JP2008077551A - Estimation method of mass parameter of link - Google Patents

Estimation method of mass parameter of link Download PDF

Info

Publication number
JP2008077551A
JP2008077551A JP2006258581A JP2006258581A JP2008077551A JP 2008077551 A JP2008077551 A JP 2008077551A JP 2006258581 A JP2006258581 A JP 2006258581A JP 2006258581 A JP2006258581 A JP 2006258581A JP 2008077551 A JP2008077551 A JP 2008077551A
Authority
JP
Japan
Prior art keywords
variable
link
variables
explanatory
estimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006258581A
Other languages
Japanese (ja)
Other versions
JP5061344B2 (en
Inventor
Yoshihiko Nakamura
仁彦 中村
Katsu Yamane
克 山根
Yoshifumi Yamaguchi
能迪 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2006258581A priority Critical patent/JP5061344B2/en
Publication of JP2008077551A publication Critical patent/JP2008077551A/en
Application granted granted Critical
Publication of JP5061344B2 publication Critical patent/JP5061344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate the mass parameter of each link of a body modeled by a rigid link mechanism while reflecting a difference in an individual physique without measuring all parts of the body. <P>SOLUTION: This estimation method of a mass parameter of a link is provided with a step for selecting an explanatory variable among variables representing the dimensions of each part of the body and estimating the value of an objective variable with the other variables as the objective variable on the basis of an actual measurement value of the explanatory variable, and a step for calculating the volume of each link of the body modeled by the rigid link mechanism by using at least a portion of the explanatory variable and the objective variable, calculating specific gravity from the total volume and weight of the body and calculating the mass and moment of inertia of each link from the calculated specific gravity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、剛体リンク機構でモデル化した身体の各リンクの質量パラメータの推定に関するものである。 The present invention relates to estimation of mass parameters of each link of the body modeled by a rigid link mechanism.

人間の運動を解析するために、身体を剛体リンク機構でモデル化することが行われる。例えば、このようなモデルの典型例としては筋骨格モデルを用いる方法があり、様々な分野で筋骨格モデルを用いた解析が行われ、それらの技術が実用化されてきた。筋骨格モデルの各数値は文献や実験から得た代表的な値を用いており、個々人の身体的特徴を反映しきれていないというのが現状である。しかし、筋骨格モデル等の剛体リンクモデルによる運動の解析を行う分野はスポーツや医療などの個々人の特徴を捉えて指導・診断すべき分野であるため、個々人の身体的特徴を反映したモデルが必要となる。 In order to analyze human movement, the body is modeled by a rigid link mechanism. For example, a typical example of such a model is a method using a musculoskeletal model. Analysis using a musculoskeletal model has been performed in various fields, and those techniques have been put into practical use. Each numerical value of the musculoskeletal model uses typical values obtained from literatures and experiments, and the current situation is that the physical characteristics of each individual cannot be fully reflected. However, since the field of motion analysis using rigid link models such as the musculoskeletal model is a field that should be taught and diagnosed by capturing individual characteristics such as sports and medical care, a model that reflects the physical characteristics of the individual is required. It becomes.

個人差を筋骨格モデル等の剛体リンク機構モデルに反映させるためには、各リンクの質量や慣性も推定する必要がある。そのためには各部位の長さ、直径、比重などを知る必要がある。ヒト身体モデルの各部位の質量パラメータを推定する簡便な手法としては、死体から得られた質量比を用いて被験者の体重を比例配分する手法があるが、セグメント長やセグメント径の比率には大きな個人差があるため精度は高くない。CTやMR画像から身体領域を抽出し、その三次元モデルに基づいて計算することで高精度な質量・慣性モーメントパラメータが得られるが、データ取得・処理に膨大な時間と労力が必要であり、多数の被験者に対して行うのは現実的でない。 In order to reflect individual differences in a rigid link mechanism model such as a musculoskeletal model, it is necessary to estimate the mass and inertia of each link. For that purpose, it is necessary to know the length, diameter, specific gravity, etc. of each part. As a simple method for estimating the mass parameters of each part of the human body model, there is a method of proportionally allocating the weight of the subject using the mass ratio obtained from the corpse, but the ratio of segment length and segment diameter is large. The accuracy is not high due to individual differences. Extracting the body region from CT and MR images and calculating based on the three-dimensional model can obtain highly accurate mass / moment of inertia parameters, but enormous time and effort are required for data acquisition and processing. This is not practical for many subjects.

