JP2008075116A - Method for restraint-hardening annular member - Google Patents

Method for restraint-hardening annular member Download PDF

Info

Publication number
JP2008075116A
JP2008075116A JP2006254556A JP2006254556A JP2008075116A JP 2008075116 A JP2008075116 A JP 2008075116A JP 2006254556 A JP2006254556 A JP 2006254556A JP 2006254556 A JP2006254556 A JP 2006254556A JP 2008075116 A JP2008075116 A JP 2008075116A
Authority
JP
Japan
Prior art keywords
annular member
restraint
restraining
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006254556A
Other languages
Japanese (ja)
Other versions
JP5224670B2 (en
Inventor
Tsutomu Oki
力 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006254556A priority Critical patent/JP5224670B2/en
Priority to US12/442,030 priority patent/US8177928B2/en
Priority to PCT/JP2007/066159 priority patent/WO2008035524A1/en
Publication of JP2008075116A publication Critical patent/JP2008075116A/en
Application granted granted Critical
Publication of JP5224670B2 publication Critical patent/JP5224670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for restraint-hardening an annular member by which the effect of the sufficient restraint is easily secured, the efficiency of a hardening treatment is enhanced and the manufacturing cost of the annular member can be reduced. <P>SOLUTION: The method for restraint-hardening a bearing ring 10 being the annular member is provided with: a heating process: a first cooling process; a restraining process; and a second cooling process. In the heating process, the bearing ring 10 is heated to the temperature of the A<SB>1</SB>point or higher. In the first cooling process, the ring is cooled to a first cooling temperature of the M<SB>S</SB>point or lower, and in the restraining process, the ring is restrained with a restraining member 30 and in the second cooling process, the ring is cooled while restraining, to a second cooling temperature of lower than the restraining starting temperature. Then, in the restraining process and the second cooling process, the bearing ring 10 is restrained in a ridge line part 14 so that the bearing ring 10 is not in contact with the restraining member 30 on the outer peripheral surface 11 of the bearing ring 10 and the end face 12. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は環状部材の拘束焼入方法に関し、より特定的には、環状部材を拘束することにより変形を抑制する環状部材の拘束焼入方法に関するものである。   The present invention relates to a method for restraining and quenching an annular member, and more particularly to a method for restraining and quenching an annular member that restrains deformation by restraining the annular member.

軸受の軌道輪などの環状部材に対する焼入硬化処理においては、熱処理の際に生ずる変形(熱処理変形)や真円度の低下を抑制するため、当該環状部材を拘束した状態で焼入の冷却を実施する拘束焼入が採用される場合がある。この拘束焼入は、焼入時において、環状部材を構成する鋼がマルテンサイト変態により膨張することを利用したものである。すなわち、環状部材が拘束部材に囲まれた状態で焼入の冷却が実施されることにより、環状部材が拘束部材の壁面に沿って膨張し、所望の形状の環状部材を得ることができる。しかし、この方法によれば、拘束焼入の冷却が終了した時点で、拘束部材の内壁と環状部材とが密着するため、環状部材を拘束部材から分離することが困難となり、焼入硬化処理の効率が低下する場合がある。   In quench hardening for annular members such as bearing rings, quenching cooling is performed in a state in which the annular member is constrained in order to suppress deformation (heat treatment deformation) and roundness reduction that occur during heat treatment. In some cases, restraint quenching is performed. This restraint quenching utilizes the fact that the steel constituting the annular member expands due to martensitic transformation during quenching. That is, by quenching quenching while the annular member is surrounded by the restraining member, the annular member expands along the wall surface of the restraining member, and an annular member having a desired shape can be obtained. However, according to this method, since the inner wall of the restraint member and the annular member come into close contact with each other when the quenching of the restraint quenching is completed, it becomes difficult to separate the annular member from the restraint member. Efficiency may be reduced.

これに対し、上部および下部に円形の開口が形成された円柱形状の内壁を有する拘束部材を採用し、環状部材を上部の開口から順次押し込んでいき、環状部材を冷却するとともに、冷却が完了した環状部材を下部の開口から押し出す拘束焼入方法が提案されている。これにより、環状部材の拘束部材からの分離が順次行なわれ、焼入硬化処理の効率低下を抑制することができる(たとえば特許文献1参照)。
特開平9−176740号公報
In contrast, a constraining member having a cylindrical inner wall with circular openings formed in the upper and lower portions was adopted, and the annular member was sequentially pushed from the upper opening to cool the annular member, and the cooling was completed. There has been proposed a constrained quenching method in which the annular member is pushed out from the lower opening. Thereby, separation of the annular member from the restraining member is sequentially performed, and a decrease in the efficiency of the quench hardening process can be suppressed (for example, see Patent Document 1).
JP-A-9-176740

しかしながら、特許文献1に記載の拘束焼入方法を含めて、環状部材の外周面や内周面に、拘束部材の壁面を密着させて環状部材を拘束する従来の拘束焼入方法では、環状部材の拘束開始時点における寸法を予め正確に予測しておかなければならないという問題点がある。すなわち、環状部材の拘束開始時点における寸法が拘束部材の壁面に囲まれた空間よりも大きい場合、拘束そのものが不可能となる。一方、環状部材の拘束開始時点における寸法が拘束部材の壁面に囲まれた空間よりも小さ過ぎる場合、焼入により環状部材が膨張しても、環状部材が拘束部材により十分拘束されない。   However, in the conventional constraining quenching method in which the annular member is restrained by bringing the wall surface of the constraining member into close contact with the outer peripheral surface or the inner peripheral surface of the annular member, including the constraining quenching method described in Patent Document 1. There is a problem that the dimensions at the time of starting restraint must be accurately predicted in advance. That is, when the dimension of the annular member at the start of restraint is larger than the space surrounded by the wall surface of the restraint member, restraint itself becomes impossible. On the other hand, if the dimension of the annular member at the start of restraint is too small than the space surrounded by the wall surface of the restraint member, the annular member is not sufficiently restrained by the restraint member even if the annular member expands due to quenching.

また、上記従来の拘束焼入方法では、環状部材の拘束開始時点における寸法が正確に予測できる場合であっても、焼入が行なわれる環状部材の寸法ごとに、それに応じた寸法を有する拘束部材を準備する必要がある。さらに、実際の生産ラインにおいては、焼入が行なわれる環状部材の寸法が変更されるたびに、使用する拘束部材を取り換える必要があり、焼入の処理効率が低下する。   Further, in the above-described conventional constraining and quenching method, even when the dimension of the annular member at the time of restraint start can be accurately predicted, the constraining member having a dimension corresponding to each dimension of the annular member to be quenched. Need to prepare. Furthermore, in an actual production line, it is necessary to replace the restraining member to be used every time the dimensions of the annular member to be quenched are changed, and the quenching processing efficiency is lowered.

以上のように、従来の拘束焼入方法は、十分な拘束の効果を確保するために環状部材の正確な寸法予測や多数の拘束部材の準備が必要である点、拘束部材の取り替え(段取り換え)が煩雑である点、などの問題点を有していた。そして、上記問題点は、十分な拘束の効果の確保を困難にするとともに、焼入硬化処理の処理効率を低下させ、環状部材の生産コストの上昇を招来する。   As described above, the conventional restraint quenching method requires accurate prediction of the dimensions of the annular member and preparation of a large number of restraint members in order to ensure sufficient restraint effect. ) Is troublesome. And the said problem makes it difficult to ensure the effect of sufficient restraint, lowers the processing efficiency of a quench hardening process, and causes the raise of the production cost of an annular member.

そこで、本発明の目的は、容易に、十分な拘束の効果を確保するとともに、焼入硬化処理の処理効率を上昇させ、環状部材の生産コストを抑制することが可能な環状部材の拘束焼入方法を提供することである。   Accordingly, an object of the present invention is to easily restrain the annular member that can secure the sufficient restraining effect, increase the processing efficiency of the quench hardening process, and suppress the production cost of the annular member. Is to provide a method.

本発明に従った環状部材の拘束焼入方法は、加熱工程と、第1冷却工程と、拘束工程と、第2冷却工程とを備えている。加熱工程では、鋼からなる環状部材がA点以上の温度に加熱される。第1冷却工程では、加熱工程において加熱された環状部材が、A点以上の温度からM点以下の温度である第1冷却温度まで冷却される。拘束工程では、第1冷却温度まで冷却された環状部材が拘束部材により拘束される。第2冷却工程では、拘束部材により拘束された環状部材が、拘束部材による拘束が開始される温度であり、M点以下の温度である拘束開始温度よりも低い温度である第2冷却温度まで、拘束部材により拘束されつつ冷却される。そして、拘束工程および第2冷却工程においては、環状部材の外周面および少なくとも一方の端面において、環状部材と拘束部材とが接触することなく、環状部材の外周面と当該少なくとも一方の端面とが交差する部位である稜線部において、拘束部材と環状部材とが接触するように環状部材が拘束される。 The annular member restraining and quenching method according to the present invention includes a heating step, a first cooling step, a restraining step, and a second cooling step. In the heating step, an annular member made of steel is heated to a temperature of A 1 point or higher. In the first cooling step, the annular member heated in the heating step is cooled from a temperature of A 1 point or higher to a first cooling temperature that is a temperature of MS point or lower. In the restraining step, the annular member cooled to the first cooling temperature is restrained by the restraining member. In the second cooling step, the annular member restrained by the restraining member is a temperature at which restraint by the restraining member is started, and reaches a second cooling temperature that is a temperature lower than the restraint start temperature that is a temperature equal to or lower than the M S point. The cooling is performed while being restrained by the restraining member. In the restraining step and the second cooling step, the outer circumferential surface of the annular member intersects with the at least one end surface without contacting the annular member and the restraining member on the outer circumferential surface and at least one end surface of the annular member. The annular member is restrained so that the restraining member and the annular member come into contact with each other at the ridge line portion that is the portion to be operated.

一般に、環状部材の拘束焼入の冷却においては、環状部材の外周面および端面が全体にわたって拘束部材と接触するように、環状部材が拘束される。これに対し、本発明者は、環状部材の拘束焼入における拘束部位と、焼入後の環状部材の寸法精度および真円度との関係について詳細な検討を行なった。その結果、以下のような知見を得た。   In general, in cooling by restraint quenching of the annular member, the annular member is restrained so that the outer peripheral surface and the end surface of the annular member are in contact with the restraint member throughout. On the other hand, the present inventor has made a detailed study on the relationship between the constrained part in the constraining quenching of the annular member and the dimensional accuracy and roundness of the annular member after quenching. As a result, the following findings were obtained.

すなわち、環状部材の拘束焼入の冷却においては、環状部材の外周面および端面において、環状部材と拘束部材とが接触しなくても、環状部材の外周面と端面とが交差する部位である稜線部において、拘束部材と環状部材とが接触するように環状部材が拘束されることにより、十分な寸法精度および真円度を得ることができること、および稜線部における拘束は、必ずしも両側の端面に隣接する稜線部において行なわれる必要はなく、一方側のみで行なわれても、十分な寸法精度および真円度を得ることができること、を本発明者は見出した。   That is, in restraint quenching cooling of the annular member, a ridge line that is a portion where the outer circumferential surface and the end surface of the annular member intersect even if the annular member and the restraining member do not contact each other on the outer circumferential surface and the end surface of the annular member. In the portion, the annular member is restrained so that the restraining member and the annular member are in contact with each other, so that sufficient dimensional accuracy and roundness can be obtained, and the restraint in the ridge line portion is not necessarily adjacent to the end surfaces on both sides. The present inventor has found that sufficient dimensional accuracy and roundness can be obtained even if it is performed only on one side, without being performed at the ridge line portion.

本発明の環状部材の拘束焼入方法では、加熱工程においてA点以上の温度に加熱されてオーステナイト化した鋼からなる環状部材は、第1冷却工程においてM点以下の第1冷却温度に冷却されることにより、マルテンサイト変態を開始する。ここで、鋼のマルテンサイト変態は、温度を低下させなければ進行しない。また、鋼は、M点以下の温度に冷却されている場合、パーライト変態およびベイナイト変態も進行しない。そして、拘束工程で、環状部材が稜線部において拘束され、第2冷却工程においてさらに第2冷却温度まで冷却されることによりマルテンサイト変態が進行し、真円度の低下および熱処理変形が抑制されつつ環状部材が硬化する。 The constrained quenching method of the annular member of the present invention, an annular member made in the heating step was heated to a temperature of more than A 1 point austenitized steel, the first cooling temperature below M S point in the first cooling step The martensite transformation is started by being cooled. Here, the martensitic transformation of steel does not proceed unless the temperature is lowered. Moreover, steel, if it is cooled to a temperature below M S point, no progress pearlite and bainite transformation. In the restraining step, the annular member is restrained at the ridgeline portion, and further cooled to the second cooling temperature in the second cooling step, whereby the martensitic transformation proceeds, and the decrease in roundness and the heat treatment deformation are suppressed. The annular member is cured.

