JP2008074690A - Porous diamond film and method of forming the same - Google Patents

Porous diamond film and method of forming the same Download PDF

Info

Publication number
JP2008074690A
JP2008074690A JP2006259128A JP2006259128A JP2008074690A JP 2008074690 A JP2008074690 A JP 2008074690A JP 2006259128 A JP2006259128 A JP 2006259128A JP 2006259128 A JP2006259128 A JP 2006259128A JP 2008074690 A JP2008074690 A JP 2008074690A
Authority
JP
Japan
Prior art keywords
diamond film
diamond
porous
micropores
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006259128A
Other languages
Japanese (ja)
Other versions
JP4953356B2 (en
Inventor
Yoshihiro Yokota
嘉宏 横田
Takeshi Tachibana
武史 橘
Yoshio Takasu
芳雄 高須
Wataru Sugimoto
渉 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Shinshu University NUC
Original Assignee
Kobe Steel Ltd
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinshu University NUC filed Critical Kobe Steel Ltd
Priority to JP2006259128A priority Critical patent/JP4953356B2/en
Publication of JP2008074690A publication Critical patent/JP2008074690A/en
Application granted granted Critical
Publication of JP4953356B2 publication Critical patent/JP4953356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous diamond film having a most suitable form as a base material for a chemical electrode or the like applied to electrochemical reaction and a useful method of efficiently forming the diamond film. <P>SOLUTION: The porous diamond film is formed by forming to disperse many fine pores each having a square or rectangular cross section parallel to the surface of a high orientational diamond film and extending in the direction vertical to the surface on the surface of the high orientational diamond film having mainly ä100} crystal plane. The porous diamond film is formed by depositing one of metal element of Fe, Co, Ni or Pt on the high orientational diamond film mainly having ä100} plane and heating in a reducing atmosphere containing hydrogen. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば電気化学反応に適用される電極等の素材として有用な多孔性ダイヤモンド膜、およびこうしたダイヤモンド膜を効率良く製造するための有用な方法に関するものである。   The present invention relates to a porous diamond film useful as a material such as an electrode applied to an electrochemical reaction, and a useful method for efficiently producing such a diamond film.

電気分解プロセスは、クリーンな電気エネルギーを利用して、電極表面で化学反応を制御することによって、水溶液から水素、酸素、オゾン、過酸化水素等を分離精製する技術や、食塩電解、電気めっき、金属採取等の工業電解技術等、様々な分野で適用されている。また、近年では、有機汚濁物質を間接的に分解するか、該物質を電極に吸着して直接的に電気分解することが可能であることから、廃水処理としても利用されている。   The electrolysis process uses clean electrical energy to control the chemical reaction on the electrode surface to separate and purify hydrogen, oxygen, ozone, hydrogen peroxide, etc. from aqueous solutions, salt electrolysis, electroplating, It is applied in various fields such as industrial electrolysis techniques such as metal extraction. In recent years, organic pollutants can be indirectly decomposed or directly adsorbed on electrodes to be electrolyzed, so that they are also used as wastewater treatment.

電気分解における陽極での酸化反応では、水処理に有効な酸剤(有機塩素、オゾン等)が生成し、一部OHラジカル等の活性種も発生することが知られており、それらを含む水は活性水、機能水、イオン水、殺菌水等の名称で呼ばれ汎用されている。   In the oxidation reaction at the anode in electrolysis, it is known that an acid agent (organic chlorine, ozone, etc.) effective for water treatment is generated, and some active species such as OH radicals are also generated. Is called by names such as activated water, functional water, ionic water, and sterilized water, and is widely used.

上記のように電気分解プロセスは様々な分野で適用されているのであるが、使用する電極材料によっては十分な反応が進行しない場合があることも指摘されている。例えば、水溶液における電気分解による陽極酸化反応では、水を原料とする電解生成物が生成することになるが、水の放電に対しての反応性が高い電極触媒を使用すると、目的物質を生成するための、他の共存物質の酸化が容易に進行しないという事態が生じる。   As described above, the electrolysis process is applied in various fields, but it has been pointed out that sufficient reaction may not proceed depending on the electrode material used. For example, in an anodic oxidation reaction by electrolysis in an aqueous solution, an electrolysis product using water as a raw material is generated. When an electrode catalyst having high reactivity with respect to discharge of water is used, a target substance is generated. Therefore, a situation occurs in which the oxidation of other coexisting substances does not proceed easily.

電気分解用電極(陽極)の触媒材料としては、酸化鉛、酸化錫、白金属元素およびこれらの酸化物や、カーボン等が知られているが、このうち耐食性などを考慮して、白金やイリジウム等の白金属元素が主に用いられている。また、電極基材の素材としても、チタン等の弁金属やその合金等、耐食性が良好な素材が選択的に使用されている。しかしながら、これらの素材を用いても、電流密度や処理時間によっては電極が消耗してしまい、溶液中に流出することが知られており、より耐食性の良好な電極素材が望まれているのが実情である。尚、黒鉛や非晶質カーボンも、従来から電極材料の素材として適用されているが、陽極材料として用いたときには著しい消耗があることが知られている。   As a catalyst material for an electrode for electrolysis (anode), lead oxide, tin oxide, white metal elements and oxides thereof, carbon, and the like are known. Of these, platinum and iridium are considered in consideration of corrosion resistance and the like. The white metal elements such as are mainly used. In addition, as a material for the electrode base material, a material having good corrosion resistance such as a valve metal such as titanium or an alloy thereof is selectively used. However, even if these materials are used, it is known that the electrode is consumed depending on the current density and the processing time and flows out into the solution, and an electrode material with better corrosion resistance is desired. It is a fact. In addition, graphite and amorphous carbon have been conventionally used as a material for an electrode material, but it is known that there is a significant consumption when used as an anode material.

上記各種物質に対して、ダイヤモンドは熱伝導性、強度および化学安定性に優れていることから、上記のような電極材料の素材としての有用性が期待されている。またダイヤモンドは、イオンのドービングによって電気伝導性を制御することも可能であるので、半導体デバイスやエネルギー変換素子として素材としても有望視されている。例えば、特許文献1では、イオン注入によって導電性を付与したダイヤモンド電極をセンサーとして応用することが開示されている。また、特許文献2には、硼素(B)をダイヤモンドにドープして導電性を付与したダイヤモンド表面に白金の微粒子を担持させ、電気化学電極に用いる技術も提案されている。   Since diamond is excellent in thermal conductivity, strength, and chemical stability with respect to the various substances described above, it is expected to be useful as a material for the electrode material as described above. Diamond is also considered promising as a material for semiconductor devices and energy conversion elements because it is possible to control electrical conductivity by ion doping. For example, Patent Document 1 discloses that a diamond electrode provided with conductivity by ion implantation is applied as a sensor. Patent Document 2 also proposes a technique in which platinum fine particles are supported on a diamond surface doped with boron (B) and imparted conductivity to be used for an electrochemical electrode.

上記のように、ダイヤモンドは様々な分野での適用が期待されているのであるが、特に電解用電極として適用した場合には、従来の電極材料を適用した場合に比べて反応効率は向上するが、適用分野によっては長寿命が達成されず十分な対応が困難であるという事態が生じる。こうした事態が生じる原因としては、ダイヤモンド表面における活性点の存在密度が他の電極材料に比べて少なく、また表面性状も結晶面が出ることにより平坦な割合が大きいことから、付与した電流密度よりも実際の電流密度が大きくなってしまい、電解による電極消耗が早期に進行しやすいものと考えられる。   As described above, diamond is expected to be applied in various fields. However, when applied as an electrode for electrolysis, the reaction efficiency is improved as compared with the case where a conventional electrode material is applied. Depending on the application field, a long life may not be achieved and a sufficient response may be difficult. The cause of this situation is that the existence density of active sites on the diamond surface is less than that of other electrode materials, and the surface properties are large due to the appearance of crystal planes. It is considered that the actual current density is increased, and electrode consumption due to electrolysis is likely to proceed at an early stage.