本発明は、高精度に質量・慣性モーメントを推定する簡便な手法を提供するものであり、身体の全ての部位を計測することなく、剛体リンク機構でモデル化した身体の各リンクの質量パラメータを、個人の体格の差を反映させて、推定することを目的とするものである。 The present invention provides a simple method for estimating mass / moment of inertia with high accuracy, and the mass parameters of each link of the body modeled by a rigid body link mechanism without measuring all parts of the body. The purpose is to reflect the difference in individual physique.

本発明が採用した技術手段は、身体の各部位の寸法を表す変数から説明変数を選択し、他の変数を目的変数として、説明変数の実測値に基づいて目的変数の値を推定するステップと、剛体リンク機構でモデル化した身体の各リンクの体積を前記説明変数及び前記目的変数の少なくとも一部を用いて算出し、身体の総体積と体重とから比重を算出し、算出された比重から各リンクの質量及び慣性モーメントを求めるステップと、を備えたリンクの質量パラメータの推定法、である。 The technical means adopted by the present invention includes a step of selecting an explanatory variable from variables representing dimensions of each part of the body, estimating a value of the objective variable based on an actual value of the explanatory variable, using other variables as objective variables, The volume of each link of the body modeled by the rigid link mechanism is calculated using at least a part of the explanatory variable and the objective variable, the specific gravity is calculated from the total volume of the body and the body weight, and from the calculated specific gravity Determining the mass and moment of inertia of each link, and estimating the mass parameter of the link.

一つの態様では、前記説明変数の選択は、身体の各部位の寸法の測定データを主成分分析するステップと、各変数と各主成分との相関を計算するステップと、第i主成分(i=1,…,N)ともっとも相関の強い変数を説明変数として選択するステップと、からなる。一つの態様では、前記説明変数は、転子高,上腕囲,足幅,肩峰幅,ボール幅からなる群から選ばれた一つ又は複数である。 In one aspect, the selection of the explanatory variables includes a step of performing principal component analysis on measurement data of dimensions of each part of the body, a step of calculating a correlation between each variable and each principal component, and an i-th principal component (i = 1,..., N) and selecting a variable having the strongest correlation as an explanatory variable. In one embodiment, the explanatory variable is one or a plurality selected from the group consisting of trochanter height, upper arm circumference, foot width, shoulder width, and ball width.

一つの態様では、前記目的変数の値を推定するステップは、選択された説明変数を計測するステップと、目的変数を説明変数との単回帰で推定するステップと、からなる。他の態様では、前記目的変数の値を推定するステップは、複数の選択された説明変数を計測するステップと、目的変数を複数の説明変数との重回帰で推定するステップと、からなる。 In one aspect, the step of estimating the value of the objective variable includes a step of measuring the selected explanatory variable and a step of estimating the objective variable by simple regression with the explanatory variable. In another aspect, the step of estimating the value of the objective variable includes a step of measuring a plurality of selected explanatory variables and a step of estimating the objective variable by multiple regression with the plurality of explanatory variables.

後述の実施形態では、
老若男女300人分の人体各部49箇所の寸法と三次元形状データを計測した人体寸法データベースを用いている(本研究では青年男子100人分)。測定データを主成分分析し、49の各変数と各主成分との相関を計算する。ここで、各主成分が体の特徴を表している。
第i主成分(i=1,…,N)(各特徴)ともっとも相関の強い変数を一つずつ代表として計測する。計測しない変数は寄与する特徴を代表する変数との単回帰で推定する。
In the embodiment described below,
It uses a human body size database that measures the dimensions and 3D shape data of 49 human body parts for 300 men and women of all ages (in this study, 100 boys). Principal component analysis is performed on the measured data, and the correlation between 49 variables and each principal component is calculated. Here, each main component represents a feature of the body.
The i-th principal component (i = 1,..., N) (each feature) and the variable having the strongest correlation are measured as one representative. Variables that are not measured are estimated by simple regression with variables that represent the contributing features.

