JP2008078514A - Method of manufacturing semiconductor integrated circuit device - Google Patents

Method of manufacturing semiconductor integrated circuit device Download PDF

Info

Publication number
JP2008078514A
JP2008078514A JP2006258175A JP2006258175A JP2008078514A JP 2008078514 A JP2008078514 A JP 2008078514A JP 2006258175 A JP2006258175 A JP 2006258175A JP 2006258175 A JP2006258175 A JP 2006258175A JP 2008078514 A JP2008078514 A JP 2008078514A
Authority
JP
Japan
Prior art keywords
integrated circuit
semiconductor integrated
wiring
manufacturing
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006258175A
Other languages
Japanese (ja)
Inventor
Kazuya Eki
一哉 益
Kenichi Okada
健一 岡田
Hideki Hatakeyama
英樹 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2006258175A priority Critical patent/JP2008078514A/en
Publication of JP2008078514A publication Critical patent/JP2008078514A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor integrated circuit device by which a signal delay in long distance wiring can be reduced by providing a most significant wiring layer without any constraint by an LSI process. <P>SOLUTION: A process of providing a semiconductor integrated circuit substrate comprises: a process of forming on a base substrate 11 for a semiconductor integrated circuit the semiconductor integrated circuit and a wiring layer 12 which doesn't contain any most significant wiring layer for the semiconductor integrated circuit; and a process of forming on a wiring layer of the base substrate 11 for the semiconductor integrated circuit a connection pad 13 connected to the wiring layer. A process of providing a wiring substrate comprises: a process of carrying out on a base substrate 1 for the wiring substrate a plating of a thick film wiring layer 3 used as the most significant wiring layer for the semiconductor integrated circuit; and a process of forming on the thick film wiring layer 3 a bonding bump 6 connected to the thick film wiring layer 3. A face on which the connection pad 13 of the semiconductor integrated circuit substrate is formed is faced to a face on which the bonding bump 6 of the wiring substrate is formed, and the connection pad 13 and the bonding bump 6 are aligned and bonded. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は半導体集積回路装置の製造方法に関し、特に、最上位配線層を厚膜配線で構成する半導体集積回路装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor integrated circuit device, and more particularly to a method for manufacturing a semiconductor integrated circuit device in which an uppermost wiring layer is formed by a thick film wiring.

集積度の高い大規模集積回路装置(LSI)においては、1つの平面上で複雑な配線を行うにはスペースが足りないため、多数の配線層を用いて3次元的に配線を行う多層配線構造が採用されている。多層配線構造では、下位層ほど配線が細く密度が濃いが、上位層にいくほど配線が太く密度が薄くなっている。また、上位層の配線ほど離れたトランジスタ間を接続するのに用いられるため、配線長が長くなっている。高性能で多機能なLSIを1チップに集積するシステムオンチップ(SoC)技術においては、チップサイズが大きくなることから配線長がさらに増加する傾向にある。   In a large-scale integrated circuit device (LSI) with a high degree of integration, there is not enough space to perform complicated wiring on one plane, so a multilayer wiring structure that performs wiring three-dimensionally using a large number of wiring layers Is adopted. In the multilayer wiring structure, the wiring is thinner and denser in the lower layer, but the wiring is thicker and the density is lower in the upper layer. Further, since the upper layer wiring is used to connect transistors that are farther apart, the wiring length is longer. In the system-on-chip (SoC) technology that integrates a high-performance and multifunctional LSI on a single chip, the chip length increases and the wiring length tends to further increase.

LSIの高速化を妨げている原因の一つに信号遅延の問題がある。これまでの信号遅延の問題は、トランジスタのゲートにおけるゲート遅延が支配的であった。しかしながら、半導体集積回路の微細化が進むにつれ、ゲート遅延よりも配線長が長くなることによる長距離配線における信号遅延の影響が支配的になってきている。配線における信号遅延時間は配線抵抗と配線間容量に比例するため、LSIの高速化には、配線の低抵抗化と配線間容量の低減が不可欠である。このため、配線遅延を低減するための新たな多層配線技術の開発が課題となっている(非特許文献1)。   One of the causes that hinders speeding up of LSIs is a problem of signal delay. The conventional signal delay problem has been dominated by the gate delay at the gate of the transistor. However, as miniaturization of semiconductor integrated circuits progresses, the influence of signal delay in long-distance wiring due to the wiring length becoming longer than gate delay has become dominant. Since the signal delay time in the wiring is proportional to the wiring resistance and the inter-wiring capacitance, it is indispensable to reduce the wiring resistance and reduce the inter-wiring capacitance in order to increase the speed of the LSI. For this reason, development of a new multilayer wiring technique for reducing wiring delay has been an issue (Non-Patent Document 1).

特許庁編「平成15年度 特許出願技術動向調査報告書 LSIの多層配線技術」平成16年3月Patent Office edition, “2003 Patent Application Technology Trend Survey Report, LSI Multi-layer Wiring Technology”, March 2004

配線遅延を低減するためには、配線層数を多くし、トータルの配線長を短くして配線抵抗を低減することも考えられるが、配線層数の増加は製造コストの観点から限界があり、現実的な解ではない。また、現状のLSI配線形成プロセスでは配線の膜厚は最大で1〜2μm程度が限界であり、配線の低抵抗化にも限界があった。したがって、今後益々顕在化する長距離配線における信号遅延の影響を低減することが望まれていた。   In order to reduce the wiring delay, it is conceivable to increase the number of wiring layers and shorten the total wiring length to reduce the wiring resistance, but the increase in the number of wiring layers is limited from the viewpoint of manufacturing cost, Not a realistic solution. Further, in the current LSI wiring formation process, the maximum film thickness is about 1 to 2 μm, and there is a limit to reducing the resistance of the wiring. Therefore, it has been desired to reduce the influence of signal delay in long-distance wiring, which will become more apparent in the future.

本発明は、斯かる実情に鑑み、LSIプロセスによる制約のない最上位配線層を提供することで長距離配線における信号遅延を低減可能な半導体集積回路装置の製造方法を提供しようとするものである。   In view of such circumstances, the present invention intends to provide a method of manufacturing a semiconductor integrated circuit device capable of reducing signal delay in long-distance wiring by providing an uppermost wiring layer that is not restricted by an LSI process. .

上述した本発明の目的を達成するために、本発明による半導体集積回路装置の製造方法は、半導体集積回路基板と配線基板とを提供する過程であって、半導体集積回路基板を提供する過程は、半導体集積回路用ベース基板上に、半導体集積回路及び該半導体集積回路用の最上位配線層を含まない配線層を形成する過程と、半導体集積回路用ベース基板の配線層上に、該配線層に接続される接続パッドを形成する過程と、を有し、配線基板を提供する過程は、配線基板用ベース基板上に、半導体集積回路用の最上位配線層となる厚膜配線層をメッキ形成する過程と、厚膜配線層上に、該厚膜配線層に接続される接合バンプを形成する過程と、を有する、半導体集積回路基板と配線基板とを提供する過程と、半導体集積回路基板の接続パッドが形成される面と配線基板の接合バンプが形成される面とを対向させる過程と、接続パッド及び接合バンプを位置合わせして接合する過程と、を具備するものである。   In order to achieve the above-described object of the present invention, a manufacturing method of a semiconductor integrated circuit device according to the present invention is a process of providing a semiconductor integrated circuit substrate and a wiring substrate, and the process of providing a semiconductor integrated circuit substrate includes: A process of forming a semiconductor integrated circuit and a wiring layer not including the uppermost wiring layer for the semiconductor integrated circuit on the base substrate for the semiconductor integrated circuit, and a wiring layer on the wiring layer of the base substrate for the semiconductor integrated circuit. Forming a connection pad to be connected, and providing the wiring substrate includes plating a thick wiring layer serving as a top wiring layer for a semiconductor integrated circuit on the wiring substrate base substrate. Providing a semiconductor integrated circuit substrate and a wiring substrate, and a step of providing a bonding bump connected to the thick film wiring layer on the thick film wiring layer, and connecting the semiconductor integrated circuit substrate Pad shape Those comprising a process of facing the surface on which the bonding bumps of the surface and the wiring substrate is formed, a step of bonding by aligning the connection pads and the bonding bumps, the.

ここで、厚膜配線層をメッキ形成する過程は、配線基板用ベース基板上に第1絶縁層を形成し、該第1絶縁層上に厚膜配線層をメッキ形成する過程であっても良い。   Here, the process of plating the thick film wiring layer may be a process of forming the first insulating layer on the wiring board base substrate and plating the thick film wiring layer on the first insulating layer. .

また、第1絶縁層は、低誘電率絶縁層からなっても良い。   The first insulating layer may be a low dielectric constant insulating layer.

また、第1絶縁層は、膜厚が10μm以上であっても良い。   Further, the first insulating layer may have a thickness of 10 μm or more.

さらに、接合バンプを形成する過程は、厚膜配線層上に第2絶縁層を形成し、該第2絶縁層に開口部をパターンニング形成し、該開口部に接合バンプを形成する過程であっても良い。   Further, the process of forming the bonding bump is a process of forming the second insulating layer on the thick wiring layer, patterning the opening in the second insulating layer, and forming the bonding bump in the opening. May be.

さらにまた、半導体集積回路用ベース基板と配線基板用ベース基板は、同一の材料からなるものであっても良い。   Furthermore, the semiconductor integrated circuit base substrate and the wiring substrate base substrate may be made of the same material.

さらに、接合する過程の後に、アンダーフィルを流入する過程を具備するものであっても良い。   Furthermore, after the process of joining, you may comprise the process of flowing in an underfill.

またさらに、配線基板用ベース基板上に、インダクタ素子を形成する過程を具備するものであっても良い。   Furthermore, a process for forming an inductor element on a wiring board base substrate may be provided.

また、配線基板には、複数の厚膜配線層がメッキ形成されても良い。   In addition, a plurality of thick film wiring layers may be formed on the wiring board by plating.

本発明の半導体集積回路装置の製造方法には、LSIプロセスによる制約のない厚い低抵抗な最上位配線層を提供することで、長距離配線における信号遅延を低減可能であるという利点がある。また、別途用意した基板上に厚膜配線層を形成するだけなので、低コストで製造可能であるという利点もある。さらに、配線基板側にインダクタ素子等の受動素子を形成することも可能であるという利点もある。   The method of manufacturing a semiconductor integrated circuit device according to the present invention has an advantage that signal delay in long-distance wiring can be reduced by providing a thick low-resistance uppermost wiring layer that is not restricted by an LSI process. Further, since the thick film wiring layer is simply formed on a separately prepared substrate, there is an advantage that it can be manufactured at low cost. Further, there is an advantage that a passive element such as an inductor element can be formed on the wiring board side.

以下、本発明を実施するための最良の形態を図示例と共に説明する。図1は、本発明の半導体集積回路装置の配線基板の製造方法を説明するための図であり、図1(a)〜図1(f)は各過程における半導体集積回路装置の配線基板の横断面図である。なお、図1では半導体デバイスを有するLSI基板の製造過程については省略してあるが、本発明は特定のLSI基板の製造方法に限定されるものではなく、一般的なLSI基板の製造方法を適用すれば良い。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a view for explaining a method of manufacturing a wiring board of a semiconductor integrated circuit device according to the present invention. FIGS. 1A to 1F are crossings of the wiring board of the semiconductor integrated circuit device in each process. FIG. Although the manufacturing process of the LSI substrate having the semiconductor device is omitted in FIG. 1, the present invention is not limited to a specific LSI substrate manufacturing method, and a general LSI substrate manufacturing method is applied. Just do it.

