JP2008076287A - Simulation method of vehicle - Google Patents

Simulation method of vehicle Download PDF

Info

Publication number
JP2008076287A
JP2008076287A JP2006257225A JP2006257225A JP2008076287A JP 2008076287 A JP2008076287 A JP 2008076287A JP 2006257225 A JP2006257225 A JP 2006257225A JP 2006257225 A JP2006257225 A JP 2006257225A JP 2008076287 A JP2008076287 A JP 2008076287A
Authority
JP
Japan
Prior art keywords
model
nonlinear
vehicle
tire
experimental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006257225A
Other languages
Japanese (ja)
Inventor
Kotaro Yamada
耕太郎 山田
Hideji Iwasaki
秀二 岩崎
Makoto Uda
真 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006257225A priority Critical patent/JP2008076287A/en
Publication of JP2008076287A publication Critical patent/JP2008076287A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simulation method of vehicle for developing efficiently tires suited to vehicles. <P>SOLUTION: An experiment step measuring tire property, a step identifying results of the experiment step as parameters of tire property to develop a nonlinear identifying model, a step developing a mechanism analytic model for vehicles and their suspension, a step developing a full vehicle model by combining the nonlinear identifying model and the mechanism analytic model, and a step implementing virtual vibration calculation using the full vehicle model are implemented. Therefore, it becomes possible to implement vibration simulations of vehicles including nonlinear tires with a high degree of accuracy, experiment man-hour is reduced significantly as roughcast screening is available prior to doing shakedown by attaching trial products to real vehicles, and reduction can be achieved of development period. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、車両に適したタイヤを効率よく開発するための車両のシミュレーション方法に関する。   The present invention relates to a vehicle simulation method for efficiently developing a tire suitable for a vehicle.

車両の足回り開発は、車両の開発の最終段階に行われ、試作車両に適合したタイヤを開発するためには、過去に製造した同一グレードのタイヤのデータなどに基づいて、開発車両のコンセプト及び評価ドライバの意見を加味して経験的に試作を繰り返し、タイヤを実際に装着した車両を走行させ、官能評価や計器測定試験を通じて仕様決定されてきた。   Vehicle undercarriage development is carried out at the final stage of vehicle development, and in order to develop tires suitable for prototype vehicles, based on the data of tires of the same grade manufactured in the past, etc. Considering the opinions of the evaluation driver, the prototype has been repeated empirically, and the specification has been determined through sensory evaluation and instrument measurement tests by running a vehicle with tires actually mounted.

特に乗り心地については、定められた幾つかの特定の路面に対して車速などの条件に応じた官能評価を行ったり、車両運転席付近の上下方向加速度を測定し、測定した上下方向加速度を小さくする方向でタイヤの剛性を修正したりするプロセスで開発が行われ、これいよって多くの開発工数を要していた。   In particular, for ride comfort, sensory evaluation according to conditions such as vehicle speed is performed on some specified specific road surfaces, or vertical acceleration near the driver's seat is measured, and the measured vertical acceleration is reduced. Development was carried out in the process of correcting the rigidity of the tire in such a direction, and this required a lot of development man-hours.

近年、コンピュータ技術の開発に伴って、試作や実験の工数削減にコンピュータシミュレーションが利用されつつある。乗り心地性能の向上についても、車両の上下加速度を最小にすることを目的に行う加振シミュレーションなどによって開発の効率化が図られている。   In recent years, with the development of computer technology, computer simulation is being used to reduce man-hours for prototyping and experiments. In terms of improving ride comfort performance, development efficiency has been improved through vibration simulations aimed at minimizing the vertical acceleration of the vehicle.

しかしながら、従来からのバネ−マス系のモデル化では、タイヤやダンパーやゴムブッシュの振動特性の中で振幅依存性や周波数依存性のような非線形性を有する特性の再現については有効な方法がないため、実験結果との整合性が悪く、高い精度を実現できていない。また、タイヤのモデル化には、形状まで含めて有限な要素にメッシュ分割した有限要素モデルなどがあるが、モデル化自体に時間がかかる上に計算にも時間を要し、全体として工数の削減につながらない不都合がある。   However, with conventional spring-mass modeling, there is no effective method for reproducing non-linear characteristics such as amplitude dependence and frequency dependence among the vibration characteristics of tires, dampers and rubber bushes. Therefore, the consistency with the experimental results is poor and high accuracy cannot be realized. In addition, tire modeling includes a finite element model in which mesh is divided into finite elements including the shape, but the modeling itself takes time and also requires time for calculation, reducing the overall man-hours. There is inconvenience that does not lead to.

本発明の目的は、車両に適したタイヤを効率よく開発するための車両のシミュレーション方法を提供することである。   An object of the present invention is to provide a vehicle simulation method for efficiently developing a tire suitable for a vehicle.

