JP2008075642A - Fuel supply mechanism and engine - Google Patents

Fuel supply mechanism and engine Download PDF

Info

Publication number
JP2008075642A
JP2008075642A JP2006341413A JP2006341413A JP2008075642A JP 2008075642 A JP2008075642 A JP 2008075642A JP 2006341413 A JP2006341413 A JP 2006341413A JP 2006341413 A JP2006341413 A JP 2006341413A JP 2008075642 A JP2008075642 A JP 2008075642A
Authority
JP
Japan
Prior art keywords
fuel supply
fuel
pair
intake
pipe member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006341413A
Other languages
Japanese (ja)
Inventor
Seiichi Ito
誠一 伊藤
Nobuhiko Fukaya
信彦 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2006341413A priority Critical patent/JP2008075642A/en
Publication of JP2008075642A publication Critical patent/JP2008075642A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize stable combustion and low exhaust emission when supplying gaseous fuel to an intake passage on an upstream side of a branch part to intake ports in an engine provided with a pair of intake ports with respect to one combustion chamber, by sending the gaseous fuel almost evenly into respective inflow parts of the intake ports. <P>SOLUTION: The fuel supply mechanism is provided with a straight pipe member 51 arranged across the intake passage along boundary surfaces of the pair of intake ports 13, 14 and supplied with the gaseous fuel G into an interior, and a plurality of jet holes 52, 53 jetting out the fuel G is bored in a side wall of the pipe member 51. It is provided with a means for turning the pipe member 51 around a pipe axis X to adjust jetting directions of the holes 52, 53. The plurality of holes 52, 53 has a first hole 52 group formed so as to jet out the gaseous fuel G toward an inflow part 13a in one side, and a second hole 53 group formed so as to jet out the gaseous fuel G toward an inflow part 14a in another side. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、一の燃焼室に対して一対の吸気ポートが設けられたエンジン、及び、そのエンジンにおいて、一対の吸気ポートへの分岐部の上流側の吸気路に気体燃料を供給する燃料供給機構に関する。   The present invention relates to an engine provided with a pair of intake ports for one combustion chamber, and a fuel supply mechanism for supplying gaseous fuel to an intake passage upstream of a branch portion to the pair of intake ports in the engine. About.

従来、燃料として天然ガス等の気体燃料を利用するエンジンでは、その気体燃料を高圧で燃焼室に直接噴射することが困難であることから、吸気路において気体燃料を供給して混合気を形成し、その混合気を吸気ポートを通じて燃焼室に吸気するように構成する場合がある(例えば、特許文献1を参照。)。   Conventionally, in an engine that uses gaseous fuel such as natural gas as a fuel, it is difficult to inject the gaseous fuel directly into the combustion chamber at a high pressure. In some cases, the air-fuel mixture is configured to be sucked into the combustion chamber through the intake port (see, for example, Patent Document 1).

また、吸気路に燃料を供給するエンジンとしては、吸気路から燃焼室への混合気の充填効率を向上するために、一の燃焼室に対して一対の吸気ポートを設け、その一対の吸気ポートへの分岐部の上流側の吸気路に燃料を供給する燃料供給機構を備えたものが知られている(例えば、特許文献2を参照。)。
即ち、この種のエンジンでは、吸気路において燃料供給機構により燃料が供給されて混合気が形成され、その混合気が一対の吸気ポートに分流し、その一対の吸気ポートの夫々を通じて燃焼室に混合気が吸気されることになる。
Further, as an engine for supplying fuel to the intake passage, a pair of intake ports are provided for one combustion chamber in order to improve the charging efficiency of the air-fuel mixture from the intake passage to the combustion chamber. There has been known one provided with a fuel supply mechanism for supplying fuel to an intake passage on the upstream side of the branching section (see, for example, Patent Document 2).
That is, in this type of engine, fuel is supplied from the fuel supply mechanism in the intake passage to form an air-fuel mixture, and the air-fuel mixture is divided into a pair of intake ports and mixed into the combustion chamber through each of the pair of intake ports. Qi will be inhaled.

特開平11−294222号公報Japanese Patent Laid-Open No. 11-294222 特開平11−294242号公報Japanese Patent Laid-Open No. 11-294242

上述したように一の燃焼室に対して一対の吸気ポートが設けられたエンジンでは、燃料供給機構により吸気路に燃料を供給するにあたり、一対の吸気ポートの夫々に対する燃料の流入が不均等なものとなると、燃焼室における混合気の濃度が不均質になって、失火やノッキング等の不安定燃焼の発生や、NOxや未燃成分等の排気エミッションの増加などの問題が生じる場合がある。   As described above, in an engine in which a pair of intake ports are provided for one combustion chamber, inflow of fuel to each of the pair of intake ports is uneven when supplying fuel to the intake passage by the fuel supply mechanism. If so, the concentration of the air-fuel mixture in the combustion chamber becomes inhomogeneous, which may cause problems such as the occurrence of unstable combustion such as misfire and knocking, and an increase in exhaust emissions such as NOx and unburned components.

また、燃料としてガソリンなどの液体燃料を利用する場合には、液体燃料の噴射圧力を高くして、噴射された液体燃料の貫通力により、一対の吸気ポートに均等に燃料を供給することができる。しかし、燃料として天然ガスなどの気体燃料を利用する場合には、燃料の噴射圧力を高くすることが困難なため、一対の吸気ポートの夫々に供給される気体燃料のばらつきが生じやすく、不安定燃焼や排気エミッション増加などの問題が生じやすい。   Further, when liquid fuel such as gasoline is used as the fuel, the fuel can be supplied evenly to the pair of intake ports by increasing the injection pressure of the liquid fuel and using the penetrating force of the injected liquid fuel. . However, when using a gaseous fuel such as natural gas as the fuel, it is difficult to increase the fuel injection pressure, and thus the variation in the gaseous fuel supplied to each of the pair of intake ports is likely to occur and is unstable. Problems such as combustion and increased exhaust emissions are likely to occur.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、一の燃焼室に対して一対の吸気ポートが設けられたエンジンにおいて、燃料供給機構により一対の吸気ポートへの分岐部の上流側の吸気路に気体燃料を供給するにあたり、一対の吸気ポートの夫々の流入部へ略均等に気体燃料を流入させて、安定燃焼且つ低排気エミッションを実現し得る技術を提供する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a bifurcated portion to a pair of intake ports by a fuel supply mechanism in an engine provided with a pair of intake ports for one combustion chamber. When supplying gaseous fuel to the upstream intake passage of the engine, it is possible to provide a technique capable of realizing stable combustion and low exhaust emission by allowing gaseous fuel to flow into each inflow portion of a pair of intake ports substantially evenly. is there.

上記目的を達成するための本発明に係る燃料供給機構は、一の燃焼室に対して一対の吸気ポートが設けられたエンジンにおいて、前記一対の吸気ポートへの分岐部の上流側の吸気路に気体燃料を供給する燃料供給機構であって、その第1特徴構成は、前記吸気路において前記一対の吸気ポートの境界面に沿って前記吸気路を横断するよう配置され、内部に気体燃料が供給される直管状の燃料供給管部材を備えると共に、前記燃料供給管部材の側壁に、気体燃料を噴出させる複数の噴出孔が穿設されたものにおいて、
前記燃料供給管部材を、当該燃料供給管部材の管軸回りに回動させて前記噴出孔の噴出方向を当該管軸回りに調整可能な噴出方向調整手段を備えた点にある。
In order to achieve the above object, a fuel supply mechanism according to the present invention is provided in an engine provided with a pair of intake ports for one combustion chamber in an intake passage upstream of a branch portion to the pair of intake ports. A fuel supply mechanism for supplying gaseous fuel, the first characteristic configuration of which is arranged to cross the intake passage along a boundary surface of the pair of intake ports in the intake passage, and supply the gaseous fuel inside In addition to a straight tubular fuel supply pipe member, a plurality of injection holes for jetting gaseous fuel are formed in the side wall of the fuel supply pipe member.
The fuel supply pipe member is provided with a jetting direction adjusting means capable of rotating the jetting direction of the jetting hole about the pipe axis by rotating the fuel supply pipe member around the pipe axis of the fuel supply pipe member.

