JP2008078057A - Shielded line - Google Patents

Shielded line Download PDF

Info

Publication number
JP2008078057A
JP2008078057A JP2006258214A JP2006258214A JP2008078057A JP 2008078057 A JP2008078057 A JP 2008078057A JP 2006258214 A JP2006258214 A JP 2006258214A JP 2006258214 A JP2006258214 A JP 2006258214A JP 2008078057 A JP2008078057 A JP 2008078057A
Authority
JP
Japan
Prior art keywords
wire
shield
insulator
dielectric
shielded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006258214A
Other languages
Japanese (ja)
Inventor
Satoshi Hasegawa
諭 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006258214A priority Critical patent/JP2008078057A/en
Publication of JP2008078057A publication Critical patent/JP2008078057A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Communication Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that, in an insulation structure of conventional shielded wires, insulators of the same kind and the same quality are continued along the surface of conductive wires in a conductive wire axis direction, so that dielectric distortions specific to a dielectric is integrated by the insulators and charge energy caused by the dielectric distortions flow into a wire line with an elapse of time, and, as a result, line dynamic characteristics are deteriorated. <P>SOLUTION: As shown in Fig.3, a plurality of insulators of different kinds and different qualities are divided for use along a shielded line axis direction to cut off continuity of the insulators, as a result of which, a total volume of dielectric distortions of the insulators is decreased. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、シールド線の絶縁構造に関する。 The present invention relates to a shielded wire insulation structure.

従来、シールド線芯線を絶縁する方法において、芯線軸方向に沿って同種同質の絶縁物をもって絶縁する方法が取られて来た。芯線を絶縁する絶縁物の特性により線路特性変化が生じることは周知のとおりである。絶縁物の比誘電率及び誘電体損失角が小さい絶縁物を使用または開発しシールド線に使用されてきた。又、芯線軸垂直方向に複数の絶縁物をもって絶縁する方法も広く知られている。本発明シールド線のように、異種又は異質で複数の絶縁物をシールド線芯線軸方向に沿って交互に密着させ芯線を絶縁する手段による線路特性を改善する方法は存在していなかった。 Conventionally, as a method of insulating a shielded wire core wire, a method of insulating with a homogeneous insulator of the same kind along the core wire axis direction has been taken. As is well known, the line characteristic changes due to the characteristic of the insulator that insulates the core wire. An insulator having a small relative dielectric constant and dielectric loss angle has been used or developed and used for a shielded wire. A method of insulating with a plurality of insulators in the direction perpendicular to the core axis is also widely known. There has been no method for improving line characteristics by means of insulating a core wire by alternately adhering a plurality of different or different insulators along the shield wire core axis direction like the shield wire of the present invention.

又、シールド線軸方向に沿ってシールド部外周を同種同質の絶縁物で絶縁したシールド線がある。シールド線では、絶縁物の種類また性質によって線路動特性変化が生じることは従来から知られている又、シールド線軸に対して垂直方向に異種又は異質の絶縁物を複数使用し、シールド部外周を絶縁する方法も知られている。本発明シールド線のように、異種又は異質で複数の絶縁物をシールド線シールド部軸方向に沿って交互に密着させシールド部外周を絶縁する手段による線路特性を改善する方法は存在していなかった。 In addition, there is a shield wire in which the outer periphery of the shield part is insulated with the same kind of insulator along the shield wire axis direction. With shielded wires, it has been known that changes in line dynamics occur depending on the type and nature of the insulation. Also, multiple different or different types of insulation are used in the direction perpendicular to the shield wire axis, and the outer periphery of the shield is Insulating methods are also known. There is no method for improving the line characteristics by means of insulating the outer periphery of the shield part by alternately adhering a plurality of different or different insulators along the shield wire shield part axial direction like the shield wire of the present invention. .

更に、シールド線軸方向に沿って芯線及びシールド部外周の絶縁を0002、0003記載の両者を満足する絶縁構造を用い線路特性を改善する方法も存在していなかった。
特開2003−77347号公報 特許第3753431号
Furthermore, there has been no method for improving line characteristics using an insulation structure that satisfies both 0002 and 0003 descriptions for insulation of the core wire and the outer periphery of the shield portion along the shield wire axis direction.
JP 2003-77347 A Japanese Patent No. 3753431

シールド線芯線とシールド部に電圧が加わると電界が生じる。電界内にある誘電体である芯線を絶縁する絶縁物には電界の方向に張力ひずみ、電界と垂直方向に圧力ひずみを受ける。誘電体ひずみは連続した芯線軸方向に沿った絶縁物全体に時間を経て伝達され又、誘電体歪はシールド線の芯線絶縁物全体でも生じる。誘電体歪に起因する絶縁物内の電荷エネルギーは、時間を経て導線に流れ結果、シールド線の線路動特性を劣化させる。2芯シールド線も同様である。 An electric field is generated when a voltage is applied to the shield core wire and the shield part. An insulator that insulates a core wire that is a dielectric in an electric field is subjected to tensile strain in the direction of the electric field and pressure strain in a direction perpendicular to the electric field. Dielectric strain is transmitted over time to the entire insulator along the continuous core axis direction, and dielectric strain also occurs in the entire core insulator of the shielded wire. The charge energy in the insulator due to the dielectric strain flows to the conductive wire over time, resulting in degradation of the line dynamic characteristics of the shielded wire. The same applies to the 2-core shielded wire.