ここで、たとえば環状部材と接触するための壁面である拘束面が、一の軸に垂直な面における断面が円形である拘束部材、あるいは拘束面が一の軸に対して傾斜している部分を有する拘束部材、具体的には拘束面が円錐面形状、球面形状などの形状を有する拘束部材が採用される。そして、拘束部材の当該一の軸と環状部材の軸とが一致するように、拘束部材の拘束面と環状部材の稜線部とを接触させることにより、環状部材の拘束開始時点における寸法を予め正確に予測することなく、環状部材を稜線部において拘束することができる。一方、上述のように、稜線部において、拘束部材と環状部材とが接触するように環状部材が拘束されることにより、十分な寸法精度および真円度を得ることができる。そのため、容易に、十分な拘束の効果を確保することができる。   Here, for example, a constraining surface that is a wall surface for contacting an annular member is a constraining member having a circular cross section in a plane perpendicular to one axis, or a portion in which the constraining surface is inclined with respect to one axis. A constraining member having a constraining surface such as a conical surface shape or a spherical surface shape is employed. Then, by bringing the restraining surface of the restraining member and the ridge line portion of the annular member into contact with each other so that the one axis of the restraining member and the axis of the annular member coincide with each other, the dimensions of the annular member at the start of restraining are accurately determined in advance. Without predicting, the annular member can be restrained at the ridge line portion. On the other hand, as described above, sufficient dimensional accuracy and roundness can be obtained by restraining the annular member so that the restraining member and the annular member come into contact with each other at the ridge line portion. Therefore, a sufficient restraining effect can be easily ensured.

また、上述のように稜線部において環状部材が拘束されることにより、たとえば上記のような拘束部材が採用されれば、環状部材の寸法ごとに、それに応じた拘束面の形状(上記一の軸に垂直な断面の直径)を有する拘束部材を準備する必要がなく、一の拘束部材を種々の寸法の環状部材の拘束に使用することができる。さらに、実際の生産ラインにおいても、焼入が行なわれる環状部材の寸法が変更されるたびに、使用する拘束部材を取り換える必要がなく、焼入の処理効率が向上する。そのため、焼入硬化処理の処理効率を上昇させ、環状部材の生産コストを抑制することが可能となる。   Further, when the annular member is constrained at the ridge portion as described above, for example, when the above-described constraining member is adopted, the shape of the constraining surface corresponding to each dimension of the annular member (the one axis described above) It is not necessary to prepare a constraining member having a cross-sectional diameter perpendicular to the same, and one constraining member can be used for constraining annular members of various sizes. Further, even in an actual production line, it is not necessary to replace the restraining member to be used every time the dimensions of the annular member to be quenched are changed, and the quenching processing efficiency is improved. Therefore, it is possible to increase the processing efficiency of the quench hardening process and suppress the production cost of the annular member.

以上のように本発明の環状部材の拘束焼入方法によれば、容易に、十分な拘束の効果を確保するとともに、焼入硬化処理の処理効率を上昇させ、環状部材の生産コストを抑制することができる。   As described above, according to the constraining and quenching method for an annular member of the present invention, it is possible to easily secure a sufficient restraining effect, increase the processing efficiency of the quench hardening process, and suppress the production cost of the annular member. be able to.

なお、採用されるべき拘束部材の拘束面は、円錐面形状、球面形状など軸方向に垂直な断面が円形であり、軸方向において断面の直径が連続的に小さくなる(または大きくなる)壁面を有する拘束部材であればよい。また、上記拘束部材の軸を含む断面における拘束部材と環状部材との接触部での軸に垂直な面と拘束面とのなす角度(拘束部材テーパ角度)は、径方向の拘束力と軸方向の拘束力とのバランスを考慮して45度とするのが理想的であるが、拘束部材の加工精度等を考慮すると±0.5度程度のばらつきを見込む必要があり、44.5度以上45.5度以下とすることができる。さらに、拘束工程および第2冷却工程において、環状部材の内周面は拘束されてもよいが、基本的には上記稜線部が拘束されることで、十分な拘束の効果を確保できるため、拘束されなくてもよい。   In addition, the constraining surface of the constraining member to be adopted has a circular cross section perpendicular to the axial direction, such as a conical surface shape or a spherical shape, and a wall surface in which the diameter of the cross section continuously decreases (or increases) in the axial direction. Any restraining member may be used. In addition, the angle (constraint member taper angle) formed by the surface perpendicular to the axis and the restraint surface at the contact portion between the restraint member and the annular member in the cross section including the shaft of the restraint member is the radial restraint force and the axial direction. It is ideal to set the angle to 45 degrees in consideration of the balance with the restraining force. However, in consideration of the processing accuracy of the restraining member, it is necessary to allow for a variation of about ± 0.5 degrees. It can be set to 45.5 degrees or less. Furthermore, in the restraining step and the second cooling step, the inner peripheral surface of the annular member may be restrained, but basically, the restraint effect can be ensured by restraining the ridgeline portion, so It does not have to be done.

また、A点とは鋼を加熱した場合に、鋼の組織がフェライトからオーステナイトに変態を開始する温度に相当する点をいう。また、M点とはオーステナイト化した鋼が冷却される際に、マルテンサイト化を開始する温度に相当する点をいう。 Further, the 1-point A when heated steel refers to a point that the structure of the steel corresponds to the temperature to start the transformation from ferrite to austenite. Further, the M S point when the steel was austenitized is cooled, it refers to a point corresponding to a temperature to initiate the martensite.

上記環状部材の拘束焼入方法において好ましくは、拘束開始温度は150℃以上である。上述のように、本発明の環状部材の拘束焼入方法においては、環状部材が拘束されつつ冷却され、環状部材を構成する鋼のマルテンサイト変態が進行することにより、環状部材の真円度の低下および熱処理変形が抑制される。しかし、拘束開始温度が150℃未満では、拘束開始前に既にマルテンサイト変態が相当程度進行しており、拘束開始後にマルテンサイトに変態するオーステナイトの割合が少なくなっている。そのため、拘束による熱処理変形および真円度の低下の抑制効果が不十分となる。拘束開始温度を150℃以上とすることにより、拘束開始後にマルテンサイトに変態するオーステナイトの割合が十分に確保され、環状部材の熱処理変形および真円度の低下が一層抑制される。   Preferably, in the restraint quenching method for the annular member, the restraint start temperature is 150 ° C. or higher. As described above, in the constrained quenching method for an annular member of the present invention, the annular member is cooled while being constrained, and the martensitic transformation of the steel constituting the annular member proceeds, whereby the roundness of the annular member is increased. Reduction and heat treatment deformation are suppressed. However, if the restraint start temperature is less than 150 ° C., martensitic transformation has already progressed to a considerable extent before restraint starts, and the proportion of austenite that transforms to martensite after restraint starts is reduced. Therefore, the effect of suppressing the heat treatment deformation due to restraint and the decrease in roundness becomes insufficient. By setting the restraint start temperature to 150 ° C. or higher, a sufficient ratio of austenite that transforms into martensite after restraint starts is sufficiently secured, and the heat treatment deformation and the roundness reduction of the annular member are further suppressed.

上記環状部材の拘束焼入方法において好ましくは、第2冷却温度は100℃以下である。100℃よりも高い温度で環状部材の拘束が終了した場合、その後の冷却において新たにマルテンサイト変態するオーステナイトの割合が多いため、その後の冷却において熱処理変形や真円度の低下が発生するおそれがある。第2冷却温度を100℃以下とすることにより、その後にマルテンサイト変態するオーステナイトの割合を十分に抑制し、環状部材の熱処理変形および真円度の低下を一層抑制することができる。なお、環状部材を構成する鋼のM点まで環状部材の拘束を継続すれば、残存しているオーステナイトはなくなり、その後の冷却による真円度の低下や熱処理変形をほぼ完全に回避することができる。したがって、M点未満の温度域に環状部材を冷却しても、更なる効果が期待できず、焼入硬化処理の効率低下を招来するため、第2冷却温度はM点以上とすることができる。ここで、M点とは、オーステナイト化した鋼が冷却される際に、マルテンサイト化が完了する温度に相当する点をいう。 In the constrained quenching method for the annular member, the second cooling temperature is preferably 100 ° C. or lower. When the restraint of the annular member is finished at a temperature higher than 100 ° C., since there is a large proportion of austenite that newly undergoes martensitic transformation in the subsequent cooling, there is a possibility that heat treatment deformation and a decrease in roundness may occur in the subsequent cooling. is there. By setting the second cooling temperature to 100 ° C. or less, it is possible to sufficiently suppress the ratio of austenite that subsequently undergoes martensitic transformation, and to further suppress the heat treatment deformation of the annular member and the decrease in roundness. If the restraint of the annular member is continued up to the Mf point of the steel constituting the annular member, the remaining austenite disappears, and the reduction in roundness and heat treatment deformation due to subsequent cooling can be avoided almost completely. it can. Therefore, even if the annular member is cooled to a temperature range lower than the Mf point, no further effect can be expected and the efficiency of the quench hardening process is reduced. Therefore, the second cooling temperature should be equal to or higher than the Mf point. Can do. Here, the Mf point refers to a point corresponding to a temperature at which martensite formation is completed when the austenitized steel is cooled.

上記環状部材の拘束焼入方法において好ましくは、第2冷却工程における冷却速度は6℃/秒以下である。第2冷却工程における冷却速度を6℃/秒以下とすることにより、真円度の低下や熱処理変形を一層抑制することができる。なお、冷却速度が1℃/秒未満では、熱処理変形や真円度の低下の抑制効果が飽和する一方、第2冷却工程に要する時間が長くなり、焼入硬化処理の処理効率が低下する。そのため、第2冷却工程における冷却速度は1℃/秒以上とすることが好ましい。ここで、冷却速度とは、単位時間あたりの温度の低下幅をいう。   In the constrained quenching method for the annular member, the cooling rate in the second cooling step is preferably 6 ° C./second or less. By setting the cooling rate in the second cooling step to 6 ° C./second or less, it is possible to further suppress a decrease in roundness and heat treatment deformation. If the cooling rate is less than 1 ° C./second, the effect of suppressing the heat treatment deformation and the decrease in roundness is saturated, while the time required for the second cooling step becomes long, and the processing efficiency of the quench hardening process decreases. Therefore, the cooling rate in the second cooling step is preferably 1 ° C./second or more. Here, the cooling rate refers to the temperature decrease per unit time.

上記環状部材の拘束焼入方法において好ましくは、拘束工程および第2冷却工程においては、環状部材は、44.5度以上45.5度以下の拘束部材テーパ角度を有する拘束部材により、以下の式(1)の関係を満たす荷重L以上の荷重が負荷されて拘束される。   Preferably, in the restraining quenching method for the annular member, in the restraining step and the second cooling step, the annular member is expressed by the following formula using a restraining member having a restraining member taper angle of 44.5 degrees or more and 45.5 degrees or less. A load equal to or greater than the load L satisfying the relationship (1) is applied and restrained.

L=3.175×(C/C−1.754×S ・・・(1)
ここで、Lは、荷重(N)、Sは、軸を含む環状部材の断面における分離した2つの断面のうち一方の断面の断面積(mm)、Cは、拘束前における環状部材の真円度(μm)、Cは、焼入後において要求される環状部材の真円度(μm)である。
L = 3.175 × (C 2 / C 1 ) −1.754 × S (1)
Here, L is a load (N), S is a cross-sectional area (mm 2 ) of one of the two separated cross sections in the cross section of the annular member including the shaft, and C 1 is an annular member before restraint. Roundness (μm), C 2 is the roundness (μm) of the annular member required after quenching.

