JP2008075205A - Method and apparatus for stretching fiber by using pressurized steam, and method for producing acrylic precursor fiber bundle for carbon fiber - Google Patents

Method and apparatus for stretching fiber by using pressurized steam, and method for producing acrylic precursor fiber bundle for carbon fiber Download PDF

Info

Publication number
JP2008075205A
JP2008075205A JP2006255807A JP2006255807A JP2008075205A JP 2008075205 A JP2008075205 A JP 2008075205A JP 2006255807 A JP2006255807 A JP 2006255807A JP 2006255807 A JP2006255807 A JP 2006255807A JP 2008075205 A JP2008075205 A JP 2008075205A
Authority
JP
Japan
Prior art keywords
fiber bundle
stretching
steam
pressurized steam
acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006255807A
Other languages
Japanese (ja)
Other versions
JP4745932B2 (en
Inventor
Nobuyuki Shimozawa
信之 下澤
Katsuhiko Ikeda
勝彦 池田
Akinari Tada
旭成 多田
Ario Shimotashiro
有生 下田代
Masahiro Hata
昌宏 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2006255807A priority Critical patent/JP4745932B2/en
Publication of JP2008075205A publication Critical patent/JP2008075205A/en
Application granted granted Critical
Publication of JP4745932B2 publication Critical patent/JP4745932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stretching a fiber, which is capable of suppressing the formation of fluffs even if performing high magnitude stretching, obtaining a fiber of a thin-fineness, and obtaining a fiber bundle having a large total fineness, etc., and especially suitable for actually producing an acrylic precursor fiber bundle for carbon fibers, and a stretching apparatus using pressurized steam. <P>SOLUTION: The method for controlling the temperature of the fiber bundle introduced into a stretching bath, and the water content, pressure, and temperature of the pressurized steam so as to condense the pressurized steam supplied into the stretching bath of the stretching apparatus using pressurized steam on the surface of the fiber bundle introduced into the stretching bath and stretch the fibers by the plastisizing effect of the condensed water formed on the surface of the fiber bundle, and the stretching apparatus using pressurized steam, which is capable of controlling them are provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、繊維の延伸方法及び延伸装置に関し、特に加圧スチームを用いて繊維束を延伸する延伸方法及び加圧スチーム延伸装置に関する。また本発明は、加圧スチーム延伸工程を有する炭素繊維用アクリル系前駆体繊維束の製造方法に関する。   The present invention relates to a fiber drawing method and a drawing device, and more particularly to a drawing method and a pressure steam drawing device for drawing a fiber bundle using pressurized steam. Moreover, this invention relates to the manufacturing method of the acrylic precursor fiber bundle for carbon fibers which has a pressurization steam extending process.

繊維の製造段階で行う延伸方法として、加圧スチームによる延伸方法は従来から知られている。大気圧下の熱水より高温が得られるとともに、水分の存在が繊維素高分子の可塑化効果を生み、高倍率の延伸が可能となるためである。特に、炭素繊維の前駆体として使用されるアクリル系繊維束は、他の熱可塑性繊維と異なって融点が存在せず、熱の効果だけでは実質的に延伸が不可能なため、加圧スチーム延伸がアクリル系繊維の延伸に適用される場合が多い。   As a drawing method performed at the fiber production stage, a drawing method using pressurized steam is conventionally known. This is because a temperature higher than that of hot water under atmospheric pressure can be obtained, and the presence of moisture produces a plasticizing effect of the fiber polymer and enables stretching at a high magnification. In particular, acrylic fiber bundles used as carbon fiber precursors, unlike other thermoplastic fibers, have no melting point and cannot be stretched by the effect of heat alone. Is often applied to the stretching of acrylic fibers.

しかしながら、繊維にスチーム延伸を施す場合において、高倍率の延伸を行う場合、細繊度の繊維を得る場合、トータル繊度の大きい繊維束を得る場合などにおいて、毛羽の発生などの問題が発生する場合があった。   However, in the case of subjecting the fiber to steam stretching, problems such as generation of fuzz may occur in the case of stretching at a high magnification, in the case of obtaining a fine fiber, in the case of obtaining a fiber bundle having a large total fineness, etc. there were.

特許文献1では、乾き度0.7〜1.0のスチームを使用することが提案されている。特許文献2、3では、延伸された後の繊維束の含水率がある範囲になるようにスチームの湿り度、言い換えれば乾き度を調整することが提案されている。特許文献4では、用いる加圧スチームの温度T1(℃)及びその飽和温度T2(℃)がT2<T1<T2+3を満たすように制御する、言い換えればこの条件を満たすように加圧スチームの乾き度を調整することが提案されている。
特開2000−345429号公報 特開平8−158162号公報 特開昭58−214521号公報 特開平10−292240号公報
Patent Document 1 proposes to use steam having a dryness of 0.7 to 1.0. Patent Documents 2 and 3 propose that the wetness of steam, in other words, the dryness, is adjusted so that the moisture content of the fiber bundle after being stretched is within a certain range. In Patent Document 4, the temperature T 1 (° C.) and the saturation temperature T 2 (° C.) of the pressurized steam used are controlled to satisfy T 2 <T 1 <T 2 +3, in other words, this condition is satisfied. It has been proposed to adjust the dryness of the pressurized steam.
JP 2000-345429 A JP-A-8-158162 JP 58-214521 A Japanese Patent Laid-Open No. 10-292240

しかし、特許文献1〜4の方法のようにスチームの乾き度を調整しただけでは、未だ、毛羽の発生を起こす場合があった。   However, fluffing may still occur even if the dryness of steam is adjusted as in the methods of Patent Documents 1 to 4.

本発明の目的は、高倍率の延伸を行う場合、細繊度の繊維を得る場合、トータル繊度の大きい繊維束を得る場合などにおいても、毛羽の発生を抑制でき、高品質の繊維、特に炭素繊維用アクリル系前駆体繊維束を実生産するに好適な繊維の延伸方法を提供することにある。   The object of the present invention is to suppress the occurrence of fluff even when drawing at a high magnification, obtaining a fine fiber, obtaining a fiber bundle having a large total fineness, etc., and producing high-quality fibers, particularly carbon fibers. Another object of the present invention is to provide a fiber drawing method suitable for actual production of an acrylic precursor fiber bundle for use.

本発明の他の目的は、高倍率の延伸を行う場合、細繊度の繊維を得る場合、トータル繊度の大きい繊維束を得る場合などにおいても、毛羽の発生を抑制でき、繊維、特に炭素繊維用アクリル系前駆体繊維束の品質を高く且つ安定的に維持できる加圧スチーム延伸装置を提供することである。   Another object of the present invention is to suppress the occurrence of fluff even when stretching at a high magnification, when obtaining a fine fiber, when obtaining a fiber bundle having a large total fineness, etc., and for fibers, particularly carbon fibers. An object of the present invention is to provide a pressurized steam drawing apparatus capable of maintaining the quality of an acrylic precursor fiber bundle high and stably.

本発明者らは、上記課題を解決すべく鋭意検討した結果、毛羽の発生、延伸切れ、ループが発生する理由は、スチーム中の微小な水滴が繊維に衝突し、繊維にダメージを与えているためと考えた。そして、加圧スチーム延伸装置に供給する加圧スチームを、加圧スチーム延伸装置に導入された繊維の表面にて凝縮させることで、加圧スチーム中の微小な水滴が繊維に衝突することを避けることができ、かつ繊維の表面に生成した加熱水の可塑化効果により延伸することが極めて有効であることを見出し、本発明に至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the generation of fluff, stretching, and loops are caused by minute water droplets in the steam colliding with the fibers and damaging the fibers. I thought because. Then, by condensing the pressurized steam supplied to the pressurized steam stretching apparatus on the surface of the fiber introduced into the pressurized steam stretching apparatus, it is avoided that minute water droplets in the pressurized steam collide with the fibers. And it has been found that it is extremely effective to stretch due to the plasticizing effect of the heated water generated on the surface of the fiber, leading to the present invention.

本発明は、加圧スチームにより炭素繊維用アクリル系繊維束を延伸する炭素繊維用アクリル系繊維束の延伸方法において、加圧スチーム延伸装置の延伸槽内に供給された加圧スチームを、前記延伸槽内に導入された炭素繊維用アクリル系繊維束の表面にて凝縮させ、該炭素繊維用アクリル系繊維束の表面に生成した凝縮水の可塑化効果により延伸することを特徴とする炭素繊維用アクリル系繊維束の延伸方法を提供する。   The present invention relates to a method for stretching an acrylic fiber bundle for carbon fibers by stretching the acrylic fiber bundle for carbon fibers with pressurized steam, and the stretching of the pressurized steam supplied into a stretching tank of a pressurized steam stretching apparatus is performed. Condensed on the surface of the acrylic fiber bundle for carbon fibers introduced into the tank, and stretched by the plasticizing effect of the condensed water generated on the surface of the acrylic fiber bundle for carbon fibers A method for drawing an acrylic fiber bundle is provided.

より具体的には、以下の炭素繊維用アクリル系繊維束の延伸方法を提供する。
(1)加圧スチーム延伸装置の延伸槽内に供給される加圧スチームとして乾き飽和蒸気または過熱蒸気を用い、前記延伸槽内に導入される炭素繊維用アクリル系繊維束の温度をT1(℃)、前記加圧スチームの温度をT2(℃)としたとき、80≦T1<T2を満たすように温度制御する炭素繊維用アクリル系繊維束の延伸方法。
(2)加圧スチーム延伸装置の延伸槽内に供給される加圧スチームとして乾き度0.9以上1.0未満の湿り蒸気を用い、前記延伸槽内に導入される炭素繊維用アクリル系繊維束の温度をT1(℃)、前記加圧スチームの温度をT3(℃)としたとき、80≦T1<T3を満たすように温度制御する炭素繊維用アクリル系前駆体繊維束の延伸方法。
More specifically, the following methods for stretching an acrylic fiber bundle for carbon fibers are provided.
(1) Dry saturated steam or superheated steam is used as the pressurized steam supplied into the drawing tank of the pressurized steam drawing apparatus, and the temperature of the acrylic fiber bundle for carbon fiber introduced into the drawing tank is T 1 ( C.), and the temperature of the pressurized steam is T 2 (° C.), and the temperature is controlled so as to satisfy 80 ≦ T 1 <T 2 .
(2) Acrylic fiber for carbon fiber introduced into the drawing tank using wet steam having a dryness of 0.9 or more and less than 1.0 as the pressurized steam supplied into the drawing tank of the pressurized steam drawing apparatus. The acrylic precursor fiber bundle for carbon fibers is temperature-controlled so as to satisfy 80 ≦ T 1 <T 3 when the bundle temperature is T 1 (° C.) and the pressure steam temperature is T 3 (° C.). Stretching method.