本発明による車両のシミュレーション方法は、
タイヤの特性を測定する実験ステップと、
その実験ステップの結果をタイヤ特性のパラメータとして同定して非線形同定モデル作成するステップと、
車両及びその足回りの機構解析モデルを作成するステップと、
前記非線形同定モデル及び前記機構解析モデルを組み合わせてフルビークルモデルを作成するステップと、
そのフルビークルモデルを使用してバーチャル加振計算を行うステップとを具えることを特徴とする。
A vehicle simulation method according to the present invention includes:
An experimental step to measure the characteristics of the tire;
Identifying the result of the experimental step as a tire characteristic parameter and creating a nonlinear identification model;
Creating a mechanism analysis model of the vehicle and its suspension;
Creating a full vehicle model by combining the nonlinear identification model and the mechanism analysis model;
And performing a virtual excitation calculation using the full vehicle model.

本発明によれば、非線形性のタイヤを含めた車両の振動シミュレーションを高精度に行うことが可能となり、試作品を実車に装着して走行試験を行う前に大まかなスクリーニングが可能になることによって実験工数が大幅に減少し、したがって、開発期間の短縮を図ることができる。その結果、車両に適したタイヤを効率よく開発することができる。   According to the present invention, it is possible to perform a vibration simulation of a vehicle including a non-linear tire with high accuracy, and to enable rough screening before a prototype is mounted on an actual vehicle and a running test is performed. The number of experiment steps can be greatly reduced, and therefore the development period can be shortened. As a result, a tire suitable for the vehicle can be efficiently developed.

好適には、前記実験ステップが、ダンパー及びゴムブッシュの特性も測定し、
前記非線形同定モデルとして、実験的非線形タイヤモデル、実験的非線形ダンパーモデル及び実験的非線形ゴムブッシュモデルを作成し、前記実験ステップでタイヤの線押しを行う。
Preferably, the experimental step also measures the properties of the damper and the rubber bush,
As the non-linear identification model, an experimental non-linear tire model, an experimental non-linear damper model, and an experimental non-linear rubber bush model are created, and the tire is pressed in the experiment step.

本発明の実施の形態を、図面を参照して詳細に説明する。
図1は、本発明による車両のシミュレーション方法のフローチャートである。このフローチャートでは、タイヤ、ダンパー及びゴムブッシュを試作した後に、タイヤ、ダンパー及びゴムブッシュの特性を測定する実験ステップを実行する。
Embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a flowchart of a vehicle simulation method according to the present invention. In this flowchart, an experimental step for measuring characteristics of the tire, the damper, and the rubber bush is performed after the tire, the damper, and the rubber bush are made as trial products.

精度の良いシミュレーションを実現するためには、本物の特性を再現した精度のよい入出力関係のデータが実験でどのように得られるかが重要である。特に、後に説明するタイヤモデルの作成では、タイヤ違いによる上下振動の特性を的確に引き出すためには、実験場の工夫が必要となる。   In order to realize a highly accurate simulation, it is important how to obtain accurate input / output data that reproduces the real characteristics in experiments. In particular, in the creation of a tire model, which will be described later, it is necessary to devise an experimental site in order to accurately extract the characteristics of vertical vibration caused by different tires.

乗り心地に関する振動は、約1〜30Hzの低周波領域である。この周波数帯と評価対称となる路面を走行したときの振幅をカバーするランダム波による加振試験を行う。この際、ダンパーの振幅やブッシュの振幅は、車両内の装着位置に従って大きさが変化するのでそれぞれに適した値を選ぶ。   The vibration related to the ride comfort is a low frequency region of about 1 to 30 Hz. An excitation test using a random wave that covers the amplitude when traveling on a road surface that is symmetrical with the frequency band is performed. At this time, since the amplitude of the damper and the amplitude of the bush change according to the mounting position in the vehicle, appropriate values are selected.

タイヤについては、振動を加える部分が平面の場合(平押し)、オフセット線押し、縦線押し、丸押し、サイド押し及び複数点押し(図2)の場合、タイヤの変形モードに差が出ず、ベルトの固さの影響などがでにくい(図3)。そのために、上下振動の特性違いをより明確に出すために、タイヤの幅方向に渡る戦場の突起を用いて加振を加える(線押し)ことが望ましい(図2)。なお、図2において、押しがある部分をハッチングで示す。   For tires, if the part to apply vibration is a flat surface (flat pressing), offset line pressing, vertical line pressing, round pressing, side pressing and multiple point pressing (Fig. 2), there is no difference in the tire deformation mode. It is hard to be affected by the hardness of the belt (Fig. 3). For this purpose, it is desirable to apply vibration (line pressing) using a battlefield protrusion across the width direction of the tire in order to more clearly show the difference in vertical vibration characteristics (FIG. 2). In FIG. 2, the pressed portion is indicated by hatching.