本発明者による検討の結果、拘束前における環状部材の真円度がCであって、45度±0.5度(44.5度以上45.5度以下)の拘束部材テーパ角度を有する拘束部材により環状部材が拘束される場合、焼入後に真円度をCまで改善するためには、上記式(1)で表される荷重L以上の荷重が必要であることが明らかとなった。そのため、環状部材が荷重L以上の荷重が負荷されて拘束されることにより、所望の真円度Cまで真円度を改善することが可能となる。 As a result of the study by the present inventor, the circularity of the annular member before restraint is C 1 and has a restraint member taper angle of 45 ° ± 0.5 ° (44.5 ° to 45.5 °). When the annular member is constrained by the constraining member, it becomes clear that a load equal to or greater than the load L represented by the above formula (1) is necessary to improve the roundness to C 2 after quenching. It was. Therefore, by the annular member is restrained load is applied over the load L, thereby making it possible to improve the roundness to the desired roundness C 2.

なお、拘束前における環状部材の真円度(C)は、焼入硬化処理開始前(加熱前)の真円度とほとんど同一の値となる。そのため、式(1)においては、拘束前における環状部材の真円度(C)に代えて、焼入硬化処理開始前(加熱前)の真円度を採用してもよい。また、真円度とは、JIS B7451に規定された最小二乗中心法(LSC)による真円度である。 In addition, the roundness (C 1 ) of the annular member before restraint is almost the same value as the roundness before the start of quench hardening (before heating). Therefore, in Formula (1), instead of the roundness (C 1 ) of the annular member before restraint, the roundness before the start of quench hardening (before heating) may be employed. The roundness is roundness according to the least square center method (LSC) defined in JIS B7451.

以上の説明から明らかなように、本発明の環状部材の拘束焼入方法によれば、容易に、十分な拘束の効果を確保するとともに、焼入硬化処理の処理効率を上昇させ、環状部材の生産コストを抑制することが可能な環状部材の拘束焼入方法を提供することができる。   As is clear from the above description, according to the constraining and quenching method of the annular member of the present invention, it is easy to secure a sufficient restraining effect and increase the processing efficiency of the quench hardening process. It is possible to provide a constrained quenching method for an annular member capable of suppressing production costs.

以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

(実施の形態1)
図1は、本発明の環状部材の拘束焼入方法における一実施の形態である実施の形態1の環状部材としての軸受軌道輪10の概略断面図である。また、図2は、実施の形態1における環状部材の拘束焼入方法の概略を示す流れ図である。また、図3は、実施の形態1における環状部材の拘束焼入方法の拘束工程および第2冷却工程を説明するための概略断面図である。図1〜図3を参照して、実施の形態1における環状部材の拘束焼入方法について説明する。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of a bearing race 10 as an annular member according to Embodiment 1, which is an embodiment of the method for restraining and quenching an annular member according to the present invention. FIG. 2 is a flowchart showing an outline of the constraining quenching method for the annular member in the first embodiment. FIG. 3 is a schematic cross-sectional view for explaining a restraining step and a second cooling step of the restraining quenching method for the annular member in the first embodiment. With reference to FIGS. 1-3, the constrained quenching method of the annular member in Embodiment 1 is demonstrated.

図1を参照して、軸受軌道輪10は、円筒状の形状を有しており、外周面11と、軸受軌道輪10の軸αを含む断面において外周面11に平行な内周面13と、外周面11および内周面13に交差(直交)する2つの端面12、12を備えている。また、2つの端面12、12の各々と外周面11が交差する部位には、それぞれ稜線部14、14が形成されている。稜線部14は、たとえば面取りされた領域である面取り部である。以下、軸受軌道輪10に対して実施される実施の形態1における環状部材の拘束焼入方法について説明する。   Referring to FIG. 1, the bearing race 10 has a cylindrical shape, and includes an outer peripheral surface 11 and an inner peripheral surface 13 parallel to the outer peripheral surface 11 in a cross section including the axis α of the bearing race 10. , Two end surfaces 12 and 12 intersecting (orthogonal) the outer peripheral surface 11 and the inner peripheral surface 13 are provided. Further, ridge line portions 14 and 14 are formed at portions where each of the two end surfaces 12 and 12 intersects with the outer peripheral surface 11. The ridge line portion 14 is a chamfered portion that is a chamfered region, for example. Hereinafter, a method for restraining and quenching the annular member according to the first embodiment performed on the bearing race 10 will be described.

図2を参照して、実施の形態1における環状部材の拘束焼入方法は、加熱工程と、第1冷却工程と、拘束工程と、第2冷却工程とを備えている。加熱工程では、軸受鋼(たとえばJIS規格SUJ2)などの鋼からなる環状部材としての軸受軌道輪10がA点以上の温度である800℃以上1000℃以下の温度、たとえば850℃に加熱される。第1冷却工程では、加熱工程において加熱された軸受軌道輪10が、A点以上の温度からM点以下の温度である150℃以上250℃以下の温度、たとえば230℃の第1冷却温度まで冷却される。 Referring to FIG. 2, the constrained quenching method for the annular member in the first embodiment includes a heating step, a first cooling step, a constraining step, and a second cooling step. In the heating process, the bearing race 10 as an annular member made of steel such as bearing steel (for example, JIS standard SUJ2) is heated to a temperature of 800 ° C. or higher and 1000 ° C. or lower, which is a temperature of A 1 point or higher, for example, 850 ° C. . In the first cooling process, the bearing race 10 heated in the heating process is a temperature of 150 ° C. or higher and 250 ° C. or lower, which is a temperature of A 1 point or higher and M S point or lower, for example, a first cooling temperature of 230 ° C. Until cooled.

さらに、図2および図3を参照して、拘束工程では、第1冷却温度まで冷却された軸受軌道輪10が拘束部材30により拘束される。第2冷却工程では、拘束部材30により拘束された軸受軌道輪10が、拘束部材30による拘束が開始される温度であり、M点以下の温度である拘束開始温度よりも低い温度である30℃以上100℃以下の温度、たとえば80℃の第2冷却温度まで、拘束部材30により拘束されつつ冷却される。 Further, referring to FIG. 2 and FIG. 3, in the restraining step, bearing ring 10 cooled to the first cooling temperature is restrained by restraining member 30. In the second cooling step, the bearing race 10 restrained by the restraining member 30 is a temperature at which restraint by the restraining member 30 is started, and is a temperature lower than a restraint start temperature that is a temperature below the MS point 30. Cooling while being restrained by the restraining member 30 to a temperature of not lower than 100 ° C. and not higher than 100 ° C., for example, a second cooling temperature of 80 ° C.

ここで、上記加熱および冷却により行なわれる焼入硬化処理としては、大気中で加熱され、その後冷却される通常の焼入硬化処理が採用されてもよいし、光輝熱処理、浸炭窒化処理などの制御された雰囲気中で加熱され、その後冷却される焼入硬化処理が採用されてもよい。   Here, as the quench hardening process performed by the above heating and cooling, a normal quench hardening process that is heated in the air and then cooled may be employed, or control such as bright heat treatment, carbonitriding process, etc. A quench hardening process that is heated in a heated atmosphere and then cooled may be employed.

そして、拘束工程および第2冷却工程においては、図3を参照して、軸受軌道輪10の外周面11および2つの端面12、12において、軸受軌道輪10と拘束部材30とが接触することなく、軸受軌道輪10の外周面11と2つの端面12、12とが交差する部位である稜線部14において、拘束部材30と軸受軌道輪10とが接触するように軸受軌道輪10が拘束される。   And in a restraint process and a 2nd cooling process, with reference to FIG. 3, the bearing race 10 and the restraint member 30 do not contact in the outer peripheral surface 11 and the two end surfaces 12 and 12 of the bearing race 10. The bearing race 10 is restrained so that the restraining member 30 and the bearing race 10 come into contact with each other at the ridge portion 14 where the outer peripheral surface 11 of the bearing race 10 and the two end faces 12, 12 intersect. .

より具体的には、拘束工程においては、第1冷却温度まで冷却された軸受軌道輪10が拘束冷却装置20を用いて拘束され、第2冷却工程においては、拘束工程において拘束された軸受軌道輪10が、拘束された状態を保持しつつ、第2冷却温度まで冷却される。ここで、実施の形態1における拘束冷却装置20は、支持台33と、支持台33上に配置された下部拘束部材32と、下部拘束部材32上に配置された上部拘束部材31と、上部拘束部材31上に配置された荷重伝達部材34とを備えている。下部拘束部材32および上部拘束部材31は、拘束部材30を構成している。   More specifically, in the restraint process, the bearing race ring 10 cooled to the first cooling temperature is restrained by using the restraint cooling device 20, and in the second cooling process, the bearing race ring restrained in the restraint process. 10 is cooled to the second cooling temperature while maintaining the restrained state. Here, the restraint cooling device 20 in the first embodiment includes a support base 33, a lower restraint member 32 disposed on the support base 33, an upper restraint member 31 disposed on the lower restraint member 32, and an upper restraint. And a load transmission member 34 disposed on the member 31. The lower restraining member 32 and the upper restraining member 31 constitute a restraining member 30.

支持台33には、平坦な面である支持面33Aが形成されている。下部拘束部材32には、円錐面形状を有する拘束面32Aが形成されている。拘束面32Aは、直円錐の側面の一部を構成する形状を有している。そして、下部拘束部材32は、平坦な面である底面32Bにおいて支持台33の支持面33Aに接触するように配置されている。また、下部拘束部材32は、拘束面32Aを含む直円錐の頂点と底面の中心とを結ぶ軸である軸βに垂直な面と、拘束面32Aとが交差して形成される円が支持面33Aに対して平行になるように配置されている。さらに、下部拘束部材32は、拘束面32Aからみて、拘束面32Aを含む直円錐の頂点が、支持台33の側になるように、支持台33上に配置されている。すなわち、下部拘束部材32は、軸βに垂直な面と拘束面32Aとが交差して形成される円の直径が、支持台33に近づくにしたがって小さくなるように、支持台33上に配置されている。   The support base 33 is formed with a support surface 33A which is a flat surface. The lower restraining member 32 is formed with a restraining surface 32A having a conical surface shape. The constraining surface 32A has a shape constituting a part of the side surface of the right cone. And the lower restraint member 32 is arrange | positioned so that the support surface 33A of the support stand 33 may be contacted in the bottom face 32B which is a flat surface. Further, the lower restraining member 32 has a support surface formed by a circle formed by intersecting the restraint surface 32A with a surface perpendicular to the axis β, which is an axis connecting the apex of the right cone including the restraint surface 32A and the center of the bottom surface. It is arranged so as to be parallel to 33A. Further, the lower restraining member 32 is disposed on the support base 33 so that the apex of the right cone including the restraint face 32A is on the support base 33 side when viewed from the restraint face 32A. That is, the lower restraining member 32 is arranged on the support base 33 so that the diameter of a circle formed by intersecting the face perpendicular to the axis β and the restraint face 32A becomes smaller as the support base 33 is approached. ing.

一方、上部拘束部材31には、下部拘束部材32と同様に、円錐面形状を有する拘束面31Aが形成されているほか、基本的には下部拘束部材32と同様の構成を有している。そして、上部拘束部材31の拘束面31Aと、下部拘束部材32の拘束面32Aとが、互いに対向するように、上部拘束部材31は配置されている。また、上部拘束部材31は、拘束面31Aを含む直円錐の頂点と底面の中心とを結ぶ軸である軸γに垂直な面と、拘束面31Aとが交差して形成される円が支持面33Aに対して平行になるように配置されている。さらに、上部拘束部材31は、拘束面31Aからみて、拘束面31Aを含む直円錐の頂点が、支持台33とは反対側の側になるように配置されている。すなわち、上部拘束部材31は、軸γに垂直な面と拘束面31Aとが交差して形成される円の直径が、支持台33に近づくにしたがって大きくなるように、下部拘束部材32上に配置されている。また、上部拘束部材31および下部拘束部材32の軸βと軸γとが一致するように、上部拘束部材31および下部拘束部材32は配置されている。   On the other hand, like the lower restraining member 32, the upper restraining member 31 has a conical surface 31 A having a conical shape and basically has the same configuration as the lower restraining member 32. The upper restraint member 31 is arranged so that the restraint surface 31A of the upper restraint member 31 and the restraint surface 32A of the lower restraint member 32 face each other. The upper restraining member 31 has a support surface formed by a circle formed by intersecting the restraining surface 31A with a surface perpendicular to the axis γ that is an axis connecting the apex of the right cone including the restraining surface 31A and the center of the bottom surface. It is arranged so as to be parallel to 33A. Further, the upper restraining member 31 is arranged so that the apex of the right cone including the restraining surface 31 </ b> A is on the side opposite to the support base 33 as viewed from the restraining surface 31 </ b> A. In other words, the upper restraining member 31 is disposed on the lower restraining member 32 so that the diameter of a circle formed by intersecting the face perpendicular to the axis γ and the restraining face 31A becomes larger as the support base 33 is approached. Has been. Further, the upper restraining member 31 and the lower restraining member 32 are arranged so that the axes β and γ of the upper restraining member 31 and the lower restraining member 32 coincide with each other.