シールド線で音声信号を伝送する場合例えば、CDプレーヤーと増幅器を接続した場合、両者の大地に対するアース電位は互いに変動している。そのためシールド線のシールド部外周を絶縁する絶縁物においても0005記載と同様の現象が生じる。2芯シールド線も同様である。 When transmitting an audio signal with a shielded wire For example, when a CD player and an amplifier are connected, the ground potentials of the two grounds fluctuate with each other. Therefore, the same phenomenon as described in 0005 occurs in the insulator that insulates the outer periphery of the shield portion of the shield wire. The same applies to the 2-core shielded wire.

0005、0006記載の誘電体歪に起因する電荷エネルギーは時間を経て線路に流れ両者は互いに密接な関連性を有しシールド線の線路動特性を劣化させる。例えば、芯線絶縁物で生じた誘電体歪はシールド部を介してシールド部外周絶縁物に伝達され、両者は互いに密接な関係を有する。2芯シールド線も同様である。 Charge energy resulting from dielectric distortion described in 0005 and 0006 flows to the line over time, and both are closely related to each other and degrade the line dynamic characteristics of the shield line. For example, the dielectric strain generated in the core wire insulator is transmitted to the shield portion outer periphery insulator through the shield portion, and both have a close relationship with each other. The same applies to the 2-core shielded wire.

本発明シールド線は、かかる0005記載の問題点を解決することを目的とするため、シールド線芯線を絶縁する絶縁物を、シールド線軸方向に沿って異種又は異質で複数の絶縁物を交互に密着させシールド線芯線を絶縁する図1の構造を有するシールド線軸方向分割絶縁構造を特徴とするシールド線を提供しようとするものである。 The shield wire of the present invention is intended to solve the problem described in 005. Therefore, an insulator that insulates the shield core wire is in close contact with a plurality of insulators that are different or heterogeneous along the shield wire axis direction. An object of the present invention is to provide a shielded wire characterized by a shielded wire axially divided insulating structure having the structure of FIG.

本発明シールド線はかかる0006記載の問題点を解決することを目的とするため、シールド線シールド部外周を絶縁する絶縁物をシールド線軸方向に沿って異種又は異質で複数の絶縁物を交互に密着させ、シールド線シールド部外周を絶縁する図2の構造を有するシールド線軸方向分割絶縁構造を特徴とするシールド線を提供しようとするものである。 In order to solve the problem described in 006, the shield wire of the present invention is intended to solve the problem described in 006, so that the insulator that insulates the outer periphery of the shield wire shield part is in close contact with a plurality of insulators that are different or heterogeneous along the shield wire axis direction The shield wire is characterized by having a shield wire axially divided insulation structure having the structure of FIG. 2 that insulates the outer periphery of the shield wire shield portion.

本発明シールド線はかかる0007記載の問題点を解決することを目的とするため、芯線及びシールド部外周を絶縁する図3の絶縁構造を有するシールド線軸方向分割絶縁構造を特徴とするシールド線を提供しようとするものである。 In order to solve the problem described in 007, the shield wire of the present invention provides a shield wire characterized by a shield wire axially divided insulation structure having the insulation structure of FIG. It is something to try.

本発明シールド線は図1の如く、シールド線芯線軸方向に沿って異種又は異質で複数の絶縁物を交互に密着させたシールド線軸方向分割絶縁構造にする手段により0005記載の問題点を解決した。 As shown in FIG. 1, the shield wire of the present invention solves the problem described in 005 by means of a shielded wire axially divided insulation structure in which a plurality of insulators of different types or different types are alternately adhered along the shield wire core axis direction. .

本発明シールド線は図2の如く、シールド線軸方向に沿ってシールド部外周を異種又は異質で複数の絶縁物を交互に密着させたシールド線軸方向分割絶縁構造にする手段により0006記載の問題点を解決した。 As shown in FIG. 2, the shield wire according to the present invention has the problem described in 006 by means of a shielded wire axially divided insulation structure in which a plurality of insulators are alternately or differently arranged around the shield portion along the shield wire axial direction. Settled.