本発明は、加圧スチームにより並列させた複数の炭素繊維用アクリル系繊維束を延伸する加圧スチーム延伸装置において、
炭素繊維用アクリル系繊維束の入口部及び出口部に設けられたラビリンスシール部により、内部を加圧状態で維持可能な延伸槽と、
前記延伸槽の上流側及び下流側に配された延伸ローラと、
前記延伸槽の上流側に配された延伸ローラの表面温度を制御する手段と、
前記入口部から前記延伸槽内に導入される炭素繊維用アクリル系繊維束の温度を検出する検出器と、
前記延伸槽内に加圧スチームを供給する加圧スチーム供給手段と、
を有することを特徴とする加圧スチーム延伸装置を提供する。
The present invention is a pressurized steam stretching apparatus for stretching a plurality of acrylic fiber bundles for carbon fibers arranged in parallel by pressurized steam,
A drawing tank capable of maintaining the inside in a pressurized state by a labyrinth seal portion provided at the inlet and outlet of the acrylic fiber bundle for carbon fiber;
Stretching rollers arranged on the upstream side and downstream side of the stretching tank;
Means for controlling the surface temperature of the stretching roller disposed on the upstream side of the stretching tank;
A detector for detecting the temperature of the acrylic fiber bundle for carbon fibers introduced into the drawing tank from the inlet portion;
A pressurized steam supply means for supplying pressurized steam into the stretching tank;
There is provided a pressurized steam stretching apparatus characterized by comprising:

本発明は、本発明の加圧スチーム延伸装置を用いることを特徴とする炭素繊維用アクリル系前駆体繊維束の製造方法を提供する。   This invention provides the manufacturing method of the acrylic precursor fiber bundle for carbon fibers characterized by using the pressurized steam drawing apparatus of this invention.

本発明により、高倍率の延伸を行う場合、細繊度の繊維を得る場合、トータル繊度の大きい繊維束を得る場合などにおいても、毛羽の発生を抑制でき、高品質の繊維、特に炭素繊維用アクリル系前駆体繊維束を実生産するに好適な繊維の延伸方法を提供される。同時に、延伸切れ等の工程トラブルやループの発生なども抑制できる。   According to the present invention, when high-stretching is performed, when obtaining fine fibers, when obtaining a fiber bundle having a large total fineness, generation of fluff can be suppressed, and high-quality fibers, particularly carbon fiber acrylics. A fiber drawing method suitable for actual production of a system precursor fiber bundle is provided. At the same time, it is possible to suppress process troubles such as stretching and looping.

本発明により、高倍率の延伸を行う場合、細繊度の繊維を得る場合、トータル繊度の大きい繊維束を得る場合などにおいても、毛羽の発生を抑制でき、繊維、特に炭素繊維用アクリル系前駆体繊維束の品質を高く且つ安定的に維持できる加圧スチーム延伸装置を提供される。同時に、延伸切れ等の工程トラブルやループの発生なども抑制できる。   According to the present invention, when high-stretching is performed, when a fine fiber is obtained, or when a fiber bundle having a large total fineness is obtained, generation of fluff can be suppressed, and an acrylic precursor for fibers, particularly carbon fibers. There is provided a pressurized steam drawing apparatus capable of maintaining the quality of a fiber bundle high and stably. At the same time, it is possible to suppress process troubles such as stretching and looping.

さらに、上記本発明を利用して炭素繊維用アクリル系前駆体繊維束を製造し、さらに炭素繊維を製造することで、耐炎化工程や炭素化工程での毛羽の発生をも抑制し、得られる炭素繊維の品位を向上させることができる。   Furthermore, by producing the acrylic precursor fiber bundle for carbon fiber using the present invention, and further producing the carbon fiber, it can be obtained by suppressing generation of fluff in the flameproofing process and the carbonization process. The quality of carbon fiber can be improved.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

加圧スチームによる繊維の延伸は、大気圧下の熱水より高温が得られるとともに、水の存在が繊維素高分子の可塑化効果を生み、高倍率の延伸が可能となるとされている。従来、加圧スチームによる繊維の延伸には、微小な水滴となっている液体の水(単に「水」と称する)と気体の水(「蒸気」と称する)が共存する湿り蒸気が用いられている。この湿り蒸気中の水、つまり加圧状態にあるので100℃以上の高温の水、を利用して、その可塑化効果により延伸を行っている。ところが、加圧スチーム中の微小な水の滴が繊維に衝突し、繊維にダメージを与えている場合があった。   The stretching of fibers by pressurized steam is said to be possible at a higher temperature than hot water under atmospheric pressure, and the presence of water produces the plasticizing effect of the fiber polymer, enabling stretching at a high magnification. Conventionally, wet steam, in which liquid water (simply referred to as “water”) and gaseous water (referred to as “steam”), which are microscopic water droplets, coexist, is used for fiber stretching by pressurized steam. Yes. Stretching is performed by the plasticizing effect using the water in the wet steam, that is, the high-temperature water at 100 ° C. or higher because it is in a pressurized state. However, in some cases, fine water droplets in the pressurized steam collide with the fiber and damage the fiber.

ここで、加圧スチームには、湿り蒸気以外に、湿り蒸気を加熱して完全に蒸気になり水を含まない状態に相当する乾き飽和蒸気、及び乾き飽和蒸気を加熱して高温になった状態に相当する過熱蒸気がある。そして、湿り蒸気や、乾き飽和蒸気及び過熱蒸気を凝縮することによっても高温の水が生成する。   Here, in addition to the wet steam, in the pressurized steam, the dry steam corresponding to the state in which the wet steam is heated to become completely steam and does not contain water, and the dry saturated steam is heated to a high temperature state. There is superheated steam corresponding to. And hot water is produced | generated also by condensing wet steam, dry saturated steam, and superheated steam.

図5は、供給熱エネルギーと、温度との関係を示すグラフである。この図左側の、供給熱エネルギーの増加に伴い温度が上昇する領域においては、水の形態は液体である。   FIG. 5 is a graph showing the relationship between supplied heat energy and temperature. In the region on the left side of the figure where the temperature rises as the supply heat energy increases, the form of water is liquid.

そして、供給熱エネルギーを増加させても温度が一定の領域では、始点と終点を除いて、水の形態は乾き度が0よりも大きく1.0未満の湿り蒸気の気体である。この一定となる温度を飽和温度という。飽和温度は圧力が高いほど高くなる。始点の乾き度は0であり、終点の乾き度は1.0である。全ての水が蒸気に変わったところ、すなわち乾き度1.0の蒸気を乾き飽和蒸気と呼ぶ。   And in the area | region where temperature is constant even if supply heat energy is increased, except for the start point and the end point, the form of water is a gas of wet steam having a dryness greater than 0 and less than 1.0. This constant temperature is called the saturation temperature. The saturation temperature increases with increasing pressure. The dryness at the start point is 0, and the dryness at the end point is 1.0. When all the water is changed to steam, that is, steam with a dryness of 1.0 is called dry saturated steam.

また、温度が一定の領域の終点よりも右の領域では、供給熱エネルギーの増加に伴い温度が上昇する。この領域においては、水の形態は過熱蒸気(気体)である。   Further, in the region on the right side of the end point of the region where the temperature is constant, the temperature rises as the supplied heat energy increases. In this region, the form of water is superheated steam (gas).

本発明では、この凝縮を繊維の表面で起こさせることで、可塑化に必要な水をアクリル系繊維束に与えることが可能となる。また加圧スチーム中の微小な水の滴が繊維に衝突するのを避けることができる。更に、凝縮した水による伝熱は湿り蒸気中の水の接触による伝熱よりも効率がよいことから、その効率よい伝熱効果と熱水の可塑化効果により、効率よく延伸することができる。結果として、毛羽の発生、延伸切れ等の工程トラブル、ループの発生を防止でき、繊維品質を高く且つ安定的に維持することができる。   In the present invention, this condensation is caused on the surface of the fiber, so that water necessary for plasticization can be given to the acrylic fiber bundle. It is also possible to avoid the minute water droplets in the pressurized steam from colliding with the fibers. Furthermore, since heat transfer by condensed water is more efficient than heat transfer by contact of water in wet steam, the heat transfer effect and the plasticizing effect of hot water can be efficiently extended. As a result, it is possible to prevent the occurrence of fluff, process troubles such as drawing breaks, and the occurrence of loops, and the fiber quality can be maintained high and stably.

このような延伸を行う好適な条件について、以下説明する。   Suitable conditions for performing such stretching will be described below.

まず、本発明では、乾き度0.9以上1.0未満の湿り蒸気、又は乾き飽和蒸気若しくは過熱蒸気を使用することが重要である。すなわち、加圧スチームに含まれる水は、繊維にダメージを与える、いわゆるドレンアタックが起こる可能性が高く、さらに加圧スチーム中の水が凝縮した水の伝熱を阻害し、加圧スチーム中の水が付着した所が加熱斑となる可能性が高くなる。乾き度0.9以上1.0未満の湿り蒸気、又は乾き飽和蒸気若しくは過熱蒸気であれば、加圧スチームに含まれる水が少ない又は実質的に水は存在しないので、上記のような問題は生じにくくなる。湿り蒸気の場合の乾き度は、0.9以上であることが好ましく、、更に0.95以上であることが好ましい。   First, in the present invention, it is important to use wet steam having a dryness of 0.9 or more and less than 1.0, or dry saturated steam or superheated steam. That is, the water contained in the pressurized steam is highly likely to cause a so-called drain attack that damages the fiber, and further inhibits the heat transfer of the condensed water of the pressurized steam, There is a high possibility that the spot where water adheres becomes a heating spot. If the wet steam has a dryness of 0.9 or more and less than 1.0, or if it is dry saturated steam or superheated steam, the amount of water contained in the pressurized steam is small or substantially no water exists. It becomes difficult to occur. In the case of wet steam, the dryness is preferably 0.9 or more, more preferably 0.95 or more.

また、本発明では、温度制御も重要である。   In the present invention, temperature control is also important.