さらに、荷重伝達部材34は、平坦な面である平坦面34Aが、支持面33Aと平行になるように、かつ上部拘束部材31の平坦な面である底面31Bに接触するように配置されている。   Furthermore, the load transmission member 34 is disposed such that a flat surface 34A, which is a flat surface, is parallel to the support surface 33A and is in contact with a bottom surface 31B, which is a flat surface of the upper restraining member 31. .

次に、拘束工程における拘束冷却装置20を用いた軸受軌道輪10の拘束の手順について説明する。まず、第1冷却温度まで冷却された軸受軌道輪10の軸αが、支持台33上に配置された下部拘束部材32の軸βに一致するように、軸受軌道輪10が下部拘束部材32の拘束面32Aに接触するようにセットされる。ここで、前述のように、拘束面32Aは直円錐の側面の一部であるため、軸受軌道輪10は、稜線部14において下部拘束部材32の拘束面32Aに接触し、外周面11、内周面13、端面12においては、下部拘束部材32と接触しない。   Next, a procedure for restraining the bearing ring 10 using the restraining cooling device 20 in the restraining process will be described. First, the bearing race 10 is adjusted so that the axis α of the bearing race 10 cooled to the first cooling temperature coincides with the axis β of the lower restraint member 32 disposed on the support base 33. It is set so as to come into contact with the restraining surface 32A. Here, as described above, since the restraint surface 32A is a part of the side surface of the right cone, the bearing race 10 contacts the restraint surface 32A of the lower restraint member 32 at the ridge line portion 14, and the outer peripheral surface 11, The peripheral surface 13 and the end surface 12 do not contact the lower restraining member 32.

その後、上部拘束部材31は、上部拘束部材31の軸γが、軸受軌道輪10の軸αおよび下部拘束部材32の軸βと一致する状態を保持しつつ、下部拘束部材32との距離を減じるように移動し、軸受軌道輪10と接触する。ここで、前述のように、拘束面31Aも直円錐の側面の一部であるため、軸受軌道輪10は、稜線部14において上部拘束部材31の拘束面31Aに接触し、外周面11、内周面13、端面12においては、上部拘束部材31と接触しない。そして、上部拘束部材31上には底面31Bに接触するように荷重伝達部材34が配置され、図示しないプレス用重錘、油圧シリンダなどの荷重負荷装置により荷重伝達部材34に所望の荷重Lが負荷される。これにより、軸受軌道輪10は、稜線部14において拘束される。   Thereafter, the upper restraint member 31 reduces the distance from the lower restraint member 32 while maintaining the state where the axis γ of the upper restraint member 31 coincides with the axis α of the bearing race 10 and the axis β of the lower restraint member 32. And contact with the bearing race 10. Here, as described above, since the constraining surface 31A is also a part of the side surface of the right cone, the bearing race 10 contacts the constraining surface 31A of the upper constraining member 31 at the ridge line portion 14, and the outer peripheral surface 11, The peripheral surface 13 and the end surface 12 do not contact the upper restraining member 31. A load transmitting member 34 is disposed on the upper restraining member 31 so as to be in contact with the bottom surface 31B, and a desired load L is applied to the load transmitting member 34 by a load loading device such as a press weight or a hydraulic cylinder (not shown). Is done. Thereby, the bearing race 10 is restrained at the ridge line portion 14.

そして、第2冷却工程においては、上述のように拘束工程において拘束された軸受軌道輪10が、拘束された状態を保持しつつ第2冷却温度まで冷却される。ここで軸受軌道輪10は、上述のように拘束された状態で大気中に放置されることにより冷却されてもよいし(放冷)、ブロアなどの送風装置が用いられて空気などの気体が吹き付けられて冷却されてもよい(衝風冷却)。また、焼入硬化処理の効率化を図るため、軸受軌道輪10が油中に浸漬されて、あるいは油が吹き付けられて冷却されてもよいし(油冷)、水中に浸漬されて、あるいは水が吹き付けられて冷却されてもよい(水冷)。   In the second cooling step, the bearing ring 10 restrained in the restraining step as described above is cooled to the second cooling temperature while maintaining the restrained state. Here, the bearing race 10 may be cooled by being left in the atmosphere in a restrained state as described above (cooling), or a blower or other blower may be used to generate a gas such as air. It may be blown and cooled (blast cooling). Further, in order to increase the efficiency of quench hardening treatment, the bearing race 10 may be immersed in oil, or may be cooled by spraying oil (oil cooling), immersed in water, or water. May be sprayed and cooled (water cooling).

上述のように、実施の形態1の拘束工程および第2冷却工程では、稜線部14において、拘束部材30と環状部材としての軸受軌道輪10とが接触するように軸受軌道輪10が拘束されることにより、十分な寸法精度および真円度を得ることができる。ここで、実施の形態1の拘束工程によれば、軸α、軸βおよび軸γが一致するように拘束を行なうことで、軸受軌道輪10の拘束開始時点における寸法を予め正確に予測することなく、軸受軌道輪10を稜線部14において拘束することができる。そのため、容易に、十分な拘束の効果を確保することができる。   As described above, in the restraint process and the second cooling process of the first embodiment, the bearing race 10 is restrained so that the restraint member 30 and the bearing race 10 as an annular member come into contact with each other at the ridge line portion 14. Thus, sufficient dimensional accuracy and roundness can be obtained. Here, according to the restraining step of the first embodiment, the dimensions at the start of restraint of the bearing race 10 are accurately predicted in advance by restraining the shaft α, the shaft β, and the shaft γ to coincide with each other. The bearing race 10 can be restrained at the ridge line portion 14. Therefore, a sufficient restraining effect can be easily ensured.

また、上述のように稜線部14において軸受軌道輪10が拘束されることにより、軸受軌道輪10の寸法ごとに、それに応じた拘束面31A、32Aの形状を有する拘束部材30を準備する必要がなく、一の拘束部材30を種々の寸法の軸受軌道輪10の拘束に使用することができる。さらに、実際の生産ラインにおいても、焼入が行なわれる軸受軌道輪10の寸法が変更されるたびに、使用する拘束部材30を取り換える必要がなく、焼入の処理効率が向上する。そのため、焼入硬化処理の処理効率を上昇させ、軸受軌道輪10の生産コストを抑制することが可能となる。   Moreover, it is necessary to prepare the restraint member 30 which has the shape of restraint surface 31A, 32A according to the dimension of the bearing race ring 10 for every dimension of the bearing race ring 10 by restraining the bearing race ring 10 in the ridgeline part 14 as mentioned above. Instead, the single restraining member 30 can be used to restrain the bearing race 10 having various dimensions. Further, even in an actual production line, it is not necessary to replace the restraining member 30 to be used every time the dimensions of the bearing race 10 to be quenched are changed, and the quenching processing efficiency is improved. Therefore, the processing efficiency of the quench hardening process can be increased, and the production cost of the bearing race 10 can be suppressed.

以上のように実施の形態1における環状部材の拘束焼入方法によれば、容易に、十分な拘束の効果を確保するとともに、焼入硬化処理の処理効率を上昇させ、環状部材としての軸受軌道輪10の生産コストを抑制することができる。   As described above, according to the constraining and quenching method of the annular member in the first embodiment, the bearing race as the annular member can be easily secured while ensuring the sufficient restraining effect and increasing the processing efficiency of the quench hardening process. The production cost of the wheel 10 can be suppressed.

さらに、実施の形態1における環状部材の拘束焼入方法においては、拘束開始温度は150℃以上であることが好ましい。これにより、拘束開始後にマルテンサイトに変態するオーステナイトの割合が十分に確保され、軸受軌道輪10の熱処理変形および真円度の低下が一層抑制される。   Furthermore, in the restraining quenching method for the annular member in the first embodiment, the restraining start temperature is preferably 150 ° C. or higher. As a result, a sufficient proportion of austenite that transforms into martensite after the start of restraint is ensured, and the heat treatment deformation and the decrease in roundness of the bearing race 10 are further suppressed.

さらに、実施の形態1における環状部材の拘束焼入方法においては、第2冷却温度は100℃以下であることが好ましい。これにより、第2冷却工程の後にマルテンサイト変態するオーステナイトの割合を十分に抑制し、軸受軌道輪10の熱処理変形および真円度の低下を一層抑制することができる。   Furthermore, in the restraining quenching method for the annular member in the first embodiment, the second cooling temperature is preferably 100 ° C. or lower. Thereby, the ratio of the austenite which carries out a martensitic transformation after a 2nd cooling process can fully be suppressed, and the heat treatment deformation | transformation of the bearing ring 10 and a roundness fall can be suppressed further.

さらに、実施の形態1における環状部材の拘束焼入方法においては、第2冷却工程における冷却速度は6℃/秒以下であることが好ましい。これにより、軸受軌道輪10の熱処理変形や真円度の低下を一層抑制することができる。   Furthermore, in the restraining quenching method for the annular member in the first embodiment, the cooling rate in the second cooling step is preferably 6 ° C./second or less. Thereby, the heat treatment deformation | transformation of the bearing race 10 and the fall of roundness can be suppressed further.

さらに、実施の形態1における軸受軌道輪10の拘束焼入方法においては、拘束工程および第2冷却工程において、軸受軌道輪10が、44.5度以上45.5度以下の拘束部材テーパ角度(下部拘束部材テーパ角度θ、および上部拘束部材テーパ角度θ)を有する拘束部材30により、以下の式(1)の関係を満たす荷重L以上の荷重が負荷されて拘束されることが好ましい。 Furthermore, in the restraint quenching method for the bearing race 10 according to the first embodiment, the restraint member taper angle of the bearing race 10 is 44.5 degrees or more and 45.5 degrees or less in the restraining step and the second cooling step (see FIG. The restraint member 30 having the lower restraint member taper angle θ 1 and the upper restraint member taper angle θ 2 ) is preferably restrained by being loaded with a load equal to or greater than the load L satisfying the relationship of the following expression (1).

L=3.175×(C/C−1.754×S ・・・(1)
これにより、所望の真円度Cまで軸受軌道輪10の真円度を改善することが可能となる。
L = 3.175 × (C 2 / C 1 ) −1.754 × S (1)
Thus, it is possible to improve the roundness of the desired bearing ring 10 to the roundness C 2.

さらに、上記本発明の実施の形態1における環状部材の拘束焼入方法を採用し、環状部材の製造方法を提供することができる。図4は、実施の形態1における環状部材の製造方法の概略を示す流れ図である。図4を参照して、実施の形態1における環状部材の製造方法を説明する。   Furthermore, the manufacturing method of an annular member can be provided by adopting the constrained quenching method of the annular member in the first embodiment of the present invention. FIG. 4 is a flowchart showing an outline of the manufacturing method of the annular member in the first embodiment. With reference to FIG. 4, the manufacturing method of the annular member in Embodiment 1 is demonstrated.

