JP2008074656A - Method of manufacturing silicon carbide heater - Google Patents

Method of manufacturing silicon carbide heater Download PDF

Info

Publication number
JP2008074656A
JP2008074656A JP2006254747A JP2006254747A JP2008074656A JP 2008074656 A JP2008074656 A JP 2008074656A JP 2006254747 A JP2006254747 A JP 2006254747A JP 2006254747 A JP2006254747 A JP 2006254747A JP 2008074656 A JP2008074656 A JP 2008074656A
Authority
JP
Japan
Prior art keywords
silicon
source
silicon carbide
carbon
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006254747A
Other languages
Japanese (ja)
Inventor
Takeshi Motoyama
剛 元山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006254747A priority Critical patent/JP2008074656A/en
Publication of JP2008074656A publication Critical patent/JP2008074656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a silicon carbide heater with a complicated three-dimensional shape. <P>SOLUTION: The method of manufacturing the silicon carbide heater comprises: a step for impregnating a carbon fiber with a carbon source; and a step for impregnating the carbon fiber impregnated with the carbon source with a molten silicon source to react the carbon source with the silicon source to obtain silicon carbide heater. The step for impregnating the carbon fiber with the carbon source comprises a step for impregnating the cylindrically formed sheet like carbon fiber or a coil-likely formed carbon fiber with the carbon source. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭化ケイ素ヒータの製造方法に関する。さらに詳しくは、本発明は複雑な立体形状を備える炭化ケイ素ヒータの製造方法に関する。   The present invention relates to a method for manufacturing a silicon carbide heater. More specifically, the present invention relates to a method for manufacturing a silicon carbide heater having a complicated three-dimensional shape.

炭化ケイ素焼結体から構成されたヒータは、使用可能雰囲気が制限されずしかも急速昇温・降温特性に優れているため、半導体ウェハの各種熱処理用ヒータとして提案されている。
炭化ケイ素焼結体ヒータの製造方法の一態様としては、炭化ケイ素を含むスラリーを得る工程と、スラリーを成形型に加え溶媒を乾燥除去してグリーン体を得る工程と、グリーン体を焼成して仮成形体を得る工程と、仮成形体をさらに加熱して炭化ケイ素焼結体を得る工程と、を含むホットプレス法がある。
A heater composed of a silicon carbide sintered body has been proposed as a heater for various heat treatments of a semiconductor wafer because the usable atmosphere is not limited and is excellent in rapid temperature rise / fall characteristics.
As one aspect of the method for manufacturing a silicon carbide sintered body heater, a step of obtaining a slurry containing silicon carbide, a step of adding the slurry to a mold and drying and removing the solvent to obtain a green body, and firing the green body There is a hot press method including a step of obtaining a temporary molded body and a step of further heating the temporary molded body to obtain a silicon carbide sintered body.

ところが、炭化ケイ素焼結体はダイヤモンドに次ぐ高い強度を有することから成形加工を行うことが極めて困難である。そのため、立体形状の炭化ケイ素焼結体を得る方法として、グリーン体に成形加工を行った後に所定の工程を行うホットプレス法の変法が提案されている。かかるホットプレス法の変法によれば、成形加工の簡易化と成形加工時間の短縮化を図ることができる(例えば、特許文献1参照。)。   However, since the silicon carbide sintered body has the second highest strength after diamond, it is extremely difficult to perform the forming process. Therefore, as a method for obtaining a three-dimensional silicon carbide sintered body, a modified hot press method in which a predetermined process is performed after a green body is molded has been proposed. According to the modified hot press method, it is possible to simplify the molding process and shorten the molding process time (see, for example, Patent Document 1).

しかしながら、グリーン体は強度が弱いことから、複雑な立体形状を備える物、例えばコイル状の細い物を作製することは極めて困難であった。   However, since the strength of the green body is weak, it has been extremely difficult to produce an object having a complicated three-dimensional shape, for example, a coiled thin object.