まず、図1(a)に示されるように、本発明の半導体集積回路装置の配線基板は、配線基板用ベース基板1上に第1絶縁層2を形成する。配線基板用ベース基板1としては、Si等からなれば良いが、GaAs等からなる化合物半導体からなるものであっても良い。さらに、ガラスやプラスチック等の絶縁体からなるものであっても良い。なお、配線基板用ベース基板1がガラスやプラスチック等の絶縁体からなる場合には、絶縁層の作用が配線基板用ベース基板1に含まれることになるので、物理的な第1絶縁層2は用いなくても良い。   First, as shown in FIG. 1A, in the wiring substrate of the semiconductor integrated circuit device of the present invention, the first insulating layer 2 is formed on the wiring substrate base substrate 1. The wiring board base substrate 1 may be made of Si or the like, but may be made of a compound semiconductor made of GaAs or the like. Further, it may be made of an insulator such as glass or plastic. When the wiring board base substrate 1 is made of an insulator such as glass or plastic, the action of the insulating layer is included in the wiring board base substrate 1, so that the physical first insulating layer 2 is It is not necessary to use it.

第1絶縁層2は、例えばポリイミドやエポキシ、シリコーン樹脂等からなるものであれば良く、その膜厚は例えば10μm〜20μm、好ましくは10μmであれば良い。第1絶縁層2は、回転塗布法や印刷法、ラミネート法等により形成すれば良い。さらに、第1絶縁層2は、低誘電率絶縁層(Low−k絶縁層)からなることが好ましい。   The 1st insulating layer 2 should just consist of polyimide, an epoxy, a silicone resin etc., for example, and the film thickness should just be 10 micrometers-20 micrometers, for example, Preferably it is 10 micrometers. The first insulating layer 2 may be formed by a spin coating method, a printing method, a laminating method, or the like. Furthermore, the first insulating layer 2 is preferably composed of a low dielectric constant insulating layer (Low-k insulating layer).

次に、図1(b)に示されるように、第1絶縁層2の上に半導体集積回路用の最上位配線層となる厚膜配線層3をメッキ形成する。厚膜配線層3は、例えばCu等の低抵抗材料からなるものであり、その膜厚は例えば10μm〜50μmである。厚膜配線層3は、例えば第1絶縁層2の全面にTi,Cr等からなるシード層を形成後、厚膜配線に相当するパターンをフォトリソグラフィ技術によってエッチング開口し、メッキ法により開口にCu等を成膜すれば良い。   Next, as shown in FIG. 1B, a thick film wiring layer 3 serving as the uppermost wiring layer for the semiconductor integrated circuit is formed on the first insulating layer 2 by plating. The thick film wiring layer 3 is made of a low resistance material such as Cu, and has a film thickness of 10 μm to 50 μm, for example. For example, after forming a seed layer made of Ti, Cr or the like on the entire surface of the first insulating layer 2, the thick film wiring layer 3 is opened by etching a pattern corresponding to the thick film wiring by a photolithography technique, and by Cu plating. Etc. may be formed.

このように、本発明による半導体集積回路装置の最上位配線層は、LSI基板とは別の基板上に形成するため、LSIプロセスに制限されることなく、任意の膜厚で配線を形成することが可能となる。また、既存の半導体製造プロセスを用いることが可能であるので、安価に製造可能である。ここで、LSIプロセスでは複数の井桁状の配線により多層配線が形成されるが、本発明によれば、LSIプロセスには拠らないので最上位配線は任意の形状の配線とすることが可能であるため、任意の角度に曲げたり曲線の配線とすることも可能となる。   As described above, since the uppermost wiring layer of the semiconductor integrated circuit device according to the present invention is formed on a substrate different from the LSI substrate, the wiring is formed with an arbitrary film thickness without being limited to the LSI process. Is possible. Further, since an existing semiconductor manufacturing process can be used, it can be manufactured at low cost. Here, in the LSI process, a multilayer wiring is formed by a plurality of grid-like wirings. However, according to the present invention, the uppermost wiring can be an arbitrary shape wiring because it does not depend on the LSI process. For this reason, the wiring can be bent at an arbitrary angle or curved.