図4を参照して、実施の形態1における環状部材の製造方法は、成形部材準備工程と、焼入硬化工程と、焼戻工程と、仕上げ加工工程とを備えている。成形部材準備工程では、鋼からなり、環状部材としての軸受軌道輪10の概略形状に成形された部材である成形部材が準備される。具体的には、たとえばJIS規格 SUJ2からなる鋼材が鍛造、切削等により加工されて、成形部材が作製される。焼入硬化工程では、成形部材準備工程において準備された成形部材が焼入硬化される。焼戻工程では、焼入硬化工程において焼入硬化された成形部材が、A点未満の温度である150℃以上300℃以下の温度、たとえば180℃に加熱され、30分間以上240分間以下の時間、たとえば120分間保持されて、その後室温の空気中で放冷される(空冷)。仕上げ加工工程においては、焼戻工程において焼戻が実施された成形部材が、仕上げ加工される。具体的には、成形部材に対して、研削加工、超仕上げ加工などの仕上げ加工が施され、環状部材としての軸受軌道輪10が完成する。 With reference to FIG. 4, the manufacturing method of the annular member in Embodiment 1 includes a molded member preparation step, a quench hardening step, a tempering step, and a finishing step. In the molded member preparation step, a molded member that is a member made of steel and molded into the approximate shape of the bearing race 10 as an annular member is prepared. Specifically, for example, a steel material made of JIS standard SUJ2 is processed by forging, cutting, or the like to produce a molded member. In the quench hardening process, the molded member prepared in the molded member preparation process is hardened and cured. In the tempering step, the molded member quenched and hardened in the quench-hardening step is heated to a temperature of 150 ° C. or higher and 300 ° C. or lower, which is a temperature less than one point A, for example, 180 ° C. It is held for a time, for example 120 minutes, and then allowed to cool in air at room temperature (air cooling). In the finishing process, the molded member that has been tempered in the tempering process is finished. Specifically, finishing processing such as grinding and super finishing is performed on the molded member, and the bearing race 10 as an annular member is completed.

そして、上記焼入硬化工程における焼入処理は、本発明の実施の形態1における環状部材の拘束焼入方法を用いて実施される。上述のように、容易に、十分な拘束の効果を確保するとともに、焼入硬化処理の処理効率を上昇させることが可能な実施の形態1における環状部材の拘束焼入方法が焼入硬化工程において採用されることにより、本発明の実施の形態1における環状部材の製造方法によれば、熱処理変形および真円度の低下が安定して抑制され、かつ生産コストが抑制される。   And the quenching process in the said quench hardening process is implemented using the restraint quenching method of the annular member in Embodiment 1 of this invention. As described above, the constraining quenching method for the annular member in the first embodiment that can easily ensure sufficient restraint effect and increase the processing efficiency of the quench hardening process is the quench hardening process. By being adopted, according to the manufacturing method of the annular member in the first embodiment of the present invention, the heat treatment deformation and the decrease in roundness are stably suppressed, and the production cost is suppressed.

(実施の形態2)
図5は、本発明の環状部材の拘束焼入方法における一実施の形態である実施の形態2の環状部材としての軸受軌道輪10の概略断面図である。また、図6は、実施の形態2における環状部材の拘束焼入方法の拘束工程および第2冷却工程を説明するための概略断面図である。図5および図6を参照して、実施の形態2における環状部材の拘束焼入方法について説明する。
(Embodiment 2)
FIG. 5 is a schematic cross-sectional view of a bearing race 10 as an annular member of the second embodiment, which is an embodiment of the method for restraining and quenching an annular member of the present invention. FIG. 6 is a schematic cross-sectional view for explaining the restraining step and the second cooling step of the annular member restraining and quenching method according to the second embodiment. With reference to FIG. 5 and FIG. 6, the constrained quenching method for the annular member in the second embodiment will be described.

図5を参照して、実施の形態2における環状部材としての軸受軌道輪10は、基本的には実施の形態1における軸受軌道輪10と同様の構成を有している。しかし、実施の形態2における軸受軌道輪10は、軸αを含む断面において、外周面11と内周面13とが平行ではなく、環状部材のテーパ角度としての軌道輪テーパ角度Aをなすテーパ形状を有している点において、実施の形態1の軸受軌道輪10とは異なっている。そして、軸受軌道輪10は、径方向の厚みの大きい厚肉側端面12Aと、厚肉側端面12Aよりも径方向の厚みの小さい薄肉側端面12Bとを有している。以下、軸受軌道輪10に対して実施される実施の形態2における環状部材の拘束焼入方法について説明する。なお、環状部材のテーパ角度とは、環状部材の軸を通る断面において、内周面を延長した直線と軸とがなす角度である。   Referring to FIG. 5, the bearing race 10 as an annular member in the second embodiment basically has the same configuration as the bearing race 10 in the first embodiment. However, the bearing race 10 according to the second embodiment has a tapered shape in which the outer peripheral surface 11 and the inner peripheral surface 13 are not parallel in the cross section including the axis α, and form a raceway taper angle A as a taper angle of the annular member. Is different from the bearing race 10 of the first embodiment. The bearing race 10 has a thick-side end face 12A having a large radial thickness and a thin-side end face 12B having a smaller radial thickness than the thick-side end face 12A. Hereinafter, a method for restraining and quenching the annular member according to the second embodiment that is performed on the bearing race 10 will be described. The taper angle of the annular member is an angle formed by a straight line extending from the inner peripheral surface and the axis in a cross section passing through the axis of the annular member.

図6を参照して、実施の形態2における環状部材の拘束焼入方法は、基本的には実施の形態1における環状部材の拘束焼入方法と同様に実施される。しかし、環状部材としての軸受軌道輪10の形状、および拘束部材30の構成が異なっていることに起因して、実施の形態1における環状部材の拘束焼入方法とは異なる点を有している。   Referring to FIG. 6, the constraining quenching method for the annular member in the second embodiment is basically performed in the same manner as the constraining quenching method for the annular member in the first embodiment. However, due to the difference in the shape of the bearing race 10 as an annular member and the configuration of the restraining member 30, there is a difference from the restraining quenching method for the annular member in the first embodiment. .

すなわち、図6を参照して、実施の形態2における拘束冷却装置20は、実施の形態1における下部拘束部材32を備えておらず、支持台33が実施の形態1における下部拘束部材32の役割を果たしている。すなわち、実施の形態2の拘束冷却装置20においては、上部拘束部材31および支持台33が、拘束部材30を構成している。   That is, referring to FIG. 6, restraint cooling device 20 in the second embodiment does not include lower restraint member 32 in the first embodiment, and support base 33 serves as the role of lower restraint member 32 in the first embodiment. Plays. That is, in the restraint cooling device 20 according to the second embodiment, the upper restraint member 31 and the support base 33 constitute the restraint member 30.

次に、実施の形態2における拘束冷却装置20を用いた軸受軌道輪10の拘束の手順について説明する。まず、第1冷却温度まで冷却された軸受軌道輪10が、薄肉側端面12Bにおいて支持台33の支持面33Aに接触するように、支持台33上にセットされる。すなわち、軸受軌道輪10は、一方の端面である薄肉側端面12Bにおいて、拘束部材30と接触する。   Next, a procedure for restraining the bearing race 10 using the restraint cooling device 20 according to the second embodiment will be described. First, the bearing ring 10 cooled to the first cooling temperature is set on the support base 33 so as to contact the support surface 33A of the support base 33 at the thin end surface 12B. That is, the bearing race 10 contacts the restraining member 30 on the thin end surface 12B that is one end surface.

その後、上部拘束部材31は、上部拘束部材31の軸γが、軸受軌道輪10の軸αと一致する状態を保持しつつ、支持台33との距離を減じるように移動し、軸受軌道輪10と接触する。ここで、実施の形態1の場合と同様に、拘束面31Aは直円錐の側面の一部であるため、軸受軌道輪10は、厚肉側端面12Aに隣接する厚肉側稜線部14Aにおいて上部拘束部材31の拘束面31Aに接触し、外周面11、内周面13および厚肉側端面12Aにおいては、上部拘束部材31と接触しない。そして、上部拘束部材31上には底面31Bに接触するように荷重伝達部材34が配置され、図示しないプレス用重錘、油圧シリンダなどの荷重負荷装置により荷重伝達部材34に所望の荷重Lが負荷される。これにより、軸受軌道輪10は、厚肉側端面12Aに隣接する厚肉側稜線部14A、および薄肉側端面12Bにおいて拘束される。   Thereafter, the upper restraint member 31 moves so as to reduce the distance from the support base 33 while maintaining the state where the axis γ of the upper restraint member 31 coincides with the axis α of the bearing raceway ring 10. Contact with. Here, as in the case of the first embodiment, the constraining surface 31A is a part of the side surface of a right cone, so that the bearing race 10 is located at the upper portion of the thick side ridge line portion 14A adjacent to the thick side end surface 12A. It contacts the restraining surface 31A of the restraining member 31, and does not contact the upper restraining member 31 on the outer peripheral surface 11, the inner peripheral surface 13 and the thick wall side end surface 12A. A load transmitting member 34 is disposed on the upper restraining member 31 so as to be in contact with the bottom surface 31B, and a desired load L is applied to the load transmitting member 34 by a load loading device such as a press weight or a hydraulic cylinder (not shown). Is done. As a result, the bearing race 10 is restrained at the thick side ridge line portion 14A adjacent to the thick side end surface 12A and the thin side end surface 12B.

そして、第2冷却工程においては、実施の形態1の場合と同様に拘束工程において拘束された軸受軌道輪10が、拘束された状態を保持しつつ第2冷却温度まで冷却される。   In the second cooling step, the bearing race 10 restrained in the restraining step is cooled to the second cooling temperature while maintaining the restrained state as in the case of the first embodiment.

上述のように、実施の形態2における環状部材の拘束焼入方法においては、環状部材としての軸受軌道輪10が、一方の稜線部である厚肉側稜線部14Aにおいて拘束される。ここで、稜線部における環状部材の拘束は、必ずしも両側の端面に隣接する稜線部において行なわれる必要はなく、一方側のみで行なわれても、十分な寸法精度および真円度を得ることができる。また、一方側のみで稜線部が拘束される場合であって、拘束される環状部材がテーパ形状を有している場合には、環状部材において径方向の厚みが大きい側の端面に隣接する稜線部(環状部材において径方向の厚みが大きい部分に近い側の端面に隣接する稜線部)が拘束されることで、径方向の厚みが小さい側の端面に隣接する稜線部が拘束される場合よりも、より高い寸法精度および真円度を得ることができる。   As described above, in the constraining and quenching method for the annular member according to the second embodiment, the bearing race 10 serving as the annular member is constrained at the thick-side ridge line portion 14A that is one ridge line portion. Here, the restraint of the annular member in the ridge line portion does not necessarily have to be performed in the ridge line portion adjacent to the end faces on both sides, and sufficient dimensional accuracy and roundness can be obtained even if performed on only one side. . Further, when the ridge line portion is constrained only on one side, and the constrained annular member has a tapered shape, the ridge line adjacent to the end surface on the side where the radial thickness is large in the annular member The portion (the ridge line portion adjacent to the end surface on the side close to the portion having a large radial thickness in the annular member) is restrained, so that the ridge line portion adjacent to the end surface on the side having a small radial thickness is restrained. Also, higher dimensional accuracy and roundness can be obtained.

そのため、実施の形態2における環状部材の拘束焼入方法では、軸受軌道輪10が、一方の稜線部である厚肉側稜線部14Aにおいて拘束されることにより、両方の稜線部14A、14Bにおいて拘束された場合と遜色ない程度の寸法精度および真円度を得ることができる。また、軸αおよび軸γが一致するように拘束を行なうことで、軸受軌道輪10の拘束開始時点における寸法を予め正確に予測することなく、軸受軌道輪10を厚肉側稜線部14Aにおいて拘束することができる。そのため、容易に、十分な拘束の効果を確保することができる。   Therefore, in the constrained quenching method of the annular member in the second embodiment, the bearing race 10 is constrained in the thick ridge line part 14A that is one of the ridge line parts, thereby being constrained in both the ridge line parts 14A and 14B. Dimensional accuracy and roundness comparable to those obtained can be obtained. Further, by restraining the shaft α and the shaft γ to coincide with each other, the bearing race 10 is restrained at the thick-side ridge line portion 14A without accurately predicting in advance the size of the bearing race 10 at the start of restraint. can do. Therefore, a sufficient restraining effect can be easily ensured.

