密度化できなかったが、31%の自治体(A)と混合することで高密度化処理が可能となった。
このように、従来は入荷した全自治体のうち3割程度の自治体の梱包物しか高密度化処理できなかったが、本願発明を適用することで、全自治体のうち7割程度の自治体の梱包物を高密度化処理できることを確認できた。
As is clear from FIG. 6, in the 2005 results, 31% of the local government (A) packages among all the local governments in stock were able to increase the density independently. In addition, among all the municipalities, 43% of the municipality (B) packages could not be densified as they were, but by being mixed with 31% of the municipalities (A), the densification processing became possible.
Thus, in the past, only about 30% of the local government packages received could be densified, but by applying the present invention, about 70% of the local government packages It was confirmed that can be densified.

次に、成形用プラスチックの加熱温度の影響について検討した結果を、表2に示す。なお、成形用プラスチックとして、廃プラスチック中のポリエチレン量が24質量%と、ポリプロピレン量が16質量%の熱可塑性樹脂を有するものを使用した。この成形用プラスチックの圧力は、スクリューの下流側で金型の上流側近傍に配置された圧力センサーが、1MPaとなるように調整した。また、表2において、成形用プラスチックの金型前の温度とは、金型の上流側近傍に配置された温度センサーによって測定された温度であり、この温度は成形用プラスチックが金型を通過するときの温度と略同一である。 Next, Table 2 shows the results of studying the influence of the heating temperature of the molding plastic. In addition, what has a thermoplastic resin whose amount of polyethylene in a waste plastic is 24 mass% and whose amount of polypropylene is 16 mass% was used as a plastic for a shaping | molding. The pressure of this molding plastic was adjusted so that the pressure sensor disposed near the upstream side of the mold on the downstream side of the screw would be 1 MPa. In Table 2, the temperature of the molding plastic before the mold is a temperature measured by a temperature sensor disposed in the vicinity of the upstream side of the mold, and this temperature passes through the mold by the molding plastic. It is almost the same as the temperature at the time.

Figure 2008080634
Figure 2008080634

表2から明らかなように、成形用プラスチックの温度が180℃以上240℃以下の範囲で、成形物の見かけ密度は良好(0.7kg/リットル)となっているが、温度を230℃以上とすることで成形装置(特に、搬送容器)の腐食が顕著になった。
以上のことから、成形用プラスチックの温度が180℃以上220℃以下(特に、190℃以上200℃以下)の温度範囲で、成形装置の腐食を抑制しながら、高密度の成形物が得られることを確認できた。
As is clear from Table 2, the apparent density of the molded product is good (0.7 kg / liter) when the temperature of the molding plastic is in the range of 180 ° C. or higher and 240 ° C. or lower, but the temperature is 230 ° C. or higher. As a result, the corrosion of the molding apparatus (particularly the transport container) became prominent.
From the above, a high-density molded article can be obtained while suppressing the corrosion of the molding apparatus in the temperature range of the molding plastic from 180 ° C. to 220 ° C. (particularly from 190 ° C. to 200 ° C.). Was confirmed.

また、成形用プラスチックの押出し圧力の影響について検討した結果を、表3に示す。なお、成形用プラスチックとして、廃プラスチック中のポリエチレン量が24質量%と、ポリプロピレン量が16質量%の熱可塑性樹脂を有するものを使用した。また、成形用プラスチックの温度は、温度センサーの通過時点で195℃に設定した。 Table 3 shows the results of studying the influence of the extrusion pressure of the plastic for molding. In addition, what has a thermoplastic resin whose amount of polyethylene in a waste plastic is 24 mass% and whose amount of polypropylene is 16 mass% was used as a plastic for a shaping | molding. Further, the temperature of the molding plastic was set to 195 ° C. when passing through the temperature sensor.