前記剛体リンク機構モデルにおいて、各リンクは所定の立体形状に近似されており、前記立体形状の体積が前記変数から算出可能である。好ましい態様では、前記立体形状は、楕円柱、円柱、直方体、楕円錐台、円錐台の少なくとも一つを含む。また、本発明における剛体リンク機構モデルには、ヒューマノイド程度のものからより詳細な筋骨格モデルまで含まれる。また、剛体リンク機構モデルの対象は人間の身体(ヒト身体モデル)に限定されるものではなく、適切なデータベースが存在するならば、動物の身体を対象としてもよい。 In the rigid link mechanism model, each link is approximated to a predetermined three-dimensional shape, and the volume of the three-dimensional shape can be calculated from the variables. In a preferred aspect, the three-dimensional shape includes at least one of an elliptic cylinder, a cylinder, a rectangular parallelepiped, an elliptic frustum, and a truncated cone. Further, the rigid body link mechanism model in the present invention includes those from the level of a humanoid to a more detailed musculoskeletal model. The target of the rigid link mechanism model is not limited to the human body (human body model), and an animal body may be used as long as an appropriate database exists.

本発明によれば、被験者の身体の一部の寸法を測定するだけで、当該被験者に特有の剛体リンク機構モデルの各リンクの質量パラメータを推定することができる。本発明を用いることにより、身体各部位の寸法を含むデータベースと、被験体の身体の数箇所を計測したデータを用いて比較的高精度に各部位の質量・慣性モーメントパラメータを推定することができる。身体各部位の寸法を含むデータベースを解析した結果、いくつかの寸法のグループについては高い相関があることがわかっているので、適切な部位の寸法を計測することで他の部位の寸法を高精度に推定することができる。このようにして得られたセグメント長・セグメント径を用いて身体形状を楕円柱・直方体等で近似して体積を計算するため、質量・慣性モーメントはプロポーションの個人差を反映したものとなる。 According to the present invention, it is possible to estimate the mass parameter of each link of the rigid link mechanism model unique to the subject simply by measuring the size of a part of the subject's body. By using the present invention, it is possible to estimate the mass / inertia moment parameters of each part with relatively high accuracy using a database including the dimensions of each part of the body and data obtained by measuring several parts of the body of the subject. . As a result of analyzing a database containing the dimensions of each part of the body, it has been found that there is a high correlation for some groups of dimensions, so the dimensions of other parts can be accurately measured by measuring the dimensions of appropriate parts. Can be estimated. Since the volume is calculated by approximating the body shape with an elliptical cylinder, a rectangular parallelepiped and the like using the segment length and the segment diameter obtained in this way, the mass and the moment of inertia reflect individual differences in proportion.

本研究ではある特定の部位の特定の長さを測定することによって他の部位の長さを推定することを目的として、人体寸法データベースの解析を行った。使用したデータベースは日本人青年層217人と高齢者101人の計318人分(内300人分が有効)の人体各部49箇所の寸法と三次元形状データを計測したものである(人体寸法データベース
1997-98、産業技術総合研究所デジタルヒューマン研究センター)。各リンクの長さおよび周長を計測したものが主な内容となっている。本研究ではこのデータベースの中から青年男子110人(内109人分が有効)のデータを解析した。
In this study, we analyzed the human body size database for the purpose of estimating the length of other sites by measuring the specific length of a specific site. The database used was a measurement of the dimensions and three-dimensional shape data of 49 parts of the human body for a total of 318 people (of which 300 people are effective) of 217 Japanese adolescents and 101 elderly people (a human body size database)
1997-98, Digital Human Research Center, National Institute of Advanced Industrial Science and Technology. The main content is the measurement of the length and circumference of each link. In this study, data from 110 young men (of which 109 were valid) were analyzed from this database.