さらに、厚肉側稜線部14Aが上部拘束部材31の拘束面31Aにより拘束され、かつ薄肉側端面12Bが支持台33の支持面33Aにより拘束されることにより、軸受軌道輪10の寸法ごとに、それに応じた形状を有する拘束部材30を準備する必要がなく、一の拘束部材30を種々の寸法の軸受軌道輪10の拘束に使用することができる。さらに、実際の生産ラインにおいても、焼入が行なわれる軸受軌道輪10の寸法が変更されるたびに、使用する拘束部材30を取り換える必要がなく、焼入の処理効率が向上する。そのため、焼入硬化処理の処理効率を上昇させ、軸受軌道輪10の生産コストを抑制することが可能となる。   Further, the thick side ridge line portion 14A is restrained by the restraining surface 31A of the upper restraining member 31 and the thin side end surface 12B is restrained by the support surface 33A of the support base 33, so that for each dimension of the bearing race ring 10, There is no need to prepare a restraining member 30 having a shape corresponding to that, and one restraining member 30 can be used for restraining the bearing race 10 having various dimensions. Further, even in an actual production line, it is not necessary to replace the restraining member 30 to be used every time the dimensions of the bearing race 10 to be quenched are changed, and the quenching processing efficiency is improved. Therefore, the processing efficiency of the quench hardening process can be increased, and the production cost of the bearing race 10 can be suppressed.

また、実施の形態2の環状部材の拘束焼入方法によれば、実施の形態1の場合に比べて、拘束冷却装置20の構成要素(下部拘束部材32)を低減することができる。そのため、拘束冷却装置20を簡略化できるばかりでなく、軸受軌道輪10の軸α方向の長さ(軸受軌道輪10の高さ)が小さい場合でも、拘束部材30同士が干渉しにくくなり、より広い寸法範囲の軸受軌道輪10を拘束することができる。   Moreover, according to the restraint quenching method of the annular member of the second embodiment, the constituent elements (lower restraint member 32) of the restraint cooling device 20 can be reduced as compared with the case of the first embodiment. Therefore, not only can the constraint cooling device 20 be simplified, but also when the length of the bearing race 10 in the direction of the axis α (height of the bearing race 10) is small, the restraint members 30 are less likely to interfere with each other. The bearing ring 10 having a wide size range can be restrained.

なお、図4に基づいて説明した実施の形態1における環状部材の製造方法の焼入硬化工程における焼入処理は、上記実施の形態2における環状部材の拘束焼入方法を用いて実施されてもよい。   In addition, even if the quenching process in the quenching hardening process of the manufacturing method of the annular member in Embodiment 1 demonstrated based on FIG. 4 is implemented using the constraining quenching method of the annular member in the said Embodiment 2. FIG. Good.

以下、本発明の実施例1について説明する。環状部材の真円度に及ぼす(1)拘束の有無、(2)拘束開始温度、(3)拘束終了温度(第2冷却温度)、(4)第2冷却工程での冷却速度、(5)環状部材の形状、(6)下部拘束部材のテーパ角度、(7)拘束荷重、の影響について調査する試験を行なった。   Embodiment 1 of the present invention will be described below. (1) Presence / absence of restraint, (2) Restraint start temperature, (3) Restraint end temperature (second cooling temperature), (4) Cooling rate in second cooling step, (5) Tests were conducted to investigate the effects of the shape of the annular member, (6) taper angle of the lower restraining member, and (7) restraining load.

まず、試験方法について説明する。まず、高炭素クロム軸受鋼であるJIS規格SUJ2の鋼材を旋削加工等により成形し、外径φ85.0mm、内径φ70.0mmの円筒状(テーパなし)の環状部材(図1)および外径φ80.4mm、厚肉側内径φ68.5mm、薄肉側内径φ75.6mmのテーパ形状を有する環状部材(図5)の2種類の環状部材を作製した。そして、当該環状部材を、脱炭を防止するために還元性の雰囲気に調整された加熱炉中に挿入し、810℃に40分間保持した。   First, the test method will be described. First, a steel material of JIS standard SUJ2, which is a high carbon chromium bearing steel, is formed by turning or the like, and a cylindrical (non-tapered) annular member (FIG. 1) having an outer diameter of φ85.0 mm and an inner diameter of φ70.0 mm and an outer diameter of φ80. Two kinds of annular members (FIG. 5) having a tapered shape of 4 mm, a thick-side inner diameter φ68.5 mm, and a thin-side inner diameter φ75.6 mm were produced. And the said annular member was inserted in the heating furnace adjusted to the reducing atmosphere in order to prevent decarburization, and it hold | maintained at 810 degreeC for 40 minutes.

その後、環状部材を加熱炉から取り出し、直ちに(1秒以内に)80℃に調整された焼入油(コールドタイプ、日本グリース株式会社製ハイスピードクエンチオイルNo.1070S)中に浸漬し、M点以下の温度である第1冷却温度まで冷却した。そして、環状部材を焼入油中から取り出し、図3に基づいて説明した実施の形態1における拘束冷却装置20を用いて拘束した。このとき、テーパ形状を有する環状部材に関しては、薄肉側の端面に隣接する稜線部が下部拘束部材32に接触するように拘束した。また、拘束を開始した時点での環状部材の温度(拘束開始温度)を測定した。拘束開始温度は、M点以下の温度となっており、かつ第1冷却温度よりも低い温度となっていた。 Then removed annular member from the heating furnace, soaked immediately (within one second in) quenching oil (cold type, Nippon Grease Co. High Speed quench oil Nanba1070S) adjusted to 80 ° C. during, M S It cooled to the 1st cooling temperature which is the temperature below a point. And the cyclic | annular member was taken out out of quenching oil, and was restrained using the restraint cooling device 20 in Embodiment 1 demonstrated based on FIG. At this time, with respect to the annular member having a tapered shape, the ridge line portion adjacent to the end face on the thin side was restrained so as to contact the lower restraining member 32. Further, the temperature of the annular member (restraint start temperature) at the time when restraint was started was measured. Restraint start temperature is a M S point temperature below, and has been a lower temperature than the first cooling temperature.

さらに、拘束された環状部材を拘束開始温度よりも低い第2冷却温度まで冷却し、その後、拘束冷却装置から取り出した。上述の手順において、拘束開始温度、拘束終了温度(第2冷却温度)、第2冷却工程での冷却速度、環状部材の形状および下部拘束部材のテーパ角度を変化させた環状部材を作製し、サンプルとした。   Furthermore, the restrained annular member was cooled to a second cooling temperature lower than the restraint start temperature, and then taken out from the restraint cooling device. In the procedure described above, an annular member in which the restraint start temperature, the restraint end temperature (second cooling temperature), the cooling rate in the second cooling step, the shape of the annular member, and the taper angle of the lower restraint member are changed, and a sample is prepared. It was.

そして、上述のように作製されたサンプルについて、真円度測定装置を用いて、JIS B7451に規定された最小二乗中心法(LSC)による真円度を測定した。なお、真円度は、その数値が小さいほど真円に近く、真円度が優れていることを表す。   And the roundness by the least square center method (LSC) prescribed | regulated to JISB7451 was measured about the sample produced as mentioned above using the roundness measuring apparatus. The roundness indicates that the smaller the numerical value, the closer to the roundness, the better the roundness.

また、拘束の効果を確認するため、上述の手順のうち、拘束冷却装置による拘束を省略したサンプルも作製し、真円度を測定した。   Moreover, in order to confirm the effect of restraint, the sample which abbreviate | omitted restraint by a restraint cooling device was produced among the above-mentioned procedures, and the roundness was measured.

次に、試験の結果について説明する。表1には、試験の条件および真円度の測定結果が示されている。ここで、実際の量産工程を考慮すると、真円度に関しては、ばらつきが小さいことも重要となる。そのため、測定された真円度の平均値とともに標準偏差も算出され、表1に表示されている。   Next, the results of the test will be described. Table 1 shows the test conditions and the roundness measurement results. Here, in consideration of an actual mass production process, it is also important that the roundness has a small variation. Therefore, the standard deviation is calculated together with the average value of the measured roundness and is displayed in Table 1.

Figure 2008075116
Figure 2008075116

(1)拘束の有無
まず、稜線部における拘束の有無の影響について説明する。表1を参照して、拘束を実施していないサンプル番号1および2と、上述のように稜線部における拘束を実施したサンプル番号3〜18とを比較すると、稜線部における拘束を実施したサンプル番号3〜18は、サンプル番号1および2に比べて真円度の平均値および標準偏差が小さくなっている。このことから、稜線部において環状部材を拘束することにより、真円度を向上させることが可能であることが確認された。
(1) Presence / absence of restraint First, the influence of the presence / absence of restraint in the ridge line portion will be described. Referring to Table 1, comparing sample numbers 1 and 2 that are not restrained with sample numbers 3 to 18 that are restrained at the ridgeline as described above, sample numbers that are restrained at the ridgeline 3 to 18 are smaller in roundness average value and standard deviation than sample numbers 1 and 2. From this, it was confirmed that the roundness can be improved by restraining the annular member at the ridge line portion.

(2)拘束開始温度
次に、拘束開始温度の影響について説明する。図7は、表1のサンプル番号10、11および4のデータに基づき、拘束開始温度と真円度との関係を示した図である。図7において、横軸は拘束開始温度、縦軸は真円度を示しており、丸印は真円度の平均値、バツ印は真円度の標準偏差を示している。
(2) Restraint start temperature Next, the influence of the restraint start temperature will be described. FIG. 7 is a diagram showing the relationship between the constraint start temperature and the roundness based on the data of sample numbers 10, 11, and 4 in Table 1. In FIG. 7, the horizontal axis indicates the restraint start temperature, the vertical axis indicates the roundness, the circle indicates the average value of roundness, and the cross indicates the standard deviation of roundness.

図7を参照して、拘束開始温度が150℃以上では、真円度の平均値は一定となっているのに対し、拘束開始温度が150℃未満では、真円度が2倍以上に悪化している。これは、拘束開始温度が150℃未満では、拘束開始後にマルテンサイトに変態するオーステナイトの割合が少なくなっているため、拘束による熱処理変形および真円度の低下の抑制効果が不十分となるためであると考えられる。また、図7を参照して、拘束開始温度を250℃とすると、真円度の平均値には差がないものの、標準偏差が大幅に抑制されており、真円度のばらつきが小さくなっていることが分かる。   Referring to FIG. 7, the average value of roundness is constant when the restraint start temperature is 150 ° C. or higher, whereas the roundness deteriorates more than twice when the restraint start temperature is less than 150 ° C. is doing. This is because, when the restraint start temperature is less than 150 ° C., the ratio of austenite that transforms to martensite after restraint starts is small, so that the effect of suppressing heat treatment deformation and roundness reduction due to restraint becomes insufficient. It is believed that there is. In addition, referring to FIG. 7, when the restraint start temperature is 250 ° C., there is no difference in the average value of roundness, but the standard deviation is greatly suppressed, and the variation in roundness is reduced. I understand that.

以上より、真円度を向上させるためには、拘束開始温度は、150℃以上とすることが好ましく、250℃以上とすることがより好ましいことが確認された。   From the above, in order to improve the roundness, it was confirmed that the constraint start temperature is preferably 150 ° C. or higher, and more preferably 250 ° C. or higher.

(3)拘束終了温度(第2冷却温度)
次に、拘束終了温度(第2冷却温度)の影響について説明する。図8は、表1のサンプル番号12〜14および4のデータに基づき、拘束終了温度(第2冷却温度)と真円度との関係を示した図である。図8において、横軸は拘束終了温度(第2冷却温度)、縦軸は真円度を示しており、丸印は真円度の平均値、バツ印は真円度の標準偏差を示している。
(3) Restraint end temperature (second cooling temperature)
Next, the influence of the constraint end temperature (second cooling temperature) will be described. FIG. 8 is a diagram showing the relationship between the constraint end temperature (second cooling temperature) and the roundness based on the data of sample numbers 12 to 14 and 4 in Table 1. In FIG. 8, the abscissa indicates the constraint end temperature (second cooling temperature), the ordinate indicates the roundness, the circle indicates the average value of roundness, and the cross indicates the standard deviation of roundness. Yes.

