JP2008074789A - Method for production of phenol - Google Patents

Method for production of phenol Download PDF

Info

Publication number
JP2008074789A
JP2008074789A JP2006257463A JP2006257463A JP2008074789A JP 2008074789 A JP2008074789 A JP 2008074789A JP 2006257463 A JP2006257463 A JP 2006257463A JP 2006257463 A JP2006257463 A JP 2006257463A JP 2008074789 A JP2008074789 A JP 2008074789A
Authority
JP
Japan
Prior art keywords
acid decomposition
acid
reactor
reaction
decomposition reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006257463A
Other languages
Japanese (ja)
Other versions
JP5098266B2 (en
Inventor
Izuru Tsutsumiuchi
出 堤内
Keiji Kuma
圭司 隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2006257463A priority Critical patent/JP5098266B2/en
Publication of JP2008074789A publication Critical patent/JP2008074789A/en
Application granted granted Critical
Publication of JP5098266B2 publication Critical patent/JP5098266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phenol production method improved so as to deal with stabilization in the operation of an acid-decomposing reaction vessel and with production increase in the acid decomposition of an oxidation-reaction product by continuous supply of a cumene-oxidative reaction product and an acid to the above reaction vessel. <P>SOLUTION: The phenol production method comprises acid-decomposing the oxidation-reaction product by continuously supplying the cumene-oxidative reaction product and an acid to the acid-decomposing reaction vessel. The liquid level of an acid-decomposing reaction mixture in the reaction vessel is controlled to be within the range of 0.20-0.33 of the height of the reaction vessel. The reaction heat generated by acid-decomposition is removed as evaporative latent heat by evaporating the acid-decomposing reaction mixture, and the linear velocity of vapor flow at that time is controlled within the range of ≤1.7 m/s. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フェノールの製造方法に関し、詳しくは、クメンの酸化反応生成物の酸分解によるフェノールの製造方法に関する。   The present invention relates to a method for producing phenol, and more particularly, to a method for producing phenol by acidolysis of a product of oxidation reaction of cumene.

フェノールの工業的製造方法として、酸化反応によりクメンからクメンハイドロパーオキサイドを含む酸化反応生成物を得、次いで、酸分解反応によりクメンハイドロパーオキサイドをフェノールとアセトンとに分解するクメン法が広く行われている。   As an industrial method for producing phenol, a cumene method is widely used in which an oxidation reaction product containing cumene hydroperoxide is obtained from cumene by an oxidation reaction, and then cumene hydroperoxide is decomposed into phenol and acetone by an acid decomposition reaction. ing.

そして、上記の酸分解反応については幾つかの改良法が提案されており、例えば、クメン酸化生成物を完全混合反応器に供給して、55〜75℃の温度でクメンヒドロキシペルオキシドの酸分解反応を行った後、反応混合物をプラグフロー型反応器に供給し、120℃以下の温度でα−メチルスチレンの生成反応を過剰のアセトンの存在下で行う方法が知られている(特許文献1)。
特開平9−20699号公報
Several improved methods have been proposed for the above acid decomposition reaction. For example, an acid decomposition reaction of cumene hydroxyperoxide at a temperature of 55 to 75 ° C. by supplying a cumene oxidation product to a complete mixing reactor. After performing the above, a method is known in which the reaction mixture is supplied to a plug flow reactor, and α-methylstyrene is formed in the presence of excess acetone at a temperature of 120 ° C. or less (Patent Document 1). .
Japanese Patent Laid-Open No. 9-20699

ところで、クメンの酸化反応生成物と酸とを酸分解反応器に連続的に供給して酸化反応生成物を酸分解する場合、酸分解反応により発生する反応熱は酸分解反応混合物を蒸発させることにより蒸発潜熱として除去されるが、この際、蒸気の流通ラインに設けられる冷却器(凝縮器)側に液体飛沫が同伴し、これに起因して各種の問題(閉塞、冷却効率低下など)が惹起される。   By the way, when the oxidation reaction product of cumene and the acid are continuously supplied to the acid decomposition reactor to decompose the oxidation reaction product, the reaction heat generated by the acid decomposition reaction causes the acid decomposition reaction mixture to evaporate. However, at this time, liquid droplets are entrained on the cooler (condenser) side of the steam distribution line, and various problems (blockage, cooling efficiency decrease, etc.) are caused by this. Induced.

ところが、前記の改良法は、温和な反応条件を採用した点に特徴があり、それにより、高沸点化合物やヒドロキシアセトンの副生を抑えることが出来るが、酸分解反応器における上記の問題を解決し、酸分解反応器の運転の安定化および増産化に対処し得るものではない。   However, the above-mentioned improved method is characterized in that mild reaction conditions are adopted, thereby suppressing the by-product of high boiling point compounds and hydroxyacetone, but solves the above problems in the acid decomposition reactor. However, it cannot cope with stabilization of operation of the acid decomposition reactor and increase in production.