49箇所の各部は次のとおりである。体重;身長;腸骨棘高;肩峰幅;頭長;頭幅;乳頭位胸囲;ウエスト囲;下腿最大囲;ボール角度;ボール幅(間接);大腿骨顆間幅;上腕骨顆間幅;腸骨稜幅;下腿内側皮下脂肪厚;腸骨稜上縁高;外不踏長(間接);足幅、斜(間接);足囲;足長(間接);前腕最大囲;前腕長;手幅;手長(手首の皺から);手長(橈骨茎突点−指先点);手厚;踵幅(間接);殿囲;内不踏長(間接);大腿骨外側上顆高;外果高;最大身長;内果高;肩甲骨下角部皮下脂肪厚;腸骨棘部皮下脂肪厚;胸骨上縁高;恥骨結合上縁高;大腿囲;第1指側角度;第5指側角度;全頭高;上腕三頭筋部皮下脂肪厚;転子高;上腕囲;上腕屈曲囲;上腕長;上肢長;最小胴幅;胴囲高。各計測項目の定義、計測方法、計測されたデータ編集の方法などは、データベース付属のマニュアルを参照することができる。尚、本発明に関連するデータベースの分析において、身体の特徴を表すこれらの部位は例示列挙であり、データベースに他の部位の測定値が含まれていてもよく、あるいは、データベースが前掲部位の一部の測定値から構成されていてもよい。要は、身体を剛体リンク機構でモデル化した場合に、各リンクの体積を算出するために必要な寸法(変数)が含まれていれば良い。 The 49 parts are as follows. Body weight; height; iliac spine height; shoulder width; head length; head width; papillary chest circumference; waist circumference; maximum leg circumference; ball angle; ball width (indirect); Iliac crest width; inner crus subcutaneous fat thickness; iliac crest upper edge height; external tread length (indirect); foot width, oblique (indirect); foot circumference; foot length (indirect); forearm maximum circumference; forearm length ; Hand width; hand length (from wrist heel); hand length (radial stalk protrusion-fingertip point); hand thickness; heel width (indirect); buttocks; inner tread length (indirect); femoral epicondylar height; Maximum height; Internal height; Subscapular subcutaneous fat thickness; Ilium spine subcutaneous fat thickness; Sternal upper edge height; Pubic bone upper edge height; Thigh circumference; First finger side angle; Side angle; total head height; triceps subcutaneous fat thickness; trochanter height; upper arm circumference; upper arm flexion circumference; upper arm length; upper limb length; minimum waist width; You can refer to the manual attached to the database for the definition of each measurement item, the measurement method, and the method for editing the measured data. It should be noted that in the analysis of the database related to the present invention, these parts representing body characteristics are listed as examples, and the database may include measured values of other parts, or the database may include one of the above-mentioned parts. It may consist of measured values of the part. In short, it is sufficient if dimensions (variables) necessary for calculating the volume of each link are included when the body is modeled by a rigid link mechanism.

データベースの分析について説明する。データベースについて主成分分析を行う。まず49変数から主成分分析により特徴量を抽出する。まず測定データ全体の行列をXorg∈R109x49として、各変数に関して平均値を0、分散を1と標準化し、データ行列X(tilde)を求める。以下標準化されたデータ行列X(tilde)に関する相関係数行列をR、その固有値をλとしたときの寄与率Cを元に検討し、どの変数が各主成分に対してもっとも相関が大きいかを考察する。図1は109人分のサンプルを第1主成分と第2主成分の主成分空間に写像したものである。なお第i主成分Ciを求める式は式(1)である。
式(1)で得た結果を累積寄与率が80%を超えるまで記述した結果が表1である。
以下の表2(第1主成分),表3(第2主成分),表4(第3主成分)で主成分と各変数の因子負荷量を記す。表5は、これら第1主成分〜第3主成分から比較的独立した変数を示している。
Describe database analysis. Perform principal component analysis on the database. First, feature quantities are extracted from 49 variables by principal component analysis. First, the matrix of the entire measurement data is set to X org ∈R 109 × 49 , and the average value for each variable is normalized to 0 and the variance is standardized to obtain a data matrix X (tilde). The following is a study based on the contribution coefficient C when the correlation coefficient matrix for the standardized data matrix X (tilde) is R and its eigenvalue is λ, and which variable is most correlated with each principal component. Consider. FIG. 1 shows a sample of 109 people mapped onto the principal component space of the first principal component and the second principal component. The equation for obtaining the i-th principal component C i is Equation (1).
Table 1 shows the results obtained by the expression (1) until the cumulative contribution ratio exceeds 80%.
Table 2 (first principal component), Table 3 (second principal component), and Table 4 (third principal component) below describe the principal component and the factor loading of each variable. Table 5 shows variables relatively independent of these first to third principal components.

第1主成分は身長や転子高、上肢長、胴囲高、大腿骨外側上顆高など高さ方向の大きさを表しており。第2主成分は上腕囲、ウエスト囲、最小胴囲、上腕三頭筋部皮脂厚など太さを表していると考えられる。また第3主成分は足幅、足囲、手幅など手足の大きさを表していると考えられる。 The first principal component represents the size in the height direction such as height, trochanter height, upper limb length, waist circumference, and femoral lateral epicondylar height. The second main component is considered to represent thickness such as upper arm circumference, waist circumference, minimum waist circumference, and triceps sebum thickness. The third principal component is considered to represent the size of the limb such as the foot width, foot circumference, and hand width.

49変数は上記の3主成分に関与するものが多く、12変数以外は因子負荷量が第3主成分までのどれかに必ず0.5以上のものがあり、それらについては各主成分のうちもっとも因子負荷量が大きいものを用いて推定することにする。また残った12変数に関してもたとえば表5にあるように、ボール角度や第5指側角度、第1指側角度などはリンク質量に対する影響が少ないため、精度はさほど求めない。そのためそれら以外変数に対して計測箇所が少ないまま推定ができるように考察した結果、第5主成分までを考慮し、5箇所の計測から残りの45変数を推定する。 Many of the 49 variables are related to the above three principal components, and other than the 12 variables, there is always a factor loading of 0.5 or more in any of the first principal component up to the third principal component. The estimation is performed using a load with a large amount. As for the remaining 12 variables, as shown in Table 5, for example, the ball angle, the fifth finger side angle, the first finger side angle, etc. have little influence on the link mass, so the accuracy is not so much required. For this reason, the remaining 45 variables are estimated from the measurement of the five locations in consideration of the fifth principal component in consideration of the estimation so that the number of measurement locations can be reduced with respect to other variables.

次に、変数の推定について説明する。式(2)でx2mにあたる説明変数に第1主成分〜第5主成分各々に対し相関がもっとも大きかった転子高,上腕囲,足幅,肩峰幅,ボール幅を用い、残りの45変数をこれらの変数から推定する。 Next, variable estimation will be described. Using the trochanter height, upper arm circumference, foot width, shoulder width, and ball width that have the largest correlation for each of the first to fifth principal components as the explanatory variable corresponding to x 2m in Equation (2), the remaining 45 Variables are estimated from these variables.

方法は上記で用いた青年男子109人のうち、1人は除外し、適当に8人を選び、残りの100人から各変数に関して図3のように回帰直線を作成する。その回帰直線を用いてはじめに選んだ9人の各変数を推定し、実際の値と比較することにより、推定の妥当性を検証する。 The method excludes 1 out of 109 young boys used above, selects 8 appropriately, and creates a regression line for each variable from the remaining 100 as shown in FIG. The regression line is used to estimate the variables of the first nine selected, and the validity of the estimation is verified by comparing with the actual values.

なお回帰直線は選んだ上記の説明変数x2mと目的変数x1mの2変数の組み合わせ(x1m,x2m)それぞれに対してMATLABのpolyfit関数を用いて、
を最小に近似にする回帰直線P(x)を求めるという方法をとった。
The regression line can be selected using the MATLAB polyfit function for each combination of the selected explanatory variable x 2m and objective variable x 1m (x 1m , x 2m ).
The regression line P (x) that approximates to the minimum is obtained.

推定した2人の結果をサンプルとして以下の表6に示す。
The estimated results of two people are shown in Table 6 below as samples.

推定して求めた変数を用いて、リンク質量を推定する。リンク質量の推定は以下のステップからなる。 The link mass is estimated using the estimated variable. Link mass estimation consists of the following steps.

身体を剛体リンク機構でモデル化し、各リンクを所定の立体形状で近似する。各リンクおよび近似形状を表7及び図4に例示する。頭部は楕円ボール、首部は楕円柱、上腕は楕円柱、前腕肘部は楕円柱、前腕手首は楕円柱、手は楕円柱、大腿部は楕円柱、脛骨は楕円柱、腓骨は楕円柱、足は直方体、つま先は、直方体、胸部は楕円柱、上半身は楕円柱、腰部は楕円柱、である。各リンクを近似する立体形状としては、楕円柱、円柱、直方体、楕円体、球、楕円錐台、円錐台、が例示される。各リンクを近似する立体形状は、測定された変数、推定された変数からその体積が計算できる形状である。大腿リンクの体積計算例について説明する。大腿リンクは楕円柱で近似される。楕円柱の高さは、転子高−大腿骨外側上顆高から求められる。楕円柱の周囲を大腿囲とみなして半径を計算する。前記高さと半径を用いて体積を計算する。他のリンクの体積についても、類似の手法によって計算することができる。
The body is modeled by a rigid link mechanism, and each link is approximated by a predetermined three-dimensional shape. Each link and approximate shape are illustrated in Table 7 and FIG. Elliptical ball at the head, elliptical column at the neck, elliptical column at the upper arm, elliptical column at the forearm elbow, elliptical column at the forearm wrist, elliptical column at the hand, elliptical column at the thigh, elliptical column at the tibia, elliptical column at the rib The legs are rectangular parallelepiped, the toes are rectangular parallelepiped, the chest is an elliptical column, the upper body is an elliptical column, and the waist is an elliptical column. Examples of the three-dimensional shape that approximates each link include an elliptic cylinder, a cylinder, a rectangular parallelepiped, an ellipsoid, a sphere, an elliptic frustum, and a truncated cone. The three-dimensional shape that approximates each link is a shape whose volume can be calculated from the measured and estimated variables. An example of thigh link volume calculation will be described. The thigh link is approximated by an elliptic cylinder. The height of the elliptical column is obtained from the trochanter height−the lateral epicondyle height of the femur. The radius is calculated by regarding the circumference of the elliptical column as the thigh circumference. The volume is calculated using the height and radius. The volume of other links can be calculated by a similar method.

所定の立体形状に近似した各リンクの体積を、測定された変数、推定された変数から計算する。計算された各リンクの体積を足し合わせて身体全体の総体積を計算する。 The volume of each link approximated to a predetermined three-dimensional shape is calculated from the measured and estimated variables. The total volume of each body is calculated by adding the calculated volumes of each link.

総体積を、被験者の体重(実測値)で割って比重を計算する。各リンク体積に比重を掛けて各リンク質量を求める。また、各リンクの質量が得られることで、各リンクの慣性モーメントを計算することができる。 The specific gravity is calculated by dividing the total volume by the subject's body weight (actual value). Multiply each link volume by specific gravity to determine each link mass. Further, by obtaining the mass of each link, the moment of inertia of each link can be calculated.

本発明は、剛体リンク機構でモデル化した人体において、各リンクの質量パラメータを推定することに利用可能である。 The present invention can be used to estimate the mass parameter of each link in a human body modeled by a rigid link mechanism.

109人のサンプルを第1主成分と第2主成分の主成分空間に写像した図である。It is the figure which mapped the sample of 109 people to the principal component space of the 1st principal component and the 2nd principal component. 第1主成分に関連する各部位を示す図である。It is a figure which shows each site | part relevant to a 1st main component. 転子高と腸骨棘高との相関を示す図である。It is a figure which shows the correlation with a trochanter height and iliac spine height. 剛体リンク機構モデルを示す図である。It is a figure which shows a rigid body link mechanism model.

Claims (7)

身体の各部位の寸法を表す変数から説明変数を選択し、他の変数を目的変数として、説明変数の実測値に基づいて目的変数の値を推定するステップと、
剛体リンク機構でモデル化した身体の各リンクの体積を前記説明変数及び前記目的変数の少なくとも一部を用いて算出し、身体の総体積と体重とから比重を算出し、算出された比重から各リンクの質量及び慣性モーメントを求めるステップと、
を備えたリンクの質量パラメータの推定法。
Selecting an explanatory variable from variables representing the dimensions of each part of the body, using the other variables as objective variables, and estimating the value of the objective variable based on the measured values of the explanatory variables;
The volume of each link of the body modeled by the rigid body link mechanism is calculated using at least a part of the explanatory variable and the objective variable, the specific gravity is calculated from the total body volume and the body weight, and each volume is calculated from the calculated specific gravity. Determining the mass and moment of inertia of the link;
Method for estimating mass parameters of links with
前記説明変数の選択は、
身体の各部位の寸法の測定データを主成分分析するステップと、
各変数と各主成分との相関を計算するステップと、
第i主成分(i=1,…,N)ともっとも相関の強い変数を説明変数として選択するステップと、
からなる、請求項1に記載の推定法。
The selection of the explanatory variable is
Performing principal component analysis of measurement data of dimensions of each part of the body;
Calculating a correlation between each variable and each principal component;
Selecting a variable having the strongest correlation with the i-th principal component (i = 1,..., N) as an explanatory variable;
The estimation method according to claim 1, comprising:
前記目的変数の値を推定するステップは、
選択された説明変数を計測するステップと、
目的変数を説明変数との単回帰で推定するステップと、
からなる、請求項1,2いずれかに記載の推定法。
Estimating the value of the objective variable comprises:
Measuring the selected explanatory variable;
Estimating the objective variable by simple regression with explanatory variables;
The estimation method according to claim 1, comprising:
前記目的変数の値を推定するステップは、
複数の選択された説明変数を計測するステップと、
目的変数を複数の説明変数との重回帰で推定するステップと、
からなる、請求項1,2いずれかに記載の推定法。
Estimating the value of the objective variable comprises:
Measuring a plurality of selected explanatory variables;
Estimating an objective variable by multiple regression with multiple explanatory variables;
The estimation method according to claim 1, comprising:
前記説明変数は、転子高、上腕囲、足幅、肩峰幅、ボール幅からなる群から選ばれた一つ又は複数である、請求項1乃至4いずれかに記載の推定法。   The estimation method according to claim 1, wherein the explanatory variable is one or more selected from the group consisting of trochanter height, upper arm circumference, foot width, shoulder width, and ball width. 前記剛体リンク機構モデルにおいて、各リンクは所定の立体形状に近似されており、前記立体形状の体積が前記変数から算出可能である、請求項1乃至5いずれかに記載の推定法。   The estimation method according to claim 1, wherein in the rigid link mechanism model, each link is approximated to a predetermined three-dimensional shape, and a volume of the three-dimensional shape can be calculated from the variable. 前記立体形状は、楕円柱、円柱、直方体、楕円錐台、円錐台の少なくとも一つを含む、請求項6に記載の推定法。   The estimation method according to claim 6, wherein the three-dimensional shape includes at least one of an elliptic cylinder, a cylinder, a rectangular parallelepiped, an elliptic frustum, and a truncated cone.
JP2006258581A 2006-09-25 2006-09-25 Method for estimating link mass parameters. Active JP5061344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258581A JP5061344B2 (en) 2006-09-25 2006-09-25 Method for estimating link mass parameters.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258581A JP5061344B2 (en) 2006-09-25 2006-09-25 Method for estimating link mass parameters.

Publications (2)

Publication Number Publication Date
JP2008077551A true JP2008077551A (en) 2008-04-03
JP5061344B2 JP5061344B2 (en) 2012-10-31

Family

ID=39349514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258581A Active JP5061344B2 (en) 2006-09-25 2006-09-25 Method for estimating link mass parameters.

Country Status (1)

Country Link
JP (1) JP5061344B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147875A1 (en) * 2008-06-04 2009-12-10 国立大学法人 東京大学 Mechanical parameter identification method
WO2011111276A1 (en) * 2010-03-09 2011-09-15 パナソニック電工株式会社 Article design support device, server device, and program
JP2011255474A (en) * 2010-06-10 2011-12-22 Univ Of Tokyo Method and device for generation of action/posture using inverse kinematics

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249708A (en) * 1987-03-31 1988-10-17 日本電気ホームエレクトロニクス株式会社 Method for estimating dimension of body shape
JP2001155050A (en) * 1999-11-30 2001-06-08 Sekisui Chem Co Ltd Design support system
JP2001273474A (en) * 2000-01-20 2001-10-05 Idemitsu Kosan Co Ltd Analytical value estimating method and computer readable recording medium recording program for executing the same
JP2003039356A (en) * 2001-07-30 2003-02-13 Univ Tokyo High speed calculation method for link system dynamics
JP2003339673A (en) * 2002-05-29 2003-12-02 Japan Science & Technology Corp Biomechanic calculation method, biomechanic calculation program and recording medium with the program recorded thereon, biomechanic model and recording medium with the model data recorded thereon
JP2004013474A (en) * 2002-06-06 2004-01-15 Japan Science & Technology Corp Body model creation method, body model creation program, storage medium storing it, storage medium storing body model data
WO2005122900A1 (en) * 2004-06-16 2005-12-29 The University Of Tokyo Mascular strength acquiring method and device based on musculo skeletal model

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249708A (en) * 1987-03-31 1988-10-17 日本電気ホームエレクトロニクス株式会社 Method for estimating dimension of body shape
JP2001155050A (en) * 1999-11-30 2001-06-08 Sekisui Chem Co Ltd Design support system
JP2001273474A (en) * 2000-01-20 2001-10-05 Idemitsu Kosan Co Ltd Analytical value estimating method and computer readable recording medium recording program for executing the same
JP2003039356A (en) * 2001-07-30 2003-02-13 Univ Tokyo High speed calculation method for link system dynamics
JP2003339673A (en) * 2002-05-29 2003-12-02 Japan Science & Technology Corp Biomechanic calculation method, biomechanic calculation program and recording medium with the program recorded thereon, biomechanic model and recording medium with the model data recorded thereon
JP2004013474A (en) * 2002-06-06 2004-01-15 Japan Science & Technology Corp Body model creation method, body model creation program, storage medium storing it, storage medium storing body model data
WO2005122900A1 (en) * 2004-06-16 2005-12-29 The University Of Tokyo Mascular strength acquiring method and device based on musculo skeletal model

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147875A1 (en) * 2008-06-04 2009-12-10 国立大学法人 東京大学 Mechanical parameter identification method
JP5288418B2 (en) * 2008-06-04 2013-09-11 国立大学法人 東京大学 Identification of mechanical parameters
WO2011111276A1 (en) * 2010-03-09 2011-09-15 パナソニック電工株式会社 Article design support device, server device, and program
JP2011255474A (en) * 2010-06-10 2011-12-22 Univ Of Tokyo Method and device for generation of action/posture using inverse kinematics

Also Published As

Publication number Publication date
JP5061344B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
Robert-Lachaine et al. Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis
Sanada et al. Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults
Durkin et al. Analysis of body segment parameter differences between four human populations and the estimation errors of four popular mathematical models
Redl et al. Sensitivity of muscle force estimates to variations in muscle–tendon properties
Whatman et al. Kinematics during lower extremity functional screening tests–are they reliable and related to jogging?
Frey-Law et al. Knee and elbow 3D strength surfaces: peak torque-angle-velocity relationships
Ibegbu et al. Association of hand length with height in Nigerian school children
Bauer et al. MRI-derived body segment parameters of children differ from age-based estimates derived using photogrammetry
Goislard de Monsabert et al. A scaling method to individualise muscle force capacities in musculoskeletal models of the hand and wrist using isometric strength measurements
Schellenberg et al. Robustness of kinematic weighting and scaling concepts for musculoskeletal simulation
Ruff Quantifying skeletal robusticity
Ibegbu et al. Hand length as a determinat of height in school children
Mudie et al. A comparison of vertical stiffness values calculated from different measures of center of mass displacement in single-leg hopping
JP5061344B2 (en) Method for estimating link mass parameters.
De Roeck et al. Statistical modeling of lower limb kinetics during deep squat and forward lunge
De Roeck et al. Statistical-Shape Prediction of Lower Limb Kinematics During Cycling, Squatting, Lunging, and Stepping—Are Bone Geometry Predictors Helpful?
CN106063707A (en) The Functional evaluation method changed at three-dimensional space position based on each position of hands
Bakke et al. Shape-model scaled gait models can neglect segment markers without consequential change to inverse kinematics results
Fritz et al. Anthropometric influences on dynamic foot shape: measurements of plantar three-dimensional foot deformation
Oberhofer et al. Anatomically-based musculoskeletal modeling: prediction and validation of muscle deformation during walking
Stewart et al. Anthropometry in physical performance and health
Gungor et al. Regression models for the erector spinae muscle mass (ESMM) cross-sectional area: asymptomatic populations
Gittoes et al. Component inertia modeling of segmental wobbling and rigid masses
Ibegbu et al. Height determination using hand length in Nigerian school children
Jena et al. Implementation of multiple regression technique for detection of gait asymmetry using experimental gait data

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150