Figure 2008080634
Figure 2008080634

表3から明らかなように、成形用プラスチックの押出し圧力が0.7MPa以上1.3MPa以下の範囲で、成形物の見かけ密度は良好(0.7kg/リットル)であったが、押出し圧力が0.9MPa以上1.1MPa以下の範囲で、成形物の見かけ密度が更に良好であった。
以上のことから、成形用プラスチックの押出し圧力が0.7MPa以上1.3MPa以下(特に、0.9MPa以上1.1MPa以下)の範囲で、高密度の成形物を得られることを確認できた。
As is apparent from Table 3, when the extrusion pressure of the molding plastic was in the range of 0.7 MPa to 1.3 MPa, the apparent density of the molded product was good (0.7 kg / liter), but the extrusion pressure was 0. The apparent density of the molded product was even better in the range of 0.9 MPa to 1.1 MPa.
From the above, it was confirmed that a high-density molded product can be obtained when the extrusion pressure of the molding plastic is in the range of 0.7 MPa to 1.3 MPa (particularly 0.9 MPa to 1.1 MPa).

以上、本発明を、一実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部または全部を組合せて本発明の廃プラスチックの高密度成形方法を構成する場合も本発明の権利範囲に含まれる。 The present invention has been described above with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is described in the claims. Other embodiments and modifications conceivable within the scope of the above are also included. For example, a case where the waste plastic high-density molding method of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the present invention.

本発明の一実施の形態に係る廃プラスチックの高密度成形方法を適用する廃プラスチックの構成成分ごとの軟化温度の説明図である。It is explanatory drawing of the softening temperature for every component of waste plastic which applies the high-density molding method of waste plastic which concerns on one embodiment of this invention. 同廃プラスチック中に含まれる塩化ビニル乾留時のガス発生量を示す説明図である。It is explanatory drawing which shows the gas generation amount at the time of the vinyl chloride dry distillation contained in the waste plastic. 廃プラスチック中に含まれるポリエチレンおよびポリプロピレンの量と成形用プラスチックの見かけ密度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the quantity of the polyethylene and polypropylene contained in a waste plastic, and the apparent density of the plastic for a shaping | molding. 本発明の一実施の形態に係る廃プラスチックの高密度成形方法で使用する廃プラスチックリサイクル設備の説明図である。It is explanatory drawing of the waste plastic recycling equipment used with the high-density molding method of the waste plastic which concerns on one embodiment of this invention. 本発明の一実施の形態に係る廃プラスチックの高密度成形方法で使用する廃プラスチックリサイクル設備の説明図である。It is explanatory drawing of the waste plastic recycling equipment used with the high-density molding method of the waste plastic which concerns on one embodiment of this invention. 実施例に係る廃プラスチックの高密度成形方法を適用可能な廃プラスチックの量を示す説明図である。It is explanatory drawing which shows the quantity of the waste plastic which can apply the high-density molding method of the waste plastic which concerns on an Example.

符号の説明Explanation of symbols

10:成形装置、11:フォークリフト、12:開梱破袋機、13:ベルトコンベア、14:粗破砕機、15、16:機械選別機、17:PVC除去装置、18:二次破砕機、19:混合装置、20:コンベア、21:搬送容器、22:コンパクター、23:金型、24、25:ベント 10: Molding device, 11: Forklift, 12: Unpacking bag breaker, 13: Belt conveyor, 14: Rough crusher, 15, 16: Machine sorter, 17: PVC removal device, 18: Secondary crusher, 19 : Mixing device, 20: Conveyor, 21: Transport container, 22: Compactor, 23: Mold, 24, 25: Vent

Claims (5)