本発明は、上記実情に鑑みなされたものであり、その目的は、クメンの酸化反応生成物と酸とを酸分解反応器に連続的に供給して酸化反応生成物を酸分解する際の、酸分解反応器の運転の安定化および増産に対処し得る様に改良されたフェノールの製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to continuously supply the oxidation reaction product of cumene and acid to an acid decomposition reactor to acid decompose the oxidation reaction product. An object of the present invention is to provide an improved method for producing phenol so as to cope with stabilization of the operation of an acidolysis reactor and an increase in production.

本発明者らは、種々検討を重ねた結果、酸分解反応を特定の実施態様で行うことにより、容易に上記の目的を達成することが出来るとの知見を得、本発明の完成に至った。   As a result of repeating various studies, the present inventors have obtained knowledge that the above-mentioned object can be easily achieved by performing an acid decomposition reaction in a specific embodiment, and the present invention has been completed. .

すなわち、本発明の要旨は、クメンの酸化反応生成物と酸とを酸分解反応器に連続的に供給して酸化反応生成物を酸分解するフェノールの製造方法であって、酸分解反応器内の酸分解反応混合物の液面の高さを酸分解反応器の高さに対して0.20〜0.33の範囲とし、酸分解反応により発生する反応熱を酸分解反応混合物を蒸発させることにより蒸発潜熱として除去し、その際の蒸気流の線速度を1.7m/s以下の範囲とすることを特徴とするフェノールの製造方法に存する   That is, the gist of the present invention is a method for producing phenol in which an oxidation reaction product of cumene and an acid are continuously supplied to an acid decomposition reactor to acid decompose the oxidation reaction product. The liquid level of the acid decomposition reaction mixture is set to a range of 0.20 to 0.33 with respect to the height of the acid decomposition reactor, and reaction heat generated by the acid decomposition reaction is evaporated. In the process for producing phenol, characterized in that it is removed as latent heat of vaporization and the linear velocity of the vapor flow at that time is in the range of 1.7 m / s or less.

本発明によれば、酸分解反応器の運転における安全性と安定性が向上すると共に増産が可能になる。   According to the present invention, safety and stability in the operation of an acid decomposition reactor are improved, and production can be increased.

以下、本発明を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の代表例であり、本発明はこれらの内容に限定されるものではない。   Hereinafter, the present invention will be described in detail. However, the description of the constituent elements described below is a representative example of the embodiment of the present invention, and the present invention is not limited to these contents.

クメンの酸化反応生成物は、クメンと酸素または酸素含有ガス(通常は空気)との酸化反応によって得られるクメンヒドロペルオキシドとクメンを主成分とする液体である。通常、反応開始剤としてクメンヒドロぺルオキシドが使用され、反応は液相で行われる。そして、一般的には、直列に配置された複数基の反応器を使用して多段階で行われる。すなわち、酸素含有ガスとして空気を使用する場合、クメンは第1反応器に連続的に供給され、第1反応器の反応液は第2反応器に連続的に供給され、以下、同様に、第n反応器の反応液は第(n+1)反応器に連続的に供給される。一方、空気はバブリング方式により各反応器に供給され、各反応器で酸化反応に供される。   The cumene oxidation reaction product is a liquid mainly composed of cumene hydroperoxide and cumene obtained by an oxidation reaction between cumene and oxygen or an oxygen-containing gas (usually air). Usually, cumene hydroperoxide is used as a reaction initiator and the reaction is carried out in the liquid phase. In general, the reaction is performed in multiple stages using a plurality of reactors arranged in series. That is, when air is used as the oxygen-containing gas, cumene is continuously supplied to the first reactor, and the reaction liquid of the first reactor is continuously supplied to the second reactor. The reaction liquid in the n reactor is continuously supplied to the (n + 1) th reactor. On the other hand, air is supplied to each reactor by a bubbling method, and is subjected to an oxidation reaction in each reactor.

上記の酸化反応温度は通常50〜120℃であり、また、反応圧力は、常圧または加圧の何れでもよく、通常0〜1000kPa−Gの範囲から選択される。ここで、kPa−Gとは、大気圧に対する相対圧力のことをいう。各反応器毎の反応時間(反応器の滞留時間)は、通常1〜10時間である。酸化反応においては、少量のジメチルフェニルカルビノール、微量のアセトフェノン等が副生する。酸化反応液中のクメンヒドロぺルオキシド濃度は通常20〜50重量%である。   The oxidation reaction temperature is usually 50 to 120 ° C., and the reaction pressure may be normal pressure or pressurization, and is usually selected from the range of 0 to 1000 kPa-G. Here, kPa-G refers to a relative pressure with respect to atmospheric pressure. The reaction time (reactor residence time) for each reactor is usually 1 to 10 hours. In the oxidation reaction, a small amount of dimethylphenyl carbinol, a small amount of acetophenone, and the like are by-produced. The concentration of cumene hydroperoxide in the oxidation reaction solution is usually 20 to 50% by weight.

一般的には、上記の酸化反応で得られたクメンの酸化反応生成物から未反応クメンを回収して酸化反応に循環し、かつ、クメンヒドロペルオキシドを含有する濃縮反応液を回収する。濃縮は、通常、直列に配置された複数の濃縮缶を使用し、減圧下に多段階で行われる。濃縮反応液中のクメンヒドロペルオキシドの濃度は、通常60〜90重量%、好ましくは80〜88重量%である。   In general, unreacted cumene is recovered from the oxidation reaction product of cumene obtained by the above oxidation reaction and circulated in the oxidation reaction, and a concentrated reaction liquid containing cumene hydroperoxide is recovered. Concentration is usually performed in multiple stages under reduced pressure using a plurality of concentration cans arranged in series. The concentration of cumene hydroperoxide in the concentrated reaction liquid is usually 60 to 90% by weight, preferably 80 to 88% by weight.

本発明においては、クメンの酸化反応生成物として上記の濃縮反応液が好適に使用される。そして、クメンの酸化反応生成物と酸とを酸分解反応器に連続的に供給して酸化反応生成物を酸分解する。すなわち、クメンヒドロペルオキシドをフェノールとアセトンとに分解する。   In the present invention, the above concentrated reaction solution is preferably used as the oxidation reaction product of cumene. Then, the oxidation reaction product of cumene and the acid are continuously supplied to the acid decomposition reactor to decompose the oxidation reaction product. That is, cumene hydroperoxide is decomposed into phenol and acetone.

酸分解反応の方式としては、完全混合反応器(又は逆混合反応器)を使用する1段法、完全混合反応器(又は逆混合反応器)とプラグフロー型反応器を順次直列に配置して使用する2段法などが挙げられる。   As a method of acid decomposition reaction, a one-stage method using a complete mixing reactor (or back mixing reactor), a complete mixing reactor (or back mixing reactor) and a plug flow reactor are sequentially arranged in series. Examples include the two-stage method used.

酸分解に使用する酸としては、各種の鉱酸、酸性ガス、固体酸(酸性イオン交換樹脂、ゼオライト、金属酸化物、粘土鉱物、ヘテロポリ酸、酸素酸担持金属酸化物、複合酸化物など)等が挙げられるが、通常、硫酸が使用される。硫酸濃度は、通常150〜1000重量ppm、好ましくは350〜550重量ppmである。硫酸の添加方法としては、生成物循環ラインに添加する方法、反応器に直接添加する方法などが挙げられる。また、濃硫酸は、そのまま使用しても、予めアセトン等の不活性な希釈剤で希釈して使用してもよい。   Acids used for acid decomposition include various mineral acids, acid gases, solid acids (acid ion exchange resins, zeolites, metal oxides, clay minerals, heteropoly acids, oxygen acid-supported metal oxides, composite oxides, etc.) Usually, sulfuric acid is used. The sulfuric acid concentration is usually 150 to 1000 ppm by weight, preferably 350 to 550 ppm by weight. Examples of the method of adding sulfuric acid include a method of adding to the product circulation line and a method of adding directly to the reactor. Concentrated sulfuric acid may be used as it is, or may be diluted with an inert diluent such as acetone in advance.

本発明の好ましい態様においては、過剰のアセトン存在下で酸分解を行う。反応混合物中のアセトン濃度は、通常30〜50重量%、好ましくは35〜40重量%である。また、水分の濃度は、通常0.5〜3重量%、好ましくは1〜2重量%である。そして、クメンヒドロペルオキシドの転化率は、通常95〜100%、好ましくは99〜100%である。   In a preferred embodiment of the present invention, acid decomposition is carried out in the presence of excess acetone. The acetone concentration in the reaction mixture is usually 30 to 50% by weight, preferably 35 to 40% by weight. Moreover, the density | concentration of a water | moisture content is 0.5 to 3 weight% normally, Preferably it is 1 to 2 weight%. And the conversion rate of cumene hydroperoxide is 95 to 100% normally, Preferably it is 99 to 100%.

酸分解反応器内の圧力は、通常、常圧ないしは微減圧であり、好ましくは600〜760mmHg、更に好ましくは600〜700mmHgである。反応器内の圧力が低過ぎると、アセトンの蒸発量が多過ぎて液面が発泡する場合があり、圧力が高過ぎると、反応混合物の温度が上昇し各種の副生物の生成が多くなる傾向となる。なお、本発明において、酸分解反応器内の圧力とは、反応器内気相部の圧力をいう。反応器気相部であれば、任意の個所で測定することが出来るが、後述する液体飛沫による影響などを考慮すると、酸分解反応器頂部に設置された配管付近で測定するのが好ましい。   The pressure in the acid decomposition reactor is usually normal pressure or slightly reduced pressure, preferably 600 to 760 mmHg, more preferably 600 to 700 mmHg. If the pressure in the reactor is too low, the amount of acetone evaporated may be too high and the liquid level may foam. If the pressure is too high, the temperature of the reaction mixture will rise, and various by-products will tend to be produced. It becomes. In the present invention, the pressure in the acid decomposition reactor refers to the pressure in the gas phase portion in the reactor. If it is a reactor gas-phase part, it can measure at arbitrary places, but when the influence by the liquid droplet mentioned later etc. is considered, it is preferable to measure in the piping vicinity installed in the acid decomposition reactor top part.

酸分解反応器内の温度は、通常80〜90℃、好ましくは80〜85℃である。なお、酸分解反応器内の温度とは、反応器内液相部の温度をいう。反応器内液相部であれば、任意の個所で測定することが出来るが、通常は液相部の中心付近で測定する。   The temperature in the acid decomposition reactor is usually 80 to 90 ° C, preferably 80 to 85 ° C. In addition, the temperature in an acid decomposition reactor means the temperature of the liquid phase part in a reactor. If it is a liquid phase part in a reactor, it can be measured at any location, but usually it is measured near the center of the liquid phase part.

酸分解反応器内の圧力と温度は、アセトンの蒸発に係り、相互に関係する操作因子であり、何れを指標として制御を行うことも可能である。   The pressure and temperature in the acid decomposition reactor relate to the evaporation of acetone, and are mutually related operating factors, and can be controlled using either as an index.

なお、上記の酸分解反応により、フェノールとアセトンとが等モルの割合で生成するが、その他、アセトンの2量化脱水反応によりメシチルオキシド、クメンヒドロペルオキシドとアセトンとの反応によりヒドロキシアセトン、ヒドロキシアセトンとフェノールとの反応により2−メチルベンゾフラン、クメンヒドロペルオキシドとジメチルフェニルカルビノールとの反応によりジクミルペルオキシド、ジメチルフェニルカルビノールの脱水反応によりα−メチルスチレン、α−メチルスチレンの2量化反応によりα−メチルスチレンダイマー、α−メチルスチレンとフェノールとの反応によりクミルフェノール等が副生する。   The acid decomposition reaction produces phenol and acetone in equimolar proportions. In addition, the acetone dimerization dehydration reaction causes mesityl oxide, cumene hydroperoxide and acetone to react with hydroxyacetone and hydroxyacetone. Of 2-methylbenzofuran by the reaction of benzene and phenol, dicumyl peroxide by the reaction of cumene hydroperoxide and dimethylphenylcarbinol, α-methylstyrene by the dehydration reaction of dimethylphenylcarbinol, and α-methylstyrene by the dimerization reaction of α-methylstyrene. -Methylstyrene dimer, cumylphenol or the like is by-produced by the reaction of α-methylstyrene with phenol.

本発明の最大の特徴は、酸分解反応器内の酸分解反応混合物の液面の高さを酸分解反応器の高さに対して0.20〜0.33の範囲とし、酸分解反応により発生する反応熱を酸分解反応混合物を蒸発させることにより蒸発潜熱として除去し、その際の蒸気流の線速度を1.7m/s以下の範囲とする点にある。   The greatest feature of the present invention is that the level of the acid decomposition reaction mixture in the acid decomposition reactor is set to a range of 0.20 to 0.33 with respect to the height of the acid decomposition reactor, and the acid decomposition reaction is performed. The generated reaction heat is removed as latent heat of vaporization by evaporating the acid decomposition reaction mixture, and the linear velocity of the vapor flow at that time is within a range of 1.7 m / s or less.

図1は、酸分解反応器として完全混合反応器を使用する1段法による酸分解工程の好ましい一例の模式的説明図である。   FIG. 1 is a schematic explanatory view of a preferred example of an acid decomposition step by a one-stage method using a complete mixing reactor as an acid decomposition reactor.

酸分解反応(1)に使用する混合反応器としては、上部の塔径が下部の塔径よりも大きな形状の反応器が好ましい。特に、本発明においては、気相部の最大の塔径に対し、液相部の塔径の少なくとも一部が小さい部分を有する反応器であれば好適に使用することが出来る。下部の塔径に対する上部の塔径の最大値の比は、通常1.1〜2.5、好ましくは1.3〜1.8である。斯かる形状の反応器は、上部が拡径されていることにより、液体飛沫の同伴量が軽減される効果がある。   As the mixing reactor used in the acid decomposition reaction (1), a reactor having a shape in which the upper tower diameter is larger than the lower tower diameter is preferable. In particular, in the present invention, any reactor having a portion in which at least a part of the column diameter of the liquid phase part is smaller than the maximum tower diameter of the gas phase part can be suitably used. The ratio of the maximum value of the upper tower diameter to the lower tower diameter is usually 1.1 to 2.5, preferably 1.3 to 1.8. The reactor having such a shape has an effect of reducing the entrainment amount of liquid droplets due to the enlarged diameter of the upper part.

酸分解反応器(1)の上部には冷却器(2)が配置され、両者は、蒸気流通ライン(3)と凝縮蒸気循環ライン(4)とで接続されている。また、酸分解反応器(1)の内部の蒸気流通ライン(3)の近傍には液体飛沫捕集器(5)が設けられている。液体飛沫捕集器(5)は、液体飛沫が冷却器(2)側に同伴されるのを防止する機能を有し、例えば、邪魔板型、サイクロン型、ルーバー型、ワイヤーメッシュ型などが挙げられるが、作成の容易さ等から、ワイヤーメッシュ型が好ましい。   A cooler (2) is disposed above the acid decomposition reactor (1), and both are connected by a vapor circulation line (3) and a condensed vapor circulation line (4). Moreover, the liquid droplet collector (5) is provided in the vicinity of the vapor | steam distribution line (3) inside an acid decomposition reactor (1). The liquid splash collector (5) has a function of preventing liquid splash from being entrained on the cooler (2) side, and examples thereof include a baffle plate type, a cyclone type, a louver type, and a wire mesh type. However, the wire mesh type is preferable from the viewpoint of ease of production.

クメンの酸化反応生成物は、原料供給ライン(6)から酸分解反応器(1)に供給され、酸分解反応器(1)内の濃度調節に必要な反応溶媒としてのアセトンの供給は、凝縮蒸気循環ライン(4)の途中に接続されたアセントン供給ライン(7)から行われる。フェノールとアセトンを含む酸分解反応混合物は反応器出口ライン(8)から排出され、一部は生成物排出ライン(9)から抜出され、残部は生成物循環ライン(10)を通して酸分解反応器(1)に循環される。酸分解反応に必要な硫酸の供給は、生成物循環ライン(10)の途中に接続された硫酸供給ライン(11)から行われる。   The oxidation reaction product of cumene is supplied to the acid decomposition reactor (1) from the raw material supply line (6), and the supply of acetone as a reaction solvent necessary for adjusting the concentration in the acid decomposition reactor (1) is condensed. It is carried out from the ascton supply line (7) connected in the middle of the steam circulation line (4). The acidolysis reaction mixture containing phenol and acetone is discharged from the reactor outlet line (8), part is withdrawn from the product discharge line (9), and the remainder is through the product circulation line (10). It is circulated in (1). The sulfuric acid necessary for the acid decomposition reaction is supplied from a sulfuric acid supply line (11) connected in the middle of the product circulation line (10).

本発明においては、酸分解反応器(1)内の酸分解反応混合物の液面の高さ(S)を酸分解反応器(1)の高さ(H)に対して0.20〜0.33の範囲にするが、この様な液面の調節は、例えば、酸化反応生成物の酸分解反応器(1)への供給量を制御することにより容易に行うことが出来る。また、必要に応じ、反応器出口ライン(8)から排出される酸分解反応混合物の量、生成物循環ライン(10)を通して酸分解反応器(1)に循環される酸分解反応混合物の量などを制御することも出来る。酸分解反応混合物の液面の高さ(S)は、鏡板部分も含む反応器底部から液面までの距離であり、反応器の高さ(H)は、鏡板部分も含む反応器底部から上部までの距離である。   In the present invention, the height (S) of the acid decomposition reaction mixture in the acid decomposition reactor (1) is set to 0.20 to 0.000 with respect to the height (H) of the acid decomposition reactor (1). The liquid level can be easily adjusted by controlling the amount of the oxidation reaction product supplied to the acid decomposition reactor (1), for example. Further, if necessary, the amount of the acid decomposition reaction mixture discharged from the reactor outlet line (8), the amount of the acid decomposition reaction mixture circulated to the acid decomposition reactor (1) through the product circulation line (10), etc. Can also be controlled. The liquid surface height (S) of the acid decomposition reaction mixture is the distance from the bottom of the reactor including the end plate portion to the liquid surface, and the height (H) of the reactor is the top from the bottom of the reactor including the end plate portion. It is the distance to.

酸分解反応器(1)内の酸分解反応混合物の液面の高さ(S)が酸分解反応器(1)の高さ(H)に対して0.20未満の場合は、酸分解反応混合物の量が余りに少な過ぎて酸分解反応器(1)の安定した運転に支障を来し、0.33超過の場合は、冷却器(2)側への液体飛沫の同伴(エントレインメント)を防止する効果が不十分となり易い。   When the level (S) of the acid decomposition reaction mixture in the acid decomposition reactor (1) is less than 0.20 relative to the height (H) of the acid decomposition reactor (1), the acid decomposition reaction If the amount of the mixture is too small, the stable operation of the acid decomposition reactor (1) will be hindered. If it exceeds 0.33, entrainment of liquid droplets on the cooler (2) side will be caused. The prevention effect tends to be insufficient.

また、本発明においては、蒸気流の線速度として1.7m/s以下の範囲にするが、この様な蒸気流の線速度は、解反応器内の圧力や温度を調節することにより容易に行うことが出来る。蒸気流の線速度は、蒸気流通ライン(3)の蒸気流量または冷却器(2)の凝縮液流量と、反応器の断面積を使用して算出される。蒸気流の線速度が1.7m/s超過の場合は、冷却器(2)側への液体飛沫同伴を防止する効果が不十分となる。なお、蒸気流の線速度の下限は通常0.9m/sであり、それより遅い線速度の場合は、酸分解反応により発生する反応熱の除去が困難となることがある。   In the present invention, the linear velocity of the vapor flow is set to a range of 1.7 m / s or less. Such a linear velocity of the vapor flow can be easily adjusted by adjusting the pressure and temperature in the dereactor. Can be done. The linear velocity of the steam flow is calculated using the steam flow rate of the steam flow line (3) or the condensate flow rate of the cooler (2) and the cross-sectional area of the reactor. When the linear velocity of the steam flow exceeds 1.7 m / s, the effect of preventing liquid entrainment on the cooler (2) side is insufficient. The lower limit of the linear velocity of the vapor flow is usually 0.9 m / s. If the linear velocity is lower than that, it may be difficult to remove the reaction heat generated by the acid decomposition reaction.

以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。以下の諸例において、組成分析は、ガスクロマトグラフィー(機種:島津GC−14A、カラム:DB−WAX、検出器:FID、キャリアーガス:He)にて実施し、水分は、カールフィシャー水分計(ダイヤインスツルメンツ社製の水分測定装置「KF−100型」)にて測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded. In the following examples, composition analysis was performed by gas chromatography (model: Shimadzu GC-14A, column: DB-WAX, detector: FID, carrier gas: He), and the water content was measured using a Karl Fischer moisture meter ( It was measured with a moisture measuring device “KF-100 type” manufactured by Dia Instruments.

実施例1:
図1に示す酸分解工程により、クメンヒドロペルオキシドを含有するクメン酸化反応生成物の酸分解を連続的に行ってフェノールを製造した。すなわち、クメンヒドロペルオキシドを含有するクメン酸化反応生成物とアセトンと濃硫酸を酸分解反応器(1)に、それぞれ、ライン(6)、(7)、(11)を通して供給し、クメンヒドロペルオキシドの酸分解反応を行った。ライン(6)及び(4)の供給量合計に対するクメンヒドロペルオキシド濃度が30重量%、反応混合物中の硫酸濃度が400重量ppmとなる様に制御した。反応混合物中のアセトンは36重量%、水分は1.5重量%であり、クメンヒドロペルオキシドの転化率は100%と計算された。
Example 1:
By the acid decomposition process shown in FIG. 1, the acid decomposition of the cumene oxidation reaction product containing cumene hydroperoxide was continuously performed to produce phenol. That is, a cumene oxidation reaction product containing cumene hydroperoxide, acetone and concentrated sulfuric acid are fed to the acid decomposition reactor (1) through lines (6), (7) and (11), respectively, An acid decomposition reaction was performed. The cumene hydroperoxide concentration with respect to the total supply amount of the lines (6) and (4) was controlled to 30% by weight, and the sulfuric acid concentration in the reaction mixture was controlled to 400 ppm by weight. The acetone in the reaction mixture was 36% by weight, the water content was 1.5% by weight, and the conversion of cumene hydroperoxide was calculated to be 100%.

そして、酸分解反応器(1)の圧力を580mmHg、液面の高さ(S)の割合を反応器の高さ(H)の0.24となる様に運転条件を調節し、酸分解反応により発生する反応熱を反応混合物の蒸発潜熱として除去し、凝縮した蒸気を酸分解反応器(1)へ全て戻すことにより、酸分解反応器(1)内の温度を78℃に保った。なお、酸分解反応器(1)内の液面の高さ(S)の割合はライン(6)の流量によって調節した。上記の運転条件での蒸気流の線速度は0.95m/sであり、凝縮した蒸気中に含まれるフェノールの濃度は0.64重量%であり、凝縮した蒸気中にアルファメチルスチレンダイマーは検出されなかった。得られた結果を表1に示す。   Then, the operating conditions were adjusted so that the pressure of the acid decomposition reactor (1) was 580 mmHg and the ratio of the liquid surface height (S) was 0.24 of the reactor height (H), so that the acid decomposition reaction Was removed as latent heat of vaporization of the reaction mixture, and all the condensed vapor was returned to the acid decomposition reactor (1) to maintain the temperature in the acid decomposition reactor (1) at 78 ° C. In addition, the ratio of the height (S) of the liquid level in the acid decomposition reactor (1) was adjusted by the flow rate of the line (6). The linear velocity of the vapor stream under the above operating conditions is 0.95 m / s, the concentration of phenol contained in the condensed vapor is 0.64% by weight, and alphamethylstyrene dimer is detected in the condensed vapor. Was not. The obtained results are shown in Table 1.

実施例2:
実施例1においてライン(6)からの原料供給量を1.4倍とし、液面の高さ(S)の割合を反応器の高さ(H)の0.26、酸分解反応器(1)の圧力と温度を620mmHgと81℃とした以外は、実施例1と同様にクメンヒドロペルオキシドの酸分解反応を行った。得られた結果を表1に示した。
Example 2:
In Example 1, the amount of the raw material supplied from the line (6) is 1.4 times, the ratio of the liquid surface height (S) is 0.26 of the reactor height (H), and the acid decomposition reactor (1 The acid decomposition reaction of cumene hydroperoxide was carried out in the same manner as in Example 1 except that the pressure and temperature were 620 mmHg and 81 ° C. The obtained results are shown in Table 1.

比較例1:
実施例1において、ライン(6)からの原料供給量を1.4倍とし、液面の高さ(S)の割合を反応器の高さ(H)の0.32とした以外は、実施例1と同様に酸分解反応を行った。得られた結果を表1に示す。比較例1の条件では、ライン(3)の蒸気流量およびライン(4)の凝縮蒸気流量が急激に増加すると共に、酸分解反応器の温度変動が大きくなり、酸分解反応の条件を一定に保つことが困難となった。そのため、酸分解反応の運転が継続できなくなり、運転を停止した。これは、酸分解反応器内で酸分解反応の反応熱の徐熱が困難になったことによるものと考えられる。また、酸分解反応器の温度変動が大きくなった時にライン(4)から得られる凝縮蒸気の組成分析を行った結果、フェノール濃度は20重量%、α−メチルスチレンダイマーの濃度は0.21重量%であった。このことより、ライン(3)の蒸気流量およびライン(4)の凝縮蒸気流量が増加している時には、液体飛沫が同伴されていると判断した。
Comparative Example 1:
In Example 1, except that the amount of the raw material supplied from the line (6) was 1.4 times and the ratio of the liquid surface height (S) was 0.32 of the reactor height (H). The acid decomposition reaction was carried out in the same manner as in Example 1. The obtained results are shown in Table 1. Under the conditions of Comparative Example 1, the steam flow rate in the line (3) and the condensed steam flow rate in the line (4) increase rapidly, the temperature fluctuation of the acid decomposition reactor increases, and the conditions for the acid decomposition reaction are kept constant. It became difficult. Therefore, the operation of the acid decomposition reaction could not be continued, and the operation was stopped. This is considered to be due to the difficulty in gradually heating the reaction heat of the acid decomposition reaction in the acid decomposition reactor. Further, as a result of the compositional analysis of the condensed vapor obtained from the line (4) when the temperature fluctuation of the acid decomposition reactor became large, the phenol concentration was 20% by weight and the α-methylstyrene dimer concentration was 0.21%. %Met. From this, when the steam flow rate of the line (3) and the condensed steam flow rate of the line (4) were increased, it was determined that liquid droplets were accompanied.

比較例2:
実施例2において、液面の高さ(S)の割合を反応器の高さ(H)の0.34とした以外は、実施例2と同様に酸分解反応を行った。得られた結果を表1に示す。比較例2の条件でも、比較例1と同様の現象が観察され、運転操作を継続できなかった。また、ライン(4)から得られる凝縮蒸気の組成分析の結果から、液体飛沫が同伴されていると判断した。
Comparative Example 2:
In Example 2, the acid decomposition reaction was performed in the same manner as in Example 2 except that the ratio of the liquid surface height (S) was set to 0.34 of the reactor height (H). The obtained results are shown in Table 1. Under the conditions of Comparative Example 2, the same phenomenon as in Comparative Example 1 was observed, and the driving operation could not be continued. Moreover, from the result of the composition analysis of the condensed vapor obtained from the line (4), it was determined that liquid droplets were accompanied.

酸分解反応器として完全混合反応器を使用する1段法による酸分解工程の好ましい一例の模式的説明図Schematic explanatory diagram of a preferable example of the acid decomposition step by a one-stage method using a complete mixing reactor as the acid decomposition reactor

符号の説明Explanation of symbols

1:酸分解反応器
2:冷却器
3:蒸気流通ライン
4:凝縮蒸気循環ライン
5:液体飛沫捕集器
6:原料供給ライン
7:アセトン供給ライン
8:反応器出口ライン
9:生成物排出ライン
10:生成物循環ライン
11:硫酸供給ライン
S:酸分解反応混合物の液面の高さ
H:酸分解反応器の高さ
1: Acid decomposition reactor 2: Cooler 3: Steam circulation line 4: Condensed steam circulation line 5: Liquid splash collector 6: Raw material supply line 7: Acetone supply line 8: Reactor outlet line 9: Product discharge line 10: Product circulation line 11: Sulfuric acid supply line S: Level of acid decomposition reaction mixture H: Height of acid decomposition reactor

Claims (6)

クメンの酸化反応生成物と酸とを酸分解反応器に連続的に供給して酸化反応生成物を酸分解するフェノールの製造方法であって、酸分解反応器内の酸分解反応混合物の液面の高さを酸分解反応器の高さに対して0.20〜0.33の範囲とし、酸分解反応により発生する反応熱を酸分解反応混合物を蒸発させることにより蒸発潜熱として除去し、その際の蒸気流の線速度を1.7m/s以下の範囲とすることを特徴とするフェノールの製造方法。   A method for producing phenol in which an oxidation reaction product of cumene and an acid are continuously supplied to an acid decomposition reactor to decompose the oxidation reaction product, and the liquid level of the acid decomposition reaction mixture in the acid decomposition reactor The height of the acid decomposition reactor is in the range of 0.20 to 0.33 with respect to the height of the acid decomposition reactor, and the reaction heat generated by the acid decomposition reaction is removed as evaporation latent heat by evaporating the acid decomposition reaction mixture. A method for producing phenol, characterized in that the linear velocity of the steam flow is within a range of 1.7 m / s or less. 酸分解反応器内の圧力が600〜760mmHgの範囲である請求項1に記載のフェノールの製造方法。   The method for producing phenol according to claim 1, wherein the pressure in the acid decomposition reactor is in the range of 600 to 760 mmHg. 酸分解反応器内の温度が80〜90℃の範囲である請求項1又は2に記載のフェノールの製造方法。   The method for producing phenol according to claim 1 or 2, wherein the temperature in the acid decomposition reactor is in the range of 80 to 90 ° C. 酸化反応生成物の酸分解反応器への供給量を制御する請求項1〜3の何れかに記載のフェノールの製造方法。   The method for producing phenol according to any one of claims 1 to 3, wherein the supply amount of the oxidation reaction product to the acid decomposition reactor is controlled. 酸分解反応器の気相部分に液体飛沫捕集器が設けられてなる請求項1〜4の何れかに記載のフェノールの製造方法。   The method for producing phenol according to any one of claims 1 to 4, wherein a liquid droplet collector is provided in a gas phase portion of the acid decomposition reactor. 酸分解反応器として、上部の塔径が下部の塔径よりも大きな形状の反応器を使用する請求項1〜5の何れかに記載のフェノールの製造方法。   The method for producing phenol according to any one of claims 1 to 5, wherein a reactor having an upper column diameter larger than that of the lower column is used as the acid decomposition reactor.
JP2006257463A 2006-09-22 2006-09-22 Method for producing phenol Active JP5098266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006257463A JP5098266B2 (en) 2006-09-22 2006-09-22 Method for producing phenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006257463A JP5098266B2 (en) 2006-09-22 2006-09-22 Method for producing phenol

Publications (2)

Publication Number Publication Date
JP2008074789A true JP2008074789A (en) 2008-04-03
JP5098266B2 JP5098266B2 (en) 2012-12-12

Family

ID=39347213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006257463A Active JP5098266B2 (en) 2006-09-22 2006-09-22 Method for producing phenol

Country Status (1)

Country Link
JP (1) JP5098266B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111644141A (en) * 2020-05-11 2020-09-11 山东泰东环保科技股份有限公司 Stirring device for preparing crude phenol by sodium phenolate sulfuric acid acidification method and use method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920699A (en) * 1995-07-07 1997-01-21 Mitsui Petrochem Ind Ltd Production of phenol
JPH1112211A (en) * 1997-06-26 1999-01-19 Mitsui Chem Inc Production of phenol compounds and device therefor
JP2002371020A (en) * 2001-06-19 2002-12-26 Mitsui Chemicals Inc Method for producing phenol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920699A (en) * 1995-07-07 1997-01-21 Mitsui Petrochem Ind Ltd Production of phenol
JPH1112211A (en) * 1997-06-26 1999-01-19 Mitsui Chem Inc Production of phenol compounds and device therefor
JP2002371020A (en) * 2001-06-19 2002-12-26 Mitsui Chemicals Inc Method for producing phenol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111644141A (en) * 2020-05-11 2020-09-11 山东泰东环保科技股份有限公司 Stirring device for preparing crude phenol by sodium phenolate sulfuric acid acidification method and use method thereof

Also Published As

Publication number Publication date
JP5098266B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
US8242308B2 (en) Process for producing acrylic acid
JP3999160B2 (en) Method for producing easily polymerizable substance
KR101583331B1 (en) Process for preparing cyclohexanol and cyclohexanone by cyclohexane oxidation, and device for same
JPH06293682A (en) Process
KR20090101184A (en) Method for preparing acrylic acid from glycerol
CZ263095A3 (en) Separation process of (meth)acrylic acid from a gaseous reaction mixture from catalytic oxidation of compounds in gaseous phase containing 3 or 4 carbon atoms
Weber et al. Noncatalyzed radical chain oxidation: Cumene hydroperoxide
JP2010006808A5 (en)
EP3063117B1 (en) Process for preparing methyl methacrylate
CN107735391A (en) Distilling apparatus
JP2013513592A (en) Process for producing acrolein and / or acrylic acid from glycerol
US4341709A (en) Preparation of ε-caprolactone
CN109134217B (en) Oxidation device and oxidation process improvement method in cyclohexanone production process by cyclohexane oxidation method
WO2003018567A1 (en) Process for the epoxidation of olefins
KR20090082479A (en) Process for the liquid phase oxidation of ethylbenzene into ethylbenzene hydroperoxide
JP3864558B2 (en) Method for producing dihydric phenol and its production equipment
JP5098266B2 (en) Method for producing phenol
JPH1180077A (en) Production of methyl methacrylate
JP2005179352A (en) Method of purifying (meth)acrylic acid
JP2003171342A (en) Method for decomposing byproduct in producing (meth) acrylic acid compound
JP2009286776A (en) Method for producing aqueous (meth)acrylic acid
CN105980343B (en) It is used to prepare the acrylic acid of biological source
US3564058A (en) Process for the manufacture of cyclohexanol and cyclohexanone
WO2013083513A1 (en) Process for the production of a mixture comprising cyclohexanol and cyclohexanone
JP6300387B1 (en) Acrylonitrile purification method, production method, and distillation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350