国際公開WO03/076363A1公報International Publication WO 03 / 076363A1

複雑な立体形状を備える炭化ケイ素ヒータの製造方法が求められていた。   There has been a demand for a method of manufacturing a silicon carbide heater having a complicated three-dimensional shape.

即ち、本発明は、以下の記載事項に関する。
(1)炭素繊維に炭素源を含浸させる工程と、炭素源を含浸させた前記炭素繊維に溶融したケイ素源を含浸させ、炭素源と前記ケイ素源を反応させて炭化ケイ素ヒータを得る工程と、を含む炭化ケイ素ヒータの製造方法。
(2)炭素繊維に炭素源を含浸させる工程において、円柱状に成形したシート状の炭素繊維に炭素源を含浸させる上記(1)に記載の炭化ケイ素ヒータの製造方法。
(3)炭素繊維に炭素源を含浸させる工程において、コイル状に成形した炭素繊維に炭素源を含浸させる上記(1)に記載の炭化ケイ素ヒータの製造方法。
(4)ケイ素源は、金属ケイ素もしくはケイ素化合物である上記(1)〜(3)のいずれかに記載の炭化ケイ素ヒータの製造方法。
(5)炭素源は、フェノール樹脂である上記(1)〜(4)のいずれかに記載の炭化ケイ素ヒータの製造方法。
(6)炭素源を含浸させたプリプレグに溶融したケイ素源を含浸させ、炭素源とケイ素源を反応させて炭化ケイ素ヒータを得る工程を含む炭化ケイ素ヒータの製造方法。
(7)円柱状に成形したプリプレグにケイ素源を含浸させる上記(6)に記載の炭化ケイ素ヒータの製造方法。
(8)複数枚重ね合わせたプリプレグにケイ素源を含浸させる上記(6)に記載の炭化ケイ素ヒータの製造方法。
(9)ケイ素源は、金属ケイ素もしくはケイ素化合物である上記(6)〜(8)のいずれかに記載の炭化ケイ素ヒータの製造方法。
(10)炭素源は、フェノール樹脂である上記(6)〜(9)のいずれかに記載の炭化ケイ素ヒータの製造方法。
That is, the present invention relates to the following description items.
(1) impregnating a carbon fiber with a carbon source, impregnating the carbon fiber impregnated with a carbon source with a molten silicon source, and reacting the carbon source with the silicon source to obtain a silicon carbide heater; The manufacturing method of the silicon carbide heater containing this.
(2) The method for producing a silicon carbide heater according to (1), wherein in the step of impregnating the carbon source with the carbon fiber, the carbon source is impregnated with the sheet-like carbon fiber formed into a columnar shape.
(3) The method for producing a silicon carbide heater according to the above (1), wherein the carbon fiber is impregnated with the carbon source in the step of impregnating the carbon fiber with the carbon source.
(4) The method for producing a silicon carbide heater according to any one of (1) to (3), wherein the silicon source is metallic silicon or a silicon compound.
(5) The method for producing a silicon carbide heater according to any one of (1) to (4), wherein the carbon source is a phenol resin.
(6) A method for producing a silicon carbide heater, comprising a step of impregnating a molten silicon source into a prepreg impregnated with a carbon source and reacting the carbon source and the silicon source to obtain a silicon carbide heater.
(7) The method for producing a silicon carbide heater according to (6), wherein a silicon source is impregnated into a cylindrical prepreg.
(8) The method for producing a silicon carbide heater according to the above (6), wherein a silicon source is impregnated into a prepreg in which a plurality of sheets are overlapped.
(9) The method for producing a silicon carbide heater according to any one of (6) to (8), wherein the silicon source is metallic silicon or a silicon compound.
(10) The method for producing a silicon carbide heater according to any one of (6) to (9), wherein the carbon source is a phenol resin.

本発明によれば、複雑な立体形状を備える炭化ケイ素ヒータの製造方法が提供される。   According to the present invention, a method of manufacturing a silicon carbide heater having a complicated three-dimensional shape is provided.