実験ステップで得られた実験結果を、タイヤ、ダンパー及びゴムブッシュのパラメータとして同定し、非線形パラメータ同定モデルとして実験的非線形タイヤモデル、実験的非線形ダンパーモデル及び実験的非線形ゴムブッシュモデルを作成する。非線形パラメータ同定モデルとは、実路面走行状態で問題となる振動の振幅及び周波数領域を含むランダム加振を、モデル作成しようとするタイヤ、ダンパー及びゴムブッシュに対して実際に台上試験機上で行い、そのときに得られる入力と出力の関係を測定し、ニューラルネットワークを利用して非線形パラメータを同定するEmpiricalモデルである。また、ここで作成される実験的非線形タイヤモデルは、上下方向の振動特性のみ再現した一方向モデルであり、タイヤの転動、前後の力、左右の力等は考慮されない。   The experimental results obtained in the experimental step are identified as parameters of the tire, damper, and rubber bush, and an experimental nonlinear tire model, experimental nonlinear damper model, and experimental nonlinear rubber bush model are created as nonlinear parameter identification models. The nonlinear parameter identification model is a model that applies random vibration including the amplitude and frequency range of vibrations that are problematic in actual road surface running conditions on a bench test machine to the tire, damper and rubber bush to be modeled. This is an Empirical model in which the relationship between input and output obtained at that time is measured, and nonlinear parameters are identified using a neural network. Further, the experimental nonlinear tire model created here is a one-way model that reproduces only the vibration characteristics in the vertical direction, and does not consider tire rolling, front-rear force, left-right force, and the like.

非線形パラメータ同定モデルを作成した後、実験的非線形ダンパーモデル及び実験的非線形ゴムブッシュモデルを用いて、車両及びその足回りの機構解析モデルを作成する。機構解析モデルは、サスペンションのアームを剛体で表したリンクモデルである。リンクモデルの各パーツは、重量、慣性等を有し、アームの結節点に拘束条件とゴムブッシュの非線形性を有する弾性要素を入れて表す。また、アームなどを有限要素モデルとして弾性変形を考慮することもできる。   After creating the nonlinear parameter identification model, a mechanism analysis model of the vehicle and its suspension is created using the experimental nonlinear damper model and the experimental nonlinear rubber bush model. The mechanism analysis model is a link model in which a suspension arm is represented by a rigid body. Each part of the link model has weight, inertia, etc., and is expressed by putting elastic elements having restraint conditions and non-linearity of the rubber bush at the joints of the arms. Further, elastic deformation can be taken into account by using an arm or the like as a finite element model.

機構解析モデルを作成した後、車両モデルと機構解析モデルを組み合わせてフルビークルモデルを作成する。車両モデルとしては、有限要素モデルなど弾性変形を考慮できるモデルが好適に使用できる。この場合、エンジン、ステアリングなどの重量及び慣性を考慮してバネ上モデルを作成し、これにサスペンション及びタイヤを付けてフルビークルモデルとする。フルビークルモデルを作成した後、加振シミュレーションステップ及び事前スクリーニングを実行する。   After creating the mechanism analysis model, a full vehicle model is created by combining the vehicle model and the mechanism analysis model. As the vehicle model, a model capable of considering elastic deformation such as a finite element model can be preferably used. In this case, a sprung model is created in consideration of the weight and inertia of the engine, steering, etc., and a suspension and tires are attached to this to form a full vehicle model. After creating a full vehicle model, an excitation simulation step and pre-screening are performed.

本発明は、上記実施の形態に限定されるものではなく、幾多の変更及び変形が可能である。
例えば、上記実施の形態において、実験的非線形タイヤモデル、実験的非線形ダンパーモデル及び実験的非線形ゴムブッシュモデルを作成したが、実験的非線形タイヤモデルのみを作成する場合も本発明に適用することができる。
The present invention is not limited to the above-described embodiment, and many changes and modifications can be made.
For example, in the above embodiment, the experimental nonlinear tire model, the experimental nonlinear damper model, and the experimental nonlinear rubber bush model are created. However, the present invention can be applied to the case where only the experimental nonlinear tire model is created. .

本発明による車両のシミュレーション方法のフローチャートである。3 is a flowchart of a vehicle simulation method according to the present invention. タイヤ加振実験の際のタイヤの押し方を示す図である。It is a figure which shows how to push the tire in the case of a tire vibration experiment. タイヤの押し方によるタイヤ特性の違いを示す図である。It is a figure which shows the difference in the tire characteristic by how to push a tire.