こうしたことから、ダイヤモンド表面に多数の孔を形成して前記活性点をできるだけ多くするための技術も様々提案されている。こうした技術として、例えば特許文献3には、ダイヤモンド基板上に陽極酸化アルミナをマスクとして載せ、プラズマエッチング処理によってダイヤモンド基板にマスクと同一配列の細孔を形成する方法が開示されている。この技術では、規則的に均一な孔を形成できる利点があるが、マスク加工、プラズマエッチングの工程で高度な条件制御が必要であるので、比較的コスト高になると考えられる。   For this reason, various techniques for forming as many holes as possible by forming a large number of holes on the diamond surface have been proposed. As such a technique, for example, Patent Document 3 discloses a method of placing anodized alumina on a diamond substrate as a mask and forming pores having the same arrangement as the mask on the diamond substrate by plasma etching. Although this technique has an advantage that regular and uniform holes can be formed, it is considered that the cost is relatively high because advanced condition control is required in the mask processing and plasma etching processes.

また特許文献4には、ダイヤモンド層に析出させた金属粒子を、還元性雰囲気中で熱処理することにより、前記金属粒子を触媒とする炭素還元反応を促進させ、前記ダイヤモンド層の表面に微細孔を形成させる方法が開示されている。この方法は、原子レベルまたはそれに近いレベルで微細孔が形成されたダイヤモンド層やダイヤモンド粒子が得られる点で有用なものである。しかしながら、この技術で対象とするダイヤモンドは、ダイヤモンドの微粒子あるいは結晶面が特定できない比較的複雑形状の多結晶であり、電極材料としての適用を考えた場合に最適な形態とはいえない。また形成される微細孔の形や分布においても、電極材料として相応しい形態を有しているとはいえないものである。   In Patent Document 4, metal particles deposited on the diamond layer are heat-treated in a reducing atmosphere to promote a carbon reduction reaction using the metal particles as a catalyst, and fine pores are formed on the surface of the diamond layer. A method of forming is disclosed. This method is useful in that a diamond layer or diamond particles having micropores formed at or near the atomic level can be obtained. However, diamond targeted by this technique is a relatively complex polycrystal whose diamond fine particles or crystal plane cannot be specified, and cannot be said to be an optimum form when considering application as an electrode material. Also, the shape and distribution of the micropores to be formed cannot be said to have a suitable shape as an electrode material.

ダイヤモンド表面を多孔質化するための別の方法として、酸素雰囲気中で500℃以上の温度でダイヤモンドを熱処理してダイヤモンド表面をエッチングする方法も知られている。このように触媒を用いないでエッチングする方法では、微細孔は転位などの結晶欠陥を起点に形成されると考えられており、これを利用してエッチングされた微細孔(即ち、「エッチピット」)の密度を以って転位や欠陥の面密度を決定することがある。この転位は、たとえ1つの結晶面内であっても均一に存在するわけではなく、また当然ながら結晶中の転位密度が低いとエッチピット密度も低いものとなる。従って、こうした方法を適用する場合に、特定の結晶面を選択するだけでは微細孔をほぼ等間隔で高密度に形成することはできず、電極材料として有用な形態を有する多孔性ダイヤモンドを得ることができない。
特開昭58−1060379号公報 特開2004−235080号公報 特開2000−1393号公報 特開2006−183102号公報
As another method for making the diamond surface porous, a method of etching the diamond surface by heat-treating the diamond at a temperature of 500 ° C. or higher in an oxygen atmosphere is also known. In such a method of etching without using a catalyst, it is considered that micropores are formed starting from crystal defects such as dislocations, and micropores etched using this (ie, “etch pits”). ) May determine the surface density of dislocations and defects. This dislocation does not exist uniformly even in one crystal plane, and naturally, if the dislocation density in the crystal is low, the etch pit density is also low. Therefore, when such a method is applied, it is not possible to form micropores with high density at almost equal intervals only by selecting a specific crystal plane, and to obtain porous diamond having a form useful as an electrode material. I can't.
JP 58-1060379 A JP 2004-235080 A JP 2000-1393 A JP 2006-183102 A

多孔性ダイヤモンドを電極材料に適用する場合には、その表面に形成される微細孔はできるだけ等間隔でしかも垂直方向に延びるように形成されていることは最適な形態であるが、これまで提案されている多孔性ダイヤモンドはこうした形態を有したものが得られていないのが実情である。   In the case of applying porous diamond to an electrode material, it is an optimal form that the micropores formed on the surface thereof are formed at equal intervals and extending in the vertical direction. It is the actual situation that no porous diamond having such a shape has been obtained.

例えば、結晶面が特定できない多結晶や微粒子のダイヤモンドを多孔性ダイヤモンド作製用の出発材料として用いると、孔の分布や形状はランダムとなり、予め表面積を予測したり設計したりすることはできない。こうした多孔性ダイヤモンドでは、当然ながら微細孔毎に担持される触媒の数密度を制御することも困難である。仮に局所的に、形状や分布が揃っていたとしても、概して結晶面が大きく傾いているため、微細孔の形成方向が垂直方向になっていないのが一般的であり、こうした形態のものでは電極材料等への適用は困難なものとなる。   For example, if polycrystalline or fine-grained diamond whose crystal plane cannot be specified is used as a starting material for producing porous diamond, the distribution and shape of the pores are random, and the surface area cannot be predicted or designed in advance. In such porous diamond, it is of course difficult to control the number density of the catalyst supported for each micropore. Even if the shape and distribution are uniform locally, the crystal plane is generally inclined so that the micropore formation direction is generally not vertical. Application to materials and the like becomes difficult.

本発明は上記の様な事情に着目してなされたものであって、その目的は、電気化学反応に適用される化学電極等の素材として最適な形態を有する多孔性ダイヤモンド膜、およびこうしたダイヤモンド膜を効率良く製造するための有用な方法を提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and the object thereof is a porous diamond film having an optimum form as a material for a chemical electrode or the like applied to an electrochemical reaction, and such a diamond film. It is in providing the useful method for manufacturing efficiently.

上記目的を達成し得た本発明の多孔性ダイヤモンド膜とは、{100}結晶面を主体とする高配向性ダイヤモンド膜の表面に、該表面と平行な断面が正方形若しくは矩形である微細孔が、前記表面に対して垂直方向に延びるように多数分散形成されたものである点に要旨を有するものである。   The porous diamond film of the present invention that has achieved the above object is a highly oriented diamond film having a {100} crystal plane as a main component and a micropore having a square or rectangular cross section parallel to the surface. The present invention has a gist in that a large number of dispersions are formed so as to extend in a direction perpendicular to the surface.

上記多孔性ダイヤモンド膜のより具体的な形態として、前記微細孔は、長辺の平均長さが5〜50nmであると共に、微細孔相互の平均間隔が5〜50nmであるものが挙げられる。   As a more specific form of the porous diamond film, the fine holes may have a long side average length of 5 to 50 nm and an average interval between the fine holes of 5 to 50 nm.

上記のような多孔性ダイヤモンド膜を製造するに当たっては、{100}結晶面を主体とする高配向性ダイヤモンド膜の表面に、Fe,Co,NiおよびPtのうちの何れかの金属元素を付着させた後、水素を含む還元性雰囲気で加熱処理すれば良い。   In producing the porous diamond film as described above, any metal element of Fe, Co, Ni and Pt is attached to the surface of the highly oriented diamond film mainly composed of {100} crystal planes. After that, heat treatment may be performed in a reducing atmosphere containing hydrogen.

この方法を実施するに当たって、(a)前記金属元素の付着量は、1〜10原子層相当量であることや、(b)前記熱処理温度が600〜1000℃であること、等の要件を満足することが好ましい。   In carrying out this method, the following requirements are satisfied: (a) the adhesion amount of the metal element is equivalent to 1 to 10 atomic layers, and (b) the heat treatment temperature is 600 to 1000 ° C. It is preferable to do.