図8を参照して、拘束終了温度が100℃以下である場合、真円度の平均値は一定となっているのに対し、拘束終了温度が100℃を超えると、真円度が大幅に悪化している。これは、100℃よりも高い温度で環状部材の拘束が終了した場合、その後の冷却において新たにマルテンサイト変態するオーステナイトの割合が多いため、その後の冷却において熱処理変形や真円度の低下が発生したためであると考えられる。また、図8を参照して、拘束終了温度を80℃以下とすると、真円度の平均値には差がないものの、標準偏差が大幅に抑制されており、真円度のばらつきが小さくなっていることが分かる。   Referring to FIG. 8, when the constraint end temperature is 100 ° C. or lower, the average value of roundness is constant, whereas when the constraint end temperature exceeds 100 ° C., the roundness is greatly increased. It is getting worse. This is because, when the restraint of the annular member is finished at a temperature higher than 100 ° C., since the ratio of austenite that newly undergoes martensitic transformation in the subsequent cooling is large, heat treatment deformation and a decrease in roundness occur in the subsequent cooling. This is probably because In addition, referring to FIG. 8, when the constraint end temperature is 80 ° C. or less, the average value of roundness is not different, but the standard deviation is greatly suppressed, and the variation in roundness is reduced. I understand that

以上より、真円度を向上させるためには、拘束終了温度は、100℃以下とすることが好ましく、80℃以下とすることがより好ましいことが確認された。   From the above, in order to improve the roundness, it was confirmed that the constraint end temperature is preferably 100 ° C. or less, and more preferably 80 ° C. or less.

(4)第2冷却工程での冷却速度
次に、第2冷却工程での冷却速度の影響について説明する。図9は、表1のサンプル番号15〜17および4のデータに基づき、第2冷却工程での冷却速度と真円度との関係を示した図である。図9において、横軸は第2冷却工程での冷却速度、縦軸は真円度を示しており、丸印は真円度の平均値、バツ印は真円度の標準偏差を示している。
(4) Cooling rate in the second cooling step Next, the influence of the cooling rate in the second cooling step will be described. FIG. 9 is a diagram showing the relationship between the cooling rate and the roundness in the second cooling step based on the data of sample numbers 15 to 17 and 4 in Table 1. In FIG. 9, the horizontal axis indicates the cooling rate in the second cooling step, the vertical axis indicates the roundness, the circle indicates the average value of roundness, and the cross indicates the standard deviation of roundness. .

図9を参照して、冷却速度が6℃/秒以下である場合、真円度の平均値はほぼ一定となっているのに対し、冷却速度が6℃/秒を超えると、真円度が大幅に悪化している。これは、6℃/秒を超える冷却速度で環状部材が冷却された場合、変態時の変態超塑性における応力と歪との関係の冷却速度依存性が大きくなるためであると考えられる。また、図9を参照して、冷却速度を3℃/秒以下とすると、真円度の平均値には差がないものの、標準偏差が大幅に抑制されており、真円度のばらつきが小さくなっていることが分かる。   Referring to FIG. 9, when the cooling rate is 6 ° C./second or less, the average value of roundness is substantially constant, whereas when the cooling rate exceeds 6 ° C./second, the roundness is Has deteriorated significantly. This is considered to be because when the annular member is cooled at a cooling rate exceeding 6 ° C./second, the dependency on the cooling rate of the relationship between stress and strain in the transformation superplasticity at the time of transformation increases. In addition, referring to FIG. 9, when the cooling rate is 3 ° C./second or less, although there is no difference in the average value of roundness, the standard deviation is greatly suppressed and the variation in roundness is small. You can see that

以上より、真円度を向上させるためには、第2冷却工程での冷却速度は、6℃/秒以下とすることが好ましく、3℃/秒以下とすることがより好ましいことが確認された。   From the above, in order to improve the roundness, it was confirmed that the cooling rate in the second cooling step is preferably 6 ° C./second or less, more preferably 3 ° C./second or less. .

(5)環状部材の形状
次に、環状部材の形状の影響について説明する。図10は、表1のサンプル番号18および5のデータに基づき、環状部材の形状と真円度との関係を示した図である。図10において、横軸は環状部材がテーパ形状を有しているか否か(A:図5のテーパ形状、B:図1の非テーパ形状)、縦軸は真円度を示しており、丸印は真円度の平均値、バツ印は真円度の標準偏差を示している。
(5) Shape of annular member Next, the influence of the shape of the annular member will be described. FIG. 10 is a diagram showing the relationship between the shape of the annular member and the roundness based on the data of sample numbers 18 and 5 in Table 1. In FIG. 10, the horizontal axis indicates whether or not the annular member has a taper shape (A: taper shape in FIG. 5, B: non-taper shape in FIG. 1), and the vertical axis indicates roundness. The mark indicates the average value of roundness, and the cross indicates the standard deviation of roundness.

図10を参照して、いずれの環状部材の形状でもほぼ同等の真円度が得られており、環状部材がテーパ形状を有しているか否かは、真円度にほとんど影響を与えないことが分かった。   Referring to FIG. 10, almost the same roundness is obtained with any annular member shape, and whether or not the annular member has a tapered shape has little effect on the roundness. I understood.

(6)下部拘束部材のテーパ角度
次に、下部拘束部材のテーパ角度の影響について説明する。図11は、表1のサンプル番号6〜9および5のデータに基づき、下部拘束部材のテーパ角度と真円度との関係を示した図である。図11において、横軸は下部拘束部材のテーパ角度、縦軸は真円度を示しており、丸印は真円度の平均値、バツ印は真円度の標準偏差を示している。
(6) Taper angle of lower restraint member Next, the influence of the taper angle of the lower restraint member will be described. FIG. 11 is a diagram showing the relationship between the taper angle and the roundness of the lower restraining member based on the data of sample numbers 6 to 9 and 5 in Table 1. In FIG. 11, the horizontal axis indicates the taper angle of the lower restraining member, the vertical axis indicates the roundness, the circle indicates an average value of roundness, and the cross indicates a standard deviation of roundness.

図11を参照して、下部拘束部材のテーパ角度が大きくなると、真円度の平均値がやや大きくなる傾向にあるとも考えられるが、標準偏差がほぼ一定であることも考慮すると、下部拘束部材のテーパ角度が真円度に及ぼす影響は小さいといえる。また、下部拘束部材のテーパ角度が0度の場合、すなわち下部拘束部材が平板形状であって環状部材を径方向に拘束していない場合であっても、真円度は低下していない。   Referring to FIG. 11, it is considered that when the taper angle of the lower restraint member is increased, the average value of the roundness tends to be slightly increased. However, considering that the standard deviation is substantially constant, the lower restraint member It can be said that the influence of the taper angle on the roundness is small. Further, even when the taper angle of the lower restraining member is 0 degree, that is, when the lower restraining member has a flat plate shape and does not restrain the annular member in the radial direction, the roundness is not lowered.

以上より、環状部材の稜線部における拘束は、必ずしも両側の端面に隣接する稜線部において行なわれる必要はなく、一方側のみで行なわれても、両側で行なわれた場合と同等の真円度が得られることが確認された。   From the above, the restraint at the ridge line portion of the annular member does not necessarily have to be performed at the ridge line portion adjacent to the end surfaces on both sides, and even when performed only on one side, the roundness equivalent to that performed on both sides is the same. It was confirmed that it was obtained.

(7)拘束荷重
次に、拘束荷重の影響について説明する。図12は、表1のサンプル番号3〜5のデータに基づき、拘束荷重と真円度との関係を示した図である。図12において、横軸は拘束荷重(図3において荷重伝達部材34に負荷される荷重L)、縦軸は真円度を示しており、丸印は真円度の平均値、バツ印は真円度の標準偏差を示している。
(7) Restraint load Next, the influence of the restraint load will be described. FIG. 12 is a diagram showing the relationship between the restraint load and the roundness based on the data of sample numbers 3 to 5 in Table 1. In FIG. 12, the horizontal axis indicates the restraint load (the load L applied to the load transmitting member 34 in FIG. 3), the vertical axis indicates the roundness, the circle indicates the average value of roundness, and the cross indicates true. The standard deviation of circularity is shown.

図12を参照して、拘束荷重が20kgf以上である場合、真円度はほぼ一定となっているのに対し、拘束荷重が20kgf未満では、真円度が大幅に悪化している。したがって、上記環状部材の形状の範囲では、拘束荷重は20kgf以上であることが好ましいといえる。   Referring to FIG. 12, the roundness is substantially constant when the restraint load is 20 kgf or more, whereas the roundness is greatly deteriorated when the restraint load is less than 20 kgf. Therefore, it can be said that the restraining load is preferably 20 kgf or more in the range of the shape of the annular member.

ここで、第1冷却工程での冷却速度が十分であって、表面から内部まで均一に焼入硬化される焼入条件においては、環状部材は表面から内部まで均一に冷却される。そのため、上述の(1)〜(7)において説明した関係は、環状部材の大きさおよび形状に関わらず、成立するものと考えられる。ただし、(8)において説明した拘束荷重と真円度との関係は、環状部材の大きさおよび形状に依存する可能性がある。そのため、拘束荷重と真円度との関係については、以下の実施例2において別途詳細に検討した。   Here, under the quenching conditions in which the cooling rate in the first cooling step is sufficient and quenching and hardening is uniform from the surface to the inside, the annular member is uniformly cooled from the surface to the inside. Therefore, it is considered that the relationship described in the above (1) to (7) is established regardless of the size and shape of the annular member. However, the relationship between the restraint load and roundness described in (8) may depend on the size and shape of the annular member. Therefore, the relationship between the restraining load and the roundness was separately examined in detail in Example 2 below.

以下、本発明の実施例2について説明する。所望の真円度を得るために必要な拘束荷重を調査する解析を行なった。以下、解析方法について説明する。   Embodiment 2 of the present invention will be described below. An analysis was conducted to investigate the restraint load necessary to obtain the desired roundness. Hereinafter, the analysis method will be described.

まず、図1および図5に基づいて説明した環状部材に関して、三次元FEM(Finite Element Method;有限要素法)解析モデルを作成した。図13は、図5の環状部材の三次元FEM解析モデルを示す図である。図13を参照して、図5の環状部材の三次元FEM解析モデルは、図3に基づいて説明した拘束冷却装置20により図5の環状部材を荷重Lで拘束するモデルである。また、図1の環状部材についても、図13と同様に、図3に基づいて説明した拘束冷却装置20により荷重Lで拘束するモデルを作成した。なお、下部拘束部材テーパ角度θ、および上部拘束部材テーパ角度θは、いずれも45度とした。また、解析モデルの環状部材には、予め真円度150μmの楕円変形を与えた。 First, a three-dimensional FEM (Finite Element Method) analysis model was created for the annular member described based on FIGS. 1 and 5. FIG. 13 is a diagram showing a three-dimensional FEM analysis model of the annular member of FIG. Referring to FIG. 13, the three-dimensional FEM analysis model of the annular member in FIG. 5 is a model in which the annular member in FIG. 5 is restrained by a load L by the restraint cooling device 20 described based on FIG. Further, for the annular member of FIG. 1, similarly to FIG. 13, a model restrained by the load L was created by the restraint cooling device 20 described based on FIG. 3. The lower restraining member taper angle θ 1 and the upper restraining member taper angle θ 2 were both 45 degrees. In addition, an elliptical deformation with a roundness of 150 μm was previously applied to the annular member of the analysis model.

次に、上述の実施例1における試験結果の拘束荷重と真円度の平均値との関係に合うように、FEM解析によりマルテンサイト変態進行中の変態超塑性における応力σと歪εとの関係(σ−ε線図)を導出した。その結果、以下の式(2)に示す応力σと歪εとの関係が得られた。ただし、環状部材のヤング率は210GPaとした。   Next, the relationship between the stress σ and the strain ε in the transformation superplasticity during the martensitic transformation by FEM analysis so as to match the relationship between the constraint load and the average value of the roundness in the test result in Example 1 described above. (Σ-ε diagram) was derived. As a result, the relationship between stress σ and strain ε shown in the following formula (2) was obtained. However, the Young's modulus of the annular member was 210 GPa.

σ=1.4×10+2×1010ε ・・・(2)
ここで、σは応力(Pa)、εは相当塑性歪である。
σ = 1.4 × 10 7 + 2 × 10 10 ε P (2)
Here, σ is stress (Pa), and ε P is equivalent plastic strain.

このσ−εの関係を用いて、種々の形状および大きさを有する環状部材を種々の拘束荷重で拘束した場合の真円度を算出した。表2に解析の条件および解析の結果得られた拘束終了後(焼入処理終了後)の真円度を示す。   Using this σ-ε relationship, the roundness when an annular member having various shapes and sizes was constrained by various constraining loads was calculated. Table 2 shows the analysis conditions and the roundness after the end of the restriction (after the quenching process) obtained as a result of the analysis.