上記第1特徴構成によれば、吸気路において一対の吸気ポートの境界面に沿って吸気路を横断するよう配置された燃料供給管部材内に供給された気体燃料は、当該燃料供給管部材の側壁に穿設された複数の噴出孔を通じて、吸気路に噴出することになる。更に、上記噴出方向調整手段により、その燃料供給管部材を管軸回りに回動させて、上記複数の噴出孔の噴出方向を、管軸回りにおいて適切な方向に調整することで、上記吸気路に上記複数の噴出孔を通じて噴出した気体燃料は、その下流側において分岐する一対の吸気ポートの夫々の流入部に、略均等に分流することになる。よって、燃焼室において、一対の吸気ポートの夫々から均等に分流された気体燃料を吸気して、当均質な混合気を形成することができ、結果、その均質な混合気を燃焼させて安定燃焼及び排気エミッション低減を実現することができる。   According to the first characteristic configuration, the gaseous fuel supplied into the fuel supply pipe member arranged to cross the intake path along the boundary surface of the pair of intake ports in the intake path is supplied to the fuel supply pipe member. The air is ejected into the intake passage through a plurality of ejection holes formed in the side wall. Further, by rotating the fuel supply pipe member around the pipe axis by the jet direction adjusting means, the jet direction of the plurality of jet holes is adjusted to an appropriate direction around the pipe axis. In addition, the gaseous fuel ejected through the plurality of ejection holes is distributed substantially evenly to the respective inflow portions of the pair of intake ports that diverge on the downstream side. Therefore, in the combustion chamber, it is possible to inhale the gaseous fuel evenly divided from each of the pair of intake ports to form the homogeneous mixture, and as a result, the homogeneous mixture is burned and stable combustion is performed. And exhaust emission reduction can be realized.

本発明に係る燃料供給機構の第2特徴構成は、前記吸気路において前記一対の吸気ポートの境界面に沿って前記吸気路を横断するよう配置され、内部に気体燃料が供給される直管状の燃料供給管部材を備えると共に、前記燃料供給管部材の側壁に、気体燃料を噴出させる複数の噴出孔が穿設されたものにおいて、
前記複数の噴出孔が、前記分岐部における前記一対の吸気ポートの一方側の流入部に向けて気体燃料を噴出させるように形成された第1噴出孔群と、他方側の流入部に向けて気体燃料を噴出させるように形成された第2噴出孔群とを有する点にある。
A second characteristic configuration of the fuel supply mechanism according to the present invention is a straight tubular shape that is disposed so as to cross the intake passage along a boundary surface of the pair of intake ports in the intake passage, and in which gaseous fuel is supplied. In addition to the fuel supply pipe member, the side wall of the fuel supply pipe member is provided with a plurality of ejection holes for ejecting gaseous fuel.
The plurality of ejection holes are directed to a first ejection hole group formed to eject gaseous fuel toward an inflow portion on one side of the pair of intake ports in the branching portion, and toward an inflow portion on the other side. And a second ejection hole group formed so as to eject gaseous fuel.

上記第2特徴構成によれば、吸気路において一対の吸気ポートの境界面に沿って吸気路を横断するよう配置された燃料供給管部材内に供給された気体燃料は、当該燃料供給管部材の側壁に穿設された複数の噴出孔を通じて、吸気路に噴出されることになる。更に、上記複数の噴出孔を構成する第1噴出孔群と第2噴出孔群との夫々から、分岐部における一対の吸気ポートの夫々の流入部に向けて気体燃料が噴出するので、その噴出した夫々の気体燃料は、その下流側において分岐する一対の吸気ポートの夫々の流入部に略均等に流入することになる。よって、燃焼室において、一対の吸気ポートの夫々から均等に分流された気体燃料を吸気して、当均質な混合気を形成することができ、結果、その均質な混合気を燃焼させて安定燃焼及び排気エミッション低減を実現することができる。   According to the second characteristic configuration, the gaseous fuel supplied into the fuel supply pipe member arranged to cross the intake path along the boundary surface of the pair of intake ports in the intake path is supplied to the fuel supply pipe member. It is ejected to the intake passage through a plurality of ejection holes formed in the side wall. Further, since the gaseous fuel is ejected from each of the first ejection hole group and the second ejection hole group constituting the plurality of ejection holes toward the inflow portions of the pair of intake ports at the branch portion, The respective gaseous fuels flow into the respective inflow portions of the pair of intake ports branched on the downstream side thereof in a substantially uniform manner. Therefore, in the combustion chamber, it is possible to inhale the gaseous fuel evenly divided from each of the pair of intake ports to form the homogeneous mixture, and as a result, the homogeneous mixture is burned and stable combustion is performed. And exhaust emission reduction can be realized.

本発明に係る燃料供給機構の第3特徴構成は、上記第2特徴構成に加えて、前記第1噴出孔群と前記第2噴出孔群との夫々が、前記燃料供給管部材の管軸方向に沿って等間隔で並設され、且つ、前記管軸方向に沿って交互に配置されている点にある。   According to a third characteristic configuration of the fuel supply mechanism according to the present invention, in addition to the second characteristic configuration, each of the first injection hole group and the second injection hole group has a tube axis direction of the fuel supply pipe member. Along the tube axis direction and arranged alternately along the tube axis direction.

上記第3特徴構成によれば、上記第1噴出孔群と上記第2噴出孔群との夫々が、吸気路の横断方向の略全体に渡って、上記管軸方向に等間隔で並設されているので、それら複数の噴射孔から噴出した気体燃料は、吸気路において上記管軸方向においても略均等に分散することになり、その気体燃料と新気との混合状態が一層良好なものとなる。
更に、上記第1噴出孔群を構成する複数の噴出孔と上記第2噴出孔群を構成する複数の噴射孔との夫々が、上記管軸方向に沿って交互に配置されているので、一方側の噴出孔群から噴出した気体燃料は、他方側の噴出孔群からの気体燃料の噴出圧による影響をあまり受けずに、方向付けられた吸気ポートの流入部に良好に流入することになるので、一対の吸気ポートの夫々に対して一層均等に気体燃料を分流させることができる。
According to the third characteristic configuration, each of the first ejection hole group and the second ejection hole group is arranged in parallel at equal intervals in the tube axis direction over substantially the entire transverse direction of the intake passage. Therefore, the gaseous fuel ejected from the plurality of injection holes will be distributed substantially evenly in the pipe axis direction in the intake passage, and the mixed state of the gaseous fuel and fresh air will be even better. Become.
Furthermore, since each of the plurality of ejection holes constituting the first ejection hole group and the plurality of ejection holes constituting the second ejection hole group are alternately arranged along the tube axis direction, The gaseous fuel ejected from the side ejection hole group will flow well into the inflow portion of the directed intake port without being significantly affected by the ejection pressure of the gaseous fuel from the other ejection hole group Therefore, the gaseous fuel can be more evenly distributed to each of the pair of intake ports.

本発明に係る燃料供給機構の第4特徴構成は、上記第1乃至第3特徴構成に加えて、前記燃料供給管部材の側壁に、外向きに突出する複数のノズル部材が設けられ、
前記複数の噴出孔の夫々が、前記複数のノズル部材の夫々の先端部に形成されている点にある。
According to a fourth characteristic configuration of the fuel supply mechanism according to the present invention, in addition to the first to third characteristic configurations, a plurality of nozzle members protruding outward are provided on a side wall of the fuel supply pipe member.
Each of the plurality of ejection holes is formed at a tip end portion of each of the plurality of nozzle members.

上記第4特徴構成によれば、上記複数の噴出孔の夫々が、燃料供給管の側壁から外向きに突出する複数のノズル部材の夫々の先端部に形成されているので、上記燃料供給管部材の外表面に形成される新気の流れの影響を殆ど受けることなく、夫々のノズル部材の先端部から吸気路に安定且つ勢い良く気体燃料を噴出させることができる。よって、気体燃料を、吸気路の下流側において分岐する一対の吸気ポートの夫々の流入部に一層均等に分流させることができる。
更に、気体燃料を勢い良く噴出させることができることから、上記燃料供給管部材の外径を比較的小さくして、吸気路における燃料供給管部材による流路抵抗を低減させることができる。
According to the fourth characteristic configuration, each of the plurality of ejection holes is formed at the tip of each of the plurality of nozzle members protruding outward from the side wall of the fuel supply pipe, so the fuel supply pipe member The gas fuel can be ejected stably and vigorously from the tip of each nozzle member to the intake passage without being substantially affected by the flow of fresh air formed on the outer surface of the nozzle. Therefore, the gaseous fuel can be more evenly divided into the inflow portions of the pair of intake ports that branch on the downstream side of the intake passage.
Further, since the gaseous fuel can be ejected vigorously, the outer diameter of the fuel supply pipe member can be made relatively small, and the flow resistance by the fuel supply pipe member in the intake passage can be reduced.

本発明に係る燃料供給機構の第5特徴構成は、上記第1乃至第4特徴構成に加えて、前記燃料供給管部材の前記管軸方向に直交する断面形状が、前記吸気路における新気の流れ方向からみた幅が当該流れ方向の直交方向からみた幅よりも小さい扁平形状とされている点にある。   According to a fifth characteristic configuration of the fuel supply mechanism according to the present invention, in addition to the first to fourth characteristic configurations, a cross-sectional shape of the fuel supply pipe member perpendicular to the pipe axis direction The width seen from the flow direction is a flat shape smaller than the width seen from the direction orthogonal to the flow direction.

上記第5特徴構成によれば、上記燃料供給管部材の断面形状が上記扁平形状とされているので、吸気路における燃料供給管部材による流路抵抗を低減させることができる。   According to the fifth characteristic configuration, since the cross-sectional shape of the fuel supply pipe member is the flat shape, flow path resistance due to the fuel supply pipe member in the intake passage can be reduced.

また、上記目的を達成するための本発明に係るエンジンは、共通の吸気路から分岐する一対の吸気ポートが共通の燃焼室に接続されているエンジンであって、その特徴構成は、前記吸気路における前記一対の吸気ポートへの分岐部の上流側において気体燃料を供給する燃料供給機構として、上述した第1乃至第5特徴構成を有する燃料供給機構を備えた点にある。   In order to achieve the above object, an engine according to the present invention is an engine in which a pair of intake ports branched from a common intake passage are connected to a common combustion chamber. As a fuel supply mechanism for supplying gaseous fuel on the upstream side of the branching portion to the pair of intake ports, the fuel supply mechanism having the above-described first to fifth characteristic configurations is provided.

上記エンジンによれば、これまで説明してきた特徴構成を有する燃料供給機構を備えることから、少なくとも上記吸気路に上記複数の噴出孔を通じて噴出した気体燃料を、その下流側において分岐する一対の吸気ポートの夫々の流入部に、略均等に流入させることができることから、安定燃焼及び排気エミッション低減を実現することができる。   According to the engine, since the fuel supply mechanism having the characteristic configuration described so far is provided, a pair of intake ports that branch at least downstream of the gaseous fuel injected through the plurality of injection holes into the intake passage. Therefore, stable combustion and reduction of exhaust emission can be realized.

本発明に係る燃料供給機構及びそれを備えたエンジンの第一実施形態について、図面に基づいて説明する。   A fuel supply mechanism according to the present invention and a first embodiment of an engine including the same will be described with reference to the drawings.

〔第一実施形態〕
図1及び図2に示すように、エンジン1には、シリンダ3の内面とシリンダヘッド4の下面とピストン2の頂面とで規定され上部に点火プラグ6を有する燃焼室10と、吸気弁5を介して接続され燃焼室10に吸気される混合気Mが通流する吸気路11と、燃焼室10に排気弁(図示せず)を介して接続され燃焼室10から排出された排ガスが通流する排気路(図示せず)とが設けられている。
[First embodiment]
As shown in FIGS. 1 and 2, the engine 1 includes a combustion chamber 10 that is defined by the inner surface of the cylinder 3, the lower surface of the cylinder head 4, and the top surface of the piston 2, and has an ignition plug 6 at the top, and an intake valve 5. And an intake passage 11 through which an air-fuel mixture M sucked into the combustion chamber 10 flows and an exhaust gas exhausted from the combustion chamber 10 connected to the combustion chamber 10 via an exhaust valve (not shown). An exhaust passage (not shown) is provided.

吸気路11には、その吸気路に天然ガスである気体燃料Gを、吸気路11の圧力よりも若干高い所定の供給圧力というような比較的低圧で供給する燃料供給機構50が設けられている。即ち、吸気路11を通流する空気(新気の一例)Aに対して、燃料供給機構50により気体燃料Gが供給されて、吸気路11に混合気Mが形成され、その混合気Mが、吸気ポート13,14及び吸気弁5を通じて燃焼室10に吸気される。
そして、この種のエンジン1は、燃焼室10において、吸気された混合気Mをピストン2の上昇により圧縮し、その圧縮した混合気Mを点火プラグ6により火花点火燃焼させて膨張させる形態で、ピストン2を往復運動させ、その往復運動を、連結棒(図示せず)を介してクランク軸(図示せず)の回転動力に変えて出力するというように、通常の火花点火エンジンと同様に運転される。
The intake passage 11 is provided with a fuel supply mechanism 50 that supplies gaseous fuel G, which is natural gas, to the intake passage at a relatively low pressure such as a predetermined supply pressure that is slightly higher than the pressure in the intake passage 11. . That is, gaseous fuel G is supplied to the air (an example of fresh air) A flowing through the intake passage 11 by the fuel supply mechanism 50, and an air-fuel mixture M is formed in the intake passage 11. Then, the air is taken into the combustion chamber 10 through the intake ports 13 and 14 and the intake valve 5.
The engine 1 of this type compresses the intake air-fuel mixture M by the ascending piston 2 in the combustion chamber 10 and expands the compressed air-fuel mixture M by spark ignition combustion with the spark plug 6. The piston 2 is reciprocated, and the reciprocating motion is converted into the rotational power of a crankshaft (not shown) via a connecting rod (not shown) and output. Is done.

更に、このエンジン1では、燃焼室10への混合気Mの充填効率を向上するために、一の燃焼室10に対して一対の吸気ポート13,14が設けられており、上記燃料供給機構50は、この一対の吸気ポート13,14への分岐部15の上流側の吸気路11に、気体燃料Gを供給するように配置されている。   Further, in the engine 1, in order to improve the charging efficiency of the air-fuel mixture M into the combustion chamber 10, a pair of intake ports 13 and 14 are provided for one combustion chamber 10, and the fuel supply mechanism 50 is provided. Is arranged to supply the gaseous fuel G to the intake passage 11 upstream of the branch portion 15 to the pair of intake ports 13 and 14.

その燃料供給機構50により吸気路11に供給された気体燃料Gは、空気Aと混合しながら、その下流側の分岐部15において分岐する一対の吸気ポート13,14の夫々に分流することになる。   The gaseous fuel G supplied to the intake passage 11 by the fuel supply mechanism 50 is mixed with the air A and is diverted to each of the pair of intake ports 13 and 14 branched at the downstream branching portion 15. .

尚、一対の吸気ポート13,14は、通常の2ポート吸気式のエンジンと同様に、吸気路11における分岐部15から分岐境界面Fを境界として両側に分岐された通路として形成されており、その一対の吸気ポート13,14の夫々が、一対の吸気弁5に対して各別に接続されている。   The pair of intake ports 13 and 14 is formed as a passage branched from the branch portion 15 in the intake passage 11 to both sides with the branch boundary surface F as a boundary, like a normal two-port intake engine. Each of the pair of intake ports 13 and 14 is connected to the pair of intake valves 5 separately.