本発明においては、{100}結晶面を主体とする高配向性ダイヤモンド膜の表面に、Fe,Co,NiおよびPtのうちの何れかの金属元素を付着させた後、水素を含む還元性雰囲気で加熱処理することによって、ダイヤモンド膜表面と平行な断面が正方形若しくは矩形である微細孔が、前記表面に対して垂直方向に延びるようにほぼ等間隔で多数分散形成されたものが効率良く製造でき、得られた多孔性ダイヤモンド膜は電極材料等の素材としてきわめて有用なものとなる。   In the present invention, after a metal element of any one of Fe, Co, Ni and Pt is attached to the surface of a highly oriented diamond film mainly composed of {100} crystal planes, a reducing atmosphere containing hydrogen By heat-treating with the above, it is possible to efficiently produce a product in which a large number of micropores having a square or rectangular cross section parallel to the surface of the diamond film are formed in a dispersed manner at almost equal intervals so as to extend in a direction perpendicular to the surface. The obtained porous diamond film is extremely useful as a material for electrode materials and the like.

本発明者らは、前記課題を解決するために、電極材料等の素材として最適な形態を有する多孔性ダイヤモンド膜の実現を目指して様々な角度から研究を重ねた。その結果、微細孔を形成する素材(ダイヤモンド膜)として、{100}結晶面を主体とする高配向性ダイヤモンド膜を用い、このダイヤモンド膜表面に、Fe,Co,NiおよびPtのうちの何れかの金属元素を付着させ、水素を含む還元雰囲気中で熱処理すれば、ダイヤモンド膜表面と平行な断面が正方形若しくは矩形である微細孔が、前記表面に対して垂直方向に延びるようにほぼ等間隔で多数分散形成されたものとなって、希望する形態の多性孔ダイヤモンド膜が得られることを見出し、本発明を完成した。   In order to solve the above-mentioned problems, the present inventors have conducted research from various angles with the aim of realizing a porous diamond film having an optimum form as a material such as an electrode material. As a result, a highly oriented diamond film mainly composed of {100} crystal planes is used as a material (diamond film) for forming micropores, and any one of Fe, Co, Ni, and Pt is formed on the diamond film surface. If the metal element is attached and heat-treated in a reducing atmosphere containing hydrogen, the micropores having a square or rectangular cross section parallel to the diamond film surface extend at a substantially equal interval so as to extend in a direction perpendicular to the surface. It was found that a multi-pore diamond film having a desired form was obtained by forming a large number of dispersions, and the present invention was completed.

この多孔性ダイヤモンド膜では、その表面に多数分散形成される微細孔の形状が、ダイヤモンド膜表面と平行な断面が正方形若しくは矩形(長方形)であるが、微細孔の底面形状ではほぼ{111}面からなる「逆四角錐状」となる。この微細孔の形状は、後述する熱処理条件によっても変化するものであるが、例えば熱処理時間を短くすると微細孔は前記「逆四角錐状」がそのまま反映された形状となる。また熱処理時間を長くした場合には、底面付近の逆四角錐状部分に至るまでの孔形状は、ダイヤモンド膜表面に対してほぼ垂直な面(側面)を有する四角柱状なものとなる。また、この「四角柱状」とは、ダイヤモンド膜表面と平行な断面が正方形若しくは矩形のいずれも含むものである。   In this porous diamond film, the shape of the micropores formed in a large number on the surface thereof is a square or a rectangle (rectangular) in cross section parallel to the diamond film surface. It becomes an “inverted quadrangular pyramid”. The shape of the micropores varies depending on the heat treatment conditions described later. For example, when the heat treatment time is shortened, the micropores have a shape reflecting the “inverted pyramid shape” as it is. Further, when the heat treatment time is lengthened, the hole shape up to the inverted quadrangular pyramid portion near the bottom surface becomes a rectangular column shape having a surface (side surface) substantially perpendicular to the diamond film surface. In addition, the “square column shape” includes a square or rectangular cross section parallel to the diamond film surface.

本発明の多孔性ダイヤモンド膜において、その表面に形成される微細孔は、上記いずれの形態のものも含むものであるが、本発明ではこれらを総括して「多孔性ダイヤモンド膜表面と平行な断面が正方形若しくは矩形である」と規定したものである。いずれの形態であっても、その形状からして個々の表面積の算出が幾何学的に容易に行えるものとなる。また、この微細孔は、ほぼ同じ大きさでほぼ等間隔に形成されるので、全体に亘る表面積の算出においても誤差が非常に少ないものとなる。このことにより、表面積と処理能力との相関関係を把握しておくことが重要な用途、例えば液中のイオン濃度を検出する電気化学センサー用の電極等として、表面積を揃えることができるため、再現性よく品質の揃った製品を作製することができる。   In the porous diamond film of the present invention, the fine pores formed on the surface include any of the above-mentioned forms, but in the present invention, these are collectively referred to as “a cross section parallel to the surface of the porous diamond film is a square. Or it is a rectangle ". In any form, the calculation of the individual surface area can be performed geometrically easily from the shape. Further, since the micropores are formed with substantially the same size and at almost equal intervals, the error in the calculation of the surface area over the whole is very small. Because of this, it is important to know the correlation between the surface area and the processing capacity, such as electrodes for electrochemical sensors that detect the ion concentration in the liquid. Products with good quality can be produced.

表面積を揃えるだけであるならば、微細孔を形成せずに表面を平面のまま使用することも可能であるが、このような表面反応を用いる用途の適用には、表面積を増やした方が望ましいことは周知である。また、ダイヤモンド表面に白金(Pt)やニッケル(Ni)等の触媒を担持することによって、特定の表面反応を促進させる用途もある。このような用途への適用の場合にも、単に平面であるより、多数の微細孔があることにより触媒を固定させやすく、且つ脱離しにくいものとなる。   If the surface area is just the same, it is possible to use the surface as a flat surface without forming micropores, but it is desirable to increase the surface area for applications using such surface reactions. This is well known. In addition, there is an application in which a specific surface reaction is promoted by supporting a catalyst such as platinum (Pt) or nickel (Ni) on the diamond surface. Even in the case of application to such a use, the catalyst is easily fixed and is not easily detached due to the presence of a large number of micropores rather than a flat surface.

これは、その微細孔の底では、表面に当たる水流などが触媒を基材のダイヤモンドから剥がそうとする方向、つまり剪断方向の力が加わりにくくなり、またダイヤモンドとの接触面積が増加するからである。また、微小な触媒粒子を高密度に且つほぼ均等に分布させ、しかも隣り合う粒子とは隔絶させることができる。このことによって、高価な白金等を触媒とする場合には、その付着質量を最小限に抑えることができて、製造コストを低減できるものとなる。   This is because, at the bottom of the micropores, the flow of water hitting the surface makes it difficult to apply a force in the direction of peeling the catalyst from the diamond of the base material, that is, the shear direction, and the contact area with the diamond increases. . Further, fine catalyst particles can be distributed with high density and almost evenly, and can be isolated from adjacent particles. As a result, when expensive platinum or the like is used as a catalyst, the adhesion mass can be minimized, and the manufacturing cost can be reduced.

微細孔の深さは、熱処理時間を延ばすことにより深くすることができ、例えばダイヤモンド膜の裏側まで貫通した孔を形成することもできる。また孔の大きさは、金属元素の付着量(蒸着量)を増やすことによって大きくすることができる。この微細孔の大きさは、長辺の平均長さが5〜50nm程度であることが好ましく、また微細孔相互の平均間隔は5〜50nmであることが好ましい。尚、微細孔の大きさを示す指標として、長辺の平均長さを基準としたのは、断面形状が矩形(長方形)の孔が形成されることを前提としたものであるが、矩形の場合の短辺は長辺とほぼ等しいものとなり、また断面形状が正方形の場合には一辺の長さを意味する。また、微細孔相互の間隔とは、一つの微細孔の中心点から他の微細孔の中心点までの最短距離を意味する。   The depth of the fine hole can be increased by extending the heat treatment time. For example, a hole penetrating to the back side of the diamond film can be formed. The size of the hole can be increased by increasing the amount of metal element deposited (deposition amount). As for the size of the micropores, the average length of the long sides is preferably about 5 to 50 nm, and the average interval between the micropores is preferably 5 to 50 nm. As an index indicating the size of the fine holes, the average length of the long side is based on the premise that a hole having a rectangular cross section is formed. In this case, the short side is almost equal to the long side, and when the cross-sectional shape is a square, it means the length of one side. Moreover, the space | interval between micropores means the shortest distance from the center point of one micropore to the center point of another micropore.