Claims (3)

タイヤの特性を測定する実験ステップと、
その実験ステップの結果をタイヤ特性のパラメータとして同定して非線形同定モデル作成するステップと、
車両及びその足回りの機構解析モデルを作成するステップと、
前記非線形同定モデル及び前記機構解析モデルを組み合わせてフルビークルモデルを作成するステップと、
そのフルビークルモデルを使用してバーチャル加振計算を行うステップとを具えることを特徴とする車両のシミュレーション方法。
An experimental step to measure the characteristics of the tire;
Identifying the result of the experimental step as a tire characteristic parameter and creating a nonlinear identification model;
Creating a mechanism analysis model of the vehicle and its suspension;
Creating a full vehicle model by combining the nonlinear identification model and the mechanism analysis model;
And a step of performing virtual excitation calculation using the full vehicle model.
前記実験ステップが、ダンパー及びゴムブッシュの特性も測定し、
前記非線形同定モデルとして、実験的非線形タイヤモデル、実験的非線形ダンパーモデル及び実験的非線形ゴムブッシュモデルを作成することを特徴とする請求項1記載の車両のシミュレーション方法。
The experimental step also measures the properties of the damper and rubber bush,
2. The vehicle simulation method according to claim 1, wherein an experimental nonlinear tire model, an experimental nonlinear damper model, and an experimental nonlinear rubber bush model are created as the nonlinear identification model.
前記実験ステップでタイヤの線押しを行うことを特徴とする請求項1又は2記載の車両のシミュレーション方法。   3. The vehicle simulation method according to claim 1, wherein the tire is pressed in the experiment step.
JP2006257225A 2006-09-22 2006-09-22 Simulation method of vehicle Withdrawn JP2008076287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006257225A JP2008076287A (en) 2006-09-22 2006-09-22 Simulation method of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006257225A JP2008076287A (en) 2006-09-22 2006-09-22 Simulation method of vehicle

Publications (1)

Publication Number Publication Date
JP2008076287A true JP2008076287A (en) 2008-04-03

Family

ID=39348505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006257225A Withdrawn JP2008076287A (en) 2006-09-22 2006-09-22 Simulation method of vehicle

Country Status (1)

Country Link
JP (1) JP2008076287A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113158513A (en) * 2021-03-24 2021-07-23 江铃汽车股份有限公司 Method, device and equipment for determining center frequency of dynamic vibration absorber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113158513A (en) * 2021-03-24 2021-07-23 江铃汽车股份有限公司 Method, device and equipment for determining center frequency of dynamic vibration absorber
CN113158513B (en) * 2021-03-24 2024-03-26 江铃汽车股份有限公司 Method, device and equipment for determining center frequency of dynamic vibration absorber

Similar Documents

Publication Publication Date Title
Stallmann et al. Parameterization and modelling of large off-road tyres for ride analyses: Part 2–Parameterization and validation of tyre models
Karen et al. A design tool to evaluate the vehicle ride comfort characteristics: modeling, physical testing, and analysis
Roy et al. Virtual road load data acquisition using full vehicle simulations
JP2008076287A (en) Simulation method of vehicle
Klapka et al. Twilight of the EUSAMA diagnostic methodology
JP2003330997A (en) Vehicular simulation method
Rajesh et al. LCV Chassis Frame Optimization Using Combined Simulation and Experimental Approach
Sawa et al. Fatigue life prediction on rough road using full vehicle co-simulation model with suspension control
Schmeitz et al. Road load simulation using the mf-swift tire and OpenCRG road model
Kagnici Vibration induced fatigue assessment in vehicle development process
Schmeitz et al. Application of the rigid ring model for simulating the dynamics of motorcycle tyres on uneven roads
Kanchwala et al. Model Building, Hardpoint Optimization & Experimental Correlation of a Single Seater EV-Toyota COMS
Kang et al. Virtual road profile modeling using equivalent damage method for VPG simulation
Veen An analytical approach to dynamic irregular tyre wear
Kim et al. Vehicle ride comfort and brake judder dynamics analysis considering nonlinear characteristics
Glandier et al. Improved Full Vehicle Finite Element Tire Road Noise Prediction
Azizi Measurement methods of tire/road noise
Müller et al. Identifying vehicle model parameters using measured terrain excitations
Drotar et al. CAE-based driving comfort optimization of passenger cars
Subbu et al. Two wheeled vehicle ride comfort evaluation and optimization using bump test rig in virtual simulation and validation through actual testing
Lee et al. Fatigue analysis of automotive suspension system considering dynamic effect
Pir et al. Integrated model-based approach for the optimisation of vehicle ride comfort and handling characteristics: integrated vehicle dynamics model design
Kumar et al. Virtual Evaluation of Seat Shake Performance Using Four Poster Shaker
Deubel et al. Effect of Shock Absorber Friction on Vehicle Vertical Dynamics
Chang et al. A useful tire model for ATV ride performance on rough roads

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201