例えば、加圧スチームによるアクリル系繊維束の延伸は、従来、加熱ローラ等により乾燥緻密化が行われたのち直ちに加圧スチーム延伸装置に導入される。したがって、そのアクリル系繊維束の温度は乾燥緻密化時の温度及び加圧スチーム延伸装置に導入されるまでの熱履歴によって定まる。加圧スチーム延伸装置に導入されるアクリル系繊維束の温度が加圧スチームの温度より高いか同じ温度の場合は、アクリル系繊維束への加圧スチームの接触の際に水の相変態を伴われ難く、つまりは効率の良い凝縮が起こらないと考えられ、可塑化に必要な水がアクリル系繊維束へ与えられ難いと考えられる。一方、加圧スチーム延伸装置に導入されるアクリル系繊維束の温度が加圧スチームの温度より低い場合は、アクリル系繊維束への接触の際にスチームが凝縮し、つまり水の相変態を伴う凝縮が容易に起こると考えられ、可塑化に必要な水がアクリル系繊維束へ与えられ易いと考えられる。   For example, the stretching of an acrylic fiber bundle by pressure steam is conventionally introduced into a pressure steam stretching apparatus immediately after being dried and densified by a heating roller or the like. Therefore, the temperature of the acrylic fiber bundle is determined by the temperature at the time of drying and densification and the thermal history until it is introduced into the pressurized steam drawing apparatus. If the temperature of the acrylic fiber bundle introduced into the pressurized steam drawing apparatus is higher than or equal to the temperature of the pressurized steam, the water will undergo phase transformation when the pressurized steam contacts the acrylic fiber bundle. It is difficult to break, that is, it is considered that efficient condensation does not occur, and it is considered that water necessary for plasticization is hardly given to the acrylic fiber bundle. On the other hand, when the temperature of the acrylic fiber bundle introduced into the pressurized steam drawing apparatus is lower than the temperature of the pressurized steam, the steam condenses upon contact with the acrylic fiber bundle, that is, accompanied by a phase transformation of water. Condensation is considered to occur easily, and water necessary for plasticization is considered to be easily given to the acrylic fiber bundle.

このように繊維束の温度を加圧スチームの温度より低くすることにより、凝縮により発生する水による可塑化と凝縮の際に効率よく行われる伝熱により効率的に熱を与えることにより延伸が可能となる。このように延伸することにより、加圧スチーム中の水とエネルギーを最大限に活用して延伸し、加圧スチームに含まれる水のドレンアタックの影響や水の存在による伝熱の阻害を抑制できる。結果として、高倍率の延伸を行う場合、細繊度の繊維を得る場合、トータル繊度の大きい繊維束を得る場合などにおいても、毛羽の発生、延伸切れ等の工程トラブル、ループの発生を防止でき、繊維品質を高く且つ安定的に維持することができる。   By making the temperature of the fiber bundle lower than the pressure steam temperature in this way, it is possible to stretch by efficiently applying heat by plasticization with water generated by condensation and heat transfer performed efficiently during condensation. It becomes. By stretching in this way, the water and energy in the pressurized steam can be utilized to the maximum, and the influence of the drain attack of the water contained in the pressurized steam and the inhibition of heat transfer due to the presence of water can be suppressed. . As a result, when stretching at a high magnification, when obtaining fine fibers, even when obtaining a fiber bundle with a large total fineness, it is possible to prevent occurrence of fuzz, process troubles such as stretch breaks, and occurrence of loops, The fiber quality can be kept high and stable.

具体的には、加圧スチーム延伸装置の延伸槽内に供給される加圧スチームとして乾き飽和蒸気または過熱蒸気を用いた場合には、延伸槽内に導入される繊維束の温度をT1(℃)、加圧スチームの温度をT2(℃)としたとき、80≦T1<T2を満たすように温度制御することが好ましい。T1(℃)が80℃以上であれば、熱水による可塑化を行うのに十分なエネルギーを得られるので好ましい。T1(℃)は、80℃を超えることがより好ましく、90℃以上がさらに好ましい。また、T1<T2であれば、加圧スチームを繊維の表面にて凝縮させることが可能となるので好ましい。T1とT2の温度差が大きいほど、加圧スチームを繊維束の表面に、効率よくかつ均一に凝縮させることが可能となることから、T1≦T2−3がより好ましく、T1<T2−3がさらに好ましく、T1≦T2−10が特に好ましく、T1≦T2−20が最も好ましい。T2(℃)は、例えば100〜180℃から選択される。 Specifically, when dry saturated steam or superheated steam is used as the pressurized steam supplied into the drawing tank of the pressurized steam drawing apparatus, the temperature of the fiber bundle introduced into the drawing tank is T 1 ( C), and the temperature of the pressurized steam is preferably T 2 (° C.), the temperature is preferably controlled so as to satisfy 80 ≦ T 1 <T 2 . T 1 (° C.) of 80 ° C. or higher is preferable because sufficient energy can be obtained for plasticizing with hot water. T 1 (° C.) is more preferably higher than 80 ° C., and more preferably 90 ° C. or higher. Further, if T 1 <T 2 , the pressurized steam can be condensed on the surface of the fiber, which is preferable. The larger the temperature difference between T 1 and T 2 , the more efficiently and uniformly the pressurized steam can be condensed on the surface of the fiber bundle. Therefore, T 1 ≦ T 2 −3 is more preferable, and T 1 <T 2 -3 is more preferable, T 1 ≦ T 2 -10 is particularly preferable, and T 1 ≦ T 2 -20 is most preferable. T 2 (° C.) is selected from, for example, 100 to 180 ° C.

また、加圧スチーム延伸装置の延伸槽内に供給される加圧スチームとして乾き度0.9以上1.0未満の湿り蒸気を用い、前記延伸槽内に導入される繊維束の温度をT1(℃)、前記加圧スチームの温度をT3(℃)としたとき、80≦T1<T3を満たすように温度制御することが好ましい。T1(℃)が80℃以上であれば、熱水による可塑化を行うのに十分なエネルギーを得られるので好ましい。T1(℃)は、80℃を超えることがより好ましく、90℃以上がさらに好ましい。また、T1<T3であれば、加圧スチームを繊維束の表面にて凝縮させることが可能となるので好ましい。T1とT3の温度差が大きいほど、加圧スチームを繊維束の表面に、効率よくかつ均一に凝縮させることが可能となることから、T1≦T3−3がより好ましく、T1<T3−3がさらに好ましく、T1≦T3−10が特に好ましく、T1≦T3−20が最も好ましい。T3(℃)は、例えば100〜180℃から選択される。 Further, wet steam having a dryness of 0.9 or more and less than 1.0 is used as the pressurized steam supplied into the drawing tank of the pressurized steam drawing apparatus, and the temperature of the fiber bundle introduced into the drawing tank is T 1. When the temperature of the pressurized steam is T 3 (° C.), it is preferable to control the temperature so that 80 ≦ T 1 <T 3 is satisfied. T 1 (° C.) of 80 ° C. or higher is preferable because sufficient energy can be obtained for plasticizing with hot water. T 1 (° C.) is more preferably higher than 80 ° C., and more preferably 90 ° C. or higher. Further, if T 1 <T 3 , it is preferable because the pressurized steam can be condensed on the surface of the fiber bundle. The larger the temperature difference between T 1 and T 3 , the more efficiently and uniformly condensing the pressurized steam on the surface of the fiber bundle, T 1 ≦ T 3 −3 is more preferable, and T 1 <T 3 −3 is more preferable, T 1 ≦ T 3 −10 is particularly preferable, and T 1 ≦ T 3 −20 is most preferable. T 3 (° C.) is selected from 100 to 180 ° C., for example.

上記のような好ましい形態にすることによって、加圧スチーム延伸装置の延伸槽内に導入される繊維束の温度と加圧スチームの凝縮によってアクリル系繊維束へ与えられる水の量の関係は図1に示すようになる。   By adopting the preferred embodiment as described above, the relationship between the temperature of the fiber bundle introduced into the drawing tank of the pressurized steam drawing apparatus and the amount of water given to the acrylic fiber bundle by condensation of the pressurized steam is shown in FIG. As shown.

加圧スチームの圧力は、加圧状態すなわち大気圧より高い圧力に適宜設定でき、目的に添うものであれば良く特に限定されない。すなわち、延伸する繊維の種類、スチーム延伸前工程での処理状態、あるいは目的とする繊維特性等により適宜調整される。例えば、20〜1,000kPa(ゲージ圧)に調整することができる。   The pressure of the pressurized steam can be appropriately set to a pressurized state, that is, a pressure higher than the atmospheric pressure, and is not particularly limited as long as it meets the purpose. That is, it is appropriately adjusted depending on the type of fiber to be drawn, the treatment state in the pre-steam drawing process, or the desired fiber characteristics. For example, it can be adjusted to 20 to 1,000 kPa (gauge pressure).

本発明の繊維の延伸方法を適用できる範囲は、工程等によって特に限定されないが、炭素繊維用アクリル系前駆体繊維束の製造において、並列させた複数のアクリル系繊維束を加圧スチームにより延伸する場合に有効である。また、高倍率(例えば、10〜20倍)の延伸を行う場合、細繊度(例えば、0.01〜1.5dtex)の繊維を得る場合、トータル繊度の大きい繊維束(例えば、30,000〜300,000dtex)を得る場合に有効である。   The range in which the fiber stretching method of the present invention can be applied is not particularly limited depending on the process or the like, but in the production of an acrylic precursor fiber bundle for carbon fibers, a plurality of parallel acrylic fiber bundles are stretched by pressurized steam. It is effective in the case. Moreover, when extending | stretching by high magnification (for example, 10-20 times), when obtaining the fiber of fineness (for example, 0.01-1.5 dtex), a fiber bundle (for example, 30,000- This is effective in obtaining 300,000 dtex).

炭素繊維用アクリル系前駆体繊維束をスチーム延伸機に導入する際は、テープ状に広げることが好ましい。この幅は以下の計算式で示される幅とすると、炭素繊維用アクリル系前駆体繊維束へのダメージを抑えることができるため好ましい。   When introducing the acrylic precursor fiber bundle for carbon fiber into the steam drawing machine, it is preferable to spread it into a tape shape. This width is preferably the width shown by the following calculation formula because damage to the acrylic precursor fiber bundle for carbon fibers can be suppressed.

Figure 2008075205
Figure 2008075205

ここで、Yはスチーム延伸機に導入される炭素繊維用アクリル系前駆体繊維束の幅(mm)、dはスチーム延伸後の炭素繊維用アクリル系前駆体繊維束のトータル繊度(dtex)である。以下の表1に具体的な計算例を示す。   Here, Y is the width (mm) of the acrylic precursor fiber bundle for carbon fibers introduced into the steam drawing machine, and d is the total fineness (dtex) of the acrylic precursor fiber bundle for carbon fibers after steam drawing. . Table 1 below shows a specific calculation example.

Figure 2008075205
Figure 2008075205

この加圧スチームによる繊維の延伸の前後に、繊維製造の分野で公知の工程を適宜行うことができる。   A well-known process in the field of fiber manufacture can be appropriately performed before and after the fiber stretching by the pressure steam.