さらに、最上位配線層は単層である必要はなく、必要により複数の厚膜配線層が形成されるものであっても構わない。これにより、最上位配線層だけでなく、さらにその下の配線層も含めて厚膜配線化、すなわち低抵抗化を図ることが可能となる。また、配線基板には、厚膜配線だけでなく、インダクタ素子等の受動素子を形成することも可能である。例えば、既存の半導体プロセスを用いて、メアンダ形状やスパイラル形状等のインダクタ素子を配線基板用ベース基板上にパターンニング形成することが可能である。これにより、Q値の高い高性能なインダクタも含まれる半導体集積回路装置が製造可能となる。   Furthermore, the uppermost wiring layer does not have to be a single layer, and a plurality of thick film wiring layers may be formed as necessary. As a result, not only the uppermost wiring layer but also the lower wiring layer can be formed into a thick film wiring, that is, the resistance can be reduced. Moreover, not only thick film wiring but also passive elements such as inductor elements can be formed on the wiring board. For example, it is possible to pattern an inductor element having a meander shape or a spiral shape on a wiring board base substrate using an existing semiconductor process. As a result, a semiconductor integrated circuit device including a high-performance inductor having a high Q value can be manufactured.

次に、図1(c)に示されるように、厚膜配線層3上に第2絶縁層4を形成する。第2絶縁層4は、第1絶縁層と同様、例えばポリイミドやエポキシ、シリコーン樹脂等からなるものであれば良く、その膜厚は例えば10μm〜20μmであれば良い。第2絶縁層4は、第1配線層と同様、回転塗布法や印刷法、ラミネート法等により形成すれば良い。   Next, as shown in FIG. 1C, the second insulating layer 4 is formed on the thick film wiring layer 3. Similarly to the first insulating layer, the second insulating layer 4 may be made of, for example, polyimide, epoxy, silicone resin, or the like, and the film thickness thereof may be, for example, 10 μm to 20 μm. Similar to the first wiring layer, the second insulating layer 4 may be formed by a spin coating method, a printing method, a laminating method, or the like.

そして、図1(d)に示されるように、第2絶縁層4に開口部5が形成される。開口部5は、LSI基板側の半導体集積回路の下層配線と接続される位置に形成される。開口部5には、後述の接合バンプが形成される。開口部5は、例えば第2絶縁層4をフォトリソグラフィ技術によりパターンニングして形成されれば良い。   Then, as shown in FIG. 1 (d), an opening 5 is formed in the second insulating layer 4. The opening 5 is formed at a position connected to the lower layer wiring of the semiconductor integrated circuit on the LSI substrate side. In the opening 5, a bonding bump described later is formed. The opening 5 may be formed, for example, by patterning the second insulating layer 4 by photolithography.

その後、図1(e)に示されるように、開口部5に接合バンプ6が形成される。接合バンプ6は、Au等からなるものであり、例えばボンディング法によるスタッドバンプからなるものである。また、蒸着法やメッキ法、印刷法等により形成しても良い。なお、図示例では第2絶縁層4を設けて開口部5に接合バンプ6を形成したが、本発明はこれに限定されず、厚膜配線層3上に直接接合バンプ6を形成しても良い。   Thereafter, as shown in FIG. 1 (e), bonding bumps 6 are formed in the openings 5. The bonding bump 6 is made of Au or the like, for example, a stud bump formed by a bonding method. Further, it may be formed by vapor deposition, plating, printing, or the like. In the illustrated example, the second insulating layer 4 is provided and the bonding bump 6 is formed in the opening 5. However, the present invention is not limited to this, and the bonding bump 6 may be formed directly on the thick wiring layer 3. good.

一方、半導体集積回路を有するLSI基板10は、図1(f)に示されるように、半導体集積回路用ベース基板11上に半導体集積回路及び半導体集積回路用の最上位配線層を含まない配線層12(多層配線層)からなる。この配線層12上には、配線層に接続される接続パッド13が形成されている。   On the other hand, as shown in FIG. 1F, the LSI substrate 10 having a semiconductor integrated circuit has a wiring layer that does not include the semiconductor integrated circuit and the uppermost wiring layer for the semiconductor integrated circuit on the base substrate 11 for the semiconductor integrated circuit. 12 (multilayer wiring layer). On the wiring layer 12, connection pads 13 connected to the wiring layer are formed.