本発明シールド線は図3の如く芯線及びシールド部外周を絶縁する絶縁物をシールド線軸方向に沿って異種又は異質で複数の絶縁物を交互に密着させたシールド線軸方向分割絶縁構造にする手段により0007記載の問題点を解決した。 As shown in FIG. 3, the shield wire according to the present invention has a shield wire axially divided insulation structure in which a plurality of insulators of different or different kinds along the shield wire axial direction are insulatively adhered to each other as shown in FIG. Solved the problem described in 007.

以下説明は交番電界中における誘電体である絶縁物に生じる誘電体歪現象を前提に説明する。 The following description is based on the assumption of a dielectric distortion phenomenon that occurs in an insulator that is a dielectric in an alternating electric field.

全てのシールド線において、誘電体である絶縁物の特性によりシールド線の動特性変化が生じることは、過去から良く知られている。例えば音声信号を伝送する線路に使用した場合、聴感上での解像度が劣化するなどの現象が生じる、動特性が変化する一つの要因として電界内における絶縁物内で生じる誘電体ひずみに起因する誘電体が持つ電荷エネルギーが時間を経て線路に流れ込む結果によるところが大きい。 It has been well known from the past that in all shielded wires, the dynamic characteristics of the shielded wires change due to the characteristics of the insulator, which is a dielectric. For example, when it is used for transmission lines that transmit audio signals, phenomena such as degradation of the audible resolution occur, and one of the factors that changes the dynamic characteristics is the dielectric caused by dielectric distortion generated in the insulator in the electric field. This is largely due to the result that the charge energy of the body flows into the track over time.

従来、シールド線を絶縁する目的でシールド線芯線軸方向に沿って、同種又は同質の絶縁物を使用する絶縁方法がとられていた。芯線表面を同種同質の絶縁物で絶縁すると、電界内にある誘電体である絶縁物で生じた誘電体ひずみが時間を経て絶縁物全体に伝達される。また、シールド線シールド部外周を絶縁する絶縁物においても同様の現象が生じる。 Conventionally, in order to insulate the shield wire, an insulation method using an insulator of the same kind or the same quality has been taken along the axial direction of the shield wire core line. When the surface of the core wire is insulated with the same kind of insulator, the dielectric strain generated in the insulator, which is a dielectric in the electric field, is transmitted to the entire insulator over time. The same phenomenon also occurs in the insulator that insulates the outer periphery of the shielded wire shield part.

古典的に知られるマクスウェルのひずみ力理論では、電界内にある誘電体である絶縁物において、絶縁物は電界の方向に張力ひずみ、電界と垂直方向に圧力ひずみを受けることは従来から周知されている事実である。この張力、圧力を総称してマクスウェルの応力という。 In the well-known Maxwell's strain force theory, it has been well known that, in an insulator that is a dielectric in an electric field, the insulator is subjected to tensile strain in the direction of the electric field and pressure strain in the direction perpendicular to the electric field. It is a fact that. This tension and pressure are collectively referred to as Maxwell's stress.

以下説明のため、0017記載の張力ひずみと圧力ひずみを含めたものを誘電体ひずみと定義する。 For the following explanation, the strain including the tension strain and pressure strain described in 0017 is defined as dielectric strain.

電界内におけるマクスウェルの電磁場の理論によると、電界内における誘電体歪が伝達される現象には弾性体における各法則が適用されることから、任意の点で生じた誘電体ひずみは電界内にあるシールド線芯線軸方向の絶縁物全体に時間を経て伝達される。正負非対称で周期性を有しない音声信号などを伝送した場合、聴感上の解像度劣化として現われる。 According to Maxwell's electromagnetic field theory in an electric field, each law in an elastic body is applied to a phenomenon in which dielectric strain is transmitted in the electric field, so that the dielectric strain generated at an arbitrary point is in the electric field. It is transmitted over time to the entire insulator in the shield wire core axis direction. When an audio signal having positive / negative asymmetrical characteristics and no periodicity is transmitted, it appears as a resolution degradation in the sense of hearing.

長さLのシールド線に電圧を印加した場合、任意の点で生じた誘電体ひずみは絶縁物が連続したシールド線芯線軸方向の絶縁物内で、弾性体において力が伝達されると同様に電界内にある絶縁物全体に時間を経て伝達される。またこの誘電体ひずみはシールド線芯線に使用してある絶縁物全体でも生じる。 When a voltage is applied to a shielded wire of length L, the dielectric strain generated at any point is the same as when the force is transmitted in the elastic body in the insulator in the axial direction of the shielded wire core where the insulator is continuous. It is transmitted over time to the entire insulator in the electric field. This dielectric distortion also occurs in the entire insulator used for the shielded wire.