例えば、炭素繊維用アクリル系前駆体繊維束を製造する場合は、原料重合体としてアクリロニトリルのホモポリマー、あるいはコモノマーを含んだアクリロニトリル系共重合体を、公知の有機又は無機溶剤に溶解した溶液を紡糸した後、延伸する際に本発明の延伸方法を行うことができる。紡糸方法はいわゆる湿式、乾湿式、乾式のいずれでも良く、その後の工程で脱溶剤、浴中延伸、油剤付着処理、乾燥等を施すことができる。アクリル系繊維束のスチーム延伸はいかなる段階で実施してもよいが、溶液紡糸の場合はアクリル系繊維束中の溶剤をある程度除去した後、すなわち洗浄後又は浴中延伸後、あるいは乾燥後が好ましく、高配向のアクリル系繊維束を得る観点から乾燥後がより好ましい。アクリル系繊維束のスチーム延伸では、通常並列させた複数のアクリル系繊維束を、加圧スチームにより延伸する。こうすることで、毛羽、糸切れ、ループのない高品質の炭素繊維用アクリル系前駆体繊維束を製造可能となる。   For example, when producing an acrylic precursor fiber bundle for carbon fiber, a solution obtained by dissolving a homopolymer of acrylonitrile as a raw polymer or an acrylonitrile copolymer containing a comonomer in a known organic or inorganic solvent is spun. Then, when stretching, the stretching method of the present invention can be performed. The spinning method may be any of so-called wet, dry wet, and dry processes, and solvent removal, stretching in a bath, oil agent adhesion treatment, drying, and the like can be performed in subsequent steps. The steam drawing of the acrylic fiber bundle may be carried out at any stage. However, in the case of solution spinning, it is preferable to remove the solvent in the acrylic fiber bundle to some extent, that is, after washing or drawing in a bath, or after drying. From the viewpoint of obtaining highly oriented acrylic fiber bundles, after drying is more preferable. In the steam drawing of an acrylic fiber bundle, a plurality of acrylic fiber bundles arranged in parallel are usually drawn by pressurized steam. By doing so, it becomes possible to produce a high-quality acrylic precursor fiber bundle for carbon fibers free from fluff, yarn breakage, and loops.

さらに、得られた炭素繊維用アクリル系前駆体繊維束を公知の技術により焼成(耐炎化やや炭素化)することにより、毛羽、糸切れ、ループのない高品質の炭素繊維を製造可能となる。   Furthermore, by firing the obtained acrylic precursor fiber bundle for carbon fibers by a known technique (flame resistance or carbonization), it becomes possible to produce high-quality carbon fibers free from fluff, yarn breakage, and loops.

本発明では、加圧スチーム延伸装置に導入された炭素繊維用アクリル系アクリル系繊維束の温度、並びに加圧スチーム延伸装置に供給するスチームの性状及び温度の制御が重要となる。したがって、本発明に係る炭素繊維用アクリル系繊維束の延伸を行うのに好適な加圧スチーム延伸装置として、
炭素繊維用アクリル系繊維束の入口部及び出口部に設けられたラビリンスシール部により、内部を加圧状態で維持可能な延伸槽と、
前記延伸槽の上流側及び下流側に配された延伸ローラと、
前記延伸槽の上流側に配された延伸ローラの表面温度を制御する手段と、
前記入口部から前記延伸槽内に導入される炭素繊維用アクリル系繊維束の温度を検出する検出器と、
前記延伸槽内に加圧スチームを供給する加圧スチーム供給手段と、
を有する装置が挙げられる。
In the present invention, it is important to control the temperature of the acrylic acrylic fiber bundle for carbon fibers introduced into the pressurized steam drawing apparatus and the properties and temperature of the steam supplied to the pressurized steam drawing apparatus. Therefore, as a pressure steam stretching apparatus suitable for stretching the acrylic fiber bundle for carbon fibers according to the present invention,
A drawing tank capable of maintaining the inside in a pressurized state by a labyrinth seal portion provided at the inlet and outlet of the acrylic fiber bundle for carbon fiber;
Stretching rollers arranged on the upstream side and downstream side of the stretching tank;
Means for controlling the surface temperature of the stretching roller disposed on the upstream side of the stretching tank;
A detector for detecting the temperature of the acrylic fiber bundle for carbon fibers introduced into the drawing tank from the inlet portion;
A pressurized steam supply means for supplying pressurized steam into the stretching tank;
The apparatus which has is mentioned.

加圧スチーム延伸装置の延伸槽としては、チューブ状あるいはボックス状の容器にスチームのシール機構を備えた繊維束の入口部及び出口部を有したものを使用することが出来る。並列させた複数の繊維束を同時に処理するのが容易に出来る観点からボックス状の容器が好ましく、スチームのシール機構は加圧スチームの漏出量を抑えることが容易に出来る観点から繊維束の入口部及び出口部にラビリンスシール部を設け、内部を加圧状態で維持可能なものを使用することが好ましい。   As a drawing tank of the pressurized steam drawing apparatus, a tube-like or box-like container having a fiber bundle inlet and outlet provided with a steam sealing mechanism can be used. A box-shaped container is preferable from the viewpoint of easily processing a plurality of parallel fiber bundles at the same time, and the steam sealing mechanism is an inlet portion of the fiber bundle from the viewpoint of easily suppressing the amount of pressurized steam leakage. Further, it is preferable to use a labyrinth seal portion provided at the outlet portion and capable of maintaining the inside in a pressurized state.

加圧スチーム延伸装置に導入される直前のアクリル系繊維束の温度の制御は、加圧スチーム延伸装置の延伸ローラの温度による制御、アクリル系繊維束への水、エアー又はスチームの噴き付けによる制御、加圧スチーム延伸装置の直前に熱水浴を設けその熱水浴にアクリル系繊維束を導くことによる制御、などにより行うことができる。中でも、加圧スチーム延伸装置の延伸ローラの表面温度をあらかじめ設定した範囲に制御することで行うことが好ましい。延伸ローラの表面温度をあらかじめ設定した範囲に制御する方法としては、延伸ローラをジャケットローラとして、それに供給するスチーム、温水、オイルの温度を制御する方法が好ましい。また、延伸ローラを電熱ローラとして、供給する電流値を制御する方法も好ましい。熱の有効利用の観点から、延伸ローラをジャケットローラとして、それに供給するスチームの圧力を制御することが特に好ましい。   Control of the temperature of the acrylic fiber bundle immediately before being introduced into the pressure steam drawing apparatus is controlled by the temperature of the drawing roller of the pressure steam drawing apparatus, control by spraying water, air or steam onto the acrylic fiber bundle. It is possible to perform control by, for example, providing a hot water bath immediately before the pressure steam drawing apparatus and guiding an acrylic fiber bundle to the hot water bath. Especially, it is preferable to carry out by controlling the surface temperature of the extending | stretching roller of a pressurizing steam extending | stretching apparatus to the preset range. As a method of controlling the surface temperature of the stretching roller within a preset range, a method of controlling the temperature of steam, hot water, and oil supplied to the stretching roller as a jacket roller is preferable. Further, a method of controlling the current value to be supplied by using the stretching roller as an electric heating roller is also preferable. From the viewpoint of effective use of heat, it is particularly preferable to use a stretching roller as a jacket roller and control the pressure of steam supplied thereto.

なお、アクリル系繊維束へ水やスチームを噴き付けたり、熱水浴にアクリル系繊維束を導いたりすると、アクリル系繊維束に水が付与され、その水が加圧スチームによる熱伝導の妨げとなる場合がある。アクリル系繊維束へエアーを噴き付けると、スチーム延伸装置内でアクリル系繊維束の幅が増加するため、結果的にスチーム延伸装置内に投入できるアクリル系繊維束の数が限られる場合がある。加圧スチーム延伸装置の延伸ローラの表面温度をあらかじめ設定した範囲に制御する方法が、水による加圧スチームによる熱伝導の妨げることなく、スチーム延伸装置内にアクリル系繊維束を投入できる点で好ましく、並列させた複数のアクリル系繊維束のそれぞれを均一な温度に設定できる点でも好ましい。また延伸ローラから加圧スチーム延伸装置の間に、アクリル系繊維束の放熱防止のため保温カバー等を設置しても良い。   If water or steam is sprayed on the acrylic fiber bundle, or if the acrylic fiber bundle is guided to the hot water bath, water is given to the acrylic fiber bundle, and the water impedes heat conduction by the pressurized steam. There is a case. When air is sprayed onto the acrylic fiber bundle, the width of the acrylic fiber bundle increases in the steam drawing apparatus, and as a result, the number of acrylic fiber bundles that can be introduced into the steam drawing apparatus may be limited. The method of controlling the surface temperature of the drawing roller of the pressure steam drawing apparatus to a preset range is preferable in that the acrylic fiber bundle can be put into the steam drawing apparatus without hindering heat conduction by the pressure steam with water. It is also preferable in that each of the plurality of acrylic fiber bundles arranged in parallel can be set to a uniform temperature. Further, a heat insulating cover or the like may be installed between the drawing roller and the pressure steam drawing device to prevent heat radiation of the acrylic fiber bundle.

加圧スチーム延伸装置に導入される直前のアクリル系繊維束の温度を検出する手段としては、接触式の表面温度計、非接触式の放射温度計、非接触式の赤外線熱画像装置などが挙げられる。ただし、接触式温度計は、接触によるアクリル系繊維束へのダメージが糸切れ、毛羽の原因となる場合があることから、非接触式の温度計が好ましい。例えば、非接触式の放射温度計を用いてアクリル系繊維束の温度を検出する場合は、加圧スチーム延伸装置に導入される並列させた複数のアクリル系繊維束のうち、1つのアクリル系繊維束について検出した温度を代表値としても良いし、複数のアクリル系繊維束について検出した温度の平均値としても良い。また、非接触式の赤外線熱画像装置の場合は、得られる画像から1つのアクリル系繊維束について検出した温度を代表値としても良いし、複数のアクリル系繊維束について検出した温度の平均値としても良い。   Examples of means for detecting the temperature of the acrylic fiber bundle immediately before being introduced into the pressure steam drawing apparatus include a contact-type surface thermometer, a non-contact type radiation thermometer, and a non-contact type infrared thermal imager. It is done. However, the contact-type thermometer is preferably a non-contact-type thermometer because damage to the acrylic fiber bundle due to contact may cause yarn breakage and fluff. For example, when the temperature of an acrylic fiber bundle is detected using a non-contact type radiation thermometer, one acrylic fiber among a plurality of parallel acrylic fiber bundles introduced into a pressurized steam drawing apparatus The temperature detected for the bundle may be used as the representative value, or may be the average value of the temperatures detected for the plurality of acrylic fiber bundles. In the case of a non-contact type infrared thermal imaging apparatus, the temperature detected for one acrylic fiber bundle from the obtained image may be used as a representative value, or the average value of the temperatures detected for a plurality of acrylic fiber bundles. Also good.