図1(f)に示されるように、上述した図1(a)〜図1(e)のように形成された配線基板及びLSI基板は、LSI基板の接続パッド13が形成される面と配線基板の接合バンプ6が形成される面とが対向させられる。そして、接続パッド13及び接合バンプ6が位置合わせされて接合される。接合は、例えば、フリップチップボンダを用いて超音波接合されれば良い。これにより、LSI基板の配線層と配線基板の厚膜配線層が電気的に接続される。接合後、LSI基板と配線基板の間にアンダーフィルを流入しても良い。これにより、ヒートサイクル等の熱的応力に対する接続信頼性や衝撃や折り曲げ等の物理的応力に対する接続信頼性の向上が図れる。   As shown in FIG. 1 (f), the wiring board and the LSI substrate formed as shown in FIGS. 1 (a) to 1 (e) are connected to the surface on which the connection pads 13 of the LSI substrate are formed and the wiring. The surface of the substrate on which the bonding bumps 6 are formed is opposed. Then, the connection pad 13 and the bonding bump 6 are aligned and bonded. For example, the ultrasonic bonding may be performed using a flip chip bonder. Thereby, the wiring layer of the LSI substrate and the thick film wiring layer of the wiring substrate are electrically connected. After bonding, an underfill may flow between the LSI substrate and the wiring substrate. As a result, it is possible to improve connection reliability against thermal stress such as heat cycle and connection reliability against physical stress such as impact and bending.

ここで、半導体集積回路用ベース基板11と配線基板用ベース基板1とは、異なる材料からなるものであっても構わないが、同一の材料からなることが好ましい。同一の材料で構成することにより、ベース基板の熱膨張率が等しくなるので接合バンプ6と接続パッド13の接合部のクラック等が起こり難くなる。   Here, the semiconductor integrated circuit base substrate 11 and the wiring substrate base substrate 1 may be made of different materials, but are preferably made of the same material. By using the same material, the thermal expansion coefficient of the base substrate becomes equal, so that cracks at the joint between the joint bump 6 and the connection pad 13 do not easily occur.

なお、本発明の半導体集積回路装置の製造方法は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the method of manufacturing the semiconductor integrated circuit device of the present invention is not limited to the illustrated example described above, and it is needless to say that various modifications can be made without departing from the scope of the present invention.

図1は、本発明の半導体集積回路装置の配線基板の製造方法を説明するための図であり、図1(a)〜図1(f)は各過程における半導体集積回路装置の配線基板の横断面図である。FIG. 1 is a view for explaining a method of manufacturing a wiring board of a semiconductor integrated circuit device according to the present invention. FIGS. 1A to 1F are crossings of the wiring board of the semiconductor integrated circuit device in each process. FIG.

符号の説明Explanation of symbols

1 配線基板用ベース基板
2 第1絶縁層
3 厚膜配線層
4 第2絶縁層
5 開口部
6 接合バンプ
10 LSI基板
11 半導体集積回路用ベース基板
12 配線層
13 接続パッド
DESCRIPTION OF SYMBOLS 1 Base substrate for wiring boards 2 1st insulating layer 3 Thick film wiring layer 4 2nd insulating layer 5 Opening part 6 Junction bump 10 LSI substrate 11 Base substrate for semiconductor integrated circuits 12 Wiring layer 13 Connection pad

Claims (9)