上記のような多孔性ダイヤモン膜を形成するには、{100}結晶面を主体とする高配向性ダイヤモンド膜の表面に、Fe,Co,NiおよびPtのうちの何れかの金属元素を付着させた後、水素を含む還元性雰囲気で加熱処理すればよいが、次にこれらの製造条件について説明する。   In order to form the porous diamond film as described above, any metal element of Fe, Co, Ni and Pt is attached to the surface of a highly oriented diamond film mainly composed of {100} crystal planes. After that, heat treatment may be performed in a reducing atmosphere containing hydrogen. Next, the manufacturing conditions will be described.

まず、本発明で素材として用いるダイヤモンド膜は、{100}結晶面を主体とする高配向性ダイヤモンド膜とする必要があり、その製造方法については後述するが、例えば特開2006―176389号には、粒径が30μm以上である{100}結晶面配向ダイヤモンド膜の製造方法が開示されている。また「第65回応用物理学会学術講演会 (2004年)講演予稿集」(p.506,3a−ZB−6)においても、最大粒径が100μmに及ぶ{100}結晶面配向ダイヤモンド膜が実現されている。本発明で用いるダイヤモンド膜は、これらの技術を応用して形成することができる。尚、{100}結晶面を主体とするとは、高配向性ダイヤモンド膜の結晶面の全てが(100)面である必要はなく、例えば(100)面が70%以上であっても本発明適用できることを意味する。   First, the diamond film used as a raw material in the present invention needs to be a highly oriented diamond film mainly composed of {100} crystal planes, and a manufacturing method thereof will be described later. For example, JP-A-2006-176389 discloses Discloses a method for producing a {100} crystal plane oriented diamond film having a grain size of 30 μm or more. In addition, the “100th crystal plane oriented diamond film with a maximum grain size of 100 μm” was realized in the “Proceedings of the 65th JSAP Conference on Applied Physics (2004)” (p.506, 3a-ZB-6). Has been. The diamond film used in the present invention can be formed by applying these techniques. Note that the fact that the {100} crystal plane is mainly used does not require that all the crystal planes of the highly oriented diamond film are (100) planes. For example, the present invention is applicable even if the (100) plane is 70% or more. Means you can.

上記のような高配向性ダイヤモンド膜の表面に、Fe,Co,NiおよびPtのうちの何れかの金属元素を、例えば蒸着法によって付着(以下、「蒸着」で代表する)させる必要があるが、蒸着直後の金属元素は蒸着量が十分多いときには膜状となり、この状態では膜厚によって蒸着量を規定できる。これに対して、金属元素の蒸着量が非常に少ないときには、高分解能な電子顕微鏡により不定形の粒状になっていることが予想される。即ち、金属元素の蒸着量が非常に少ないときには、蒸着量(膜厚)が箇所によって異なるものとなるので、蒸着量を膜厚では規定できないものとなる。従って、仮に厚さが一定の膜(均一な膜)となっていると想定した場合の厚さを、原子層単位(原子層相当量)で規定し、蒸着量(付着量)とした。このように、原子層単位とすることによって、原子半径の異なる金属にも蒸着量をそのまま適用できる利点がある。   Although it is necessary to adhere any metal element of Fe, Co, Ni and Pt to the surface of the highly oriented diamond film as described above by, for example, a vapor deposition method (hereinafter represented by “vapor deposition”). The metal element immediately after the vapor deposition becomes a film when the vapor deposition amount is sufficiently large. In this state, the vapor deposition amount can be defined by the film thickness. On the other hand, when the deposition amount of the metal element is very small, it is expected that the particles are in an irregular shape by a high resolution electron microscope. That is, when the deposition amount of the metal element is very small, the deposition amount (film thickness) varies depending on the location, and the deposition amount cannot be defined by the film thickness. Therefore, the thickness when it is assumed that the film has a constant thickness (uniform film) is defined in atomic layer units (amount equivalent to the atomic layer) and is defined as the deposition amount (attachment amount). Thus, the atomic layer unit has an advantage that the deposition amount can be applied as it is to metals having different atomic radii.

水素を含有する雰囲気中で熱処理温度を上げると同時に、前記金属元素の自然凝集が発生し、金属元素は分散した微粒子状に変化する。この微粒子の大きさは蒸着量で制御でき、蒸着量が多い場合には大きくなる。但し、蒸着量が10原子層相当量より多くなると、その大きさのばらつきが顕著になる。また、1原子層相当量より少なくなると、数密度が少なくなり、その間隔のばらつきが顕著になる。こうした観点から、金属元素はその蒸着量が1〜10原子層相当量の範囲で蒸着することが好ましく、この範囲では大きさおよび相互間距離が何れも5〜30nmの範囲内に収まった、均一性の高い微細孔を形成することができる。   At the same time as the heat treatment temperature is raised in an atmosphere containing hydrogen, spontaneous aggregation of the metal element occurs, and the metal element changes into dispersed fine particles. The size of the fine particles can be controlled by the amount of deposition, and increases when the amount of deposition is large. However, when the deposition amount is larger than the equivalent amount of 10 atomic layers, the variation in size becomes remarkable. Further, when the amount is less than the equivalent amount of one atomic layer, the number density decreases and the variation in the interval becomes remarkable. From such a point of view, it is preferable that the metal element is deposited in an amount corresponding to an amount equivalent to 1 to 10 atomic layers, and in this range, the size and the distance between them are all within the range of 5 to 30 nm. Highly precise micropores can be formed.

こうした現象は、ダイヤモンドの結晶成長により得られた平坦な{100}結晶面においてのみ当てはまり、その他の結晶面、例えば{111}結晶面や、{100}結晶面からやや傾いたいわゆるオフ面、更には{100}結晶面であっても平坦度の低いものや、異なる材料では一概に同じような現象は生じない。これはダイヤモンド{100}結晶面とその他の面とで金属元素との濡れ性が異なることによるものと考えられた。   Such a phenomenon applies only to the flat {100} crystal plane obtained by the crystal growth of diamond, and other crystal planes such as the {111} crystal plane, the so-called off-plane slightly inclined from the {100} crystal plane, In the case of {100} crystal planes, the same phenomenon does not generally occur with low flatness or with different materials. This was thought to be due to the difference in wettability between the diamond {100} crystal plane and other planes.

ところで熱処理する際の雰囲気については、上記のように「水素を含む還元性雰囲気」とする必要があるが、こうした雰囲気を形成するガスとしては、常温で水素を3〜30体積%程度含有し、残部が不活性ガス(例えば、窒素ガス)であるような混合ガスが挙げられる。   By the way, about the atmosphere at the time of heat treatment, it is necessary to set it as "reducing atmosphere containing hydrogen" as described above, but as a gas forming such an atmosphere, hydrogen is contained at about 3 to 30% by volume at room temperature, A mixed gas in which the balance is an inert gas (for example, nitrogen gas) can be used.

また熱処理温度は、600〜1000℃程度であることが好ましい。この温度が600℃よりも低くなると、反応処理時間が長くなって実用的でなくなり、1000℃を超えると処理時は短縮できるものの、微細孔の形成が過度に進むことになって、結果的にダイヤモンド膜の機械的強度が低下する傾向を示し、またダイヤモンド膜の水素による腐食や脆化が進行する恐れがある。   Moreover, it is preferable that the heat processing temperature is about 600-1000 degreeC. When this temperature is lower than 600 ° C., the reaction treatment time becomes longer and impractical, and when it exceeds 1000 ° C., the treatment time can be shortened, but the formation of micropores proceeds excessively. The mechanical strength of the diamond film tends to decrease, and the diamond film may be corroded or embrittled by hydrogen.