延伸槽内に加圧スチームを供給する加圧スチーム供給手段としては、所望の水分量、圧力及び温度の加圧スチームを供給可能なものを適宜選択する。例えば、複数の減圧弁、熱交換器、ドレントラップを有しているもの、あるいはドレントラップ、減圧弁、複数の熱交換器を有しているもの、あるいは蒸気圧力調節弁、水量調節弁、ドレントラップ、及びアトマイザーを有しているものを加圧スチーム供給装置として使用することが出来る。蒸気の乾き度や供給する蒸気の温度を安定に出来る観点から蒸気圧力調節弁、水量調節弁、ドレントラップ、及びアトマイザーを有しているものが好ましい。延伸槽内の加圧スチーム延伸室への加圧スチームの供給は、多孔板を介して繊維束に直接スチームが当たらないようにする構造や、延伸槽内の加圧スチーム延伸室内に設置されたスチーム噴き出しヘッダーにスチーム配管で接続した構成とすることができる。加圧スチーム延伸室内に導入された複数の繊維束のそれぞれに均一にスチームを当てることが可能となるので延伸槽内の加圧スチーム延伸室内に設置されたスチーム噴き出しヘッダーにスチーム配管で接続した構成とするのが好ましい。また、供給する加圧スチームの乾き度を測定可能な位置に乾き度計を設置することもできる。   As the pressurized steam supply means for supplying the pressurized steam into the stretching tank, one capable of supplying pressurized steam having a desired water content, pressure and temperature is appropriately selected. For example, having a plurality of pressure reducing valves, heat exchangers, drain traps, or drain traps, pressure reducing valves, having a plurality of heat exchangers, steam pressure control valves, water amount control valves, drains A device having a trap and an atomizer can be used as a pressurized steam supply device. From the viewpoint of stabilizing the dryness of steam and the temperature of supplied steam, those having a steam pressure control valve, a water amount control valve, a drain trap, and an atomizer are preferable. Supply of pressurized steam to the pressurized steam drawing chamber in the drawing tank was installed in the pressurized steam drawing chamber in the drawing tank, or the structure that prevents the fiber bundle from directly hitting the fiber bundle through the perforated plate. It can be set as the structure connected to the steam ejection header by steam piping. A configuration in which steam is uniformly applied to each of a plurality of fiber bundles introduced into the pressurized steam drawing chamber, and is connected to a steam ejection header installed in the pressurized steam drawing chamber in the drawing tank by a steam pipe. Is preferable. In addition, a dryness meter can be installed at a position where the dryness of the pressurized steam to be supplied can be measured.

以下、本発明の実施例について説明するが、本発明はこれによって限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

(炭素繊維用アクリル系前駆体繊維束における毛羽発生頻度の評価)
加圧スチーム延伸装置から延伸されて出てきた走行中の複数の炭素繊維用アクリル系前駆体繊維束において、1時間あたりに発生する毛羽の数を測定し、炭素繊維用アクリル系前駆体繊維束1本あたりの平均発生回数を算出した。評価基準を表2に示す。なお、毛羽の平均発生回数は次の式により求めた。
(Evaluation of fuzz generation frequency in acrylic precursor fiber bundle for carbon fiber)
The acrylic precursor fiber bundle for carbon fibers is measured by measuring the number of fluffs generated per hour in a plurality of running acrylic precursor fiber bundles for carbon fibers drawn out from the pressurized steam drawing apparatus. The average number of occurrences per bottle was calculated. Table 2 shows the evaluation criteria. The average number of fluff occurrences was determined by the following formula.

(毛羽の平均発生回数)=(加圧スチーム延伸装置から延伸されて出てきた走行中の複数の炭素繊維用アクリル系前駆体繊維束において、1時間あたりに発生する毛羽の総数)÷(加圧スチーム延伸装置に投入した炭素繊維用アクリル系前駆体繊維束の数)     (Average number of fluff occurrences) = (total number of fluffs generated per hour in a plurality of running acrylic precursor fiber bundles for carbon fibers drawn out from a pressurized steam drawing apparatus) / (additional) Number of acrylic precursor fiber bundles for carbon fibers charged into the pressure steam drawing apparatus)

Figure 2008075205
Figure 2008075205

(加圧スチームから炭素繊維用アクリル系前駆体繊維束に与えられた水の量)
加圧スチーム延伸装置から延伸されて出てきた直後の繊維束を1メートル採取し105℃の熱風循環乾燥機にて1時間乾燥させ繊維束の水分率を測定し、これを加圧スチームから炭素繊維用アクリル系前駆体繊維束に与えられた水の量とした。
(Amount of water given to the acrylic precursor fiber bundle for carbon fiber from pressurized steam)
The fiber bundle immediately after being drawn out from the pressure steam drawing apparatus is sampled for 1 meter, dried in a hot air circulating dryer at 105 ° C. for 1 hour, and the moisture content of the fiber bundle is measured. The amount of water given to the acrylic precursor fiber bundle for fibers was used.

水分率(質量%)=(乾燥前の繊維束の重量−乾燥後の繊維束の重量)÷(乾燥後の繊維束の重量)×100
(炭素繊維束における毛羽発生頻度の評価)
炭素化炉から出てきた走行中の炭素繊維束1本において、1〜3分毎に目視で発生する毛羽を観察し、毛羽の発生状況を「なし」、「ややあり」、「やや多い」、「多い」の4段階に分類し、それぞれに対し3、2、1、0点の得点を設けた。観察は、炭素繊維束1本あたりn=25で行い、その平均値を算出した。評価基準を表3に示す。なお、平均値が高いほど毛羽が少ない良好な炭素繊維束が得られることを示している。
Moisture content (mass%) = (weight of fiber bundle before drying−weight of fiber bundle after drying) ÷ (weight of fiber bundle after drying) × 100
(Evaluation of fluff frequency in carbon fiber bundles)
In one running carbon fiber bundle coming out of the carbonization furnace, the fluff generated visually is observed every 1 to 3 minutes, and the occurrence of the fluff is “none”, “somewhat”, “somewhat” , Classified into four stages of “many”, and scored 3, 2, 1, 0 points for each. Observation was performed at n = 25 per carbon fiber bundle, and the average value was calculated. Table 3 shows the evaluation criteria. In addition, it has shown that the favorable carbon fiber bundle with few fuzz is obtained, so that an average value is high.

Figure 2008075205
Figure 2008075205

(加圧スチーム延伸装置)
図2は実施例で使用した加圧スチーム延伸装置を示す模式図であり、図4はこの加圧スチーム延伸装置が有する延伸槽内部の一例を示す断面模式図である。
(Pressurized steam stretcher)
FIG. 2 is a schematic diagram showing the pressurized steam stretching apparatus used in the examples, and FIG. 4 is a schematic sectional view showing an example of the inside of the stretching tank of the pressurized steam stretching apparatus.

この加圧スチーム延伸装置は、繊維束の走行路を含む平面において分割可能なボックス型の延伸槽1を有しており、延伸槽1の内部には、繊維束入口部及び繊維束出口部にはラビリンスシール部11が設けられ、加圧状態で維持可能なボックス型の延伸室13が形成されている。この装置における、ラビリンスシール部11における繊維束の走行路断面はスリット形状であり、ラビリンスシール部11は板片からなるラビリンスノズルがラビリンスシール部11の内壁面から繊維束の走行方向に向けて直角に延び、且つ繊維束の走行方向に多段に配されてなる。また、ラビリンスノズルの内壁面からの延設長さLと、前後のノズル間のピッチPとの比(L/P)の値は0.5であり、ラビリンスノズルの段数が前後のラビリンスシール部ともにそれぞれ80段である。繊維束の走行路断面のスリット形状は、走行路断面の左右幅Wと高さHの比(H/W)が1/200である。   This pressurizing steam drawing apparatus has a box-type drawing tank 1 that can be divided in a plane including a traveling path of fiber bundles. Inside the drawing tank 1, there are a fiber bundle inlet part and a fiber bundle outlet part. The labyrinth seal portion 11 is provided, and a box-type stretching chamber 13 that can be maintained in a pressurized state is formed. In this apparatus, the cross section of the running path of the fiber bundle in the labyrinth seal portion 11 is a slit shape, and the labyrinth seal portion 11 has a labyrinth nozzle made of a plate piece perpendicular to the running direction of the fiber bundle from the inner wall surface of the labyrinth seal portion 11. And is arranged in multiple stages in the running direction of the fiber bundle. The ratio (L / P) of the length L extending from the inner wall surface of the labyrinth nozzle to the pitch P between the front and rear nozzles is 0.5, and the number of stages of the labyrinth nozzles is the front and rear labyrinth seal portion. Both have 80 stages. The slit shape of the cross section of the fiber bundle traveling path has a ratio (H / W) of the horizontal width W to the height H of the traveling path cross section of 1/200.

延伸槽1内の延伸室13には、繊維束に向かってスチームを噴出させる位置に、図3に示すような一対の梯子状スチーム噴き出しヘッダー9が対向して全面に配置されている。梯子状スチーム噴き出しヘッダー9は、繊維束走行面側に均等に多数のスチーム噴き出し孔12を配し、繊維束走行面の反対側にスチーム供給管14を2箇所有する。ここでのスチーム噴き出し孔12の直径は3mmであり、繊維束に垂直方向にスチームを噴出できる。   In the drawing chamber 13 in the drawing tank 1, a pair of ladder-like steam jetting headers 9 as shown in FIG. 3 are arranged on the entire surface at positions where steam is jetted toward the fiber bundle. The ladder-like steam ejection header 9 is provided with a large number of steam ejection holes 12 equally on the fiber bundle traveling surface side, and has two steam supply pipes 14 on the opposite side of the fiber bundle traveling surface. The diameter of the steam ejection hole 12 here is 3 mm, and steam can be ejected in a direction perpendicular to the fiber bundle.

スチーム供給管14には、加圧スチーム供給装置3が接続されている。加圧スチーム供給装置3は、蒸気圧力調節弁3a、水量調節弁3b、ドレントラップ3c、及びアトマイザー3dを有しており、所望の水分量、圧力及び温度の加圧スチームが調製される。加圧スチームの乾き度は、乾き度計3eで測定される。乾き度計3eとしては、小川サンプリング株式会社製のO.S.K129型(商品名)が設置されている。このように、スチーム供給装置3、スチーム供給管14、及びスチーム噴き出しヘッダー9により加圧スチーム供給手段が構成される。   A pressurized steam supply device 3 is connected to the steam supply pipe 14. The pressurized steam supply device 3 includes a steam pressure adjusting valve 3a, a water amount adjusting valve 3b, a drain trap 3c, and an atomizer 3d, and a pressurized steam having a desired water content, pressure, and temperature is prepared. The dryness of the pressurized steam is measured by a dryness meter 3e. As a dryness meter 3e, Ogawa Sampling Co., Ltd. O.D. S. K129 type (product name) is installed. Thus, the steam supply device 3, the steam supply pipe 14, and the steam ejection header 9 constitute a pressurized steam supply means.