半導体集積回路装置の製造方法であって、該方法は、
半導体集積回路基板と配線基板とを提供する過程であって、
前記半導体集積回路基板を提供する過程は、
半導体集積回路用ベース基板上に、半導体集積回路及び該半導体集積回路用の最上位配線層を含まない配線層を形成する過程と、
前記半導体集積回路用ベース基板の配線層上に、該配線層に接続される接続パッドを形成する過程と、
を有し、
前記配線基板を提供する過程は、
配線基板用ベース基板上に、前記半導体集積回路用の最上位配線層となる厚膜配線層をメッキ形成する過程と、
前記厚膜配線層上に、該厚膜配線層に接続される接合バンプを形成する過程と、
を有する、
半導体集積回路基板と配線基板とを提供する過程と、
前記半導体集積回路基板の接続パッドが形成される面と前記配線基板の接合バンプが形成される面とを対向させる過程と、
前記接続パッド及び接合バンプを位置合わせして接合する過程と、
を具備することを特徴とする半導体集積回路装置の製造方法。
A method of manufacturing a semiconductor integrated circuit device, the method comprising:
A process for providing a semiconductor integrated circuit board and a wiring board,
Providing the semiconductor integrated circuit substrate includes:
Forming a semiconductor integrated circuit and a wiring layer not including the uppermost wiring layer for the semiconductor integrated circuit on a semiconductor integrated circuit base substrate;
Forming a connection pad connected to the wiring layer on the wiring layer of the base substrate for the semiconductor integrated circuit;
Have
The process of providing the wiring board includes:
A process of plating a thick film wiring layer to be the uppermost wiring layer for the semiconductor integrated circuit on the wiring board base substrate;
Forming a bonding bump connected to the thick film wiring layer on the thick film wiring layer;
Having
Providing a semiconductor integrated circuit board and a wiring board;
A process of making the surface of the semiconductor integrated circuit board where the connection pads are formed and the surface of the wiring board where the bonding bumps are formed;
Aligning and bonding the connection pads and bonding bumps;
A method for manufacturing a semiconductor integrated circuit device, comprising:
請求項1に記載の半導体集積回路装置の製造方法において、前記厚膜配線層をメッキ形成する過程は、前記配線基板用ベース基板上に第1絶縁層を形成し、該第1絶縁層上に厚膜配線層をメッキ形成する過程であることを特徴とする半導体集積回路装置の製造方法。   2. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein the step of plating the thick film wiring layer includes forming a first insulating layer on the wiring substrate base substrate, and forming the first insulating layer on the first insulating layer. A method of manufacturing a semiconductor integrated circuit device, which is a process of forming a thick film wiring layer by plating. 請求項2に記載の半導体集積回路装置の製造方法において、前記第1絶縁層は、低誘電率絶縁層からなることを特徴とする半導体集積回路装置の製造方法。   3. The method of manufacturing a semiconductor integrated circuit device according to claim 2, wherein the first insulating layer is made of a low dielectric constant insulating layer. 請求項2又は請求項3に記載の半導体集積回路装置の製造方法において、前記第1絶縁層は、膜厚が10μm以上であることを特徴とする半導体集積回路装置の製造方法。   4. The method of manufacturing a semiconductor integrated circuit device according to claim 2, wherein the first insulating layer has a thickness of 10 μm or more. 5. 請求項1乃至請求項4の何れかに記載の半導体集積回路装置の製造方法において、前記接合バンプを形成する過程は、前記厚膜配線層上に第2絶縁層を形成し、該第2絶縁層に開口部をパターンニング形成し、該開口部に接合バンプを形成する過程であることを特徴とする半導体集積回路装置の製造方法。   5. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein in the step of forming the bonding bump, a second insulating layer is formed on the thick film wiring layer, and the second insulating layer is formed. A method of manufacturing a semiconductor integrated circuit device, comprising: patterning an opening in a layer and forming a bonding bump in the opening. 請求項1乃至請求項5の何れかに記載の半導体集積回路装置の製造方法において、前記半導体集積回路用ベース基板と前記配線基板用ベース基板は、同一の材料からなることを特徴とする半導体集積回路装置の製造方法。   6. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein the semiconductor integrated circuit base substrate and the wiring substrate base substrate are made of the same material. A method of manufacturing a circuit device. 請求項1乃至請求項6の何れかに記載の半導体集積回路装置の製造方法であって、さらに、前記接合する過程の後に、アンダーフィルを流入する過程を具備することを特徴とする半導体集積回路装置の製造方法。   7. The method of manufacturing a semiconductor integrated circuit device according to claim 1, further comprising a step of flowing an underfill after the bonding step. Device manufacturing method. 請求項1乃至請求項7の何れかに記載の半導体集積回路装置の製造方法であって、さらに、前記配線基板用ベース基板上に、インダクタ素子を形成する過程を具備することを特徴とする半導体集積回路装置の製造方法。   8. The method of manufacturing a semiconductor integrated circuit device according to claim 1, further comprising a step of forming an inductor element on the wiring board base substrate. A method for manufacturing an integrated circuit device. 請求項1乃至請求項8の何れかに記載の半導体集積回路装置の製造方法において、前記配線基板には、複数の厚膜配線層がメッキ形成されることを特徴とする半導体集積回路装置の製造方法。   9. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein a plurality of thick film wiring layers are formed on the wiring substrate by plating. Method.
JP2006258175A 2006-09-25 2006-09-25 Method of manufacturing semiconductor integrated circuit device Pending JP2008078514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258175A JP2008078514A (en) 2006-09-25 2006-09-25 Method of manufacturing semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258175A JP2008078514A (en) 2006-09-25 2006-09-25 Method of manufacturing semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JP2008078514A true JP2008078514A (en) 2008-04-03

Family

ID=39350244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258175A Pending JP2008078514A (en) 2006-09-25 2006-09-25 Method of manufacturing semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP2008078514A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259543A (en) * 1990-03-09 1991-11-19 Fujitsu Ltd Mounting structure of semiconductor chip
JPH09148379A (en) * 1995-11-22 1997-06-06 Taiyo Yuden Co Ltd Formation of salient electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259543A (en) * 1990-03-09 1991-11-19 Fujitsu Ltd Mounting structure of semiconductor chip
JPH09148379A (en) * 1995-11-22 1997-06-06 Taiyo Yuden Co Ltd Formation of salient electrode

Similar Documents

Publication Publication Date Title
JP6677380B2 (en) High density organic bridge device and method
TWI590405B (en) Dual side solder resist layers for coreless packages and packages with an embedded interconnect bridge and their methods of fabrication
CN104851842B (en) Semiconductor devices including embedded surface installing device and forming method thereof
US9455219B2 (en) Wiring substrate and method of manufacturing the same
US20160204092A1 (en) Semiconductor device
TWI544841B (en) Wiring board with dual wiring structures integrated together and method of making the same
TW201250961A (en) Chip-scale package structure
JP2004247475A (en) Electronic component mounting structure and its manufacturing method
US8450825B2 (en) Semiconductor package
TW201405746A (en) Microelectronic package utilizing multiple bumpless build-up structures and through-silicon vias
TW550768B (en) Flip-chip on film assembly for ball grid array packages
KR101784564B1 (en) Semiconductor package and manufacturing method of the same
US7253504B1 (en) Integrated circuit package and method
JP2001024089A (en) System semiconductor device and method for manufacturing thereof
JPH05283467A (en) Semiconductor integrated circuit device
JP2004221600A (en) Ball grid array package construction with raised solder ball pad
TWI506745B (en) Electronic device and method for manufacturing an electronic device
US20050023666A1 (en) Semiconductor device and method of fabricating the same, circuit board, and electronic instrument
JP2008078514A (en) Method of manufacturing semiconductor integrated circuit device
JP2009135321A (en) Multilayer wiring board and method of manufacturing the same, and semiconductor device
TWI354338B (en) Carrier structure for semiconductor component and
JP2006210802A (en) Semiconductor device
TWI447877B (en) Semiconductor device package
Hu An Innovative System Integration Interconnection Technology Beyond BEOL
JP2009043898A (en) Semiconductor package and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

A621 Written request for application examination

Effective date: 20090918

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Effective date: 20110830

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120126