本発明の多孔性ダイヤモンド膜は、溶液中での電気分解やイオン検出などに使われる各種電極材料の素材の他、低反射面、プリズム板、フォトニック材、電子放出面、特殊材料ガスを検出するガスセンサ等への適用が可能である。また、電界効果トランジスタのゲート面としての技術的応用も可能であり(例えば、「第65回応用物理学会学術講演会公演予稿集」p.519〜520の4p―ZB−4)、光、イオン、蛋白質やアミノ酸、DNA、ガス等に感応するセンサの素材として使用できる。   The porous diamond film of the present invention detects low reflection surfaces, prism plates, photonic materials, electron emission surfaces, and special material gases, as well as various electrode materials used for electrolysis and ion detection in solution. It can be applied to a gas sensor or the like. In addition, technical application as a gate surface of a field effect transistor is also possible (for example, 4p-ZB-4 of “Proceedings of the 65th JSAP Conference on Applied Physics” p.519-520), light, ion It can be used as a sensor material sensitive to proteins, amino acids, DNA, gas and the like.

また本発明の多孔性ダイヤモンド膜はそれを直接的に利用する他、これに可塑材を押しつけることにより前記微細孔を転写したものを作成することもできる。この場合、上記のような特徴的形状を有する微細孔に対応した突起が、ほぼ等間隔で高密度に分布した状態で形成することができる。このようにして突起を形成した成形材の応用分野としては、溶液中で電気分解やイオン検出などに使われる化学電極面の他に、低反射面、プリズム板、フォトニック材、電子放出面、探針、電気計測用プローブ先端等が挙げられる。   Further, the porous diamond film of the present invention can be used directly, or can be produced by transferring the fine pores by pressing a plastic material against it. In this case, the protrusions corresponding to the fine holes having the characteristic shape as described above can be formed in a state of being densely distributed at substantially equal intervals. In addition to the chemical electrode surface used for electrolysis and ion detection in solution, the application field of the molding material thus formed with protrusions is a low reflection surface, prism plate, photonic material, electron emission surface, Examples include a probe and a tip of an electric measurement probe.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

[実施例1]
本発明の多孔性ダイヤモンドの素材となる{100}結晶面を主体とする配向性ダイヤモンド膜(多結晶ダイヤモンド膜)を下記の方法で作製した。
[Example 1]
An oriented diamond film (polycrystalline diamond film) mainly composed of {100} crystal planes as a material for the porous diamond of the present invention was produced by the following method.

(1)清浄な単結晶シリコンの(100)面ウェハを基板とし、石英管チャンバを有するマイクロ波プラズマCVD装置を用いて、メタン5%と水素(残部)の混合ガスを圧力25Torr(3.3kPa)、流量:100SCCM(Standard Cubic Centimeter per minute)の条件で流しつつ、マイクロ波を印加することにより、プラズマを形成した。このプラズマの端近傍にモリブデン板に載せた基板を置き、対向する端にタングステン網を配置した。このとき夫々の装置の外側に端子を出して、直流電源(DC電源)に接続してある。マイクロ波の出力を調整して、基板を650℃に保ちつつ、DC電源によって、150〜200VのDCバイアスを印加した。尚、基板側を負電位とした。この状態で10〜15分間保持した。   (1) Using a microwave plasma CVD apparatus having a clean (100) plane wafer of single crystal silicon as a substrate and having a quartz tube chamber, a mixed gas of 5% methane and hydrogen (remainder) is supplied at a pressure of 25 Torr (3.3 kPa). ), Flow rate: Plasma was formed by applying microwaves while flowing under the condition of 100 SCCM (Standard Cubic Centimeter per minute). A substrate placed on a molybdenum plate was placed near the end of the plasma, and a tungsten net was placed on the opposite end. At this time, a terminal is provided outside each device and connected to a direct current power source (DC power source). The microwave output was adjusted, and a DC bias of 150 to 200 V was applied by a DC power source while keeping the substrate at 650 ° C. The substrate side was set to a negative potential. This state was maintained for 10 to 15 minutes.

(2)その後、メタン2%、水素98%、圧力50Torr(6.7kPa)、ガス流量:100SCCM、基板温度:800℃の条件に切り替え、5〜10時間保持した。この時点で表面を走査型電子顕微鏡(SEM)で観察すると、基板に垂直な方向が<100>方向に配向し、且つ{111}面が優勢に現れた表面形態のダイヤモンド膜(連続膜)が形成されたことを確認できた。即ち、1つの結晶粒の表面に着目すれば、いわゆるピラミッド形状類似の四角錐形状が現れており、その4つの斜面が正三角形を基本とした{111}面になっていることが確認できた。1つの結晶粒の平均粒径は保持時間が長いほど大きくなるが、5〜10時間の範囲では2〜4μmであった。   (2) Thereafter, the conditions were switched to conditions of 2% methane, 98% hydrogen, pressure 50 Torr (6.7 kPa), gas flow rate: 100 SCCM, substrate temperature: 800 ° C., and held for 5 to 10 hours. At this point, when the surface is observed with a scanning electron microscope (SEM), a diamond film (continuous film) having a surface shape in which the direction perpendicular to the substrate is oriented in the <100> direction and the {111} plane appears predominantly is obtained. It was confirmed that it was formed. That is, when focusing on the surface of one crystal grain, a so-called pyramid-like quadrangular pyramid shape appears, and it has been confirmed that the four slopes are {111} planes based on equilateral triangles. . The average grain size of one crystal grain becomes larger as the holding time is longer, but was 2 to 4 μm in the range of 5 to 10 hours.

(3)その後、メタン1%、酸素0.5%、水素98.5%、ガス流量100SCCM、基板温度:850℃の条件に切り替え、5〜10時間保持した。その結果、合計膜厚が約30μmのダイヤモンド薄膜を合成できた。   (3) Thereafter, the conditions were switched to methane 1%, oxygen 0.5%, hydrogen 98.5%, gas flow rate 100 SCCM, substrate temperature: 850 ° C. and held for 5 to 10 hours. As a result, a diamond thin film having a total film thickness of about 30 μm was synthesized.

ダイヤモンド薄膜表面をSEMで観察したところ、表面は基板に平行な正方形乃至長方形を基本とした結晶面(即ち、{100}結晶面)で覆われていることが確認できた。1つの結晶粒の平均粒径は上記工程(2)と工程(3)の保持時間が何れも長いほど大きくなるが、工程(2)、(3)共に5〜10時間の範囲では1つの結晶粒の平均粒径は3〜30μmであった。いずれにしても、ほぼ基板面の全体に平行な{100}結晶面で覆われていること、および隣り合う粒子の高さの差が0.1〜0.5μmで、段差がわずかなことから、全体として平坦面とみなすことができた。   When the surface of the diamond thin film was observed with an SEM, it was confirmed that the surface was covered with a crystal plane based on a square or rectangle parallel to the substrate (that is, {100} crystal plane). The average grain size of one crystal grain increases as the holding time in the above steps (2) and (3) increases, but one crystal is in the range of 5 to 10 hours in both steps (2) and (3). The average particle size of the grains was 3 to 30 μm. In any case, it is covered with a {100} crystal plane that is substantially parallel to the entire substrate surface, and the difference in height between adjacent particles is 0.1 to 0.5 μm, so that there are few steps. As a whole, it could be regarded as a flat surface.

上記工程(2)および工程(3)の保持時間を、夫々5時間、5時間として作製したダイヤモンド膜の表面の電子顕微鏡写真を図1に示す。   FIG. 1 shows an electron micrograph of the surface of the diamond film produced by setting the holding times in the above steps (2) and (3) to 5 hours and 5 hours, respectively.

上記工程(2)および工程(3)の保持時間を、夫々10時間、10時間として作製したダイヤモンド膜の表面の電子顕微鏡写真を図2に示す。   FIG. 2 shows an electron micrograph of the surface of the diamond film produced with the holding times of the above step (2) and step (3) being 10 hours and 10 hours, respectively.