次に、これまで説明したエンジン1に設けられる燃料供給機構50の詳細構成について、説明する。
燃料供給機構50は、吸気路11において一対の吸気ポート13,14の境界面Fに沿って吸気路11を横断するよう配置され内部に気体燃料Gが供給される直管状の燃料供給管部材51を備えると共に、その燃料供給管部材51の側壁には、図3及び図4に示すように、気体燃料Gを噴出させる複数の噴出孔52,53が管軸Xから放射状に穿設されている。
Next, a detailed configuration of the fuel supply mechanism 50 provided in the engine 1 described so far will be described.
The fuel supply mechanism 50 is arranged so as to cross the intake passage 11 along the boundary surface F of the pair of intake ports 13 and 14 in the intake passage 11, and is a straight tubular fuel supply pipe member 51 to which the gaseous fuel G is supplied. As shown in FIGS. 3 and 4, a plurality of ejection holes 52 and 53 for ejecting the gaseous fuel G are formed radially from the tube axis X in the side wall of the fuel supply pipe member 51. .

即ち、制御弁により適宜流量及び供給タイミングの制御を伴って燃料供給管部材51内に供給された気体燃料Gは、当該燃料供給管部材51の側壁に穿設された複数の噴出孔52,53を通じて吸気路11に噴出される。
尚、上記燃料供給管部材51としては、先端部を封鎖した通常の金属管を利用することができる。
That is, the gaseous fuel G supplied into the fuel supply pipe member 51 with appropriate control of the flow rate and supply timing by the control valve is a plurality of ejection holes 52, 53 formed in the side wall of the fuel supply pipe member 51. Through the air intake passage 11.
As the fuel supply pipe member 51, a normal metal pipe whose tip is sealed can be used.

また、このように一の燃焼室10に対して一対の吸気ポート13,14が設けられたエンジン1では、上記燃料供給機構50により吸気路11に気体燃料Gを供給するにあたり、一対の吸気ポート13,14の夫々に対して均等に気体燃料Gを流入させて、燃焼室10に略均質な混合気Mを存在させることが安定燃焼及び排気エミッション低減などの点で重要である。
以下に、一対の吸気ポート13,14の夫々に対して均等に気体燃料Gを流入させるための燃料供給機構50の特徴構成について説明する。
Further, in the engine 1 in which a pair of intake ports 13 and 14 are provided for one combustion chamber 10 in this way, when the gaseous fuel G is supplied to the intake passage 11 by the fuel supply mechanism 50, a pair of intake ports It is important in terms of stable combustion and reduction of exhaust emission that the gaseous fuel G is allowed to flow evenly into each of 13 and 14 so that a substantially homogeneous mixture M exists in the combustion chamber 10.
Below, the characteristic structure of the fuel supply mechanism 50 for making gaseous fuel G flow in equally with respect to each of a pair of intake ports 13 and 14 is demonstrated.

燃料供給機構50には、図1及び図4(a)に示すように、燃料供給管部材51を、当該燃料供給管部材51の管軸X回りに回動させて噴出孔52,53の噴出方向を当該管軸X回りに調整可能な噴出方向調整手段54が設けられている。
即ち、噴出方向調整手段54は、吸気路11の外壁11aを貫通する上記燃料供給管部材51の基端側に固設されたフランジ部55と、そのフランジ部55に形成された長孔状のボルト挿入穴55aと、そのボルト挿入穴55aに挿入されて吸気路11の外壁11aに係合されるボルト56とで実現されている。
即ち、上記ボルト56を緩めた状態では、上記燃料供給管51は管軸X回りに所定角度(例えば10°程度)分回動自在になり、更に、上記燃料供給管51を任意の回動位置で上記ボルト56により固定することができる。
In the fuel supply mechanism 50, as shown in FIGS. 1 and 4A, the fuel supply pipe member 51 is rotated around the tube axis X of the fuel supply pipe member 51 to eject the ejection holes 52 and 53. An ejection direction adjusting means 54 capable of adjusting the direction around the tube axis X is provided.
That is, the ejection direction adjusting means 54 has a flange portion 55 fixed to the proximal end side of the fuel supply pipe member 51 that penetrates the outer wall 11 a of the intake passage 11, and a long hole shape formed in the flange portion 55. The bolt insertion hole 55a and the bolt 56 inserted into the bolt insertion hole 55a and engaged with the outer wall 11a of the intake passage 11 are realized.
That is, when the bolt 56 is loosened, the fuel supply pipe 51 is rotatable about a predetermined angle (for example, about 10 °) around the pipe axis X, and the fuel supply pipe 51 is moved to an arbitrary rotational position. And can be fixed by the bolt 56.

そして、当該エンジン1の組み立て製造時やメンテナンス時において、上記吸気路11に上記複数の噴出孔52,53を通じて噴出した気体燃料Gを、その下流側において分岐する一対の吸気ポート13,14の夫々の流入部13a,14aに略均等に流入するように、上記噴出方向調整手段54により、その燃料供給管部材51を管軸X回りに回動させて、上記複数の噴出孔52,53の噴出方向を管軸X回りにおいて適切な方向に調整することができる。
尚、本実施形態では、上記噴出方向調整手段54を、燃料供給管部材51の基端部に固設されたフランジ部55及びそのフランジ部55を吸気路11の外壁11aに固定するボルト56で構成したが、例えば、吸気路11の外壁11aに燃料供給管部材51の基端側を回動自在に支持し、その燃料供給管部材51を外壁11aに固定されたクランプにより固定するような構成や、その燃料供給管部材51を所定の回転角度で固定可能な歯車機構部により回動させる構成等のように、適宜改変しても構わない。
また、上記噴出方向調整手段54をアクチュエータにより燃料供給管部材51を管軸X回りに自動的に回動自在に構成し、更には、制御装置により、噴出方向調整手段54を制御して、燃料供給管部材51の回動角度を運転状態に応じて適切な回動角度に調整するように構成しても構わない。
At the time of assembly manufacture and maintenance of the engine 1, each of the pair of intake ports 13, 14 that branches the gaseous fuel G injected into the intake passage 11 through the plurality of injection holes 52, 53 on the downstream side thereof. The fuel supply pipe member 51 is rotated about the pipe axis X by the jet direction adjusting means 54 so as to flow into the inflow portions 13a, 14a substantially uniformly, and the jets of the plurality of jet holes 52, 53 are ejected. The direction can be adjusted to an appropriate direction around the tube axis X.
In the present embodiment, the ejection direction adjusting means 54 is composed of a flange portion 55 fixed to the base end portion of the fuel supply pipe member 51 and a bolt 56 that fixes the flange portion 55 to the outer wall 11 a of the intake passage 11. Although configured, for example, the base end side of the fuel supply pipe member 51 is rotatably supported on the outer wall 11a of the intake passage 11, and the fuel supply pipe member 51 is fixed by a clamp fixed to the outer wall 11a. Alternatively, the fuel supply pipe member 51 may be appropriately modified, such as a configuration in which the fuel supply pipe member 51 is rotated by a gear mechanism that can be fixed at a predetermined rotation angle.
The ejection direction adjusting means 54 is configured to automatically rotate the fuel supply pipe member 51 around the tube axis X by an actuator, and further, the control unit controls the ejection direction adjusting means 54 to control the fuel. You may comprise so that the rotation angle of the supply pipe member 51 may be adjusted to an appropriate rotation angle according to a driving | running state.