一方、延伸槽1の上流側及び下流側には、延伸ローラとしてのジャケットローラ2が配置されている。ジャケットローラ2には、熱媒供給配管4が接続されており、スチーム、温水、オイル等を供給することで加熱可能である。延伸槽1の繊維束入口近傍には、保温カバー8、及び繊維束入口から導入される直前の繊維束7の温度を検出するための温度計6が配置されている。温度計6としては、非接触式の放射温度計(コニカミノルタ製、商品名:HT−10D)が設置されている。   On the other hand, a jacket roller 2 as a stretching roller is disposed on the upstream side and the downstream side of the stretching tank 1. A heat medium supply pipe 4 is connected to the jacket roller 2 and can be heated by supplying steam, hot water, oil or the like. In the vicinity of the fiber bundle inlet of the drawing tank 1, a heat insulating cover 8 and a thermometer 6 for detecting the temperature of the fiber bundle 7 immediately before being introduced from the fiber bundle inlet are arranged. As the thermometer 6, a non-contact type radiation thermometer (manufactured by Konica Minolta, trade name: HT-10D) is installed.

繊維束7は、ジャケットローラ2の回転により、延伸槽1の前壁部に形成された繊維束入口部から導入され、延伸槽1の全長にわたって延びる走行路を水平方向にシート状に並列して走行する。延伸槽1の延伸室13内には加圧スチーム10が均一に供給されており、所定の圧力に保たれた延伸室13内で繊維束7が所定の延伸倍率に延伸される。その後に、延伸槽1の後壁部に形成された繊維束出口部から延伸された繊維束7が導出される。   The fiber bundle 7 is introduced from the fiber bundle inlet portion formed in the front wall portion of the drawing tank 1 by the rotation of the jacket roller 2, and the running path extending over the entire length of the drawing tank 1 is arranged in parallel in a sheet shape in the horizontal direction. Run. The pressurized steam 10 is uniformly supplied into the drawing chamber 13 of the drawing tank 1, and the fiber bundle 7 is drawn at a predetermined draw ratio in the drawing chamber 13 maintained at a predetermined pressure. Thereafter, the fiber bundle 7 drawn from the fiber bundle outlet formed on the rear wall of the drawing tank 1 is led out.

延伸槽1の延伸室13内に供給される加圧スチームは、蒸気圧調節弁3aによって所定の圧力に設定し、ドレントラップ3cにより過剰な水を除去し、さらには水量調節弁3b及びアトマイザー3dから水を供給し、所望の水分量、圧力及び温度に調整することができる。   The pressurized steam supplied into the stretching chamber 13 of the stretching tank 1 is set to a predetermined pressure by the steam pressure control valve 3a, excess water is removed by the drain trap 3c, and the water amount control valve 3b and the atomizer 3d are further removed. The water can be supplied from and adjusted to the desired water content, pressure and temperature.

ジャケットローラの表面温度は、供給するスチームの圧力を調節して所定の温度に設定することができる。さらに、延伸槽1の上流側直前に配されたジャケットローラ2については、減圧弁5により他のジャケットローラとは別にスチーム圧力を設定して、その表面温度を所定の温度に設定することができる。   The surface temperature of the jacket roller can be set to a predetermined temperature by adjusting the pressure of the supplied steam. Further, with respect to the jacket roller 2 disposed immediately before the upstream side of the stretching tank 1, the steam pressure can be set separately from the other jacket rollers by the pressure reducing valve 5, and the surface temperature can be set to a predetermined temperature. .

(実施例1)
アクリロニトリル96質量%、メタクリル酸1質量%、アクリルアミド3質量%を共重合したアクリル系共重合体をジメチルアセトアミドに溶解して、紡糸原液(重合体濃度21質量%、温度60℃)を調製した。この紡糸原液を、直径0.065mm、孔数12,000のノズル6個から、温度35℃、濃度66質量%のジメチルアセトアミド水溶液中に湿式紡糸して、凝固糸とした。凝固糸の断面形状はほぼ真円であった。この凝固糸を、冷延伸及び温水中延伸を施した後、アミノシリコーン系油剤1質量%水溶液中に浸漬し、表面温度180℃のローラにて乾燥緻密化した。ここまでの湿熱延伸倍率は3.5倍である。
(Example 1)
An acrylic copolymer obtained by copolymerizing 96% by mass of acrylonitrile, 1% by mass of methacrylic acid, and 3% by mass of acrylamide was dissolved in dimethylacetamide to prepare a spinning dope (polymer concentration 21% by mass, temperature 60 ° C.). This spinning dope was wet-spun into a dimethylacetamide aqueous solution having a temperature of 35 ° C. and a concentration of 66% by mass from six nozzles having a diameter of 0.065 mm and a pore number of 12,000 to obtain a coagulated yarn. The cross-sectional shape of the coagulated yarn was almost a perfect circle. The coagulated yarn was subjected to cold drawing and hot water drawing, and then immersed in a 1% by weight aqueous solution of an aminosilicone oil and dried and densified with a roller having a surface temperature of 180 ° C. The wet heat draw ratio so far is 3.5 times.

続いて、図2に示す構成の加圧スチーム延伸装置により加圧スチーム延伸した。延伸槽の直前のジャケットローラの表面温度は、そのジャケットローラに供給するスチーム圧を減圧弁により変えることで、162℃に調整した。次いで延伸ローラから加圧スチーム延伸装置の間に設置された保温カバーで覆われた空間を通過させて繊維束の放熱を制御することにより、延伸槽に入る繊維束の温度を95℃とした。温度については、放射温度計で6本の繊維束の中の1本を測定した。また、アトマイザーから供給する水の量を調節することにより、延伸槽内に供給するスチームを133℃の乾き飽和蒸気(ゲージ圧力:212kPa)に調節した。このような条件下で、延伸倍率が合計10.0倍になるように加圧スチーム延伸を実施し加圧スチーム延伸装置の下流側に配された延伸ローラの表面温度を185℃として熱セットを行い、同時に繊維束の水分率を実質的に0質量%とした後に徐々に冷却して炭素繊維用アクリル系前駆体繊維束を得た。この時加圧スチーム延伸装置から延伸されて出てきた直後の繊維束を採取し水分率の測定をしたところ水分率は25質量%であった。毛羽の発生は非常に少なく、安定にスチーム延伸できた。   Subsequently, pressurized steam stretching was performed by a pressurized steam stretching apparatus having the configuration shown in FIG. The surface temperature of the jacket roller immediately before the stretching tank was adjusted to 162 ° C. by changing the steam pressure supplied to the jacket roller with a pressure reducing valve. Subsequently, the temperature of the fiber bundle entering the drawing tank was set to 95 ° C. by passing through a space covered with a heat insulating cover installed between the drawing roller and the pressure steam drawing apparatus to control the heat radiation of the fiber bundle. Regarding the temperature, one of the six fiber bundles was measured with a radiation thermometer. Further, by adjusting the amount of water supplied from the atomizer, the steam supplied into the stretching tank was adjusted to 133 ° C. dry saturated steam (gauge pressure: 212 kPa). Under such conditions, the pressure steam stretching was performed so that the stretching ratio was 10.0 times in total, and the surface temperature of the stretching roller disposed on the downstream side of the pressure steam stretching apparatus was set to 185 ° C. and heat setting was performed. At the same time, the moisture content of the fiber bundle was reduced to substantially 0% by mass and then gradually cooled to obtain an acrylic precursor fiber bundle for carbon fibers. At this time, the fiber bundle immediately after being drawn out from the pressure steam drawing apparatus was collected and the moisture content was measured. The moisture content was 25% by mass. The generation of fluff was very small, and the steam could be stretched stably.

得られた炭素繊維用アクリル系前駆体繊維束を焼成して炭素繊維束とした。具体的には、炭素繊維用アクリル系前駆体繊維束を、230〜260℃の空気中、緊張化に加熱し密度1.36g/cm3の耐炎化繊維束に転換し、さらに、700℃の窒素中、緊張化で前炭素化処理を施し前炭素化繊維束とした。この前炭素化処理での300〜500℃での昇温速度は200℃/分であった。得られた前炭素化繊維束を炭素化炉で1,450℃で炭素化し、表面処理後にサイジング剤を付与し、炭素繊維束を得た。なお、1,000〜1,200℃での昇温速度は400℃/分であった。毛羽の発生は非常に少なく、安定に炭素繊維束を製造できた。 The obtained acrylic precursor fiber bundle for carbon fiber was fired to obtain a carbon fiber bundle. Specifically, the acrylic precursor fiber bundle for carbon fiber is heated to tension in air at 230 to 260 ° C. to be converted into a flame-resistant fiber bundle having a density of 1.36 g / cm 3 , and further, 700 ° C. Pre-carbonization treatment was performed by tensioning in nitrogen to obtain a pre-carbonized fiber bundle. The heating rate at 300 to 500 ° C. in the pre-carbonization treatment was 200 ° C./min. The obtained pre-carbonized fiber bundle was carbonized at 1,450 ° C. in a carbonization furnace, and a sizing agent was applied after the surface treatment to obtain a carbon fiber bundle. In addition, the temperature increase rate in 1,000-1200 degreeC was 400 degreeC / min. The generation of fluff was very small, and a carbon fiber bundle could be produced stably.

加圧スチーム延伸装置から延伸されて出てきた直後の繊維束の水分率、毛羽評価の結果を表4に示す。   Table 4 shows the moisture content of the fiber bundle immediately after coming out from the pressurized steam drawing apparatus and the results of the fluff evaluation.

(実施例2)
アトマイザーから供給する水の量を調節することにより、供給するスチームを140℃の過熱蒸気(ゲージ圧力:212kPa)に調節したこと以外は、実施例1と同様に実施した。延伸槽に入る繊維束の温度は95℃であった。炭素繊維用アクリル系前駆体繊維束及び炭素繊維束の製造段階での毛羽の発生は非常に少なく、安定にスチーム延伸できた。加圧スチーム延伸装置から延伸されて出てきた直後の繊維束の水分率、毛羽評価の結果を表4に示す。
(Example 2)
The same procedure as in Example 1 was performed except that the amount of water supplied from the atomizer was adjusted so that the supplied steam was adjusted to 140 ° C. superheated steam (gauge pressure: 212 kPa). The temperature of the fiber bundle entering the drawing tank was 95 ° C. The production of the acrylic precursor fiber bundles for carbon fibers and the carbon fiber bundles produced very little fluff and was able to be stably stretched with steam. Table 4 shows the moisture content of the fiber bundle immediately after coming out from the pressurized steam drawing apparatus and the results of the fluff evaluation.

(実施例3)
アトマイザーから供給する水の量を調節することにより、加圧スチーム延伸装置に供給するスチームを乾き度計0.95の133℃の湿り蒸気(ゲージ圧力:212kPa)に調節したこと以外は、実施例1と同様に実施した。延伸槽に入る繊維束の温度は95℃であった。炭素繊維用アクリル系前駆体繊維束及び炭素繊維束の製造段階での毛羽の発生は少なく、安定にスチーム延伸できた。加圧スチーム延伸装置から延伸されて出てきた直後の繊維束の水分率、毛羽評価の結果を表4に示す。
(Example 3)
Except for adjusting the amount of water supplied from the atomizer, the steam supplied to the pressurized steam stretching apparatus was adjusted to 133 ° C. wet steam (gauge pressure: 212 kPa) with a dryness meter of 0.95. 1 was carried out. The temperature of the fiber bundle entering the drawing tank was 95 ° C. There was little generation of fluff at the production stage of the acrylic precursor fiber bundle for carbon fiber and the carbon fiber bundle, and the steam could be stably stretched. Table 4 shows the moisture content of the fiber bundle immediately after coming out from the pressurized steam drawing apparatus and the results of the fluff evaluation.