得られたダイヤモンド膜の配向性を、X線回折法(XRD)、正極点X線回折法(polar−XRD)、および後方散乱電子回折像法(EBSP)によって調査したところ、図1に示したダイヤモンド膜は最上面の90%以上の面積に相当するダイヤモンド粒子が<001>方向から10%以内に配向していることが確認できた。図2に示したダイヤモンド膜は、最上面の95%以上の面積に相当するダイヤモンド粒子が<001>方向から10%以内に配向していることが確認できた。   The orientation of the obtained diamond film was investigated by X-ray diffraction (XRD), positive-point X-ray diffraction (polar-XRD), and backscattered electron diffraction (EBSP), and is shown in FIG. It was confirmed that diamond particles corresponding to an area of 90% or more of the uppermost surface of the diamond film were oriented within 10% from the <001> direction. In the diamond film shown in FIG. 2, it was confirmed that diamond particles corresponding to an area of 95% or more of the uppermost surface were oriented within 10% from the <001> direction.

次に、図1に示したダイヤモンド薄膜表面に真空蒸着法によりCoを5原子層相当量程度蒸着した後、水素(10%)−窒素混合気流下にて900℃で2時間加熱した。そのダイヤモンド膜の表面性状を、SEMを用いて観察した結果ところ、Co粒子が、ダイヤモンド膜の{100}面を掘削し、ダイヤモンド膜表面に対して垂直方向に延びる微細孔が多数分散形成されていることが確認できた。その微細孔の大きさは、90%以上が10〜20nmで、ほぼ揃っており、形状(断面形状)もほぼ全てが正方形若しくは矩形であった。また、隣り合う微細孔が部分的に繋がったように見えるものは少なく、その殆どが独立した形態となっていた。また微細孔の相互の間隔は平均して、23nmであった。このとき得られたダイヤモンド膜の表面性状を図3(図面代用顕微鏡写真)に示す。   Next, Co was deposited on the surface of the diamond thin film shown in FIG. 1 by a vacuum deposition method in an amount equivalent to about 5 atomic layers, and then heated at 900 ° C. for 2 hours under a hydrogen (10%)-nitrogen mixed gas stream. As a result of observing the surface properties of the diamond film using an SEM, Co particles excavated the {100} plane of the diamond film, and a large number of fine holes extending in a direction perpendicular to the diamond film surface were dispersedly formed. It was confirmed that 90% or more of the fine holes were 10 to 20 nm in size, and were almost uniform, and the shape (cross-sectional shape) was almost all square or rectangular. Moreover, there were few things which seemed that the adjacent micropores were partially connected, and most of them became independent forms. The interval between the micropores on average was 23 nm. The surface property of the diamond film obtained at this time is shown in FIG.

上記SEM観察から明らかなように、ダイヤモンド膜の{100}結晶面はほぼ全てが微細孔に変わり、この微細孔の形状は正八面体の半分の形状として近似できることが分かる。これに基づいて、表面積は約√3倍に増大していると算出できる。このダイヤモンド膜を反射電子像で観察すると、基板のダイヤモンドとCoとが異なるコントラストで見えるのであるが(Coは明るい白い点として観察される)、Coがダイヤモンドの微細孔のほぼ全てに存在することが分かった。このときの反射電子像を図4に示す。   As is apparent from the SEM observation, almost all the {100} crystal planes of the diamond film are changed to micropores, and the shape of the micropores can be approximated as a half shape of an octahedron. Based on this, it can be calculated that the surface area has increased by about √3 times. When this diamond film is observed with a backscattered electron image, diamond and Co on the substrate appear to have different contrasts (Co is observed as a bright white spot), but Co is present in almost all of the diamond micropores. I understood. The reflected electron image at this time is shown in FIG.

図3と図4を対比することによって、ダイヤモンド膜表面でのCo粒子による触媒反応が起きた結果、微細孔が形成されたものと考えられる。この触媒反応は、高温下ではCoと接触したダイヤモンド表面の炭素原子が溶け込みやすく、Co中を拡散し、水素と化合し、Co表面からメタンガスなどの炭化水素ガスとして放出されると考えられる。   By comparing FIG. 3 and FIG. 4, it is considered that micropores were formed as a result of the catalytic reaction caused by Co particles on the diamond film surface. In this catalytic reaction, it is considered that carbon atoms on the diamond surface in contact with Co easily dissolve at high temperatures, diffuse in Co, combine with hydrogen, and are released from the Co surface as hydrocarbon gas such as methane gas.

[実施例2]
蒸着金属元素として、Coの代りにNiを用いる以外は実施例1と同じ条件で実験を行った。そのダイヤモンド膜の表面性状を、SEMを用いて観察した結果ところ、Ni粒子が、ダイヤモンド膜の{100}面を掘削し、ダイヤモンド膜表面に対して垂直方向に延びる微細孔が多数分散形成されていることが確認できた。その微細孔の大きさは、90%以上が5〜15nmで、ほぼ揃っており、形状(断面形状)もほぼ全てが正方形若しくは矩形であった。また、隣り合う微細孔が部分的に繋がったように見えるものは少なく、その殆どが独立した形態となっていた。また微細孔の相互の間隔は平均して、32nmであった。このとき得られたダイヤモンド膜の表面性状を図5(図面代用顕微鏡写真)に示す。
[Example 2]
The experiment was performed under the same conditions as in Example 1 except that Ni was used instead of Co as the vapor deposition metal element. As a result of observing the surface properties of the diamond film using an SEM, Ni particles excavated the {100} plane of the diamond film, and a large number of fine holes extending in a direction perpendicular to the diamond film surface were dispersedly formed. It was confirmed that As for the size of the micropores, 90% or more is 5 to 15 nm, which is almost uniform, and the shape (cross-sectional shape) is almost all square or rectangular. Moreover, there were few things which seemed that the adjacent micropores were partially connected, and most of them became independent forms. The interval between the micropores on average was 32 nm. The surface property of the diamond film obtained at this time is shown in FIG.

上記SEM観察から明らかなように、Co粒子を用いた場合より微細孔の深さは浅く、Niの微粒子の大きさと孔の大きさはほぼ同じで、数密度はやや低い。微細孔の形状を正八面体の半分の形状として近似し、およそ3/4の領域では元の{100}面がそのまま残っているため、表面積はおよそ(3/4+1/4×√3)倍に増大していると算出できる。このダイヤモンド膜を反射電子像で観察すると、上記と同様に基板のダイヤモンドとNiとが異なるコントラストで見えるのであるが(Niは明るい白い点として観察される)、Niがダイヤモンドの微細孔のほぼ全てに存在することが分かった。このときの反射電子像を図6に示す。   As is apparent from the SEM observation, the depth of the micropores is shallower than when Co particles are used, the size of the Ni fine particles is substantially the same as the size of the pores, and the number density is slightly lower. The shape of the micropore is approximated as a half of an octahedron, and the original {100} plane remains as it is in the region of approximately 3/4, so the surface area is approximately (3/4 + 1/4 × √3) times. It can be calculated as increasing. When this diamond film is observed with a backscattered electron image, the substrate diamond and Ni appear to have different contrasts as described above (Ni is observed as a bright white spot), but Ni is almost all of the diamond micropores. It was found to exist. The reflected electron image at this time is shown in FIG.

尚、ダイヤモンド膜表面には、少数の比較的大きな孔も認められるたが、ここにはNi粒子が無い場合が多かった。ここには、ダイヤモンド結晶中に元々存在していた転位が起点となり、水素雰囲気でエッチングが進んだ結果であると考えられる。一方、微細孔のほとんどはNi微粒子により形成されるものと考えられた。   A few relatively large holes were observed on the diamond film surface, but there were many cases where there were no Ni particles. Here, it is considered that the dislocation originally present in the diamond crystal is a starting point and the etching progresses in a hydrogen atmosphere. On the other hand, it was thought that most of the fine holes were formed by Ni fine particles.

[実施例3]
蒸着金属元素として、Coの代りにPtを用いると共に加熱温度を1000℃とする以外は実施例1と同じ条件で実験を行った。そのダイヤモンド膜の表面性状を、SEMを用いて観察した結果ところ、Pt粒子が、ダイヤモンド膜の{100}面を掘削し、ダイヤモンド膜表面に対して垂直方向に延びる微細孔が多数分散形成されていることが確認できた。その微細孔の大きさは、90%以上が5〜15nmで、ほぼ揃っており、形状(断面形状)もほぼ全てが正方形若しくは矩形であった。また、隣り合う微細孔が部分的に繋がったように見えるものは少なく、その殆どが独立した形態となっていた。また微細孔の相互の間隔は平均して、13nmであった。このとき得られたダイヤモンド膜の表面性状を図7(図面代用顕微鏡写真)に示す。
[Example 3]
The experiment was performed under the same conditions as in Example 1 except that Pt was used instead of Co as the vapor deposition metal element and the heating temperature was 1000 ° C. As a result of observing the surface properties of the diamond film using an SEM, it was found that Pt particles excavated the {100} plane of the diamond film, and a large number of fine holes extending in a direction perpendicular to the diamond film surface were dispersedly formed. It was confirmed that The micropores were 90% or more in 5-15 nm, almost uniform, and the shape (cross-sectional shape) was almost all square or rectangular. Moreover, there were few things which seemed that the adjacent micropores were partially connected, and most of them became independent forms. The interval between the micropores on average was 13 nm. The surface properties of the diamond film obtained at this time are shown in FIG.

上記SEM観察から明らかなように、Co粒子を用いた場合と微細孔の深さはほぼ同程度であり、Ptの微粒子の大きさと孔の大きさはほぼ同じで、数密度は高い。また、表面積の増大率は実施例1の場合と同様に約√3倍と算出できる。このダイヤモンド膜を反射電子像で観察すると、上記と同様に基板のダイヤモンドとPtとが異なるコントラストで見えるのであるが(Ptは明るい白い点として観察される)、Ptがダイヤモンドの微細孔のほぼ全てに存在することが分かった。このときの反射電子像を図8に示す。   As is clear from the SEM observation, the depth of the micropores is almost the same as when Co particles are used, the size of the fine Pt particles and the size of the pores are almost the same, and the number density is high. Further, the increase rate of the surface area can be calculated as about √3 times as in the case of Example 1. When this diamond film is observed with a backscattered electron image, the diamond and Pt of the substrate appear to have different contrasts as described above (Pt is observed as a bright white point), but Pt is almost all of the fine pores of the diamond. It was found to exist. The reflected electron image at this time is shown in FIG.

[実施例4]
ダイヤモンド膜作製工程の全てにおいて、原料ガスにジボランを10ppm混合して作製したこと以外の条件は実施例1と同じとしてダイヤモンド膜を形成し、このダイヤモンド膜に実施例と同様にして微細孔を形成した。その結果、導電性を有する多孔性ダイヤモンド膜を作製することができた。
[Example 4]
In all of the diamond film production steps, a diamond film was formed under the same conditions as in Example 1 except that 10 ppm of diborane was mixed in the source gas, and fine holes were formed in this diamond film in the same manner as in the example. did. As a result, a porous diamond film having electrical conductivity could be produced.

[比較例1]
実施例1に記載した{100}結晶面を主体とする配向性ダイヤモンド膜(多結晶ダイヤモンド膜)の作製工程のうち、前記行程(2)までに留めると、{111}面のみからなるダイヤモンド膜ができる。このダイヤモンド膜を用いて微細孔形成を試みた。蒸着金属元素にNiを用いた試料の表面形態を、SEMを用いて観察したところ、表面がエッチングされるのは同じであるが、その形状は、多数の溝が入り乱れた形になり、{100}面で見られたようなそれぞれの微細孔が独立して分散した形状にはならなかった。また反射電子像を観察すると、Ni粒子の存在場所とエッチング部分とには規則性は認められなかった。このとき得られたダイヤモンド膜の表面性状を図9(図面代用顕微鏡写真)に示す。
また、ダイヤモンド膜の反射電子像を図10に示す。
[Comparative Example 1]
Of the steps for producing an oriented diamond film (polycrystalline diamond film) mainly composed of {100} crystal planes described in Example 1, the diamond film consisting only of {111} planes by the step (2). Can do. An attempt was made to form micropores using this diamond film. When the surface morphology of the sample using Ni as the vapor deposition metal element was observed using SEM, the surface was etched, but the shape was a disordered shape with many grooves, {100 } Each micropore as seen on the surface did not form a dispersed shape independently. Further, when the backscattered electron image was observed, regularity was not recognized between the location where the Ni particles were present and the etched portion. The surface properties of the diamond film obtained at this time are shown in FIG. 9 (drawing substitute micrograph).
FIG. 10 shows a backscattered electron image of the diamond film.

上記実施例1〜3では、ダイヤモンド膜表面に付着させる金属元素として、Co,NiおよびPtを用いる場合を示したが、金属元素としてCo、Ni、Ptの代わりに、Feを用いた場合であっても、微細孔の大きさや深さ、数密度に多少の違いはあるものの、ダイヤモンド膜表面に多数の微細孔が分散形成できる。   In the above Examples 1 to 3, the case where Co, Ni and Pt are used as the metal elements to be attached to the diamond film surface is shown, but this is the case where Fe is used as the metal element instead of Co, Ni and Pt. However, although there are some differences in the size, depth, and number density of the fine holes, a large number of fine holes can be dispersedly formed on the surface of the diamond film.

実施例1の工程(2)および工程(3)の保持時間を、夫々5時間、5時間として作製したダイヤモンド膜の表面を示す図面代用電子顕微鏡写真である。FIG. 2 is a drawing-substituting electron micrograph showing the surface of a diamond film produced by setting the holding times of step (2) and step (3) in Example 1 to 5 hours and 5 hours, respectively. 実施例1の工程(2)および工程(3)の保持時間を、夫々10時間、10時間として作製したダイヤモンド膜の表面を示す図面代用電子顕微鏡写真である。FIG. 2 is a drawing-substituting electron micrograph showing the surface of a diamond film produced with the holding times of Step (2) and Step (3) of Example 1 being 10 hours and 10 hours, respectively. Co粒子によってダイヤモンド膜表面に微細孔を形成した多孔性ダイヤモンド膜の表面性状を示す図面代用電子顕微鏡写真である。2 is a drawing-substituting electron micrograph showing the surface properties of a porous diamond film in which fine pores are formed on the surface of the diamond film by Co particles. 図3に対応する部分を反射電子像で観察した結果を示す図面代用写真である。FIG. 4 is a drawing-substituting photograph showing a result of observing a portion corresponding to FIG. 3 with a reflected electron image. Ni粒子によってダイヤモンド膜表面に微細孔を形成した多孔性ダイヤモンド膜の表面性状を示す図面代用電子顕微鏡写真である。2 is a drawing-substituting electron micrograph showing the surface properties of a porous diamond film having fine pores formed on the diamond film surface by Ni particles. 図5に対応する部分を反射電子像で観察した結果を示す図面代用写真である。6 is a drawing-substituting photograph showing a result of observing a portion corresponding to FIG. 5 with a reflected electron image. Pt粒子によってダイヤモンド膜表面に微細孔を形成した多孔性ダイヤモンド膜の表面性状を示す図面代用電子顕微鏡写真である。2 is a drawing-substituting electron micrograph showing the surface properties of a porous diamond film in which fine pores are formed on the diamond film surface by Pt particles. 図7に対応する部分を反射電子像で観察した結果を示す図面代用写真である。8 is a drawing-substituting photograph showing a result of observing a portion corresponding to FIG. 7 with a reflected electron image. {111}面のみからなるダイヤモンド膜に微細孔の形成を試みたときの多孔性ダイヤモンド膜の表面性状を示す図面代用電子顕微鏡写真である。2 is a drawing-substituting electron micrograph showing the surface properties of a porous diamond film when micropores are attempted to be formed in a diamond film consisting only of {111} planes. 図9に対応する部分を反射電子像で観察した結果を示す図面代用写真である。FIG. 10 is a drawing-substituting photograph showing a result of observing a portion corresponding to FIG. 9 with a reflected electron image. FIG.

Claims (5)

{100}結晶面を主体とする高配向性ダイヤモンド膜の表面に、該表面と平行な断面が正方形若しくは矩形である微細孔が、前記表面に対して垂直方向に延びるように多数分散形成されたものであることを特徴とする多孔性ダイヤモンド膜。   A large number of fine holes having a square or rectangular cross section parallel to the surface are formed on the surface of a highly oriented diamond film mainly composed of {100} crystal faces so as to extend in a direction perpendicular to the surface. A porous diamond film characterized by being a material. 前記微細孔は、長辺の平均長さが5〜50nmであると共に、微細孔相互の平均間隔が5〜50nmである請求項1に記載の多孔性ダイヤモンド膜。   2. The porous diamond film according to claim 1, wherein the fine holes have an average long side length of 5 to 50 nm and an average distance between the fine holes of 5 to 50 nm. 請求項1または2に記載の多孔性ダイヤモンド膜を製造するに当り、{100}結晶面を主体とする高配向性ダイヤモンド膜の表面に、Fe,Co,NiおよびPtのうちの何れかの金属元素を付着させた後、水素を含む還元性雰囲気で加熱処理することを特徴とする多孔性ダイヤモンド膜の製造方法。   In producing the porous diamond film according to claim 1 or 2, any one of Fe, Co, Ni and Pt is formed on the surface of the highly oriented diamond film mainly composed of {100} crystal planes. A method for producing a porous diamond film, wherein the element is attached and then heat-treated in a reducing atmosphere containing hydrogen. 前記金属元素の付着量が、1〜10原子層相当量である請求項3に記載の製造方法。   The manufacturing method according to claim 3, wherein the adhesion amount of the metal element is equivalent to 1 to 10 atomic layers. 前記熱処理温度が600〜1000℃である請求項3または4に記載の製造方法。   The manufacturing method according to claim 3 or 4, wherein the heat treatment temperature is 600 to 1000 ° C.
JP2006259128A 2006-09-25 2006-09-25 Porous diamond film and method for producing the same Active JP4953356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006259128A JP4953356B2 (en) 2006-09-25 2006-09-25 Porous diamond film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006259128A JP4953356B2 (en) 2006-09-25 2006-09-25 Porous diamond film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008074690A true JP2008074690A (en) 2008-04-03
JP4953356B2 JP4953356B2 (en) 2012-06-13

Family

ID=39347131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259128A Active JP4953356B2 (en) 2006-09-25 2006-09-25 Porous diamond film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4953356B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026691A (en) * 2009-06-24 2011-02-10 Shinshu Univ Electrode for electrolysis and method of manufacturing the same
US20110120890A1 (en) * 2008-05-15 2011-05-26 Julie Macpherson Conductivity sensor device comprising diamond film with at least one nanopore or micorpore
EP2333136A1 (en) * 2008-09-24 2011-06-15 Kurita Water Industries Ltd. Diamond electrode and method for manufacturing diamond electrode
KR101852975B1 (en) * 2015-05-04 2018-05-02 서울시립대학교 산학협력단 Method of treating surface of diamond
US20210363016A1 (en) * 2015-02-09 2021-11-25 Saeed Alhassan Alkhazraji Process for Manufacturing a Pure Porous 3D Diamond

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160074A (en) * 1990-10-22 1992-06-03 Toshiba Corp Diamond porous body and its production
JPH0649669A (en) * 1992-07-31 1994-02-22 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Etching method for diamond
JPH0913188A (en) * 1995-06-29 1997-01-14 Kobe Steel Ltd Diamond electrode
JP2000001393A (en) * 1998-06-12 2000-01-07 Univ Tokyo Production of diamond porous body
JP2006176389A (en) * 2004-11-29 2006-07-06 Kobe Steel Ltd Highly-oriented diamond film, method for manufacturing the same, and electronic device having highly-oriented diamond film
JP2006183102A (en) * 2004-12-28 2006-07-13 Shinshu Univ Porous diamond layer, method for producing porous diamond particle and electrode for electrochemistry using them

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160074A (en) * 1990-10-22 1992-06-03 Toshiba Corp Diamond porous body and its production
JPH0649669A (en) * 1992-07-31 1994-02-22 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Etching method for diamond
JPH0913188A (en) * 1995-06-29 1997-01-14 Kobe Steel Ltd Diamond electrode
JP2000001393A (en) * 1998-06-12 2000-01-07 Univ Tokyo Production of diamond porous body
JP2006176389A (en) * 2004-11-29 2006-07-06 Kobe Steel Ltd Highly-oriented diamond film, method for manufacturing the same, and electronic device having highly-oriented diamond film
JP2006183102A (en) * 2004-12-28 2006-07-13 Shinshu Univ Porous diamond layer, method for producing porous diamond particle and electrode for electrochemistry using them

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110120890A1 (en) * 2008-05-15 2011-05-26 Julie Macpherson Conductivity sensor device comprising diamond film with at least one nanopore or micorpore
US8409410B2 (en) * 2008-05-15 2013-04-02 University Of Warwick Conductivity sensor device comprising diamond film with at least one nanopore or micropore
EP2333136A1 (en) * 2008-09-24 2011-06-15 Kurita Water Industries Ltd. Diamond electrode and method for manufacturing diamond electrode
EP2333136A4 (en) * 2008-09-24 2013-08-28 Kurita Water Ind Ltd Diamond electrode and method for manufacturing diamond electrode
JP2011026691A (en) * 2009-06-24 2011-02-10 Shinshu Univ Electrode for electrolysis and method of manufacturing the same
US20210363016A1 (en) * 2015-02-09 2021-11-25 Saeed Alhassan Alkhazraji Process for Manufacturing a Pure Porous 3D Diamond
US12065357B2 (en) * 2015-02-09 2024-08-20 Saeed Alhassan Alkhazraji Process for manufacturing a pure porous 3D diamond
KR101852975B1 (en) * 2015-05-04 2018-05-02 서울시립대학교 산학협력단 Method of treating surface of diamond

Also Published As

Publication number Publication date
JP4953356B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
Wang et al. Fabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis: Preliminary studies of the oxygen-reduction reaction
US7545010B2 (en) Catalytic sensor structure
JP4500745B2 (en) Method for producing electrode for electrolysis
US20200048776A1 (en) Boron doped diamond electrode and preparation method and applications thereof
US20090258255A1 (en) Method for Producing Diamond Having Acicular Projection Array Structure on Surface thereof, Diamond Material, Electrode and Electronic Device
Huang et al. A facile synthesis of ZnO nanotubes and their hydrogen sensing properties
JP2007238989A (en) Method for manufacturing diamond electrode
JP4953356B2 (en) Porous diamond film and method for producing the same
JP4434658B2 (en) Structure and manufacturing method thereof
JP2016540118A (en) Electrochemical cell with graphene-covered electrode
JP2013535407A (en) Large-scale graphene sheet, article incorporating the same, composition, method and apparatus
US7566438B2 (en) Method for manufacturing nanostructured manganese oxide having dendritic structure, and oxygen reduction electrode comprising nanostructured transition metal oxide having dendritic structure
Tang et al. Two-dimensional nanoparticle self-assembly using plasma-induced Ostwald ripening
JP2005290403A (en) Electrolysis method by conductive diamond particle and method for manufacturing conductive diamond particle
JP6117118B2 (en) Method for generating hydrogen from silicon-based nanopowder
JP4756572B2 (en) Porous diamond layer, method for producing porous diamond particles, and electrochemical electrode using the same
Bayam et al. Synthesis of Ga2O3 nanorods with ultra-sharp tips for high-performance field emission devices
JP2008063607A (en) Diamond-covered substrate, electrode and method for electrochemical treatment, and manufacturing method of diamond-covered substrate
TW202002041A (en) Anodic oxidation device, anodic oxidation method, and method for manufacturing cathode for anodic oxidation device
JP2000191302A (en) Hydrogen occlusion body and production of hydrogen occlusion body
Liu et al. Electrochemical etching of n-type GaN in different electrolytes
JP2005059135A (en) Device using carbon nano-tube, and its manufacturing method
JP5245159B2 (en) Method for forming flow path in diamond substrate
JP2014065617A (en) Method of forming graphene band gaps
KR101369285B1 (en) 2D-nanostructured tungsten carbide and method for fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4953356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250