従って、誘電体ひずみに飽和がないと仮定し、比較的短い線路においては、シールド線長が増加するに従って絶縁物内の誘電体ひずみ量は線路長に比例して増加し結果、線路長が短ければ少なく、長ければ多いことは容易に推察できる。シールド線を例えば、音声信号伝送線路である信号ケーブル等に使用した場合の音の変化量が、シールド線長におよそ比例する現象と矛盾するものではない。 Therefore, assuming that there is no saturation in dielectric distortion, the amount of dielectric distortion in the insulator increases in proportion to the line length as the shield line length increases for relatively short lines. It is easy to guess that there are few and long. For example, the amount of change in sound when the shielded wire is used for a signal cable or the like that is an audio signal transmission line is not inconsistent with a phenomenon that is approximately proportional to the length of the shielded wire.

線路長Lのシールド線内の誘電体ひずみ量を表す場合、横軸に線路長、縦軸に誘電体ひずみ量をとりグラフで表した場合、線路長に対して誘電体ひずみ量が増加していく角度をθとすれば、線路末端の誘電体ひずみ量は(tanθ×L)となる。よって絶縁物内の誘電体ひずみ量の総量はグラフの三角形の面積となり(1/2)×(tanθ×L)×Lとなる。増加角θは絶縁物の性質によって決定される。 When expressing the dielectric strain amount in the shielded wire of the line length L, when the line length is plotted on the horizontal axis and the dielectric strain amount is plotted on the vertical axis, the dielectric strain amount increases with respect to the line length. If the angle is θ, the dielectric distortion amount at the end of the line is (tan θ × L). Therefore, the total amount of dielectric strain in the insulator is the area of the triangle in the graph, which is (1/2) × (tan θ × L) × L. The increase angle θ is determined by the nature of the insulator.

0022記載の線路長Lにおける誘電体ひずみの総量を減少させる為には、絶縁物の連続性を遮断する方法が最も確実で効果的な方法である。 In order to reduce the total amount of dielectric distortion in the line length L described in 0022, the method of interrupting the continuity of the insulator is the most reliable and effective method.

従って、0021、0022、0023記載の考え方において例えば、芯線絶縁物を3分割した図1の構造を有する絶縁物内の誘電体ひずみの総量を思考した場合、一単位長の面積は長さの2乗に反比例して(1/9)、必要な線路長では3単位を必要とする故に(1/9)×3=(1/3)倍となる。 Accordingly, in the concept described in 0021, 0022, and 0023, for example, when considering the total amount of dielectric strain in the insulator having the structure of FIG. 1 in which the core insulator is divided into three, the area of one unit length is 2 of the length. Inversely proportional to the power (1/9), since the required line length requires 3 units, (1/9) × 3 = (1/3) times.

図1の如く、絶縁物の連続性を遮断する目的で電界内にあるシールド線芯線絶縁物の誘電体特性が誘電体ひずみ力を伝達し難い性質の絶縁物Dを配置した構造にすれば、絶縁物Aの連続性は遮断されることになる。但し完全に遮断できる絶縁物Dは存在せず、線路の使用目的に応じた遮断効果の高い絶縁物を選択し使用する必要がある。 As shown in FIG. 1, for the purpose of interrupting the continuity of the insulator, if the insulator D having the property that the dielectric property of the shielded wire core insulator in the electric field is difficult to transmit the dielectric strain force is arranged, The continuity of the insulator A will be cut off. However, there is no insulator D that can be completely cut off, and it is necessary to select and use an insulator having a high blocking effect according to the intended use of the line.

シールド線のシールド部外周を絶縁する絶縁物においても0015から0025記載の考え方が同様に適用されシールド線シールド部外周の絶縁方法においても、図2の如く本発明シールド線軸方向分割絶縁構造が有効である The concept described in 0015 to 0025 is similarly applied to the insulator that insulates the outer periphery of the shield part of the shielded wire, and the shielded wire axially divided insulating structure of the present invention is effective as shown in FIG. is there

更に、芯線絶縁物とシールド部外周絶縁物で生じる誘電体歪は互いに密接な関係を有し、例えば芯線絶縁物で生じた誘電体歪はシールド部を介しシールド部外周絶縁物に時間を経て伝達され、両者は独立して存在しない。芯線及びシールド部外周を絶縁する絶縁構造を、図3の絶縁構造を用いれば軸方向分割絶縁構造の有効性は更に高くなる。 Furthermore, the dielectric strain generated in the core wire insulator and the shield outer peripheral insulator has a close relationship with each other. For example, the dielectric strain generated in the core wire insulator is transmitted through the shield portion to the shield outer peripheral insulator over time. The two do not exist independently. If the insulation structure that insulates the core wire and the outer periphery of the shield portion is used, the effectiveness of the axially divided insulation structure is further enhanced.