Figure 2008075116
Figure 2008075116

そして、表2の結果を回帰分析したところ、以下の式(3)が得られた。
L/S=3.175×(C/C−1.754・・・(3)
ここで、Lは、荷重(N)、Sは、軸を含む環状部材の断面における分離した2つの断面のうち一方の断面の断面積(mm)、Cは、拘束前における環状部材の真円度(μm)、Cは、焼入後において要求される環状部材の真円度(μm)である。
And when the result of Table 2 was regression-analyzed, the following formula | equation (3) was obtained.
L / S = 3.175 × (C 2 / C 1 ) −1.754 (3)
Here, L is a load (N), S is a cross-sectional area (mm 2 ) of one of the two separated cross sections in the cross section of the annular member including the shaft, and C 1 is an annular member before restraint. Roundness (μm), C 2 is the roundness (μm) of the annular member required after quenching.

この式(3)より、以下の式(1)が得られる。そして、Cを、焼入後において要求される環状部材の真円度(μm)、すなわち所望の真円度とすると、式(1)により算出される荷重L以上の荷重が負荷されることにより、当該所望の真円度が得られる。 From this equation (3), the following equation (1) is obtained. If C 2 is the roundness (μm) of the annular member required after quenching, that is, the desired roundness, a load equal to or greater than the load L calculated by the equation (1) is applied. Thus, the desired roundness can be obtained.

L=3.175×(C/C−1.754×S ・・・(1)
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
L = 3.175 × (C 2 / C 1 ) −1.754 × S (1)
The embodiments and examples disclosed herein are illustrative in all respects and should not be construed as being restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の環状部材の拘束焼入方法は、鋼からなる環状部材を拘束することにより変形を抑制する環状部材の拘束焼入方法に、特に有利に適用され得る。   The method for constraining and quenching an annular member of the present invention can be particularly advantageously applied to a method for constraining and quenching an annular member that restrains deformation by restraining an annular member made of steel.

実施の形態1の環状部材としての軸受軌道輪の概略断面図である。2 is a schematic cross-sectional view of a bearing race as an annular member according to Embodiment 1. FIG. 実施の形態1における環状部材の拘束焼入方法の概略を示す流れ図である。3 is a flowchart showing an outline of a constrained quenching method for an annular member in the first embodiment. 実施の形態1における環状部材の拘束焼入方法の拘束工程および第2冷却工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the restraint process and 2nd cooling process of the restraint hardening method of the annular member in Embodiment 1. FIG. 実施の形態1における環状部材の製造方法の概略を示す流れ図である。3 is a flowchart showing an outline of a method for manufacturing the annular member in the first embodiment. 実施の形態2の環状部材としての軸受軌道輪10の概略断面図である。FIG. 5 is a schematic cross-sectional view of a bearing race 10 as an annular member according to the second embodiment. 実施の形態2における環状部材の拘束焼入方法の拘束工程および第2冷却工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the restraint process and 2nd cooling process of the restraint hardening method of the annular member in Embodiment 2. FIG. 拘束開始温度と真円度との関係を示した図である。It is the figure which showed the relationship between restraint start temperature and roundness. 拘束終了温度(第2冷却温度)と真円度との関係を示した図である。It is the figure which showed the relationship between restraint completion temperature (2nd cooling temperature) and roundness. 第2冷却工程での冷却速度と真円度との関係を示した図である。It is the figure which showed the relationship between the cooling rate in a 2nd cooling process, and roundness. 環状部材の形状と真円度との関係を示した図である。It is the figure which showed the relationship between the shape of an annular member, and roundness. 下部拘束部材のテーパ角度と真円度との関係を示した図である。It is the figure which showed the relationship between the taper angle of a lower restraint member, and roundness. 拘束荷重と真円度との関係を示した図である。It is the figure which showed the relationship between a restraint load and roundness. 図5の環状部材の三次元FEM解析モデルを示す図である。It is a figure which shows the three-dimensional FEM analysis model of the annular member of FIG.

符号の説明Explanation of symbols

10 軸受軌道輪、11 外周面、12 端面、12A 厚肉側端面、12B 薄肉側端面、13 内周面、14 稜線部、20 拘束冷却装置、30 拘束部材、31 上部拘束部材、31A 拘束面、31B 底面、32 下部拘束部材、32A 拘束面、32B 底面、33 支持台、33A 支持面、34 荷重伝達部材、34A 平坦面。   DESCRIPTION OF SYMBOLS 10 Bearing ring, 11 Outer peripheral surface, 12 End surface, 12A Thick side end surface, 12B Thin side end surface, 13 Inner peripheral surface, 14 Ridge part, 20 Restraint cooling device, 30 Restraint member, 31 Upper restraint member, 31A Restraint surface, 31B bottom surface, 32 lower restraint member, 32A restraint surface, 32B bottom surface, 33 support base, 33A support surface, 34 load transmission member, 34A flat surface.

Claims (5)

鋼からなる環状部材がA点以上の温度に加熱される加熱工程と、
前記加熱工程において加熱された前記環状部材が、A点以上の温度からM点以下の温度である第1冷却温度まで冷却される第1冷却工程と、
前記第1冷却温度まで冷却された前記環状部材が拘束部材により拘束される拘束工程と、
前記拘束部材により拘束された前記環状部材が、前記拘束部材による拘束が開始される温度である拘束開始温度よりも低い温度であり、M点以下の温度である第2冷却温度まで、前記拘束部材により拘束されつつ冷却される第2冷却工程とを備え、
前記拘束工程および前記第2冷却工程においては、前記環状部材の外周面および少なくとも一方の端面において前記環状部材と前記拘束部材とが接触することなく、前記環状部材の前記外周面と前記少なくとも一方の端面とが交差する部位である稜線部において、前記拘束部材と前記環状部材とが接触するように前記環状部材が拘束される、環状部材の拘束焼入方法。
A heating step in which an annular member made of steel is heated to a temperature of A 1 point or higher;
A first cooling step in which the annular member heated in the heating step is cooled from a temperature of A 1 point or higher to a first cooling temperature that is a temperature of M S point or lower;
A restraining step in which the annular member cooled to the first cooling temperature is restrained by a restraining member;
The annular member constrained by the constraining member is at a temperature lower than a constraining start temperature that is a temperature at which constraining by the constraining member is started, and reaches the second cooling temperature that is a temperature equal to or lower than the MS point. A second cooling step that is cooled while being restrained by the member,
In the restraining step and the second cooling step, the annular member and the restraining member do not come into contact with each other on the outer circumferential surface and at least one end surface of the annular member, and the at least one of the outer circumferential surface of the annular member and the at least one of them. A constraining quenching method for an annular member, wherein the annular member is constrained so that the constraining member and the annular member are in contact with each other at a ridge line portion where the end surface intersects.
前記拘束開始温度は150℃以上である、請求項1に記載の環状部材の拘束焼入方法。   The method for constraining and quenching an annular member according to claim 1, wherein the constraining start temperature is 150 ° C. or higher. 前記第2冷却温度は100℃以下である、請求項1または2のいずれか1項に記載の環状部材の拘束焼入方法。   3. The constrained quenching method for an annular member according to claim 1, wherein the second cooling temperature is 100 ° C. or less. 前記第2冷却工程における冷却速度は6℃/秒以下である、請求項1〜3のいずれか1項に記載の環状部材の拘束焼入方法。   The method for restraining and quenching an annular member according to claim 1, wherein a cooling rate in the second cooling step is 6 ° C./second or less. 前記拘束工程および前記第2冷却工程においては、前記環状部材は、44.5度以上50.5度以下の拘束部材テーパ角度を有する前記拘束部材により、以下の式(1)の関係を満たす荷重L以上の荷重が負荷されて拘束される、請求項1〜4のいずれか1項に記載の環状部材の拘束焼入方法。
L=3.175×(C/C−1.754×S ・・・(1)
ここで、Lは、荷重(N)、Sは、軸を含む環状部材の断面における分離した2つの断面のうち一方の断面の断面積(mm)、Cは、拘束前における環状部材の真円度(μm)、Cは、焼入後において要求される環状部材の真円度(μm)である。
In the restraint step and the second cooling step, the annular member is a load satisfying the relationship of the following expression (1) by the restraint member having a restraint member taper angle of 44.5 degrees or more and 50.5 degrees or less. The method for restraining and quenching an annular member according to any one of claims 1 to 4, wherein a load of L or more is applied and restrained.
L = 3.175 × (C 2 / C 1 ) −1.754 × S (1)
Here, L is a load (N), S is a cross-sectional area (mm 2 ) of one of the two separated cross sections in the cross section of the annular member including the shaft, and C 1 is an annular member before restraint. Roundness (μm), C 2 is the roundness (μm) of the annular member required after quenching.
JP2006254556A 2006-09-20 2006-09-20 Constrained quenching method for annular members Active JP5224670B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006254556A JP5224670B2 (en) 2006-09-20 2006-09-20 Constrained quenching method for annular members
US12/442,030 US8177928B2 (en) 2006-09-20 2007-08-21 Method of restrained-quenching of annular member
PCT/JP2007/066159 WO2008035524A1 (en) 2006-09-20 2007-08-21 Method of restricted quenching for annular member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006254556A JP5224670B2 (en) 2006-09-20 2006-09-20 Constrained quenching method for annular members

Publications (2)

Publication Number Publication Date
JP2008075116A true JP2008075116A (en) 2008-04-03
JP5224670B2 JP5224670B2 (en) 2013-07-03

Family

ID=39347472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006254556A Active JP5224670B2 (en) 2006-09-20 2006-09-20 Constrained quenching method for annular members

Country Status (1)

Country Link
JP (1) JP5224670B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237315A (en) * 1985-08-08 1987-02-18 Nippon Seiko Kk Method and apparatus for hardening annular body
JP2005163060A (en) * 2003-11-28 2005-06-23 Nsk Ltd Quenching apparatus for steel-made annular body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237315A (en) * 1985-08-08 1987-02-18 Nippon Seiko Kk Method and apparatus for hardening annular body
JP2005163060A (en) * 2003-11-28 2005-06-23 Nsk Ltd Quenching apparatus for steel-made annular body

Also Published As

Publication number Publication date
JP5224670B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP4191745B2 (en) Carbonitriding method, machine part manufacturing method and machine part
EP2666875A1 (en) Method for manufacturing bearing ring, bearing ring, and rolling bearing
US10538821B2 (en) Heat treatment apparatus and heat treatment method
JP2007321901A (en) Rolling member manufacturing method, rolling bearing manufacturing method, rolling bearing and for rolling bearing, and its raceway track member
US9951816B2 (en) Bearing part, rolling bearing, and method for manufacturing bearing part
JP4264082B2 (en) Carbonitriding method, machine part manufacturing method and machine part
JP6819108B2 (en) Heat treatment method and heat treatment equipment
JP2007170447A (en) Method for manufacturing raceway ring for thrust roller bearing and device for manufacturing same
CN108884872A (en) Roller bearing bearing race, the method and roller bearing for manufacturing roller bearing bearing race
US9709099B2 (en) Bearing ring and rolling bearing
US10393180B2 (en) Bearing ring for roller bearing, manufacturing method of bearing ring for roller bearing, and needle roller bearing
JP2007182609A (en) Rolling member for use in wheel bearing device, manufacturing method therefor and wheel bearing device
JP2007182926A (en) Manufacturing method for needle-like roll bearing raceway member, needle-like roll bearing raceway member, and needle-like roll bearing
US8177928B2 (en) Method of restrained-quenching of annular member
JP5224670B2 (en) Constrained quenching method for annular members
JP6769470B2 (en) Heat treatment method
JP5224671B2 (en) Constrained quenching method for annular members
JP2007182607A (en) Method for manufacturing rolling member for use in constant velocity joint, rolling member for use in constant velocity joint, and constant velocity joint
JP5224669B2 (en) Constrained quenching method for annular members
JP2010024492A (en) Heat-treatment method for steel, method for manufacturing machine component, and machine component
JP4712603B2 (en) Rolling part manufacturing method, race ring and bearing
JP2005169475A (en) Method for manufacturing thin-walled component, bearing raceway ring, and thrust needle roller bearing
JP6817086B2 (en) Manufacturing method of rolling parts
JP2007182603A (en) Method for manufacturing rolling member, rolling member and rolling bearing
JP2011074420A (en) Heat-treatment method for steel, method for manufacturing machine component, and machine component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

R150 Certificate of patent or registration of utility model

Ref document number: 5224670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250