更に、図2、図3及び図4(b)に示すように、燃料供給機構50において、複数の噴出孔52,53が、分岐部15における一対の吸気ポート13,14の一方側の流入部13aに向けて気体燃料を噴出させるように形成された第1噴出孔52群と、他方側の流入部14aに向けて気体燃料を噴出させるように形成された第2噴出孔53群とを有する形態で、上記燃料供給管部材51の側壁に穿設されている。   Further, as shown in FIGS. 2, 3, and 4 (b), in the fuel supply mechanism 50, the plurality of ejection holes 52, 53 are inflow portions on one side of the pair of intake ports 13, 14 in the branch portion 15. A first ejection hole group 52 formed so as to eject gaseous fuel toward 13a, and a second ejection hole group 53 formed so as to eject gaseous fuel toward the inflow part 14a on the other side. In the form, the fuel supply pipe member 51 is formed in the side wall.

即ち、燃料供給管部材51の側壁において、上記第1噴出孔52が、管軸Xから一方の吸気ポート13の流入部13aに向かう方向に中心軸を有する小孔として形成されており、一方、上記第2噴出孔53が、管軸Xから他の吸気ポート14の流入部14aに向かう方向に中心軸を有する小孔として形成されており、具体的には、それら第1噴出孔52と第2噴出孔53との夫々の噴出方向が、管軸Xにおいて適切な角度(例えば30°程度)で交差する方向として設定されている。   That is, in the side wall of the fuel supply pipe member 51, the first ejection hole 52 is formed as a small hole having a central axis in the direction from the pipe axis X toward the inflow portion 13a of the one intake port 13, The second ejection holes 53 are formed as small holes having a central axis in the direction from the tube axis X toward the inflow portion 14a of the other intake port 14, and specifically, the first ejection holes 52 and the first The respective ejection directions with the two ejection holes 53 are set as directions intersecting at an appropriate angle (for example, about 30 °) in the tube axis X.

よって、燃料供給管部材51内から第1噴出孔52を通じて吸気路11に噴出した気体燃料Gは、主に一方側の吸気ポート13の流入部13aに流入し、一方、燃料供給管部材51内から第2噴出孔53を通じて噴出した気体燃料Gは、主に他方側の吸気ポート14の流入部14aに流入することになる。よって、夫々の噴出孔52,53群から吸気路11に噴出した気体燃料Gは、その下流側において分岐する一対の吸気ポート13,14の夫々の流入部13a,14aに略均等に流入することになる。
尚、上記第1噴出孔52及び上記第2噴出孔53を通じて吸気路11に噴出した気体燃料Gのうち少量の気体燃料Gが、その噴出孔の噴出方向が向けられた流入部とは別の流入部に流入しても構わない。
Therefore, the gaseous fuel G ejected from the fuel supply pipe member 51 into the intake passage 11 through the first ejection holes 52 mainly flows into the inflow portion 13a of the intake port 13 on one side, The gaseous fuel G ejected through the second ejection holes 53 mainly flows into the inflow portion 14a of the intake port 14 on the other side. Therefore, the gaseous fuel G ejected from the respective ejection holes 52 and 53 into the intake passage 11 flows into the inflow portions 13a and 14a of the pair of intake ports 13 and 14 branched on the downstream side thereof substantially evenly. become.
A small amount of gaseous fuel G out of the gaseous fuel G ejected into the intake passage 11 through the first ejection hole 52 and the second ejection hole 53 is different from the inflow portion in which the ejection direction of the ejection hole is directed. You may flow in into an inflow part.

更に、図3に示すように、燃料供給機構50において、第1噴出孔52群と第2噴出孔53群との夫々が、前記燃料供給管部材の管軸X方向に等間隔で並設されており、それら第1噴出孔52及び第2噴出孔53の夫々から噴出した気体燃料Gは、吸気路11において上記管軸X方向においても略均等に分散して供給されることになる。   Further, as shown in FIG. 3, in the fuel supply mechanism 50, the first injection hole 52 group and the second injection hole 53 group are arranged in parallel at equal intervals in the tube axis X direction of the fuel supply pipe member. The gaseous fuel G ejected from each of the first ejection holes 52 and the second ejection holes 53 is supplied in a substantially uniform manner in the intake passage 11 also in the tube axis X direction.

更に、第1噴出孔52群と前記第2噴出孔53群との夫々が、吸気路11の横断方向の略全体に渡って、管軸方向に沿って交互に配置されており、それら第1噴出孔52及び第2噴出孔53の夫々から噴出した気体燃料Gは、噴出圧による相互干渉を抑制した状態で良好且つ均等に、一対の吸気ポート13,14の夫々の流入部13a,14aに流入することになる。   Furthermore, the first ejection hole 52 group and the second ejection hole 53 group are alternately arranged along the pipe axis direction over substantially the entire transverse direction of the intake passage 11. The gaseous fuel G ejected from each of the ejection holes 52 and the second ejection holes 53 is satisfactorily and evenly supplied to the inflow portions 13a and 14a of the pair of intake ports 13 and 14 in a state where mutual interference due to the ejection pressure is suppressed. Will flow in.

尚、上記燃料供給管部材51に穿設される複数の噴出孔52,53としては、吸気路11において気体燃料Gを一層均等に噴出させるべく、第1噴出孔52群及び第2噴出孔53群以外の噴出孔を設けたり、夫々の噴出孔の数、穿設方向、内径等を適宜変更しても構わない。   The plurality of ejection holes 52 and 53 formed in the fuel supply pipe member 51 are a first ejection hole 52 group and a second ejection hole 53 so that the gaseous fuel G is ejected more uniformly in the intake passage 11. You may provide the ejection holes other than a group, or may change suitably the number of each ejection holes, a drilling direction, an internal diameter, etc. FIG.

尚、上記実施の形態では、一対の吸気ポート13,14の夫々に対して均等に気体燃料Gを流入させるための構成として、噴出方向調整手段54を備える構成、及び、複数の噴出孔52,53が第1噴出孔52群と第2噴出孔53群とを有する構成の両方を採用したが、別に一方の構成を省略しても構わない。   In the above embodiment, as a configuration for allowing the gaseous fuel G to flow evenly into each of the pair of intake ports 13, 14, a configuration including the ejection direction adjusting means 54, and a plurality of ejection holes 52, Although 53 employ | adopted both the structures which have the 1st ejection hole 52 group and the 2nd ejection hole 53 group, you may abbreviate | omit one structure separately.

また、上記の実施の形態では、気体燃料Gとして天然ガス系都市ガスを用いたが、気体燃料Gとしては、天然ガス系都市ガス以外の気体燃料等を用いることもできる。   Moreover, in said embodiment, although natural gas type | system | group city gas was used as gaseous fuel G, as gaseous fuel G, gaseous fuels other than natural gas type | system | group city gas etc. can also be used.

次に、上記第一実施形態に対して、別の形態の燃料供給機構についての第二実施形態及び第三実施形態について説明する。尚、上記第一実施形態と同様の構成については説明を割愛する場合がある。   Next, a second embodiment and a third embodiment of another form of fuel supply mechanism will be described with respect to the first embodiment. Note that description of the same configuration as in the first embodiment may be omitted.

〔第二実施形態〕
本第二実施形態の燃料供給機構60では、図5〜7に示すように、上記第一実施形態で説明した燃料供給機構50(図3及び図4参照)と比較して、側壁に、外向きに突出する複数のノズル部材66,67が設けられており、更に、複数の噴出孔62,63の夫々が、それら複数のノズル部材66,67の夫々の先端部に形成されている燃料供給管部材61を採用している点で相違する。
[Second Embodiment]
In the fuel supply mechanism 60 of the second embodiment, as shown in FIGS. 5 to 7, compared to the fuel supply mechanism 50 described in the first embodiment (see FIGS. 3 and 4), the fuel supply mechanism 60 on the side wall A plurality of nozzle members 66 and 67 projecting in the direction are provided, and further, a plurality of ejection holes 62 and 63 are provided at the respective tip portions of the plurality of nozzle members 66 and 67. The difference is that a pipe member 61 is employed.

即ち、燃料供給管部材61は、吸気路11において一対の吸気ポート13,14の境界面Fに沿って吸気路11を横断するよう配置され内部に気体燃料Gが供給される直管状のものであって、その燃料供給管部材61の側壁には、気体燃料Gを噴出させる複数の開口が管軸Xから放射状に穿設され、更に、その複数の開口の夫々に、先端部に複数の噴出孔62,63の夫々が形成された複数のノズル部材66,67が径外方向に突出する形態で設けられている。   That is, the fuel supply pipe member 61 is a straight tubular member that is disposed so as to cross the intake passage 11 along the boundary surface F of the pair of intake ports 13 and 14 in the intake passage 11 and is supplied with gaseous fuel G therein. In the side wall of the fuel supply pipe member 61, a plurality of openings through which the gaseous fuel G is ejected are formed radially from the tube axis X, and a plurality of ejections are provided at the tip of each of the plurality of openings. A plurality of nozzle members 66 and 67 in which the holes 62 and 63 are formed are provided so as to protrude in the radially outward direction.

そして、夫々のノズル部材66,67の先端部では、上記燃料供給管部材61の外表面に形成される空気Aの流れの影響を殆ど受けることがないので、その夫々の先端部に形成された夫々の噴出孔62,63からは気体燃料Gが安定且つ勢い良く噴出されることになるので、結果、その噴出された気体燃料Gは、吸気路11の下流側において分岐する一対の吸気ポート13,14の夫々の流入部13a,14aに一層均等に分流することになる。   The tip portions of the nozzle members 66 and 67 are hardly affected by the flow of the air A formed on the outer surface of the fuel supply pipe member 61, and thus are formed at the tip portions of the nozzle members 66 and 67. Since the gaseous fuel G is ejected from each of the ejection holes 62 and 63 stably and vigorously, the ejected gaseous fuel G branches as a result on the downstream side of the intake passage 11. , 14 are more evenly distributed to the respective inflow portions 13a, 14a.

更に、燃料供給管部材61においても、複数の噴出孔62,63が、一方側の流入部13aに向けて気体燃料を噴出させるように形成された第1噴出孔62群と、他方側の流入部14aに向けて気体燃料を噴出させるように形成された第2噴出孔63群とを有する形態で、夫々のノズル部材66,67が配置されているが、それら第1噴出孔62と第2噴出孔63との夫々の噴出方向が、管軸Xにおいて上記第一実施形態の場合より広い角度(例えば180°)で交差する方向として設定されている。従って、夫々の噴出孔62,63から噴出する気体燃料Gは、吸気路11において良好に拡散して、夫々の流入部13a,14aに良好に分流することになる。   Further, also in the fuel supply pipe member 61, a plurality of ejection holes 62 and 63 are formed so that gaseous fuel is ejected toward the inflow portion 13a on one side, and the inflow on the other side. The nozzle members 66 and 67 are arranged in a form having a second ejection hole 63 group formed so as to eject gaseous fuel toward the portion 14a. Each ejection direction with the ejection hole 63 is set as a direction that intersects the tube axis X at a wider angle (for example, 180 °) than in the first embodiment. Therefore, the gaseous fuel G ejected from the respective ejection holes 62 and 63 is diffused well in the intake passage 11 and is diverted well to the respective inflow portions 13a and 14a.

更に、この燃料供給管部材61は、上述したように気体燃料Gを勢い良く噴出させて広域に拡散させることができるので、それを構成する金属管の外径は、図5に示すように、上記第一実施形態の燃料供給管部材51(図2参照)よりも小さいものとされており、吸気路11における燃料供給管部材61による流路抵抗の低減が図られている。   Furthermore, since this fuel supply pipe member 61 can eject the gaseous fuel G vigorously and diffuse it over a wide area as described above, the outer diameter of the metal pipe constituting it is as shown in FIG. It is made smaller than the fuel supply pipe member 51 (see FIG. 2) of the first embodiment, and the flow resistance by the fuel supply pipe member 61 in the intake passage 11 is reduced.

尚、この第二実施形態の燃料供給機構60についても、上記第一実施形態と同様に、当該燃料供給管部材61の管軸X回りに回動させて噴出孔62,63の噴出方向を当該管軸X回りに調整可能な噴出方向調整手段64が設けられている。そして、この噴出方向調整手段64は、吸気路11の外壁11aを貫通する上記燃料供給管部材61の基端側に固設されたフランジ部65と、そのフランジ部65に形成された長孔状のボルト挿入穴65aと、そのボルト挿入穴65aに挿入されて吸気路11の外壁11aに係合されるボルト(図示せず)とで実現されている。   The fuel supply mechanism 60 of the second embodiment is also rotated around the tube axis X of the fuel supply pipe member 61 in the same manner as in the first embodiment, so that the ejection directions of the ejection holes 62 and 63 are changed. An ejection direction adjusting means 64 that can be adjusted around the tube axis X is provided. The ejection direction adjusting means 64 includes a flange portion 65 fixed to the base end side of the fuel supply pipe member 61 that penetrates the outer wall 11a of the intake passage 11 and a long hole shape formed in the flange portion 65. The bolt insertion hole 65a and a bolt (not shown) inserted into the bolt insertion hole 65a and engaged with the outer wall 11a of the intake passage 11 are realized.

〔第三実施形態〕
本第三実施形態の燃料供給機構70では、図8〜10に示すように、上記第二実施形態で説明した燃料供給機構60(図5〜7参照)と比較して、管軸方向Xに直交する断面形状(図8に示されている断面形状)が、前記吸気路11における空気Aの流れ方向(図9(a)の図示方向)からみた幅W1が当該流れ方向の直交方向(図9(b)の図示方向)からみた幅W2よりも小さい扁平形状とされている燃料供給管部材71を採用している点で相違する。
[Third embodiment]
In the fuel supply mechanism 70 of the third embodiment, as shown in FIGS. 8 to 10, compared with the fuel supply mechanism 60 (see FIGS. 5 to 7) described in the second embodiment, The cross-sectional shape perpendicular to the cross-sectional shape (the cross-sectional shape shown in FIG. 8) is the width W1 viewed from the flow direction of the air A in the intake passage 11 (the illustrated direction in FIG. 9A). 9 (b) is different in that a fuel supply pipe member 71 having a flat shape smaller than the width W2 as viewed in the drawing direction is employed.

即ち、燃料供給管部材71は、その断面形状が、空気Aの流れ方向からみた幅W1が比較的小さい上記扁平形状とされているので、夫々の噴出孔72,73に対して十分な量の気体燃料Gを供給しながら、吸気路11における当該燃料供給管部材71による流路抵抗の低減が図られている。
更に、上記燃料供給管部材71としては、断面形状が楕円の有底筒状の部材を利用することができる。そして、その楕円断面を有する燃料供給管部材71を、その楕円断面の短軸方向が吸気路11における空気Aの流れ方向と直交するように吸気路11に配置すれば、空気Aの流れ方向からみた幅W1を比較的小さい上記扁平形状とすることができる。
That is, the fuel supply pipe member 71 has a cross-sectional shape that is the above-described flat shape having a relatively small width W1 as viewed in the flow direction of the air A. Therefore, the fuel supply pipe member 71 has a sufficient amount for each of the ejection holes 72 and 73. While supplying the gaseous fuel G, the flow path resistance is reduced by the fuel supply pipe member 71 in the intake passage 11.
Further, as the fuel supply pipe member 71, a bottomed cylindrical member having an elliptical cross-sectional shape can be used. Then, if the fuel supply pipe member 71 having the elliptical cross section is disposed in the intake passage 11 so that the minor axis direction of the elliptical cross section is orthogonal to the flow direction of the air A in the intake passage 11, the flow direction of the air A The seen width W1 can be made to be a relatively small flat shape.

更に、上記第二実施形態と同様に、先端部に複数の噴出孔72,73の夫々が形成された複数のノズル部材76,77が燃料供給管部材71の外壁から突出するように設けられているが、その夫々のノズル部材76,77の突出方向が、上記第二実施形態よりも吸気路11の下流側に向けて傾斜されており、それによって、第1噴出孔72と第2噴出孔73との夫々の噴出方向の交差角度が適切な角度に設定されている。   Further, as in the second embodiment, a plurality of nozzle members 76 and 77 each having a plurality of ejection holes 72 and 73 formed at the tip are provided so as to protrude from the outer wall of the fuel supply pipe member 71. However, the protruding directions of the respective nozzle members 76 and 77 are inclined toward the downstream side of the intake passage 11 with respect to the second embodiment, whereby the first ejection holes 72 and the second ejection holes are formed. The crossing angle of each of the ejection directions with 73 is set to an appropriate angle.

尚、この第三実施形態の燃料供給機構70についても、上記第一実施形態と同様に、当該燃料供給管部材71の管軸X回りに回動させて噴出孔72,73の噴出方向を当該管軸X回りに調整可能な噴出方向調整手段74が設けられている。そして、この噴出方向調整手段74は、吸気路11の外壁11aを貫通する上記燃料供給管部材71の基端側に固設されたフランジ部75と、そのフランジ部75に形成された長孔状のボルト挿入穴75aと、そのボルト挿入穴75aに挿入されて吸気路11の外壁11aに係合されるボルト(図示せず)とで実現されている。   The fuel supply mechanism 70 of the third embodiment is also rotated around the tube axis X of the fuel supply pipe member 71 in the same manner as in the first embodiment, so that the ejection directions of the ejection holes 72 and 73 are changed. An ejection direction adjusting means 74 that can be adjusted around the tube axis X is provided. The ejection direction adjusting means 74 includes a flange portion 75 fixed to the base end side of the fuel supply pipe member 71 that penetrates the outer wall 11 a of the intake passage 11, and a long hole shape formed in the flange portion 75. The bolt insertion hole 75a and a bolt (not shown) inserted into the bolt insertion hole 75a and engaged with the outer wall 11a of the intake passage 11 are realized.

尚、上記第二及び第三実施形態において、上記夫々のノズル部材66,67,76,77の突出方向、形状、長さ、数等については、噴出された気体燃料Gが夫々の流入部13a,14aに均等に分流するように、適宜変更可能である。   In the second and third embodiments, the ejected gaseous fuel G is injected into each inflow portion 13a with respect to the protruding direction, shape, length, number, etc. of the nozzle members 66, 67, 76, 77. , 14a can be appropriately changed so as to be divided equally.

本発明に係る燃料供給機構及びそれを備えたエンジンは、一の燃焼室に対して一対の吸気ポートが設けられたエンジンにおいて、燃料供給機構により一対の吸気ポートへの分岐部の上流側の吸気路に気体燃料を供給するにあたり、一対の吸気ポートの夫々の流入部へ略均等に気体燃料を流入させて、安定燃焼且つ低排気エミッションを実現し得るものとして有効に利用可能である。   A fuel supply mechanism according to the present invention and an engine equipped with the fuel supply mechanism include an intake air upstream of a branching portion to a pair of intake ports by the fuel supply mechanism in an engine provided with a pair of intake ports for one combustion chamber. When supplying the gaseous fuel to the road, it can be effectively used as a gas fuel that is made to flow almost uniformly into the inflow portions of the pair of intake ports to realize stable combustion and low exhaust emission.

第一実施形態の燃料供給管部材を配置したエンジンの吸気系の概略構成を示す立断面図Elevated sectional view showing a schematic configuration of an intake system of an engine in which the fuel supply pipe member of the first embodiment is arranged 第一実施形態の燃料供給管部材を配置したエンジンの吸気系の概略構成を示す平断面図Plan sectional drawing which shows schematic structure of the intake system of the engine which has arrange | positioned the fuel supply pipe member of 1st embodiment 第一実施形態の燃料供給管部材の立面図Elevated view of the fuel supply pipe member of the first embodiment 燃料供給管の平面図Top view of fuel supply pipe 第二実施形態の燃料供給管部材を配置したエンジンの吸気系の概略構成を示す平断面図Plan sectional drawing which shows schematic structure of the intake system of the engine which has arrange | positioned the fuel supply pipe member of 2nd embodiment. 第二実施形態の燃料供給管部材の立面図(a)及び側面図(b)Elevated view (a) and side view (b) of the fuel supply pipe member of the second embodiment 第二実施形態の燃料供給管部材の平面図Plan view of the fuel supply pipe member of the second embodiment 第二実施形態の燃料供給管部材を配置したエンジンの吸気系の概略構成を示す平断面図Plan sectional drawing which shows schematic structure of the intake system of the engine which has arrange | positioned the fuel supply pipe member of 2nd embodiment. 第二実施形態の燃料供給管部材の立面図(a)及び側面図(b)Elevated view (a) and side view (b) of the fuel supply pipe member of the second embodiment 第二実施形態の燃料供給管部材の平面図Plan view of the fuel supply pipe member of the second embodiment

符号の説明Explanation of symbols

1:エンジン
10:燃焼室
11:吸気路
13,14:吸気ポート
13a,14a:流入部
15:分岐部
50,60,70:燃料供給機構
51,61,71:燃料供給管部材
52,53,62,63,72,73:噴出孔
54,64,74:噴出方向調整手段
A:空気
G:気体燃料
M:混合気
F:分岐境界面
X:管軸
1: Engine 10: Combustion chamber 11: Intake passage 13, 14: Intake port 13a, 14a: Inflow portion 15: Branch portions 50, 60, 70: Fuel supply mechanisms 51, 61, 71: Fuel supply pipe members 52, 53, 62, 63, 72, 73: ejection holes 54, 64, 74: ejection direction adjusting means A: air G: gaseous fuel M: air-fuel mixture F: branch boundary surface X: tube axis

Claims (7)