0022、0023、0024は本発明シールド線の技術思想を説明する上での記述であり、絶縁物C、絶縁物Dにおいて誘電体ひずみを完全に遮断することは実在する絶縁物では不可能である又、絶縁物C、絶縁物Dにおいても誘電体ひずみは生じるが例えば、主に可聴周波数帯信号を伝送する線路等の場合、加熱融着するパラフィン紙などを使用すれば0024記載の考え方が極めて有効であり、誘電体ひずみの総量を減少させシールド線路動特性劣化を減少させることが可能である。 0022, 0023, and 0024 are descriptions for explaining the technical idea of the shielded wire according to the present invention, and it is impossible for the insulators C and D to completely block the dielectric distortion in the existing insulators. Insulator C and insulator D also cause dielectric distortion. For example, in the case of a line that mainly transmits an audible frequency band signal, the concept described in 0024 is extremely effective if paraffin paper that is heat-sealed is used. It is effective, and it is possible to reduce the total amount of dielectric distortion and to reduce the degradation of the shield line dynamic characteristics.

本発明シールド線の絶縁構造について説明する。図1、図2、図3において絶縁物A、絶縁物D及び絶縁物B、絶縁物Cを配置する間隔及び長さ又、シールド線軸方向に対しての位置などを特定するものではなく、軸方向に沿って異種又は異質で複数の絶縁物を互いに密着させ分割配置する絶縁構造が本発明の技術思想である。 The insulation structure of the shield wire of the present invention will be described. 1, 2, and 3, the spacing and length of the insulator A, the insulator D, the insulator B, and the insulator C are not specified, and the position of the shield wire in the axial direction is not specified. The technical idea of the present invention is an insulating structure in which a plurality of insulators of different types or different types are in close contact with each other in the direction and are arranged separately.

本発明シールド線を、正負非対称で周期性を持たない信号例えば、音楽信号等を伝送する音声信号伝送線路等に実際に使用し比較試聴実験を行うと、従来構造のシールド線と本発明シールド線との違いが明確に音に現われる。 When the shield wire of the present invention is actually used for an audio signal transmission line or the like for transmitting a signal having a periodicity that is not positive and negative and having no periodicity, such as a sound signal transmission line or the like, the shield wire of the conventional structure and the shield wire of the present invention are obtained. And the difference clearly appears in the sound.

周期性のある信号例えば、正弦波又は矩形波等周期性を有する信号を本発明シールド線に印加した場合においては聴感上又、オシロスコープ等での波形観測の結果、本発明シールド線と従来型シールド線の音の違いは殆ど認められない。理由は絶縁物内で生じる誘電体ひずみによる絶縁物が持つ電荷エネルギーが時間を経て導線に流れ込む為であり、音声信号音楽信号等は正負非対称で周期性を持たない信号であるため聴感上明確に効果が判別できる。 When a periodic signal, for example, a signal having periodicity such as a sine wave or a rectangular wave is applied to the shield wire of the present invention, as a result of observing the waveform with an oscilloscope or the like, the shield wire of the present invention and the conventional shield There is almost no difference in the sound of the lines. The reason is that the charge energy of the insulator due to dielectric distortion generated in the insulator flows into the conductor over time, and the audio signal music signal etc. is a positive and negative asymmetric signal with no periodicity, so it is clearly audible The effect can be determined.

本発明シールド線を絶縁物特性の特徴が最も顕著に表れる一例である、CDプレーヤーと増幅器間の信号伝送線路に使用し、比較試聴実験を行った結果を記載する。 The result of a comparative audition experiment using the shield wire of the present invention as a signal transmission line between a CD player and an amplifier, which is an example in which the characteristic of the insulator characteristic is most prominent, will be described.

図1、図2、図3の3分割絶縁構造のシールド線と従来絶縁構造のシールド線を製作しCDプレーヤーと増幅器を接続する長さ900mmの信号ケーブルに使用した。 A shielded wire with a three-part insulation structure as shown in FIGS. 1, 2 and 3 and a shield wire with a conventional insulation structure were manufactured and used for a signal cable of 900 mm in length connecting a CD player and an amplifier.

比較試聴実験には5年以上の楽器演奏経験を有する7人のテスターで行い、テスターの嗜好を出来うる限り排除するため、音の輪郭が明確になるか否か又、自然音には存在しないケーブル特有音の有無を判定基準とした。 The comparative audition experiment was conducted with seven testers who have played musical instruments for more than 5 years. To eliminate the tester's taste as much as possible, whether the sound outline is clear or not, it does not exist in natural sounds. The presence or absence of cable-specific sound was used as a criterion.

又、音響システム、試聴する音源又音楽ジャンルなど特に定めることなく、人間の会話を録音したソースも使い、試聴場所も特定することなく行った。 In addition, the sound system, the sound source to be auditioned, the music genre, etc. were not particularly defined, and the source where the human conversation was recorded was used without specifying the listening location.

図1の構造を有するシールド線の試聴結果は、従来構造に比較し本発明シールド線の場合、音の輪郭が明確になり音楽ソースの場合例えば、弦楽器においては弦の振動音が生演奏に近くなったことを又、自然音には存在しないケーブル特有音が減少することを、テスター7人全員で確認した。 The results of listening to the shielded wire having the structure shown in FIG. 1 show that the outline of the sound is clearer in the case of the shielded wire according to the present invention compared to the conventional structure, and in the case of a music source. In addition, all seven testers confirmed that the cable-specific sound that does not exist in the natural sound is reduced.

図2の構造を有するシールド線の試聴結果は従来構造に比較し0036記載と同様の結果となった。 The result of the trial listening of the shielded wire having the structure of FIG. 2 was the same as described in 0036 as compared with the conventional structure.

図3の構造を有するシールド線の試聴結果は0036記載内容が、より顕著であることをテスター7人全員で確認した。 The test results of the shielded wire having the structure of FIG. 3 were confirmed by all seven testers that the contents described in 0036 were more remarkable.

本発明シールド線を使用した図1、図2、図3の構造を有する信号ケーブルいずれも、音の輪郭が極めて明確になり、人の会話を録音した音源でも会話音の輪郭が明確になることを7人のテスター全員一致で確認し、本発明シールド線は極めて優れた線路動特性を持つシールド線であると判定した。 1, 2, and 3 using the shielded wire of the present invention, the outline of the sound is very clear, and the outline of the conversation sound is clear even in a sound source recording a human conversation. All of the seven testers confirmed that the shield wire of the present invention was judged to be a shield wire having extremely excellent line dynamics.

本発明シールド線をマイクロホンケーブル、レコードプレーヤーの信号伝送線路又、増幅機器の基板間の信号伝送線路又、車載用音響機器の音声信号伝送線路に使用し試聴した結果、いずれの線路に使用しても例外無く聴感上高い解像度を有する結果が得られた。 As a result of using the shield wire of the present invention for a microphone cable, a signal transmission line of a record player, a signal transmission line between substrates of an amplification device, or an audio signal transmission line of an in-vehicle acoustic device, it was used for any of the lines. Even without exception, the results with high resolution were obtained.

以下、本発明シールド線の実施の形態について説明する。但し以下に示す実施例は本発明シールド線の技術思想を具体化するための方法を例示するものであって、製造方法や使用する電線材又は絶縁物を分割する数及び、絶縁物の種類などを下記のものに特定するものではない。本発明シールド線は請求項1、請求項2、請求項3の範囲において種々の変更を加えることが出来る。更に製造する上での手順及び、製造方法なども下記のものに限定するものでもない。以下の実施例は手造りの一例であり、従来の製造方法を利用し量産を行っても良い。 Hereinafter, embodiments of the shield wire of the present invention will be described. However, the examples shown below exemplify a method for embodying the technical idea of the shielded wire of the present invention. The manufacturing method, the number of wires or insulators to be used, and the types of insulators, etc. Is not specified as follows. The shield wire of the present invention can be variously modified within the scope of claims 1, 2, and 3. Further, the manufacturing procedure and manufacturing method are not limited to the following. The following example is an example of handmade, and mass production may be performed using a conventional manufacturing method.

住電日立ケーブル600V耐燃性ポリエチレン絶縁電線EMIE/F 0.75mm平方を使用し、必要長約900mmの本発明シールド線を製造する場合の実施の形態について説明する。 An embodiment in the case of manufacturing a shielded wire of the present invention having a required length of about 900 mm using a Sumiden Hitachi Cable 600V flame-resistant polyethylene insulated wire EMIE / F 0.75 mm square will be described.

以下実施例説明の為0042記載の電線を絶縁電線と呼ぶ。 In the following description of the embodiment, the wire described in 0042 is referred to as an insulated wire.

絶縁電線を必要長より約100mm長い1000mmに切断し両端を固定金具等で固定し約1kgの張力を持たせる。図1の如くケーブル端から約350mm及び650mmの2箇所を超音波カッター等で導線を破損しないように絶縁物Aを、軸方向に約5mm剥ぎ取る。
剥ぎ取った幅5mmの導線表面部にポリエチレンとは異質の絶縁物である加熱融着するパラフィン絶縁物Dを巻きつけ融着させる。この作業を2箇所行う。
絶縁物Dで絶縁した箇所を、長さ約15mm直径約3mmの耐電圧600V熱収縮チューブで二箇所保護する。以上で長さ900mm三分割絶縁構造のシールド線芯線が完成する。
市販している長さ900mm編組シールドを芯線に被せる。
長さ295mm直径約6mmの厚肉熱収縮チューブ絶縁物Bを図2の如く、軸方向に隙間約5mmを確保し被せる。外皮絶縁物の5mmの隙間を加熱融着するパラフィン絶縁物Cで絶縁する。更に熱収縮チューブにて保護する。製作したシールド線の両端をそれぞれ50mm切断し必要長900mmを確保する。
以上にて長さ900mm請求項3、図3の軸方向分割絶縁構造を有するシールド線が完成する。
製造方法は本記載の実施例が制約するものではなく、絶縁物の連続性が遮断できることを目的とし自由に行ってよい。絶縁方法、使用する絶縁材等は耐圧、引張り強度、折り曲げ強度などを考慮し従来の技術常識で行えばよい。図3シールド線実施例の過程において請求項1、請求項2のシールド線が完成することは明らかであり説明を要しない。
The insulated wire is cut to 1000 mm, which is about 100 mm longer than the required length, and both ends are fixed with fixing brackets or the like to give a tension of about 1 kg. As shown in FIG. 1, the insulator A is stripped about 5 mm in the axial direction so as not to damage the conducting wire at two locations of about 350 mm and 650 mm from the end of the cable with an ultrasonic cutter or the like.
A paraffin insulator D to be heat-sealed, which is an insulating material different from polyethylene, is wound around the surface of the conductor surface having a width of 5 mm that has been peeled off. This operation is performed in two places.
The place insulated by the insulator D is protected at two places by a heat-shrinkable tube having a withstand voltage of 600 V having a length of about 15 mm and a diameter of about 3 mm. Thus, a shielded wire core having a length of 900 mm and a three-part insulation structure is completed.
Cover the core wire with a commercially available braided shield with a length of 900 mm.
A thick heat-shrinkable tube insulator B having a length of 295 mm and a diameter of about 6 mm is covered with a gap of about 5 mm in the axial direction as shown in FIG. Insulation is performed with a paraffin insulator C that heat-fuses a 5 mm gap in the outer insulator. Furthermore, it protects with a heat shrinkable tube. Cut both ends of the manufactured shield wire by 50 mm to ensure the required length of 900 mm.
The shield wire having the axially divided insulating structure of claim 3 and FIG. 3 is thus completed.
The manufacturing method is not limited by the embodiments described herein, and may be performed freely for the purpose of blocking the continuity of the insulator. The insulation method, the insulating material to be used, etc. may be carried out by conventional technical common sense in consideration of pressure resistance, tensile strength, bending strength and the like. FIG. 3 It is clear that the shielded wires of claims 1 and 2 are completed in the process of the shielded wire embodiment and need not be explained.

正負対象で周期性を持つ信号が伝送される線路等においては本発明シールド線を使用する効果は聴感上では殆ど認められないが、正負非対称で周期性を持たない信号等例えば、音楽信号を伝送した場合には音の違いが明確に現われ本発明シールド線の有効性が高い。 The effect of using the shielded wire according to the present invention is hardly recognized in the sense of hearing on a line where a signal having periodicity is transmitted for positive and negative objects, but a signal that is not positive and negative and has no periodicity, for example, a music signal is transmitted. In this case, the difference in sound clearly appears and the effectiveness of the shield wire of the present invention is high.

本発明シールド線を例えば、電子回路である音響用増幅器の基板間接続線路であるに使用した場合又、車載用音響機器の音声信号伝送線路に使用した場合においても本発明シールド線の十分な効果が確認された。又ヘッドフォンケーブルに使用した場合にも極めて有効である。 For example, when the shield wire of the present invention is used as an inter-board connection line of an acoustic amplifier that is an electronic circuit, or when it is used as an audio signal transmission line of an in-vehicle acoustic device, the sufficient effect of the shield wire of the present invention is achieved. Was confirmed. It is also extremely effective when used for a headphone cable.

本発明絶縁構造は導線直径、断面積の大小に関係なくどのようなシールド線にも利用可能な絶縁構造であり又、正負非対称で周期性を持たない信号を伝送する線路であれば、全ての箇所において明細書記載の効果が確認でき、産業上の利用範囲は極めて広い。
The insulation structure of the present invention is an insulation structure that can be used for any shielded wire regardless of the diameter of the conducting wire and the cross-sectional area. The effects described in the specification can be confirmed at the locations, and the industrial application range is extremely wide.