(比較例1)
ジャケットローラに供給するスチーム圧を減圧弁により変えることで、延伸槽の直前のジャケットローラの表面温度を185℃に調整したこと以外は、実施例1と同様に実施した。延伸槽に入る繊維束の温度は143℃であった。実施例1に比べ、効率の良い凝縮が起こらなかったために、可塑化に必要な水が与えられなかったため、加圧スチーム延伸装置から延伸されて出てきた直後の繊維束の水分率が実施例1に比べ低く、炭素繊維用アクリル系前駆体繊維束に毛羽が多く発生し、それを焼成した炭素繊維束にも毛羽が多く発生した。加圧スチーム延伸装置から延伸されて出てきた直後の繊維束の水分率、毛羽評価の結果を表4に示す。
(Comparative Example 1)
It was carried out in the same manner as in Example 1 except that the steam roller supplied to the jacket roller was changed by a pressure reducing valve so that the surface temperature of the jacket roller immediately before the drawing tank was adjusted to 185 ° C. The temperature of the fiber bundle entering the drawing tank was 143 ° C. Since efficient condensation did not occur as compared with Example 1, water required for plasticization was not given, so the moisture content of the fiber bundle immediately after being drawn out from the pressurized steam drawing apparatus was As compared with 1, a large amount of fluff was generated in the acrylic precursor fiber bundle for carbon fiber, and a lot of fluff was also generated in the carbon fiber bundle obtained by firing the fiber. Table 4 shows the moisture content of the fiber bundle immediately after coming out from the pressurized steam drawing apparatus and the results of the fluff evaluation.

(比較例2)
ジャケットローラに供給するスチーム圧を減圧弁により変えることで、延伸槽の直前のジャケットローラの表面温度を185℃に調整したこと以外は、実施例2と同様に実施した。延伸槽に入る繊維束の温度は143℃であった。実施例2に比べ、効率の良い凝縮が起こらなかったために、可塑化に必要な水が与えられなかったため、加圧スチーム延伸装置から延伸されて出てきた直後の繊維束の水分率が実施例2に比べ低く、炭素繊維用アクリル系前駆体繊維束に毛羽が多く発生し、それを焼成した炭素繊維束にも毛羽が多く発生した。加圧スチーム延伸装置から延伸されて出てきた直後の繊維束の水分率、毛羽評価の結果を表4に示す。
(Comparative Example 2)
This was carried out in the same manner as in Example 2 except that the steam roller supplied to the jacket roller was changed by a pressure reducing valve so that the surface temperature of the jacket roller immediately before the drawing tank was adjusted to 185 ° C. The temperature of the fiber bundle entering the drawing tank was 143 ° C. Since efficient condensation did not occur as compared with Example 2, the water necessary for plasticization was not given, so the moisture content of the fiber bundle immediately after being drawn out from the pressurized steam drawing apparatus was Compared with 2, a large amount of fluff was generated in the acrylic precursor fiber bundle for carbon fiber, and a lot of fluff was also generated in the carbon fiber bundle obtained by firing it. Table 4 shows the moisture content of the fiber bundle immediately after coming out from the pressurized steam drawing apparatus and the results of the fluff evaluation.

(比較例3)
ジャケットローラに供給するスチーム圧を減圧弁により変えることで、延伸槽の直前のジャケットローラの表面温度を185℃に調整したこと以外は、実施例3と同様に実施した。延伸槽に入る繊維束の温度は143℃であった。実施例3に比べ、効率の良い凝縮が起こらなかったために、可塑化に必要な水が与えられなかったため、加圧スチーム延伸装置から延伸されて出てきた直後の繊維束の水分率が実施例3に比べ低く、炭素繊維用アクリル系前駆体繊維束に毛羽が多く発生し、それを焼成した炭素繊維束にも毛羽が多く発生した。加圧スチーム延伸装置から延伸されて出てきた直後の繊維束の水分率、毛羽評価の結果を表4に示す。
(Comparative Example 3)
It was carried out in the same manner as in Example 3 except that the surface temperature of the jacket roller immediately before the stretching tank was adjusted to 185 ° C. by changing the steam pressure supplied to the jacket roller with a pressure reducing valve. The temperature of the fiber bundle entering the drawing tank was 143 ° C. Since efficient condensation did not occur as compared with Example 3, the water necessary for plasticization was not given, so the moisture content of the fiber bundle immediately after being drawn out from the pressurized steam drawing apparatus was Compared with 3, a large amount of fluff was generated in the acrylic precursor fiber bundle for carbon fiber, and a lot of fluff was also generated in the carbon fiber bundle obtained by firing the fiber. Table 4 shows the moisture content of the fiber bundle immediately after coming out from the pressurized steam drawing apparatus and the results of the fluff evaluation.

(比較例4)
アトマイザーから供給する水の量を調節することにより、加圧スチーム延伸装置に供給するスチームを乾き度0.6の133℃の湿り蒸気(ゲージ圧力:212kPa)に調節したこと以外は、実施例1と同様に実施した。延伸槽に入る繊維束の温度は95℃であった。実施例1に比べ、加圧スチーム中の微小な水の滴が繊維に衝突した割合が大きいため炭素繊維用アクリル系前駆体繊維束に毛羽が非常に多く発生し、それを焼成した炭素繊維束にも毛羽が非常に多く発生した。加圧スチーム延伸装置から延伸されて出てきた直後の繊維束の水分率、毛羽評価の結果を表4に示す。
(Comparative Example 4)
Example 1 except that the steam supplied to the pressurized steam stretching apparatus was adjusted to 133 ° C. wet steam (gauge pressure: 212 kPa) with a dryness of 0.6 by adjusting the amount of water supplied from the atomizer. It carried out like. The temperature of the fiber bundle entering the drawing tank was 95 ° C. Compared with Example 1, since the ratio of minute water droplets in the pressurized steam colliding with the fibers is large, the acrylic precursor fiber bundle for carbon fibers has a very large amount of fluff, and the carbon fiber bundle obtained by firing the fluff There were very many fluffs. Table 4 shows the moisture content of the fiber bundle immediately after coming out from the pressurized steam drawing apparatus and the results of the fluff evaluation.

(比較例5)
ジャケットローラに供給するスチーム圧を減圧弁により変えることで、延伸槽の直前のジャケットローラの表面温度を185℃に調整したこと以外は、比較例4と同様に実施した。延伸槽に入る繊維束の温度は143℃であった。実施例1に比べ、加圧スチーム中の微小な水の滴が繊維に衝突した割合が大きいため炭素繊維用アクリル系前駆体繊維束に毛羽が非常に多く発生し、それを焼成した炭素繊維束にも毛羽が非常に多く発生した。加圧スチーム延伸装置から延伸されて出てきた直後の繊維束の水分率、毛羽評価の結果を表4に示す。
(Comparative Example 5)
The same procedure as in Comparative Example 4 was performed except that the surface temperature of the jacket roller immediately before the stretching tank was adjusted to 185 ° C. by changing the steam pressure supplied to the jacket roller with a pressure reducing valve. The temperature of the fiber bundle entering the drawing tank was 143 ° C. Compared with Example 1, since the ratio of minute water droplets in the pressurized steam colliding with the fibers is large, the acrylic precursor fiber bundle for carbon fibers has a very large amount of fluff, and the carbon fiber bundle obtained by firing the fluff There were very many fluffs. Table 4 shows the moisture content of the fiber bundle immediately after coming out from the pressurized steam drawing apparatus and the results of the fluff evaluation.

Figure 2008075205
Figure 2008075205

本発明の加圧スチーム延伸装置の延伸槽内に導入される繊維束の温度と加圧スチームの凝縮によってアクリル系繊維束へ与えられる水の量の関係を示すグラフである。It is a graph which shows the relationship between the temperature of the fiber bundle introduce | transduced in the drawing tank of the pressurized steam drawing apparatus of this invention, and the quantity of the water given to an acrylic fiber bundle by condensation of pressurized steam. 本発明の加圧スチーム延伸装置の一例を示す模式図である。It is a schematic diagram which shows an example of the pressurized steam extending | stretching apparatus of this invention. 本発明の加圧スチーム延伸装置のスチーム噴き出しヘッダーの一例を示す模式図である。It is a schematic diagram which shows an example of the steam ejection header of the pressurized steam extending | stretching apparatus of this invention. 本発明の加圧スチーム延伸装置の延伸槽内部の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example inside the extending tank of the pressurized steam extending | stretching apparatus of this invention. 供給熱エネルギーと蒸気温度との関係を示すグラフである。It is a graph which shows the relationship between supply heat energy and steam temperature.

符号の説明Explanation of symbols

1 延伸槽
2 ジャケットローラ
3 加圧スチーム供給装置
3a 蒸気圧力調節弁
3b 水量調節弁
3c ドレントラップ
3d アトマイザー
3e 乾き度計
4 熱媒供給配管
5 減圧弁
6 温度計
7 繊維束
8 保温カバー
9 スチーム噴き出しヘッダー
10 加圧スチーム
11 ラビリンスシール部
12 スチーム噴き出し孔
13 加圧スチーム延伸室
14 スチーム供給管
DESCRIPTION OF SYMBOLS 1 Stretching tank 2 Jacket roller 3 Pressurized steam supply device 3a Steam pressure control valve 3b Water quantity control valve 3c Drain trap 3d Atomizer 3e Dryness meter 4 Heat medium supply pipe 5 Pressure reducing valve 6 Thermometer 7 Fiber bundle 8 Heat insulation cover 9 Steam ejection Header 10 Pressurized steam 11 Labyrinth seal 12 Steam outlet 13 Pressurized steam drawing chamber 14 Steam supply pipe

Claims (5)