ポリエチレンおよびポリプロピレンのいずれか1または2を含む熱可塑性樹脂を有する廃プラスチックが梱包された複数の梱包物からなるロットを、成形用プラスチックとして、該成形用プラスチックを入れる搬送容器と、該搬送容器内の該成形用プラスチックを加熱する加熱手段と、該加熱手段で加熱された該成形用プラスチックを該搬送容器から外部へ押し出すスクリューと、該搬送容器の下流側端部に設けられ該搬送容器内から押し出される前記成形用プラスチックを成形する開口部を備えた金型とを有する成形装置へ供給し、該金型の前記開口部から押し出して成形物を製造する廃プラスチックの成形方法において、
前記ロットは複数種類あって、しかも該ロット毎に前記廃プラスチック中の前記熱可塑性樹脂の含有量が異なっており、該ロット毎に該廃プラスチック中の前記熱可塑性樹脂の含有量を予め測定し、前記ロットの中から2種以上のロットを選択して、該熱可塑性樹脂の含有量を40質量%以上とした前記成形用プラスチックを前記成形装置の前記搬送容器内へ供給し、該搬送容器内のガスを外部へ排気しながら、前記加熱手段によって前記金型通過時の前記成形用プラスチックの温度を180℃以上220℃以下にして、前記成形物を製造することを特徴とする廃プラスチックの高密度成形方法。
A lot consisting of a plurality of packing materials in which waste plastics having a thermoplastic resin containing any one or two of polyethylene and polypropylene are packed is used as molding plastic, and a transport container for storing the molding plastic, and the transport container A heating means for heating the molding plastic, a screw for extruding the molding plastic heated by the heating means from the transport container, and a downstream end of the transport container provided from the inside of the transport container. In a molding method of waste plastic that is supplied to a molding apparatus having a mold having an opening for molding the molding plastic to be extruded, and that is extruded from the opening of the mold to produce a molded product.
There are a plurality of types of lots, and the content of the thermoplastic resin in the waste plastic is different for each lot, and the content of the thermoplastic resin in the waste plastic is measured in advance for each lot. Selecting two or more lots from the lot and supplying the molding plastic having a thermoplastic resin content of 40% by mass or more into the transport container of the molding apparatus, The waste plastic is characterized in that the molded product is produced by evacuating the gas inside and setting the temperature of the molding plastic during the passage of the mold to 180 ° C. or higher and 220 ° C. or lower by the heating means. High density molding method.
請求項1記載の廃プラスチックの高密度成形方法において、前記各ロットは、前記廃プラスチックを回収する団体毎に回収したものであり、前記梱包物は、廃棄される前記廃プラスチックを圧縮し梱包したものであることを特徴とする廃プラスチックの高密度成形方法。 2. The high density molding method of waste plastic according to claim 1, wherein each lot is collected for each group that collects the waste plastic, and the package is the compressed waste plastic that has been discarded. A high-density molding method for waste plastics characterized by being a thing. 請求項1および2のいずれか1項に記載の廃プラスチックの高密度成形方法において、前記スクリューの下流側で前記金型の上流側における前記成形用プラスチックの押出し圧力の変動を0.7MPa以上1.3MPa以下の範囲内とすることを特徴とする廃プラスチックの高密度成形方法。 The high density molding method of waste plastics according to any one of claims 1 and 2, wherein a fluctuation of the extrusion pressure of the molding plastic on the downstream side of the screw and the upstream side of the mold is 0.7 MPa or more. A high density molding method of waste plastic, characterized by being within a range of 3 MPa or less. 請求項1〜3のいずれか1項に記載の廃プラスチックの高密度成形方法において、前記成形用プラスチックの前記成形装置への供給は、選択した前記ロットの前記梱包物を予め混合装置で混合した後に行うことを特徴とする廃プラスチックの高密度成形方法。 The high density molding method of waste plastic according to any one of claims 1 to 3, wherein the plastic for molding is supplied to the molding apparatus by previously mixing the package of the selected lot with a mixing apparatus. A high-density molding method for waste plastic, which is performed later. 請求項1〜3のいずれか1項に記載の廃プラスチックの高密度成形方法において、前記成形用プラスチックの前記成形装置への供給は、選択した前記ロットの前記梱包物を前記成形装置へ供給する搬送手段に混ぜて載置して行うことを特徴とする廃プラスチックの高密度成形方法。 The high density molding method of waste plastics according to any one of claims 1 to 3, wherein the molding plastic is supplied to the molding apparatus by supplying the package of the selected lot to the molding apparatus. A high density molding method of waste plastic, which is carried out by mixing with a conveying means.
JP2006262950A 2006-09-27 2006-09-27 High density molding method of waste plastic Active JP4648887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006262950A JP4648887B2 (en) 2006-09-27 2006-09-27 High density molding method of waste plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006262950A JP4648887B2 (en) 2006-09-27 2006-09-27 High density molding method of waste plastic

Publications (2)

Publication Number Publication Date
JP2008080634A true JP2008080634A (en) 2008-04-10
JP4648887B2 JP4648887B2 (en) 2011-03-09