本発明シールド線、請求項1の構造図である。1 is a structural diagram of a shielded wire according to the present invention. 本発明シールド線、請求項2の構造図である。It is a structure figure of this invention shield wire and Claim 2. 本発明シールド線、請求項3の構造図である。It is a structure figure of this invention shield wire and Claim 3.

符号の説明Explanation of symbols

1 シールド線の芯線導線部である。
2 シールド線のシールド部である。
3 シールド線芯線を絶縁する絶縁物Aである。
4 シールド線シールド部を絶縁する絶縁物Bである。
5 シールド線シールド部を絶縁する絶縁物Cである。
6 シールド線芯線を絶縁する絶縁物Dである
1 A core wire portion of a shield wire.
2 This is the shield part of the shield wire.
3 It is the insulator A which insulates a shield wire core wire.
4 It is the insulator B which insulates a shield wire shield part.
5 Shield wire C is an insulator C that insulates the shield portion.
6 Insulator D that insulates shielded core wire

Claims (3)

シールド線軸方向に沿って同種同質の絶縁物が連続することを避け、異種又は異質で複数の絶縁物を交互に密着させシールド線芯線の絶縁をおこなうシールド線軸方向分割絶縁構造を特徴とするシールド線。 A shielded wire characterized by a shielded wire axially divided insulation structure that prevents the insulation of the shielded wire core by alternately adhering a plurality of different types or different types of insulation, avoiding continuous insulation of the same type and quality along the shield wire axis direction. . シールド線軸方向に沿って同種同質の絶縁物が連続することを避け、異種又は異質で複数の絶縁物を交互に密着させシールド線シールド部外周の絶縁をおこなうシールド線軸方向分割絶縁構造を特徴とするシールド線。 Features a shielded wire axially divided insulation structure that avoids the same type of homogeneous insulators from continuing along the shield wire axis direction, and insulates the periphery of the shield wire shield part by alternately adhering multiple different or different types of insulators. Shielded wire. シールド線芯線部絶縁構造及びシールド部外周絶縁構造が請求項1及び請求項2に記載する両者を満足するシールド線軸方向分割絶縁構造を特徴とするシールド線。 A shielded wire comprising a shielded wire axially divided insulating structure, wherein the shielded wire core wire insulating structure and the shield outer peripheral insulating structure satisfy both of the first and second aspects.
JP2006258214A 2006-09-25 2006-09-25 Shielded line Pending JP2008078057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258214A JP2008078057A (en) 2006-09-25 2006-09-25 Shielded line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258214A JP2008078057A (en) 2006-09-25 2006-09-25 Shielded line

Publications (1)

Publication Number Publication Date
JP2008078057A true JP2008078057A (en) 2008-04-03

Family

ID=39349895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258214A Pending JP2008078057A (en) 2006-09-25 2006-09-25 Shielded line

Country Status (1)

Country Link
JP (1) JP2008078057A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105830A2 (en) 2008-03-25 2009-09-30 Hitachi, Ltd. Storage apparatus and control method for same
JP2010518579A (en) * 2007-02-12 2010-05-27 ゴア エンタープライズ ホールディングス,インコーポレイティド Stringed instrument cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518579A (en) * 2007-02-12 2010-05-27 ゴア エンタープライズ ホールディングス,インコーポレイティド Stringed instrument cable
EP2105830A2 (en) 2008-03-25 2009-09-30 Hitachi, Ltd. Storage apparatus and control method for same

Similar Documents

Publication Publication Date Title
US4777324A (en) Signal cable assembly with fibrous insulation
US7446258B1 (en) Multiconductor cable structures
CN102301432B (en) Electric cable shield structure
JP2006286480A (en) Transmission cable for differential signal
JP2007059323A (en) Differential signal transmission cable
US20070284127A1 (en) Electrical cable employing resistance conductors
US6583360B1 (en) Coaxial audio cable assembly
JP2008078057A (en) Shielded line
EP0169906A1 (en) Apparatus for shielding audio signal circuit
US7504588B2 (en) Acoustically transparent stranded cable
KR200427316Y1 (en) The cable of a speker removing noises
JP2013518360A (en) Wire shield structure
US20100170697A1 (en) Signal wire
US4994686A (en) Audio frequency cable with reduced high frequency components
JP3753431B1 (en) Shielded wire
US6974912B2 (en) Insulator and connect cable and method of making same
JP2008235232A (en) Audio winding conductor
JPH07320561A (en) Signal cable
JP4009787B2 (en) Audio wiring
JP3686897B2 (en) Aluminum cable for audio
JP2005322525A (en) Shielded cable with plug
JP2008078105A (en) Cable for audio
JP2004342578A (en) Self inductance reducing signal cable and method for reducing self inductance of signal cable
JP6110440B2 (en) Transmission cable and acoustic cable using the transmission cable
JP2007173135A (en) Insulated wire