加圧スチームにより炭素繊維用アクリル系繊維束を延伸する炭素繊維用アクリル系繊維束の延伸方法において、
加圧スチーム延伸装置の延伸槽内に供給された加圧スチームを、前記延伸槽内に導入された炭素繊維用アクリル系繊維束の表面にて凝縮させ、該炭素繊維用アクリル系繊維束の表面に生成した凝縮水の可塑化効果により延伸することを特徴とする炭素繊維用アクリル系前駆体繊維束の延伸方法。
In the method for stretching an acrylic fiber bundle for carbon fiber, the acrylic fiber bundle for carbon fiber is stretched by pressurized steam.
The surface of the acrylic fiber bundle for carbon fiber is condensed by condensing the pressurized steam supplied into the drawing tank of the pressurized steam drawing apparatus on the surface of the acrylic fiber bundle for carbon fiber introduced into the drawing tank. A method for stretching an acrylic precursor fiber bundle for carbon fibers, characterized by stretching due to the plasticizing effect of the condensed water produced in the step.
加圧スチームにより炭素繊維用アクリル系繊維束を延伸する炭素繊維用アクリル系繊維束の延伸方法において、
加圧スチーム延伸装置の延伸槽内に供給される加圧スチームとして乾き飽和蒸気または過熱蒸気を用い、前記延伸槽内に導入される炭素繊維用アクリル系繊維束の温度をT1(℃)、前記加圧スチームの温度をT2(℃)としたとき、80≦T1<T2を満たすように温度制御することを特徴とする炭素繊維用アクリル系前駆体繊維束の延伸方法。
In the method for stretching an acrylic fiber bundle for carbon fiber, the acrylic fiber bundle for carbon fiber is stretched by pressurized steam.
Using dry saturated steam or superheated steam as the pressurized steam supplied into the drawing tank of the pressurized steam drawing apparatus, the temperature of the acrylic fiber bundle for carbon fibers introduced into the drawing tank is T 1 (° C.), A method for stretching an acrylic precursor fiber bundle for carbon fibers, wherein the temperature is controlled to satisfy 80 ≦ T 1 <T 2 when the temperature of the pressurized steam is T 2 (° C.).
加圧スチームにより炭素繊維用アクリル系繊維束を延伸する炭素繊維用アクリル系繊維束の延伸方法において、
加圧スチーム延伸装置の延伸槽内に供給される加圧スチームとして乾き度0.9以上1.0未満の湿り蒸気を用い、前記延伸槽内に導入される炭素繊維用アクリル系繊維束の温度をT1(℃)、前記加圧スチームの温度をT3(℃)としたとき、80≦T1<T3を満たすように温度制御することを特徴とする炭素繊維用アクリル系前駆体繊維束の延伸方法。
In the method for stretching an acrylic fiber bundle for carbon fiber, the acrylic fiber bundle for carbon fiber is stretched by pressurized steam.
The temperature of the acrylic fiber bundle for carbon fiber introduced into the drawing tank using wet steam having a dryness of 0.9 or more and less than 1.0 as the pressurized steam supplied into the drawing tank of the pressurized steam drawing apparatus Is T 1 (° C.), and the temperature of the pressurized steam is T 3 (° C.), the temperature is controlled so as to satisfy 80 ≦ T 1 <T 3. Acrylic precursor fiber for carbon fiber, Bundle stretching method.
加圧スチームにより並列させた複数の炭素繊維用アクリル系繊維束を延伸する加圧スチーム延伸装置において、
炭素繊維用アクリル系繊維束の入口部及び出口部に設けられたラビリンスシール部により、内部を加圧状態で維持可能な延伸槽と、
前記延伸槽の上流側及び下流側に配された延伸ローラと、
前記延伸槽の上流側に配された延伸ローラの表面温度を制御する手段と、
前記入口部から前記延伸槽内に導入される炭素繊維用アクリル系繊維束の温度を検出する検出器と、
前記延伸槽内に加圧スチームを供給する加圧スチーム供給手段と、
を有することを特徴とする加圧スチーム延伸装置。
In a pressurized steam stretching apparatus for stretching a plurality of acrylic fiber bundles for carbon fibers arranged in parallel by pressurized steam,
A drawing tank capable of maintaining the inside in a pressurized state by a labyrinth seal portion provided at the inlet and outlet of the acrylic fiber bundle for carbon fiber;
Stretching rollers arranged on the upstream side and downstream side of the stretching tank;
Means for controlling the surface temperature of the stretching roller disposed on the upstream side of the stretching tank;
A detector for detecting the temperature of the acrylic fiber bundle for carbon fibers introduced into the drawing tank from the inlet portion;
A pressurized steam supply means for supplying pressurized steam into the stretching tank;
A pressurizing steam stretching apparatus comprising:
請求項4に記載の加圧スチーム延伸装置を用いることを特徴とする炭素繊維用アクリル系前駆体繊維束の製造方法。   A method for producing an acrylic precursor fiber bundle for carbon fibers, wherein the pressurized steam drawing apparatus according to claim 4 is used.
JP2006255807A 2006-09-21 2006-09-21 Fiber drawing apparatus using pressurized steam and method for producing acrylic precursor fiber bundle for carbon fiber Expired - Fee Related JP4745932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255807A JP4745932B2 (en) 2006-09-21 2006-09-21 Fiber drawing apparatus using pressurized steam and method for producing acrylic precursor fiber bundle for carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255807A JP4745932B2 (en) 2006-09-21 2006-09-21 Fiber drawing apparatus using pressurized steam and method for producing acrylic precursor fiber bundle for carbon fiber

Publications (2)

Publication Number Publication Date
JP2008075205A true JP2008075205A (en) 2008-04-03
JP4745932B2 JP4745932B2 (en) 2011-08-10

Family

ID=39347553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255807A Expired - Fee Related JP4745932B2 (en) 2006-09-21 2006-09-21 Fiber drawing apparatus using pressurized steam and method for producing acrylic precursor fiber bundle for carbon fiber

Country Status (1)

Country Link
JP (1) JP4745932B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145051A1 (en) * 2008-05-30 2009-12-03 三菱レイヨン株式会社 Acrylonitrile copolymer and method for manufacturing the same, and acrylonitrile copolymer solution and polyacrylonitrile precursor fiber for carbon fiber and method for manufacturing the same
WO2016113176A1 (en) * 2015-01-14 2016-07-21 Oerlikon Textile Gmbh & Co. Kg Method and device for the thermal treatment of a multiplicity of melt-spun fiber members of a fiber cable
CN113737318A (en) * 2021-10-14 2021-12-03 荣成碳纤维科技有限公司 Carbon fiber steam drafting system and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769545B (en) * 2017-02-24 2019-06-14 北京航空航天大学 The deployable system safety testing device of carbon fibre tow and measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214521A (en) * 1982-06-09 1983-12-13 Toray Ind Inc Production of precursor yarn for carbon fiber
JPH05263313A (en) * 1992-01-23 1993-10-12 Toray Ind Inc Method for drawing acrylic yarn with steam and apparatus for drawing with steam
JPH10292240A (en) * 1997-04-16 1998-11-04 Mitsubishi Rayon Co Ltd Drawing of fiber with pressured steam and device therefor
JPH1112874A (en) * 1997-06-19 1999-01-19 Toray Ind Inc Acrylic fiber yarn, and method and apparatus for steam-drawing of the same, and carbon fiber
JP2000345429A (en) * 1999-03-31 2000-12-12 Toray Ind Inc Production of acrylic fiber
JP2005248358A (en) * 2004-03-03 2005-09-15 Mitsubishi Rayon Co Ltd Precursor fiber for carbon fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214521A (en) * 1982-06-09 1983-12-13 Toray Ind Inc Production of precursor yarn for carbon fiber
JPH05263313A (en) * 1992-01-23 1993-10-12 Toray Ind Inc Method for drawing acrylic yarn with steam and apparatus for drawing with steam
JPH10292240A (en) * 1997-04-16 1998-11-04 Mitsubishi Rayon Co Ltd Drawing of fiber with pressured steam and device therefor
JPH1112874A (en) * 1997-06-19 1999-01-19 Toray Ind Inc Acrylic fiber yarn, and method and apparatus for steam-drawing of the same, and carbon fiber
JP2000345429A (en) * 1999-03-31 2000-12-12 Toray Ind Inc Production of acrylic fiber
JP2005248358A (en) * 2004-03-03 2005-09-15 Mitsubishi Rayon Co Ltd Precursor fiber for carbon fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145051A1 (en) * 2008-05-30 2009-12-03 三菱レイヨン株式会社 Acrylonitrile copolymer and method for manufacturing the same, and acrylonitrile copolymer solution and polyacrylonitrile precursor fiber for carbon fiber and method for manufacturing the same
CN102046676A (en) * 2008-05-30 2011-05-04 三菱丽阳株式会社 Acrylonitrile copolymer and method for manufacturing the same, and acrylonitrile copolymer solution and polyacrylonitrile precursor fiber for carbon fiber and method for manufacturing the same
US8569408B2 (en) 2008-05-30 2013-10-29 Mitsubishi Rayon Co., Ltd. Acrylonitrile copolymer and method for producing the same, acrylonitrile copolymer solution and polyacrylonitrile precursor fiber for carbon fiber and method for producing the same
JP5484906B2 (en) * 2008-05-30 2014-05-07 三菱レイヨン株式会社 Method for producing polyacrylonitrile-based precursor fiber for carbon fiber
WO2016113176A1 (en) * 2015-01-14 2016-07-21 Oerlikon Textile Gmbh & Co. Kg Method and device for the thermal treatment of a multiplicity of melt-spun fiber members of a fiber cable
CN113737318A (en) * 2021-10-14 2021-12-03 荣成碳纤维科技有限公司 Carbon fiber steam drafting system and control method thereof

Also Published As

Publication number Publication date
JP4745932B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
KR102555678B1 (en) Method for producing acrylonitrile-based fiber bundles and method for producing carbon fiber bundles
JP4745932B2 (en) Fiber drawing apparatus using pressurized steam and method for producing acrylic precursor fiber bundle for carbon fiber
WO2014203880A1 (en) Process for manufacturing carbon-fiber precursor acrylic fiber bundle and steam drawing apparatus
KR101557597B1 (en) Steam drawing device
JP6149583B2 (en) Method of drawing carbon fiber precursor acrylic fiber bundle
JP5621848B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
US10612164B2 (en) Method of cleaning oxidation oven and method of producing oxidized fiber, carbon fiber, and graphitized fiber
CN110402307B (en) Method for producing acrylic fiber bundle and method for producing carbon fiber bundle
JP4673095B2 (en) Pressurized steam drawing apparatus and method for producing acrylic fiber
JP3999841B2 (en) Fiber stretching method and apparatus using pressurized steam
JP6265068B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP6562187B1 (en) Method for producing acrylonitrile fiber bundle and method for producing carbon fiber bundle
WO2016114385A1 (en) Method for producing acrylic fiber bundle, and pressurized steam drawing apparatus
JP2002309438A (en) Method for producing acrylic fiber
JP4332401B2 (en) Pressurized steam drawing apparatus and method for producing acrylic fiber
JP2010222753A (en) Steam drawing unit
JP6603037B2 (en) Acrylic yarn manufacturing method
JP2000345429A (en) Production of acrylic fiber
JP4983641B2 (en) Method for producing carbon fiber precursor yarn
JPH08158162A (en) Production of carbon fiber
JPS6399316A (en) Production of precursor yarn for carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4745932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees