JP2008076586A - Scanning optical device and image forming device - Google Patents

Scanning optical device and image forming device Download PDF

Info

Publication number
JP2008076586A
JP2008076586A JP2006253702A JP2006253702A JP2008076586A JP 2008076586 A JP2008076586 A JP 2008076586A JP 2006253702 A JP2006253702 A JP 2006253702A JP 2006253702 A JP2006253702 A JP 2006253702A JP 2008076586 A JP2008076586 A JP 2008076586A
Authority
JP
Japan
Prior art keywords
scanning optical
light source
light beam
light
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006253702A
Other languages
Japanese (ja)
Inventor
Atsushi Sano
敦史 佐野
Jiyunya Asami
純弥 阿左見
Hisamichi Kobayashi
久倫 小林
Kenji Shima
顕司 嶋
Mitsuhiro Ohara
光裕 尾原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006253702A priority Critical patent/JP2008076586A/en
Publication of JP2008076586A publication Critical patent/JP2008076586A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning optical device and an image forming device, capable of reducing color slurring by arranging direction of variation in irradiation position of each luminous flux on a photoreceptor caused by thermal deformation of each light source holding member generated by heat generation of each light source. <P>SOLUTION: To a housing member 30 containing: two or more semiconductor lasers 10Y to 10K; light source holding members for holding the semiconductor lasers; fixing members for fixation by energizing; a deflection scanning means 20 for performing deflection scanning with the luminous fluxes emitted from the semiconductor lasers; and two or more scanning optical systems which are located on the same side or both sides to a rotating shaft of the deflection scanning means 20 and perform scanning on the respective photoreceptors with each deflection-scanned luminous flux; in the scanning optical device S1 in which luminous fluxes reflected by two or more reflecting mirrors 26 exist, the positions of the two or more scanning optical systems with respect to the rotating shaft of the deflection scanning means 20, the number of the reflecting mirrors 26, and the energizing directions of the fixing members are set in order to make the irradiation positions on the photoreceptors of the respective luminous fluxes vary in the same direction when the light source holding members are tilted against the energizing force of the fixing members. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、カラーレザービームプリンタやカラーデジタル複写機等の画像形成装置及びこれに使用される走査光学装置に関するものである。   The present invention relates to an image forming apparatus such as a color laser beam printer or a color digital copying machine, and a scanning optical apparatus used therefor.

従来、走査光学装置は、画像信号に応じて光源から光変調されて出射した光束を、例えば回転多面鏡等の光偏向器によって周期的に偏向走査させ、fθ特性を有する結像光学系によって感光体上の結像面にスポット状に集束させる。走査光学装置を有する画像形成装置は、偏向器による主走査と、感光体の回転による副走査に伴って静電潜像を形成し、画像記録を行っている。   2. Description of the Related Art Conventionally, a scanning optical device periodically deflects and scans a light beam that has been light-modulated from a light source according to an image signal, for example, by an optical deflector such as a rotating polygon mirror, and is exposed by an imaging optical system having fθ characteristics. Focus in a spot shape on the image plane on the body. An image forming apparatus having a scanning optical device forms an electrostatic latent image in accordance with main scanning by a deflector and sub-scanning by rotation of a photosensitive member, and performs image recording.

タンデム式のカラーレーザープリンターにおいては、複数の感光体に対応する数の光束を感光体上に照射し、各色を重ね合わせることによりカラー画像を形成している。   In a tandem color laser printer, a number of light beams corresponding to a plurality of photosensitive members are irradiated onto the photosensitive member, and a color image is formed by superimposing the respective colors.

画像の重ね合わせを阻害する原因の一つとして、走査光学装置内の光源の発熱により光源保持部材の熱膨張により、光源保持部材が傾き、光束の感光体への照射位置がずれ、色ずれを発生させることがあり、その解決策の一例が特許文献1に記載されている。   As one of the causes of hindering image superposition, the light source holding member is inclined due to the heat expansion of the light source in the scanning optical device, the light source holding member is tilted, the irradiation position of the light beam on the photosensitive member is shifted, and color shift An example of a solution to this problem is described in Patent Document 1.

特開2004−138647号公報JP 2004-138647 A

しかしながら、特許文献1に記載の技術には次のような未解決の課題があった。   However, the technique described in Patent Document 1 has the following unsolved problems.

近年、カラーレザービームプリンタやカラーデジタル複写機等の画像形成装置は、更なる低コスト化、小型化が求められている。そこで、高額な部品であるスキャナーモーターを1つだけ用い、スキャナーモーターの回転軸に対し同一側のみ、又は両側に複数の独立した光束を走査する走査光学装置が提案されている。   In recent years, image forming apparatuses such as color leather beam printers and color digital copying machines have been required to be further reduced in cost and size. Accordingly, a scanning optical device has been proposed that uses only one expensive scanner motor and scans a plurality of independent light beams only on the same side or on both sides with respect to the rotation axis of the scanner motor.

このような走査光学装置は、装置全体を小型化するため、各光束を複数の折り返し手段で折り返しており、折り返し手段の個数が各光束とも同じ数になるとは限らない。また、このような走査光学装置において、光源部の発熱による光源部の熱変形に起因する各光束の感光体上の照射位置変動による色ずれが発生している。   In such a scanning optical apparatus, in order to reduce the size of the entire apparatus, each light beam is folded by a plurality of folding means, and the number of folding means is not always the same for each light flux. Further, in such a scanning optical device, color misregistration due to fluctuations in the irradiation position of each light beam on the photosensitive member due to thermal deformation of the light source unit due to heat generation of the light source unit occurs.

そこで本発明は、小型化、低コスト化を図れ、各光源の発熱によって発生する、各光源保持部材の熱変形による感光体上での各光束の照射位置の変動方向をそろえることができ、色ずれを低減できる走査光学装置及び画像形成装置を提供することを目的とする。   Therefore, the present invention can achieve downsizing and cost reduction, and can align the variation direction of the irradiation position of each light beam on the photosensitive member due to the thermal deformation of each light source holding member caused by the heat generation of each light source. It is an object of the present invention to provide a scanning optical device and an image forming apparatus that can reduce the deviation.

上記課題を解決するために本発明に係る走査光学装置の代表的な構成は、複数の光源と、前記光源を保持する光源保持部材と、前記光源から出射した光束を偏向走査する偏向走査手段と、該偏向走査手段の回転軸に対し同一側のみ、又は両側に配設され、前記偏向走査手段により偏向走査された光束を、各光束毎に別個の感光体上に走査する複数の走査光学系と、前記光源保持部材と前記偏向走査手段と前記複数の走査光学系とを内包するハウジング部材と、前記光源保持部材を前記ハウジング部材に対し前記偏向走査手段の回転軸の方向に付勢して固定する付勢手段と、を有し、前記複数の走査光学系は、光束を折り返す光束折り返し手段を各光束毎に有し、少なくとも複数の光束折り返し手段で折り返される光束が存在する走査光学装置において、前記複数の走査光学系の前記偏向走査手段の回転軸に対する位置と、前記光束折り返し手段の枚数と、前記付勢手段の付勢方向を設定することにより、前記光源保持部材が前記付勢手段の付勢力に抗して傾いた際に、各光束の前記感光体上の照射位置の変動方向を同じ方向にすることを特徴とする。   In order to solve the above problems, a typical configuration of a scanning optical device according to the present invention includes a plurality of light sources, a light source holding member that holds the light sources, and deflection scanning means that deflects and scans a light beam emitted from the light sources. A plurality of scanning optical systems which are arranged on the same side or both sides with respect to the rotation axis of the deflection scanning means and scan the light beams deflected and scanned by the deflection scanning means on a separate photosensitive member for each light flux. And a housing member containing the light source holding member, the deflection scanning means, and the plurality of scanning optical systems, and urging the light source holding member with respect to the housing member in the direction of the rotation axis of the deflection scanning means. And a plurality of scanning optical systems each having a light beam folding means for folding the light beam, and at least a light beam folded by the plurality of light beam folding means is present. The light source holding member is attached to the light source holding member by setting the positions of the plurality of scanning optical systems with respect to the rotation axis of the deflection scanning means, the number of the light beam folding means, and the urging direction of the urging means. When tilted against the urging force of the urging means, the changing direction of the irradiation position of each light beam on the photosensitive member is set to the same direction.

上記課題を解決するために本発明に係る画像形成装置の構成は、前記走査光学装置と、前記走査光学装置により前記光束を結像走査される複数の感光体と、前記複数の感光体に形成された静電潜像をトナー像に可視像化する現像手段と、を有することを特徴とする。   In order to solve the above problems, an image forming apparatus according to the present invention includes a scanning optical device, a plurality of photoconductors that are image-scanned by the scanning optical device, and formed on the plurality of photoconductors. Developing means for visualizing the electrostatic latent image formed into a toner image.

本発明によれば、小型化、低コスト化が可能となるとともに、各光源の発熱によって発生する、各光源保持部材の熱変形による感光体上での各光束の照射位置の変動方向をそろえることができ、色ずれを低減できる。   According to the present invention, it is possible to reduce the size and cost, and to align the variation direction of the irradiation position of each light beam on the photoconductor due to the thermal deformation of each light source holding member generated by the heat generation of each light source. Color misregistration can be reduced.

[第一実施形態]
本発明に係る走査光学装置及び画像形成装置の第一実施形態について、図を用いて説明する。
[First embodiment]
A first embodiment of a scanning optical device and an image forming apparatus according to the present invention will be described with reference to the drawings.

(カラー画像形成装置)
図13は走査光学装置を具備したカラー画像形成装置の構成図である。図13に示すように、本実施形態のカラー画像形成装置Dは、走査光学装置S1を有するものである。画像情報に基づいて各々光変調された光束LY〜LKがハウジング部材30から出射し、各々対応する感光体40Y〜40Kの表面上を照射して静電潜像を形成する。感光体40Y〜40Kの表面は、一次帯電器43Y〜43Kによって各々一様に帯電している。
(Color image forming device)
FIG. 13 is a configuration diagram of a color image forming apparatus provided with a scanning optical device. As shown in FIG. 13, the color image forming apparatus D of the present embodiment has a scanning optical device S1. Light beams LY to LK light-modulated based on the image information are emitted from the housing member 30 and irradiated onto the surfaces of the corresponding photoreceptors 40Y to 40K to form electrostatic latent images. The surfaces of the photoreceptors 40Y to 40K are uniformly charged by the primary chargers 43Y to 43K, respectively.

感光体40Y〜40Kの表面上に形成された静電潜像は、現像手段である現像器44Y〜44Kによって各々シアン、マゼンタ、イエロー、ブラックのトナー像に可視像化される。一方、給送トレイに載置された転写材Pが給送ローラ45により給送され、転写ベルト49と感光体40とのニップ部へ搬送される。可視像化されたシアン、マゼンタ、イエロー、ブラックのトナー像は、各ニップ部において順に転写材P上に転写されてカラー画像が形成される。   The electrostatic latent images formed on the surfaces of the photoreceptors 40Y to 40K are visualized as cyan, magenta, yellow, and black toner images by developing units 44Y to 44K, which are developing units. On the other hand, the transfer material P placed on the feed tray is fed by the feed roller 45 and conveyed to the nip portion between the transfer belt 49 and the photoreceptor 40. The visualized cyan, magenta, yellow, and black toner images are sequentially transferred onto the transfer material P at each nip portion to form a color image.

駆動ローラ41は転写ベルト49の送りを精度良く行っており、回転ムラの小さな駆動モータ(図示せず)と接続している。転写材P上に形成されたカラー画像は、定着器47によって熱定着された後、排出ローラ48などによって装置外に排出される。   The drive roller 41 accurately feeds the transfer belt 49 and is connected to a drive motor (not shown) with little rotation unevenness. The color image formed on the transfer material P is thermally fixed by the fixing unit 47 and then discharged outside the apparatus by the discharge roller 48 or the like.

(走査光学装置)
まず、走査光学装置S1について説明する。図1〜図7に示すように、走査光学装置S1は、複数の光源(半導体レーザ11Y〜11K)と、前記光源を保持する光源保持部材13Y〜13Kと、前記光源から出射した光束を偏向走査する偏向走査手段20と、を有する。走査光学装置S1は、偏向走査手段20の回転軸20aに対し同一側のみ、又は両側に配設され、前記偏向走査手段20により偏向走査された光束LY〜LKを、各光束毎に別個の感光体40Y〜40K上に走査する複数の走査光学系を有する。走査光学装置S1は、光源保持部材13Y〜13Kと前記偏向走査手段20と前記複数の走査光学系とを内包するハウジング部材30を有する。走査光学装置S1は、光源保持部材13Y〜13Kを前記ハウジング部材30に対し前記偏向走査手段20の回転軸20aの方向に付勢して固定する付勢手段(固定部材15Y〜15K)を有する。前記複数の走査光学系は、光束を折り返す光束折り返し手段(折り返しミラー26Y1〜26K2)を各光束毎に有し、少なくとも複数の光束折り返し手段で折り返される光束が存在する。前記複数の走査光学系の前記偏向走査手段20の回転軸20aに対する位置と、前記光束折り返し手段の枚数と、前記付勢手段の付勢方向を設定する。これにより、前記光源保持部材13が前記付勢手段の付勢力に抗して傾いた際に、各光束の前記感光体40上の照射位置の変動方向を同じ方向にする。
(Scanning optical device)
First, the scanning optical device S1 will be described. As shown in FIGS. 1 to 7, the scanning optical device S1 deflects and scans a plurality of light sources (semiconductor lasers 11Y to 11K), light source holding members 13Y to 13K that hold the light sources, and light beams emitted from the light sources. And deflection scanning means 20 for performing the above. The scanning optical device S1 is disposed only on the same side or on both sides with respect to the rotation shaft 20a of the deflection scanning unit 20, and the light beams LY to LK deflected and scanned by the deflection scanning unit 20 are separately sensitized for each light beam. It has a plurality of scanning optical systems for scanning on the bodies 40Y to 40K. The scanning optical device S1 includes a housing member 30 that includes light source holding members 13Y to 13K, the deflection scanning unit 20, and the plurality of scanning optical systems. The scanning optical device S1 has urging means (fixing members 15Y to 15K) for urging and fixing the light source holding members 13Y to 13K to the housing member 30 in the direction of the rotation shaft 20a of the deflection scanning means 20. Each of the plurality of scanning optical systems has a light beam folding means (folding mirrors 26Y1 to 26K2) for folding the light beam for each light beam, and at least a light beam that is folded by the plurality of light beam folding means exists. The positions of the plurality of scanning optical systems with respect to the rotation shaft 20a of the deflection scanning means 20, the number of the light beam folding means, and the urging direction of the urging means are set. Thereby, when the light source holding member 13 is tilted against the urging force of the urging means, the variation direction of the irradiation position of each light beam on the photosensitive member 40 is set to the same direction.

図1(a)は本実施形態に係る走査光学装置S1の斜視図である。図2は偏向走査手段20で偏向された光束の経路を示す図である。図3は偏向走査手段20に入射する光束の経路を示す断面図である。   FIG. 1A is a perspective view of the scanning optical device S1 according to this embodiment. FIG. 2 is a diagram showing the path of the light beam deflected by the deflection scanning means 20. FIG. 3 is a cross-sectional view showing the path of the light beam incident on the deflection scanning means 20.

図1(a)に示す走査光学装置S1は、タンデム方式のカラー画像形成装置に搭載されるユニットである。走査光学装置S1は、イエロー、マゼンダ、シアン、ブラックの各色に対応した感光体40Y、40M、40C、40Kに対して光走査を行う。以下の説明において、便宜上、各色に対応した走査光学系について、Yステーション、Mステーション、Cステーション、Kステーションと呼ぶこととする。   A scanning optical device S1 shown in FIG. 1A is a unit mounted on a tandem color image forming apparatus. The scanning optical device S1 performs optical scanning on the photoreceptors 40Y, 40M, 40C, and 40K corresponding to the colors yellow, magenta, cyan, and black. In the following description, for convenience, the scanning optical system corresponding to each color is referred to as a Y station, an M station, a C station, and a K station.

走査光学装置S1は、光源ユニット10Y〜10K、偏向走査手段20、ハウジング部材30を有する。図2に示すように、走査光学装置S1は、偏向走査手段20の回転軸20aに対して左側に第一走査光学系、右側に第二走査光学系を有する。   The scanning optical device S1 includes light source units 10Y to 10K, a deflection scanning unit 20, and a housing member 30. As shown in FIG. 2, the scanning optical device S1 has a first scanning optical system on the left side and a second scanning optical system on the right side with respect to the rotation shaft 20a of the deflection scanning means 20.

光源ユニット10Y、10M、10C、10Kは、半導体レーザ(光源)11Y、11M、11C、11K、コリメータレンズ12Y、12M、12C、12K、光源保持部材13Y、13M、13C、13K、側面14Y、14M、14C、14Kを有する。   The light source units 10Y, 10M, 10C, 10K are semiconductor lasers (light sources) 11Y, 11M, 11C, 11K, collimator lenses 12Y, 12M, 12C, 12K, light source holding members 13Y, 13M, 13C, 13K, side surfaces 14Y, 14M, 14C, 14K.

半導体レーザ11Y〜11Kは、画像情報に応じて独立して発光制御される4つの光源である。コリメータレンズ12Y〜12Kは、各々の半導体レーザ11Y〜11Kに対応している。光源保持部材13Y〜13Kは、半導体レーザ11Y〜11K、レンズ12Y〜12Kを精度よく保持する。   The semiconductor lasers 11Y to 11K are four light sources that are independently controlled to emit light according to image information. The collimator lenses 12Y to 12K correspond to the respective semiconductor lasers 11Y to 11K. The light source holding members 13Y to 13K hold the semiconductor lasers 11Y to 11K and the lenses 12Y to 12K with high accuracy.

偏向走査手段20は、半導体レーザ11Y〜11Kが出射した光束を走査レンズ側に反射する回転多面鏡21と、回転多面鏡21を回転させるモーター部20bを有する。   The deflection scanning unit 20 includes a rotary polygon mirror 21 that reflects the light beams emitted from the semiconductor lasers 11Y to 11K to the scanning lens side, and a motor unit 20b that rotates the rotary polygon mirror 21.

第一走査光学系、第二走査光学系は、第1走査レンズ23、24、第2走査レンズ25Y〜25K、折り返しミラー26Y1〜26K1、26M2、26C2(光束折り返し手段)、シリンドリカルレンズ27を有する。第一走査光学系(Yステーション、Mステーション)、第二走査光学系(Cステーション、Kステーション)は、それぞれ2つの独立した光束を走査する。   The first scanning optical system and the second scanning optical system include first scanning lenses 23 and 24, second scanning lenses 25Y to 25K, folding mirrors 26Y1 to 26K1, 26M2, and 26C2 (light beam folding means), and a cylindrical lens 27. The first scanning optical system (Y station, M station) and the second scanning optical system (C station, K station) each scan two independent light beams.

ハウジング部材30は、偏向走査手段20、走査レンズ23、24、25Y〜25K、折り返しミラー26Y1〜26K1、26M2、26C2を収納可能に構成されている。ハウジング部材30は、V字形状の固定部31Y、31M、31C、31Kを有している。   The housing member 30 is configured to accommodate the deflection scanning means 20, the scanning lenses 23, 24, 25Y to 25K, and the folding mirrors 26Y1 to 26K1, 26M2, and 26C2. The housing member 30 has V-shaped fixing portions 31Y, 31M, 31C, and 31K.

Yステーションにおいては、半導体レーザ11Yから出射された光束LYは、レンズ12Yにより略平行光化され、シリンドリカルレンズ27を通過し、偏向走査手段20により偏向される。偏向された光束LYは、第1走査レンズ23、第2走査レンズ25Yを通過した後、平面鏡の折り返しミラー26Y1によって感光体40Yに導かれ、走査線を描画する。   In the Y station, the light beam LY emitted from the semiconductor laser 11Y is made into substantially parallel light by the lens 12Y, passes through the cylindrical lens 27, and is deflected by the deflection scanning means 20. The deflected light beam LY passes through the first scanning lens 23 and the second scanning lens 25Y, and is then guided to the photoconductor 40Y by a folding mirror 26Y1 of a plane mirror, thereby drawing a scanning line.

Mステーションにおいては、半導体レーザ11Mから出射された光束は、レンズ12Mにより略平行光化され、レンズ27を通過して、偏向走査手段20により偏向される。偏向された光束LMは、第1走査レンズ23を通過した後、折り返しミラー26M1によって方向を変えられ、第2走査レンズ25Mを通過し、折り返しミラー26M2によって感光体40Mに導かれ、走査線を描画する。   In the M station, the light beam emitted from the semiconductor laser 11M is converted into substantially parallel light by the lens 12M, passes through the lens 27, and is deflected by the deflection scanning means 20. The deflected light beam LM passes through the first scanning lens 23, is changed in direction by the folding mirror 26M1, passes through the second scanning lens 25M, is guided to the photoconductor 40M by the folding mirror 26M2, and draws a scanning line. To do.

走査光学装置S1は、Yステーション、Mステーション側とCステーション、Kステーション側とで、光源ユニットの付勢方向を除いて略対称形状としている。CステーションはMステーションと類似の構成であり、KステーションはYステーションと類似の構成である。   The scanning optical device S1 has a substantially symmetrical shape except for the biasing direction of the light source unit on the Y station, M station side and C station, K station side. The C station has a configuration similar to the M station, and the K station has a configuration similar to the Y station.

第一走査光学系であるYステーションの折り返しミラー枚数は1枚、Mステーションの折り返しミラー枚数は2枚である。第二走査光学系であるCステーションの折り返しミラー枚数は2枚、Kステーションの折り返しミラー枚数は1枚である。   The number of folding mirrors in the Y station which is the first scanning optical system is one, and the number of folding mirrors in the M station is two. The number of folding mirrors in the C station, which is the second scanning optical system, is 2, and the number of folding mirrors in the K station is 1.

(光源ユニット10)
続いて各ステーションに対応する光源ユニット10について説明する。図4は光源ユニット取り付け部の構成図である。
(Light source unit 10)
Next, the light source unit 10 corresponding to each station will be described. FIG. 4 is a configuration diagram of the light source unit mounting portion.

図4に示すように、光源ユニット10Y〜10Kは、ハウジング部材30に設けられたV字形状の固定部31Y〜31Kに嵌合固定される。光源ユニット10Y〜10Kは、円筒形状の側面14Y〜14Kを固定部31Y〜31Kに突き当てた状態で、弾性機能を有する固定部材15Y、15M、15C、15Kにより付勢されている。   As shown in FIG. 4, the light source units 10 </ b> Y to 10 </ b> K are fitted and fixed to V-shaped fixing portions 31 </ b> Y to 31 </ b> K provided in the housing member 30. The light source units 10Y to 10K are urged by fixing members 15Y, 15M, 15C, and 15K having an elastic function in a state where the cylindrical side surfaces 14Y to 14K are abutted against the fixing portions 31Y to 31K.

固定部31Y〜31Kは、1つのレーザーユニットにつき光軸方向に2箇所設けられている。   The fixing portions 31Y to 31K are provided at two locations in the optical axis direction for one laser unit.

第一走査光学系の2つの光源ユニット10Y、10Mは、偏向走査手段20の回転軸方向に2段並んで配設されている。一方の光源ユニット10Yの固定部31Yの向きと他方の光源ユニット10Mの固定部31Mの向きは、偏向走査手段20の回転軸方向に対して互いに逆向きになる。つまり固定部材15Y、15Mによる付勢方向が互いに反対方向になる。   The two light source units 10Y and 10M of the first scanning optical system are arranged in two stages in the rotation axis direction of the deflection scanning means 20. The direction of the fixed portion 31Y of one light source unit 10Y and the direction of the fixed portion 31M of the other light source unit 10M are opposite to each other with respect to the rotation axis direction of the deflection scanning unit 20. That is, the urging directions by the fixing members 15Y and 15M are opposite to each other.

第二走査光学系の2つの光源ユニット10C、10Kも、第一走査光学系と同様に配設されているが、以下の点が異なる。   The two light source units 10C and 10K of the second scanning optical system are also arranged in the same manner as the first scanning optical system, except for the following points.

第一走査光学系の折り返しミラーの枚数が奇数枚となる光源ユニット10Yの付勢方向と、第二走査光学系の折り返しミラーの枚数が奇数枚となる光源ユニット10Kの付勢方向とは、互いに反対方向である。第一走査光学系の折り返しミラー枚数が偶数枚となる光源ユニット10Mの付勢方向と、第二走査光学系の折り返しミラー枚数が偶数枚となる光源ユニット10Cの付勢方向は、互いに反対方向である。   The biasing direction of the light source unit 10Y where the number of folding mirrors of the first scanning optical system is an odd number and the biasing direction of the light source unit 10K where the number of folding mirrors of the second scanning optical system are an odd number are mutually The opposite direction. The biasing direction of the light source unit 10M in which the number of folding mirrors of the first scanning optical system is an even number and the biasing direction of the light source unit 10C in which the number of folding mirrors of the second scanning optical system is an even number are opposite to each other. is there.

図5は各光源ユニット10の固定した状態を示す図である。図5は光源ユニット10が傾く前の状態を示す図である。図6は光源ユニット10が傾いた状態の図である。   FIG. 5 is a diagram showing a state in which each light source unit 10 is fixed. FIG. 5 is a view showing a state before the light source unit 10 is tilted. FIG. 6 is a view showing a state in which the light source unit 10 is tilted.

図5に示すように、半導体レーザ11の発熱により、この半導体レーザ11を圧入保持した光源保持部材13が熱膨張して変形する。半導体レーザ11近傍における光源保持部材13の熱膨張により、光源保持部材13は、固定部材15の付勢力に逆らって図5の状態から図6の状態に変形し、光源ユニット10が傾く。   As shown in FIG. 5, due to the heat generated by the semiconductor laser 11, the light source holding member 13 that press-fits the semiconductor laser 11 is thermally expanded and deformed. Due to thermal expansion of the light source holding member 13 in the vicinity of the semiconductor laser 11, the light source holding member 13 is deformed from the state of FIG. 5 to the state of FIG. 6 against the urging force of the fixing member 15, and the light source unit 10 is tilted.

ここで、光源ユニット10Y〜10Kが傾いた状態(図6の状態)における各光束LY〜LKの感光体40Y〜40K上での副走査方向照射位置の変動について説明する。   Here, the variation of the irradiation position of the light beams LY to LK on the photoreceptors 40Y to 40K in the state where the light source units 10Y to 10K are inclined (state of FIG. 6) will be described.

図7は光源ユニット10Y〜10Kが傾いた状態における各光束LY〜LKの感光体40Y〜40K上での副走査方向照射位置の変動を示す図である。図7において、実線で示す光束LY〜LKは、半導体レーザ11の発熱の影響を受けない光束LY〜LKの状態(図5の状態)を示す。鎖線で示す光束LYa〜LKaは、半導体レーザ11の発熱の影響を受けた状態の光束の変動状態(図6の状態)を示す。   FIG. 7 is a diagram illustrating fluctuations in irradiation positions of the light beams LY to LK on the photoreceptors 40Y to 40K in the sub-scanning direction when the light source units 10Y to 10K are inclined. In FIG. 7, light beams LY to LK indicated by solid lines indicate the states of the light beams LY to LK that are not affected by the heat generated by the semiconductor laser 11 (the state in FIG. 5). Light beams LYa to LKa indicated by chain lines indicate the fluctuation state of the light beam (the state shown in FIG. 6) in the state affected by the heat generated by the semiconductor laser 11.

Yステーションの光源ユニット10Yは、図6において矢印Y方向に傾くので、光束LYは、走査レンズ23、25Yを透過、及び1枚の折り返しミラー26Y1で折り返され、感光体上40Yで鎖線LYaの位置に変動する。   Since the light source unit 10Y of the Y station is tilted in the direction of the arrow Y in FIG. 6, the light beam LY is transmitted through the scanning lenses 23 and 25Y and is folded back by one folding mirror 26Y1, and the position of the chain line LYa is 40Y on the photoreceptor. Fluctuates.

Mステーションの光源ユニット10Mは、図6において矢印M方向に傾くので、光束LMは、走査レンズ23、25Mを透過、及び2枚の折り返しミラー26M1、26M2で折り返され、感光体上40Mで鎖線LMaの位置に変動する。   Since the light source unit 10M of the M station is tilted in the direction of arrow M in FIG. 6, the light beam LM is transmitted through the scanning lenses 23 and 25M and is folded by the two folding mirrors 26M1 and 26M2, and the chain line LMa is 40M on the photoreceptor. It fluctuates to the position.

Cステーションの光源ユニット10Cは、図6において矢印C方向に傾くので、光束LCは、走査レンズ24、25Cを透過、及び2枚の折り返しミラー26C1、26C2で折り返され、感光体上40Cで鎖線LCaの位置に変動する。   Since the light source unit 10C of the C station is tilted in the direction of arrow C in FIG. 6, the light beam LC is transmitted through the scanning lenses 24 and 25C and folded by the two folding mirrors 26C1 and 26C2, and the chain line LCa on the photosensitive member 40C. It fluctuates to the position.

Kステーションの光源ユニット10Kは、図6において矢印K方向に傾くので、光束LKは、走査レンズ24、25Kを透過、及び1枚の折り返しミラー26K1で折り返され、感光体上40Kで鎖線LKaの位置に変動数する。   Since the light source unit 10K of the K station is inclined in the direction of arrow K in FIG. 6, the light beam LK is transmitted through the scanning lenses 24 and 25K and is folded back by one folding mirror 26K1, and the position of the chain line LKa is 40K on the photoreceptor. The number of fluctuations.

よって感光体上での照射位置が4つのステーションで同じ方向に変動するので、半導体レーザ11Y〜11Kの発熱による光源保持部材13Y〜13Kの熱変形に起因する色ずれを低減できる。   Therefore, since the irradiation position on the photosensitive member varies in the same direction at the four stations, it is possible to reduce color misregistration caused by thermal deformation of the light source holding members 13Y to 13K due to heat generated by the semiconductor lasers 11Y to 11K.

以上説明したように、本実施形態は、偏向走査手段20の回転軸方向に対する走査方向、各半導体レーザ11Y〜11Kから出射される光束経路上の折り返しミラー26の枚数、光源保持部材13Y〜13Kの付勢方向とを組み合わせ規定する。これにより、半導体レーザ11Y〜11Kの発熱による光源保持部材13Y〜13Kの熱変形により発生する感光体上での照射位置の変動方向を4つのステーションで同じ方向にすることができる。このため、小型化、低コスト化のために採用される偏向走査手段20が1つで、偏向走査手段20を挟んで折り返しミラー26の枚数が異なる走査光学装置S1においても色ずれを低減できる。   As described above, in the present embodiment, the scanning direction with respect to the rotation axis direction of the deflection scanning unit 20, the number of the folding mirrors 26 on the light beam path emitted from each of the semiconductor lasers 11Y to 11K, and the light source holding members 13Y to 13K. It is defined in combination with the energizing direction. Thereby, the change direction of the irradiation position on the photoconductor generated by the thermal deformation of the light source holding members 13Y to 13K due to the heat generation of the semiconductor lasers 11Y to 11K can be made the same in the four stations. For this reason, it is possible to reduce the color misregistration even in the scanning optical device S1 in which the number of the folding mirrors 26 is different by sandwiching the deflection scanning unit 20 by using one deflection scanning unit 20 for miniaturization and cost reduction.

なお、本実施形態において、走査光学系は透過型のレンズと平面鏡による折り返しミラーにて構成しているが、光束折り返し手段として曲面ミラーを用いた構成であっても同様の効果を得られる。   In the present embodiment, the scanning optical system is constituted by a foldable mirror made up of a transmissive lens and a plane mirror, but the same effect can be obtained even if a curved mirror is used as the beam folding means.

また、光源ユニット10を予め角度をもたせ偏向走査手段20に入射する斜入射光学系においても、光源ユニット10Y〜10Kの付勢方向を調整することで、同様の効果を得ることができる。すなわち、図8に例示するように、半導体レーザ11の発熱による光源保持部材13の熱変形により発生する感光体上での照射位置の変動方向を4つのステーションで同じ方向にする。これにより、本実施形態の走査光学装置S1と同様の効果を得ることが出来る。   The same effect can be obtained by adjusting the urging directions of the light source units 10Y to 10K even in the oblique incidence optical system in which the light source unit 10 has an angle in advance and is incident on the deflection scanning unit 20. That is, as illustrated in FIG. 8, the variation direction of the irradiation position on the photosensitive member generated by the thermal deformation of the light source holding member 13 due to the heat generated by the semiconductor laser 11 is set to the same direction at the four stations. Thereby, the same effect as the scanning optical device S1 of the present embodiment can be obtained.

なお、図8においては、光源ユニット10の配置を図4において、10Yと10M、10Kと10Cを入れ替えて配置しているものの、付勢方向関係は図4と同様である。   In FIG. 8, the arrangement of the light source unit 10 is the same as that in FIG. 4 although the arrangement of 10Y and 10M, 10K and 10C in FIG.

[第二実施形態]
次に本発明に係る走査光学装置及び画像形成装置の第二実施形態について図を用いて説明する。図9は本実施形態に係る照射位置変動の説明図である。図10は本実施形態に係る光源ユニット取り付け部の構成図である。上記第一実施形態と説明の重複する部分については、同一の符号を付して説明を省略する。
[Second Embodiment]
Next, a second embodiment of the scanning optical device and the image forming apparatus according to the present invention will be described with reference to the drawings. FIG. 9 is an explanatory diagram of irradiation position fluctuation according to the present embodiment. FIG. 10 is a configuration diagram of a light source unit mounting portion according to the present embodiment. About the part which overlaps with said 1st embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図9に示すように、本実施形態の走査光学装置は、上記第一実施形態の走査光学装置S1に、折り返しミラー26Y2、26K2を加えて、折り返しミラーの枚数を、4ステーションとも偶数枚としたものである。なお、本実施形態では4ステーションとも偶数枚としたが、上記第一実施形態の走査光学装置S1から折り返しミラー26M2、26C2を省略して、折り返しミラーの枚数を、4ステーションとも奇数枚としてもよい。   As shown in FIG. 9, the scanning optical apparatus according to the present embodiment adds the folding mirrors 26Y2 and 26K2 to the scanning optical apparatus S1 according to the first embodiment, so that the number of folding mirrors is an even number for all four stations. Is. In this embodiment, the number of the four folding stations is an even number. However, the folding mirrors 26M2 and 26C2 may be omitted from the scanning optical device S1 of the first embodiment, and the number of the folding mirrors may be an odd number for all four stations. .

折り返しミラーの枚数を、4ステーションとも偶数枚とした場合の各光源ユニット10Y〜10Kの付勢方向について図10を用いて説明する。   The energizing directions of the light source units 10Y to 10K when the number of folding mirrors is an even number for all four stations will be described with reference to FIG.

第一走査光学系の2つの光源ユニット10Y、10Mの付勢方向を同一方向とし、第二走査光学系の2つの光源ユニット10C、10Kの付勢方向を同一方向にする。そして、第一走査光学系の光源ユニット10Y、10Mの付勢方向と第二走査光学系の光源ユニット10C、10Kの付勢方向を互いに反対方向になるようにする。   The urging directions of the two light source units 10Y and 10M of the first scanning optical system are the same direction, and the urging directions of the two light source units 10C and 10K of the second scanning optical system are the same direction. Then, the urging directions of the light source units 10Y and 10M of the first scanning optical system and the urging directions of the light source units 10C and 10K of the second scanning optical system are opposite to each other.

かかる構成における、各半導体レーザ11Y〜11Kの発熱による光源保持部材13の熱変形によって発生する感光体上での照射位置の変動方向を図9を用いて説明する。   The variation direction of the irradiation position on the photosensitive member, which is generated by the heat deformation of the light source holding member 13 due to the heat generated by each of the semiconductor lasers 11Y to 11K, will be described with reference to FIG.

図9において、実線で示す光束LY〜LKは、半導体レーザ11の発熱の影響を受けない光束LY〜LKの状態を示す。鎖線で示す光束LYa〜LKaは、半導体レーザ11の発熱の影響を受けた状態の光束の変動状態を示す。   In FIG. 9, light beams LY to LK indicated by solid lines indicate states of the light beams LY to LK that are not affected by the heat generated by the semiconductor laser 11. Light beams LYa to LKa indicated by chain lines indicate the fluctuation state of the light beam in the state affected by the heat generated by the semiconductor laser 11.

Yステーションの光束LYは、光源保持部材13の熱変形の影響により傾くので、走査レンズ23、25Yを透過し、2枚の折り返しミラー26Y1、26Y2で折り返され、感光体上40Yで鎖線LYaの位置に変動する。   Since the light beam LY of the Y station is tilted by the influence of thermal deformation of the light source holding member 13, it passes through the scanning lenses 23 and 25Y, is folded by the two folding mirrors 26Y1 and 26Y2, and is positioned on the photoconductor 40Y by the chain line LYa. Fluctuates.

Mステーション光束LMも、光源保持部材13の熱変形の影響により傾くので、走査レンズ23、25Mを透過し、2枚の折り返しミラー26M1、26M2で折り返され、感光体上40Mで鎖線LMaの位置に変動する。   Since the M station beam LM is also tilted due to the thermal deformation of the light source holding member 13, it passes through the scanning lenses 23 and 25M, is folded by the two folding mirrors 26M1 and 26M2, and is positioned at the position of the chain line LMa by 40M on the photoreceptor. fluctuate.

Cステーションの光束LCも、光源保持部材13の熱変形の影響により傾くので、走査レンズ24、25Cを透過し、2枚の折り返しミラー26C1、26C2で折り返され、感光体上40Cで鎖線LCaの位置に変動する。   Since the light beam LC of the C station is also tilted due to the influence of thermal deformation of the light source holding member 13, it passes through the scanning lenses 24 and 25C, is folded by the two folding mirrors 26C1 and 26C2, and is positioned on the photoconductor 40C by the position of the chain line LCa. Fluctuates.

Kステーション光束LKも、光源保持部材13の熱変形の影響により傾くので、走査レンズ24、25Mを透過し、2枚の折り返しミラー26M1、26M2で折り返され、感光体上40Mで鎖線LMaの位置に変動する。   Since the K station light beam LK is also tilted due to the influence of thermal deformation of the light source holding member 13, it passes through the scanning lenses 24 and 25M, is folded by the two folding mirrors 26M1 and 26M2, and is positioned at the position of the chain line LMa by 40M on the photoreceptor. fluctuate.

よって感光体上での照射位置が4つのステーションで同じ方向に変動するので、半導体レーザ11Y〜11Kの発熱による光源保持部材13Y〜13Kの熱変形に起因する色ずれを低減できる。   Therefore, since the irradiation position on the photosensitive member varies in the same direction at the four stations, it is possible to reduce color misregistration caused by thermal deformation of the light source holding members 13Y to 13K due to heat generated by the semiconductor lasers 11Y to 11K.

以上説明したように、光束折り返し手段の個数の偶奇に関わることなく色ずれを低減できるので、光束折り返し手段の個数を増やすことで、装置全体の小型化にも対応できる。   As described above, since the color shift can be reduced without being related to the even or odd number of the light beam folding means, the size of the entire apparatus can be reduced by increasing the number of the light beam folding means.

なお、本実施形態において、走査光学系は透過型のレンズと平面鏡による折り返しミラーにて構成しているが、光束折り返し手段として曲面ミラーを用いた構成であっても同様の効果を得られる。   In the present embodiment, the scanning optical system is constituted by a foldable mirror made up of a transmissive lens and a plane mirror, but the same effect can be obtained even if a curved mirror is used as the beam folding means.

また、光源ユニット10を予め角度をもたせ偏向走査手段20に入射する斜入射光学系においても、光源ユニット10Y〜10Kの付勢方向を調整することで、同様の効果を得ることができる。すなわち、図11に例示するように、半導体レーザ11の発熱による光源保持部材13の熱変形により発生する感光体上での照射位置の変動方向を4つのステーションで同じ方向にする。これにより、本実施形態の走査光学装置と同様の効果を得ることが出来る。   The same effect can be obtained by adjusting the urging directions of the light source units 10Y to 10K even in the oblique incidence optical system in which the light source unit 10 has an angle in advance and is incident on the deflection scanning unit 20. That is, as illustrated in FIG. 11, the variation direction of the irradiation position on the photosensitive member generated by the thermal deformation of the light source holding member 13 due to the heat generated by the semiconductor laser 11 is set to the same direction at the four stations. Thereby, the same effect as the scanning optical apparatus of this embodiment can be acquired.

なお、図11においては、光源ユニット10の配置を図10において、10Yと10M、10Kと10Cを入れ替えて配置しているものの、付勢方向関係は図10と同様である。   In FIG. 11, the arrangement of the light source unit 10 is the same as that in FIG. 10, although the arrangement of 10Y and 10M, 10K and 10C is replaced in FIG.

[第三実施形態]
次に本発明に係る走査光学装置及び画像形成装置の第三実施形態について図を用いて説明する。図12は本実施形態に係る照射位置変動の説明図である。上記第一実施形態と説明の重複する部分については、同一の符号を付して説明を省略する。
[Third embodiment]
Next, a third embodiment of the scanning optical device and the image forming apparatus according to the present invention will be described with reference to the drawings. FIG. 12 is an explanatory diagram of irradiation position fluctuation according to the present embodiment. About the part which overlaps with said 1st embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図12に示すように、本実施形態の走査光学装置は、偏向走査手段20の回転軸20aに対し、すべての光束を片側に走査する。この走査光学装置は、偏向走査手段20の回転軸20aに対し同一側に、光束折り返し手段である折り返しミラーが偶数枚のY〜Cステーションと奇数枚のKステーションとを混在して配置している。   As shown in FIG. 12, the scanning optical apparatus of the present embodiment scans all the light beams on one side with respect to the rotating shaft 20a of the deflection scanning means 20. In this scanning optical apparatus, on the same side with respect to the rotation axis 20a of the deflection scanning means 20, the folding mirror as the beam folding means is arranged in a mixture of an even number of Y to C stations and an odd number of K stations. .

折り返しミラー枚数が偶数枚であるY、M、Cステーションの光源ユニット10Y〜10Cと、奇数枚であるKステーションの光源ユニット10Kの付勢方向は、互いに反対方向になる。   The urging directions of the light source units 10Y to 10C of the Y, M, and C stations where the number of folding mirrors is an even number and the light source units 10K of the K station that is an odd number are opposite to each other.

各半導体レーザ11Y〜11Kの発熱による光源保持部材13の熱変形によって発生する感光体上での照射位置の変動方向を図12を用いて説明する。図12において、実線で示す光束LY〜LKは、半導体レーザ11の発熱の影響を受けない光束LY〜LKの状態を示す。鎖線で示す光束LYa〜LKaは、半導体レーザ11の発熱の影響を受けた状態の光束の変動状態を示す。   The variation direction of the irradiation position on the photosensitive member generated by the thermal deformation of the light source holding member 13 due to the heat generated by each of the semiconductor lasers 11Y to 11K will be described with reference to FIG. In FIG. 12, light beams LY to LK indicated by solid lines indicate states of the light beams LY to LK that are not affected by the heat generated by the semiconductor laser 11. Light beams LYa to LKa indicated by chain lines indicate the fluctuation state of the light beam in the state affected by the heat generated by the semiconductor laser 11.

Y、C、Mステーションの光束LY、LC、LMは、光源保持部材13の熱変形の影響により、実線の状態から鎖線の状態になり、偶数枚の折り返しミラー26Y1〜26C2で折り返され、図12中矢印Z方向に照射位置が変動する。   The light beams LY, LC, and LM of the Y, C, and M stations change from a solid line state to a chain line state due to the influence of thermal deformation of the light source holding member 13, and are folded by an even number of folding mirrors 26Y1 to 26C2. The irradiation position varies in the middle arrow Z direction.

Kステーションの光束Kは、光源保持部材13の熱変形の影響により、実線の状態から鎖線の状態になり、奇数枚の折り返しミラー26K1で折り返され、図12中矢印Z方向に照射位置が変動する。   The light beam K of the K station changes from a solid line state to a chain line state due to the influence of thermal deformation of the light source holding member 13, and is folded back by an odd number of folding mirrors 26K1, and the irradiation position varies in the direction of arrow Z in FIG. .

よって感光体上での照射位置が4つのステーションで同じ方向に変動するので、半導体レーザ11Y〜11Kの発熱による光源保持部材13Y〜13Kの熱変形に起因する色ずれを低減できる。   Therefore, since the irradiation position on the photosensitive member varies in the same direction at the four stations, it is possible to reduce color misregistration caused by thermal deformation of the light source holding members 13Y to 13K due to heat generated by the semiconductor lasers 11Y to 11K.

以上説明したように、光束折り返し手段の個数に関わることなく色ずれを低減できる。また、偏向走査手段20の回転軸20aに対し、すべての光束を片側に走査することで、装置全体の小型化、低コスト化が可能になる。   As described above, color misregistration can be reduced regardless of the number of light beam folding means. Further, by scanning all the light beams on one side with respect to the rotating shaft 20a of the deflection scanning means 20, the entire apparatus can be reduced in size and cost.

なお、本実施形態において、走査光学系は透過型のレンズと平面鏡による折り返しミラーにて構成しているが、光束折り返し手段として曲面ミラーを用いた構成であっても同様の効果を得られる。   In the present embodiment, the scanning optical system is constituted by a foldable mirror made up of a transmissive lens and a plane mirror, but the same effect can be obtained even if a curved mirror is used as the beam folding means.

また、光源ユニット10を予め角度をもたせ偏向走査手段20に入射する斜入射光学系においても、同様の効果を得ることが出来る。   The same effect can also be obtained in an oblique incidence optical system in which the light source unit 10 is angled in advance and enters the deflection scanning means 20.

また、本実施形態では偏向走査手段20に回転多面鏡21を有するスキャナーモーターを想定しているが、ガルバノミラーを用いてもよい。   In the present embodiment, a scanner motor having a rotary polygon mirror 21 in the deflection scanning unit 20 is assumed, but a galvanometer mirror may be used.

なお、本発明は、上記第一〜第三実施形態に限定されるものではない。例えば、下記の条件を具備した走査光学装置であればよい。   The present invention is not limited to the first to third embodiments. For example, any scanning optical device having the following conditions may be used.

偏向走査手段20の回転軸20aに対し同一側に配設された走査光学系において、
奇数枚の光束折り返し手段によって奇数回折り返される光束に対応する前記光源保持部材と、偶数枚の光束折り返し手段によって偶数回折り返される光束に対応する前記光源保持部材とは、反対方向に付勢され、
奇数枚の光束折り返し手段によって奇数回折り返される光束に対応する前記光源保持部材同士又は偶数枚の光束折り返し手段によって偶数回折り返される光束に対応する前記光源保持部材同士は、同一方向に付勢され、
前記偏向走査手段20の回転軸20aに対し互いに反対側に配設された走査光学系において、
奇数枚の光束折り返し手段によって奇数回折り返される光束に対応する前記光源保持部材と、偶数枚の光束折り返し手段によって偶数回折り返される光束に対応する前記光源保持部材とは、同一方向に付勢され、
奇数枚の光束折り返し手段によって奇数回折り返される光束に対応する前記光源保持部材同士又は偶数枚の光束折り返し手段によって偶数回折り返される光束に対応する前記光源保持部材同士は、反対方向に付勢される。
In the scanning optical system disposed on the same side with respect to the rotation shaft 20a of the deflection scanning means 20,
The light source holding member corresponding to the light beam that is oddly folded by the odd number of light beam folding means and the light source holding member corresponding to the light beam that is evenly folded by the even number of light beam folding means are biased in opposite directions,
The light source holding members corresponding to the light beams folded odd by the odd number of light beam folding means or the light source holding members corresponding to the light beams folded even by the even number of light beam folding means are urged in the same direction,
In the scanning optical system disposed on the opposite side to the rotation axis 20a of the deflection scanning means 20,
The light source holding member corresponding to the light beam that is oddly folded by the odd number of light beam folding means and the light source holding member corresponding to the light beam that is evenly folded by the even number of light beam folding means are urged in the same direction,
The light source holding members corresponding to the light beams that are oddly folded by the odd number of light beam folding means or the light source holding members corresponding to the light beams that are evenly folded by the even number of light beam folding means are biased in opposite directions. .

第一実施形態に係る走査光学装置の斜視図である。1 is a perspective view of a scanning optical device according to a first embodiment. 偏向走査手段で偏向された光束の経路を示す図である。It is a figure which shows the path | route of the light beam deflected by the deflection | deviation scanning means. 偏向走査手段20に入射する光束の経路を示す断面図である。3 is a cross-sectional view showing a path of a light beam incident on a deflection scanning unit 20. FIG. 光源ユニット取り付け部の構成図である。It is a block diagram of a light source unit attachment part. 光源ユニットの変形の説明図である。It is explanatory drawing of a deformation | transformation of a light source unit. 光源ユニットの変形の説明図である。It is explanatory drawing of a deformation | transformation of a light source unit. 照射位置変動の説明図である。It is explanatory drawing of irradiation position fluctuation | variation. 第一実施形態に係る他の構成の光源ユニットの変形の説明図である。It is explanatory drawing of a deformation | transformation of the light source unit of the other structure which concerns on 1st embodiment. 第二実施形態に係る照射位置変動の説明図である。It is explanatory drawing of the irradiation position fluctuation | variation which concerns on 2nd embodiment. 第二実施形態に係る光源ユニット取り付け部の構成図である。It is a block diagram of the light source unit attachment part which concerns on 2nd embodiment. 第二実施形態に係る他の構成の光源ユニットの変形の説明図である。It is explanatory drawing of a deformation | transformation of the light source unit of the other structure which concerns on 2nd embodiment. 第三実施形態に係る照射位置変動の説明図である。It is explanatory drawing of the irradiation position fluctuation | variation which concerns on 3rd embodiment. 第一実施形態に係る画像形成装置の構成図である。1 is a configuration diagram of an image forming apparatus according to a first embodiment.

符号の説明Explanation of symbols

L …光束
S1 …走査光学装置
11 …半導体レーザ(光源)
13 …光源保持部材
15 …固定部材(付勢手段)
20 …偏向走査手段
20a …回転軸
26 …折り返しミラー(光束折り返し手段)
30 …ハウジング部材
40 …感光体
L ... Light beam S1 ... Scanning optical device 11 ... Semiconductor laser (light source)
13 ... Light source holding member 15 ... Fixing member (biasing means)
DESCRIPTION OF SYMBOLS 20 ... Deflection scanning means 20a ... Rotating shaft 26 ... Folding mirror (light beam folding means)
30 ... Housing member 40 ... Photoconductor

Claims (7)

複数の光源と、
前記光源を保持する光源保持部材と、
前記光源から出射した光束を偏向走査する偏向走査手段と、
該偏向走査手段の回転軸に対し同一側のみ、又は両側に配設され、前記偏向走査手段により偏向走査された光束を、各光束毎に別個の感光体上に走査する複数の走査光学系と、
前記光源保持部材と前記偏向走査手段と前記複数の走査光学系とを内包するハウジング部材と、
前記光源保持部材を前記ハウジング部材に対し前記偏向走査手段の回転軸の方向に付勢して固定する付勢手段と、を有し、
前記複数の走査光学系は、光束を折り返す光束折り返し手段を各光束毎に有し、少なくとも複数の光束折り返し手段で折り返される光束が存在する走査光学装置において、
前記複数の走査光学系の前記偏向走査手段の回転軸に対する位置と、前記光束折り返し手段の枚数と、前記付勢手段の付勢方向を設定することにより、前記光源保持部材が前記付勢手段の付勢力に抗して傾いた際に、各光束の前記感光体上の照射位置の変動方向を同じ方向にすることを特徴とする走査光学装置。
Multiple light sources;
A light source holding member for holding the light source;
Deflection scanning means for deflecting and scanning a light beam emitted from the light source;
A plurality of scanning optical systems which are arranged on the same side or both sides with respect to the rotation axis of the deflection scanning means, and which scan light beams deflected and scanned by the deflection scanning means on a separate photoconductor for each light flux; ,
A housing member containing the light source holding member, the deflection scanning means, and the plurality of scanning optical systems;
Biasing means for biasing and fixing the light source holding member with respect to the housing member in the direction of the rotation axis of the deflection scanning means;
The plurality of scanning optical systems has a light beam folding means for folding a light beam for each light beam, and there is a light beam that is folded at least by the plurality of light beam folding means.
By setting the positions of the plurality of scanning optical systems with respect to the rotation axis of the deflection scanning means, the number of the light beam folding means, and the urging direction of the urging means, the light source holding member can be A scanning optical device characterized in that, when tilted against an urging force, the variation direction of the irradiation position of each light beam on the photosensitive member is the same.
前記偏向走査手段の回転軸に対し同一側に配設された走査光学系において、
奇数枚の光束折り返し手段によって奇数回折り返される光束に対応する前記光源保持部材と、偶数枚の光束折り返し手段によって偶数回折り返される光束に対応する前記光源保持部材とは、反対方向に付勢され、
奇数枚の光束折り返し手段によって奇数回折り返される光束に対応する前記光源保持部材同士又は偶数枚の光束折り返し手段によって偶数回折り返される光束に対応する前記光源保持部材同士は、同一方向に付勢され、
前記偏向走査手段の回転軸に対し互いに反対側に配設された走査光学系において、
奇数枚の光束折り返し手段によって奇数回折り返される光束に対応する前記光源保持部材と、偶数枚の光束折り返し手段によって偶数回折り返される光束に対応する前記光源保持部材とは、同一方向に付勢され、
奇数枚の光束折り返し手段によって奇数回折り返される光束に対応する前記光源保持部材同士又は偶数枚の光束折り返し手段によって偶数回折り返される光束に対応する前記光源保持部材同士は、反対方向に付勢されることを特徴とする請求項1に記載の走査光学装置。
In the scanning optical system disposed on the same side with respect to the rotation axis of the deflection scanning means,
The light source holding member corresponding to the light beam that is oddly folded by the odd number of light beam folding means and the light source holding member corresponding to the light beam that is evenly folded by the even number of light beam folding means are biased in opposite directions,
The light source holding members corresponding to the light beams folded odd by the odd number of light beam folding means or the light source holding members corresponding to the light beams folded even by the even number of light beam folding means are urged in the same direction,
In the scanning optical system disposed on the opposite side to the rotation axis of the deflection scanning means,
The light source holding member corresponding to the light beam that is oddly folded by the odd number of light beam folding means and the light source holding member corresponding to the light beam that is evenly folded by the even number of light beam folding means are urged in the same direction,
The light source holding members corresponding to the light beams that are oddly folded by the odd number of light beam folding means or the light source holding members corresponding to the light beams that are evenly folded by the even number of light beam folding means are biased in opposite directions. The scanning optical apparatus according to claim 1.
前記複数の走査光学系は、前記偏向走査手段の回転軸に対し互いに反対側に配設された第一および第二の走査光学系であり、
前記第一及び第二の走査光学系は、それぞれ、奇数枚の光束折り返し手段と、偶数枚の光束折り返し手段と、を有し、
前記第一及び第二の走査光学系においては、それぞれ、前記光源保持部材の前記ハウジング部材に対する付勢方向が、前記奇数枚の光束折り返し手段によって奇数回折り返される光束に対応する光源保持部材と、前記偶数枚の光束折り返し手段によって偶数回折り返される光束に対応する光源保持部材とで、互いに反対方向であり、
前記第一の走査光学系と前記第二の走査光学系の前記奇数枚の光束折り返し手段によって奇数回折り返される光束に対応する光源保持部材の付勢方向が互いに反対方向であり、
前記第一の走査光学系と前記第二の走査光学系の前記複数枚の光束折り返し手段によって複数回折り返される光束に対応する光源保持部材の付勢方向が互いに反対方向であることを特徴とする請求項1に記載の走査光学装置。
The plurality of scanning optical systems are first and second scanning optical systems disposed on opposite sides of the rotation axis of the deflection scanning unit,
Each of the first and second scanning optical systems has an odd number of light beam folding means and an even number of light beam folding means,
In each of the first and second scanning optical systems, a light source holding member corresponding to a light beam whose urging direction with respect to the housing member of the light source holding member is oddly folded by the odd number of light beam folding means, With the light source holding member corresponding to the light beam folded back evenly by the even number of light beam folding means, the directions are opposite to each other,
The biasing directions of the light source holding members corresponding to the light beams that are oddly folded back by the odd-numbered light beam folding means of the first scanning optical system and the second scanning optical system are opposite to each other,
The biasing directions of the light source holding members corresponding to the light beams that are folded back a plurality of times by the plurality of light beam folding means of the first scanning optical system and the second scanning optical system are opposite to each other. The scanning optical device according to claim 1.
前記複数の走査光学系は、前記偏向走査手段の回転軸に対し互いに反対側に配設された第一および第二の走査光学系であり、
前記光束折り返し手段は、複数の独立したすべての光束毎に奇数枚設けられるか、又は複数の独立したすべての光束毎に偶数枚設けられており、
前記光源保持部材の前記ハウジング部材に対する付勢方向が、前記第一の走査光学系と前記第二の走査光学系においては反対方向であることを特徴とする請求項1に記載の走査光学装置。
The plurality of scanning optical systems are first and second scanning optical systems disposed on opposite sides of the rotation axis of the deflection scanning unit,
The light beam folding means is provided with an odd number for every plurality of independent light fluxes, or is provided with an even number for every plurality of independent light fluxes,
2. The scanning optical apparatus according to claim 1, wherein an urging direction of the light source holding member with respect to the housing member is opposite in the first scanning optical system and the second scanning optical system.
前記複数の走査光学系は、前記偏向走査手段の回転軸に対し同一側に配設された複数の走査光学系であり、
前記複数の走査光学系は、光束を折り返す奇数枚の光束折り返し手段と、光束を折り返す偶数枚の光束折り返し手段と、を有し、
前記光源保持部材の前記ハウジング部材に対する付勢方向が、前記奇数枚の光束折り返し手段によって奇数回折り返される光束に対応する光源保持部材と、前記偶数枚の光束折り返し手段によって偶数回折り返される光束に対応する光源保持部材とで、互いに反対方向であることを特徴とする請求項1に記載の走査光学装置。
The plurality of scanning optical systems are a plurality of scanning optical systems disposed on the same side with respect to the rotation axis of the deflection scanning unit,
The plurality of scanning optical systems includes an odd number of light flux folding means for folding the light flux, and an even number of light flux folding means for folding the light flux,
The urging direction of the light source holding member with respect to the housing member corresponds to the light source holding member corresponding to the light beam that is oddly folded by the odd number of light beam folding means and the light beam that is evenly folded by the even number of light beam folding means. The scanning optical device according to claim 1, wherein the light source holding members are in opposite directions.
前記複数の走査光学系は、前記偏向走査手段の回転軸に対し同一側に配設された複数の走査光学系であり、
前記光束折り返し手段は、複数の独立したすべての光束毎に奇数枚設けられるか、又は複数の独立したすべての光束毎に偶数枚設けられており、
前記光源保持部材の前記ハウジング部材に対する付勢方向が、すべて同一方向であることを特徴とする請求項1に記載の走査光学装置。
The plurality of scanning optical systems are a plurality of scanning optical systems disposed on the same side with respect to the rotation axis of the deflection scanning unit,
The light beam folding means is provided with an odd number for every plurality of independent light fluxes, or is provided with an even number for every plurality of independent light fluxes,
The scanning optical apparatus according to claim 1, wherein the urging directions of the light source holding members with respect to the housing member are all the same direction.
請求項1乃至6のいずれかに記載の走査光学装置と、
前記走査光学装置により前記光束を結像走査される複数の感光体と、
前記複数の感光体に形成された静電潜像をトナー像に可視像化する現像手段と、を有することを特徴とする画像形成装置。
A scanning optical device according to any one of claims 1 to 6,
A plurality of photosensitive members that are image-scanned by the scanning optical device;
An image forming apparatus comprising: a developing unit that visualizes the electrostatic latent images formed on the plurality of photoconductors into toner images.
JP2006253702A 2006-09-20 2006-09-20 Scanning optical device and image forming device Pending JP2008076586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006253702A JP2008076586A (en) 2006-09-20 2006-09-20 Scanning optical device and image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006253702A JP2008076586A (en) 2006-09-20 2006-09-20 Scanning optical device and image forming device

Publications (1)

Publication Number Publication Date
JP2008076586A true JP2008076586A (en) 2008-04-03

Family

ID=39348741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253702A Pending JP2008076586A (en) 2006-09-20 2006-09-20 Scanning optical device and image forming device

Country Status (1)

Country Link
JP (1) JP2008076586A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8184352B2 (en) 2010-02-15 2012-05-22 Ricoh Company, Limited Optical scanning device and image forming apparatus
US8379313B2 (en) 2009-11-18 2013-02-19 Canon Kabushiki Kaisha Optical scanning apparatus
FR2999728A1 (en) * 2012-12-13 2014-06-20 Canon Kk OPTICAL SCANNING APPARATUS AND IMAGE FORMATTING APPARATUS COMPRISING THE SAME
US9296221B2 (en) 2013-10-17 2016-03-29 Samsung Electronics Co., Ltd. Light scanning unit and image forming apparatus employing the same
US10218871B2 (en) 2015-11-20 2019-02-26 Hp Printing Korea Co., Ltd. Light scanning unit and image forming apparatus having the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138647A (en) * 2002-10-15 2004-05-13 Canon Inc Scanning optical device
JP2006030912A (en) * 2004-07-21 2006-02-02 Brother Ind Ltd Image forming apparatus and scanning unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138647A (en) * 2002-10-15 2004-05-13 Canon Inc Scanning optical device
JP2006030912A (en) * 2004-07-21 2006-02-02 Brother Ind Ltd Image forming apparatus and scanning unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8379313B2 (en) 2009-11-18 2013-02-19 Canon Kabushiki Kaisha Optical scanning apparatus
US8184352B2 (en) 2010-02-15 2012-05-22 Ricoh Company, Limited Optical scanning device and image forming apparatus
FR2999728A1 (en) * 2012-12-13 2014-06-20 Canon Kk OPTICAL SCANNING APPARATUS AND IMAGE FORMATTING APPARATUS COMPRISING THE SAME
US9405117B2 (en) 2012-12-13 2016-08-02 Canon Kabushiki Kaisha Optical scanning apparatus and image forming apparatus including the same
GB2509609B (en) * 2012-12-13 2017-05-10 Canon Kk Optical scanning apparatus
US9296221B2 (en) 2013-10-17 2016-03-29 Samsung Electronics Co., Ltd. Light scanning unit and image forming apparatus employing the same
US9465314B2 (en) 2013-10-17 2016-10-11 Samsung Electronics Co., Ltd. Light scanning unit and image forming apparatus employing the same
US10218871B2 (en) 2015-11-20 2019-02-26 Hp Printing Korea Co., Ltd. Light scanning unit and image forming apparatus having the same

Similar Documents

Publication Publication Date Title
US8077368B2 (en) Optical scanning apparatus and image forming apparatus
JP2006259336A (en) Optical scanner and image forming apparatus
JP2009069507A (en) Optical scanner and image forming apparatus
JP2011186420A (en) Optical scanning device and image forming apparatus
JP2008076586A (en) Scanning optical device and image forming device
JP2007171626A (en) Optical scanner and image forming apparatus
JP4375017B2 (en) Image forming apparatus
JP2004109658A (en) Optical scanner and optical path adjusting method, and image forming apparatus
JP2008112041A (en) Scanning optical device and image forming apparatus
JP5364969B2 (en) Optical scanning device
JP2008076935A (en) Scanning optical device and image forming apparatus
JP2005326794A (en) Optical scanning device and image forming apparatus
JP5712709B2 (en) Optical scanning apparatus and image forming apparatus
US20080158329A1 (en) Light scanning unit and image forming apparatus having the same
JP5173355B2 (en) Optical scanning device
JP2009069717A (en) Optical scanner
JP4608403B2 (en) Optical scanning device and image forming system using the same
JP2006272653A (en) Optical scanner and image forming apparatus
JP2007114396A (en) Laser scanning optical apparatus
JP2002365572A (en) Optical scanner and imaging apparatus
JP2012194367A (en) Optical scanning device and image forming device
JP2006011291A (en) Optical scanner
JP2008026570A (en) Multibeam optical scanner and image forming apparatus
JP5364970B2 (en) Optical scanning device
JP2009014786A (en) Optical scanner

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327