一の燃焼室に対して一対の吸気ポートが設けられたエンジンにおいて、前記一対の吸気ポートへの分岐部の上流側の吸気路に気体燃料を供給する燃料供給機構であって、
前記吸気路において前記一対の吸気ポートの境界面に沿って前記吸気路を横断するよう配置され、内部に気体燃料が供給される直管状の燃料供給管部材を備えると共に、前記燃料供給管部材の側壁に、気体燃料を噴出させる複数の噴出孔が穿設されたものにおいて、
前記燃料供給管部材を、当該燃料供給管部材の管軸回りに回動させて前記噴出孔の噴出方向を当該管軸回りに調整可能な噴出方向調整手段を備えた燃料供給機構。
In an engine provided with a pair of intake ports for one combustion chamber, a fuel supply mechanism for supplying gaseous fuel to an intake passage upstream of a branch portion to the pair of intake ports,
The intake passage includes a straight tubular fuel supply pipe member that is disposed so as to cross the intake path along a boundary surface of the pair of intake ports, and is supplied with gaseous fuel therein. In the side wall provided with a plurality of ejection holes for ejecting gaseous fuel,
A fuel supply mechanism provided with an ejection direction adjusting means capable of adjusting the ejection direction of the ejection hole around the pipe axis by rotating the fuel supply pipe member around the pipe axis of the fuel supply pipe member.
前記複数の噴出孔が、前記分岐部における前記一対の吸気ポートの一方側の流入部に向けて気体燃料を噴出させるように形成された第1噴出孔群と、他方側の流入部に向けて気体燃料を噴出させるように形成された第2噴出孔群とを有する請求項1に記載の燃料供給機構。   The plurality of ejection holes are directed to a first ejection hole group formed to eject gaseous fuel toward an inflow portion on one side of the pair of intake ports in the branching portion, and toward an inflow portion on the other side. The fuel supply mechanism according to claim 1, further comprising a second ejection hole group formed to eject gaseous fuel. 一の燃焼室に対して一対の吸気ポートが設けられたエンジンにおいて、前記一対の吸気ポートへの分岐部の上流側の吸気路に気体燃料を供給する燃料供給機構であって、
前記吸気路において前記一対の吸気ポートの境界面に沿って前記吸気路を横断するよう配置され、内部に気体燃料が供給される直管状の燃料供給管部材を備えると共に、前記燃料供給管部材の側壁に、気体燃料を噴出させる複数の噴出孔が穿設されたものにおいて、
前記複数の噴出孔が、前記分岐部における前記一対の吸気ポートの一方側の流入部に向けて気体燃料を噴出させるように形成された第1噴出孔群と、他方側の流入部に向けて気体燃料を噴出させるように形成された第2噴出孔群とを有する燃料供給機構。
In an engine provided with a pair of intake ports for one combustion chamber, a fuel supply mechanism for supplying gaseous fuel to an intake passage upstream of a branch portion to the pair of intake ports,
The intake passage includes a straight tubular fuel supply pipe member that is disposed so as to cross the intake path along a boundary surface of the pair of intake ports, and is supplied with gaseous fuel therein. In the side wall provided with a plurality of ejection holes for ejecting gaseous fuel,
The plurality of ejection holes are directed to a first ejection hole group formed to eject gaseous fuel toward an inflow portion on one side of the pair of intake ports in the branching portion, and toward an inflow portion on the other side. A fuel supply mechanism having a second ejection hole group formed to eject gaseous fuel.
前記第1噴出孔群と前記第2噴出孔群との夫々が、前記燃料供給管部材の管軸方向に沿って等間隔で並設され、且つ、前記管軸方向に沿って交互に配置されている請求項2又は3の何れか一項に記載の燃料供給機構。   The first ejection hole group and the second ejection hole group are arranged in parallel at equal intervals along the pipe axis direction of the fuel supply pipe member, and are alternately arranged along the pipe axis direction. The fuel supply mechanism according to any one of claims 2 and 3. 前記燃料供給管部材の側壁に、外向きに突出する複数のノズル部材が設けられ、
前記複数の噴出孔の夫々が、前記複数のノズル部材の夫々の先端部に形成されている請求項1〜4の何れか一項に記載の燃料供給機構。
A plurality of nozzle members projecting outward are provided on the side wall of the fuel supply pipe member,
The fuel supply mechanism according to any one of claims 1 to 4, wherein each of the plurality of ejection holes is formed at a distal end portion of each of the plurality of nozzle members.
前記燃料供給管部材の前記管軸方向に直交する断面形状が、前記吸気路における新気の流れ方向からみた幅が当該流れ方向の直交方向からみた幅よりも小さい扁平形状とされている請求項1〜5の何れか一項に記載の燃料供給機構。   The cross-sectional shape orthogonal to the tube axis direction of the fuel supply pipe member is a flat shape in which a width viewed from a flow direction of fresh air in the intake passage is smaller than a width viewed from a direction orthogonal to the flow direction. The fuel supply mechanism according to any one of 1 to 5. 共通の吸気路から分岐する一対の吸気ポートが共通の燃焼室に接続されているエンジンであって、
前記吸気路における前記一対の吸気ポートへの分岐部の上流側において気体燃料を供給する燃料供給機構として、請求項1〜6の何れか一項に記載の燃料供給機構を備えたエンジン。
An engine in which a pair of intake ports branched from a common intake passage are connected to a common combustion chamber,
The engine provided with the fuel supply mechanism as described in any one of Claims 1-6 as a fuel supply mechanism which supplies gaseous fuel in the upstream of the branch part to the said pair of intake port in the said intake path.
JP2006341413A 2006-08-21 2006-12-19 Fuel supply mechanism and engine Pending JP2008075642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341413A JP2008075642A (en) 2006-08-21 2006-12-19 Fuel supply mechanism and engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006224190 2006-08-21
JP2006341413A JP2008075642A (en) 2006-08-21 2006-12-19 Fuel supply mechanism and engine

Publications (1)

Publication Number Publication Date
JP2008075642A true JP2008075642A (en) 2008-04-03

Family

ID=39347960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341413A Pending JP2008075642A (en) 2006-08-21 2006-12-19 Fuel supply mechanism and engine

Country Status (1)

Country Link
JP (1) JP2008075642A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133491A (en) * 2016-01-21 2017-08-03 株式会社Ihi Fuel gas supply device of gas engine
WO2019176128A1 (en) * 2018-03-16 2019-09-19 三菱重工エンジン&ターボチャージャ株式会社 Gas engine and ship provided with same
CN115011933A (en) * 2022-07-01 2022-09-06 上海宇泽机电设备有限公司 Gas supply device and spray module
WO2022243685A1 (en) * 2021-05-21 2022-11-24 Diffusion Technologies Limited Fluid introduction system and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133491A (en) * 2016-01-21 2017-08-03 株式会社Ihi Fuel gas supply device of gas engine
WO2019176128A1 (en) * 2018-03-16 2019-09-19 三菱重工エンジン&ターボチャージャ株式会社 Gas engine and ship provided with same
JP2019157819A (en) * 2018-03-16 2019-09-19 三菱重工エンジン&ターボチャージャ株式会社 Gas engine and marine vessel equipped with the same
CN111566331A (en) * 2018-03-16 2020-08-21 三菱重工发动机和增压器株式会社 Gas engine and ship provided with same
EP3722586A4 (en) * 2018-03-16 2020-11-25 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Gas engine and ship provided with same
JP2021175897A (en) * 2018-03-16 2021-11-04 三菱重工エンジン&ターボチャージャ株式会社 Gas engine and marine vessel equipped with the same
CN111566331B (en) * 2018-03-16 2022-04-05 三菱重工发动机和增压器株式会社 Gas engine and ship provided with same
JP7196242B2 (en) 2018-03-16 2022-12-26 三菱重工エンジン&ターボチャージャ株式会社 Gas engines and ships equipped with them
US11608798B2 (en) 2018-03-16 2023-03-21 Mitsubishi Heavy Industries Engine & Turbocharger Ltd Gas engine and ship provided with same
WO2022243685A1 (en) * 2021-05-21 2022-11-24 Diffusion Technologies Limited Fluid introduction system and method
CN115011933A (en) * 2022-07-01 2022-09-06 上海宇泽机电设备有限公司 Gas supply device and spray module

Similar Documents

Publication Publication Date Title
JP6722661B2 (en) Ducted fuel injection
KR100926660B1 (en) In-cylinder injection spark ignition internal combustion engine
JP4508142B2 (en) Fuel injection valve for internal combustion engine
KR20110062146A (en) Gasoline direct injection engine
JP5897727B2 (en) Injection nozzle
JP2008075642A (en) Fuel supply mechanism and engine
JP2021175897A (en) Gas engine and marine vessel equipped with the same
JP5776624B2 (en) Fuel injection device for internal combustion engine
JP2006257992A (en) Fuel injection device
JP2007321619A (en) Cylinder injection type spark ignition internal combustion engine
JP2007239668A (en) Cylinder fuel injection type internal combustion engine and controller for cylinder fuel injection type internal combustion engine
JP4735467B2 (en) Fuel injection device and internal combustion engine
JP2005155570A (en) Device and method for feeding fuel of internal combustion engine
JP2008075538A (en) Fuel injection device
JP2008202534A (en) Fuel injection control device for cylinder injection type internal combustion engine
CN102518528A (en) General petrol engine cylinder head and petrol engine
JP2015151908A (en) fuel injection valve
JP2006046265A (en) Fuel injection apparatus of internal combustion engine
JP6680621B2 (en) Exhaust gas purification device for internal combustion engine
CN202451267U (en) Low emission gasoline engine cylinder head and gasoline engine thereof
WO2004053326A1 (en) Fuel injection nozzle
JP2007138862A (en) Internal combustion engine
JP2006242159A (en) Fuel injection valve
JP5609767B2 (en) Fuel injection device for internal combustion engine
JP2005201062A (en) Cylinder injection type spark ignition internal combustion engine