Family

ID=39351974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006262950A Active JP4648887B2 (en) 2006-09-27 2006-09-27 High density molding method of waste plastic

Country Status (1)

Country Link
JP (1) JP4648887B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187406A (en) * 1999-10-20 2001-07-10 Nippon Steel Corp Method for manufacturing coke oven raw material from plastics based domestic waste
JP2001232634A (en) * 1999-12-13 2001-08-28 Nippon Steel Corp Waste plastic particle matter for chemical raw material and method for forming it
JP2001334529A (en) * 2000-05-25 2001-12-04 Nippon Steel Corp Method and apparatus for molding waste plastic granules
JP2003292110A (en) * 2002-04-05 2003-10-15 Mitsubishi Heavy Ind Ltd Pet bottle collecting method and dedicated collecting vehicle
JP2005126486A (en) * 2003-10-21 2005-05-19 Nippon Steel Corp Method for recycling waste plastic and method for molding
JP2006056267A (en) * 2005-10-18 2006-03-02 Nippon Steel Corp Molding process of discarded plastic
JP2006103336A (en) * 1999-12-13 2006-04-20 Nippon Steel Corp Molding process of granulated waste plastic as chemical raw material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187406A (en) * 1999-10-20 2001-07-10 Nippon Steel Corp Method for manufacturing coke oven raw material from plastics based domestic waste
JP2001232634A (en) * 1999-12-13 2001-08-28 Nippon Steel Corp Waste plastic particle matter for chemical raw material and method for forming it
JP2006103336A (en) * 1999-12-13 2006-04-20 Nippon Steel Corp Molding process of granulated waste plastic as chemical raw material
JP2001334529A (en) * 2000-05-25 2001-12-04 Nippon Steel Corp Method and apparatus for molding waste plastic granules
JP2003292110A (en) * 2002-04-05 2003-10-15 Mitsubishi Heavy Ind Ltd Pet bottle collecting method and dedicated collecting vehicle
JP2005126486A (en) * 2003-10-21 2005-05-19 Nippon Steel Corp Method for recycling waste plastic and method for molding
JP2006056267A (en) * 2005-10-18 2006-03-02 Nippon Steel Corp Molding process of discarded plastic

Also Published As

Publication number Publication date
JP4648887B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
Zawadiak et al. Tetra pak recycling–current trends and new developments
US8202918B2 (en) Method and system for processing waste materials
US20080073251A1 (en) System and process for reclaiming and recycling plastic
US20130264734A1 (en) Methods of recycling waste resin products
US20080073232A1 (en) System and method for reclaiming waste from diaper manufacture for the production of medical waste containers
CN112026046A (en) Production device and process for recycling bottle flakes through recycling, granulating and reusing
KR101583305B1 (en) Recycling method of waste synthetic resin
JP3418902B2 (en) Method and equipment for injecting fuel into furnace
CN212312435U (en) Production device for recycling bottle flakes
JP2019084494A (en) Recycling system of waste gypsum board, recycling method, raw material of pellet, production method of pellet and pellet
CN100420559C (en) Method of manufacturing waste granulated plastics, and method for thermal decomposition of plastics
CN108654812A (en) A kind of waste and old refractory material of steel mill recycles processing technology and system
JP4648887B2 (en) High density molding method of waste plastic
CN112549355A (en) Production device and process for recycling and reusing high-quality bottle flakes
Makenji Mechanical methods for recycling waste composites
JP2007290254A (en) Sorting method for recyclable plastics and non-recyclable foreign matter
JP3745619B2 (en) Molding method of waste plastic granulation for chemical raw materials
JP2004183104A (en) Method and device for treating synthetic resins
KR101206068B1 (en) Recycling Method for Plastic Clothes of Waste Electric Line
JP5165271B2 (en) Coking method for metallurgy using waste plastic molding
JP4003939B2 (en) RPF manufacturing method and manufacturing equipment thereof
Tochácek et al. Plastics recycling as a part of circular economy
JP4256730B2 (en) Waste plastic crushing method and conveying method
CN202700622U (en) Automatic loading device for grinding mill
JP2004188695A (en) Method for recycling waste polyolefins and system therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4648887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350