以下に実施形態を挙げて本発明を説明するが、本発明が以下の実施形態に限定されないことはいうまでもない。   Hereinafter, the present invention will be described with reference to embodiments, but it goes without saying that the present invention is not limited to the following embodiments.

〔炭化ケイ素焼結体の製造方法に用いられる成分〕
本発明の実施形態にかかる炭化ケイ素ヒータの製造方法に用いられる成分について説明する。
(炭素繊維)
炭素繊維としては、特に制限はなく、ポリアクリルニトリル系、レーヨン系、ピッチ系など各種のカーボン繊維の表面を酸化処理したものを用いることができる。炭素繊維の径は太すぎると未反応の炭素繊維が残り易いため10μm以下が好ましい。なお、原料の混合粉体中におけるシリコン粉末の割合は炭素源由来の炭素量およびカーボン繊維をケイ素化する化学当量以上になるように設定することがより好ましい。
[Components used in the method for producing a silicon carbide sintered body]
The component used for the manufacturing method of the silicon carbide heater concerning embodiment of this invention is demonstrated.
(Carbon fiber)
There is no restriction | limiting in particular as carbon fiber, The thing which oxidized the surface of various carbon fibers, such as a polyacrylonitrile type | system | group, a rayon type | system | group, and a pitch type | system | group, can be used. If the diameter of the carbon fiber is too large, unreacted carbon fiber is likely to remain, and is preferably 10 μm or less. In addition, it is more preferable that the ratio of the silicon powder in the raw material mixed powder is set so as to be equal to or more than the amount of carbon derived from the carbon source and the chemical equivalent for siliciding the carbon fiber.

(炭素源)
炭素源としては、加熱により炭素を生ずる有機化合物を用いることが好ましい。炭素源としては例えばフェノール樹脂、エポキシ樹脂等の熱硬化性樹脂を用いることができる。
(Carbon source)
As the carbon source, it is preferable to use an organic compound that generates carbon by heating. As the carbon source, for example, a thermosetting resin such as a phenol resin or an epoxy resin can be used.

(ケイ素源)
ケイ素源としては金属ケイ素粉末を用いることができる。ケイ素化合物を含むケイ素源(以下、「ケイ素源」という。)としては、液状のものと固体のものとを併用することができるが、少なくとも1種は液状のものから選ばれなくてはならない。液状のものとしては、アルコキシシラン(モノ−、ジ−、トリ−、テトラ−)及びテトラアルコキシシランの重合体が用いられる。アルコキシシランの中ではテトラアルコキシシランが好適に用いられ、具体的には、メトキシシラン、エトキシシラン、プロポキシシラン、ブトキシシラン等が挙げられるが、ハンドリングの点からは、エトキシシランが好ましい。また、テトラアルコキシシランの重合体としては、重合度が2〜15程度の低分子量重合体(オリゴマー)及びさらに重合度が高いケイ酸ポリマーで液状のものが挙げられる。これらと併用可能な固体状のものとしては、酸化ケイ素が挙げられる。上記反応焼結法において酸化ケイ素とは、SiOの他、シリカゲル(コロイド状超微細シリカ含有液、内部にOH基やアルコキシル基を含む)、二酸化ケイ素(シリカゲル、微細シリカ、石英粉末)等を含む。これらケイ素源は、単独で用いてもよいし、2種以上併用してもよい。
(Silicon source)
Metallic silicon powder can be used as the silicon source. As a silicon source containing a silicon compound (hereinafter referred to as “silicon source”), a liquid source and a solid source can be used in combination, but at least one of them must be selected from a liquid source. As the liquid, alkoxysilane (mono-, di-, tri-, tetra-) and tetraalkoxysilane polymers are used. Among the alkoxysilanes, tetraalkoxysilane is preferably used, and specific examples include methoxysilane, ethoxysilane, propoxysilane, butoxysilane, and the like. From the viewpoint of handling, ethoxysilane is preferable. Examples of the tetraalkoxysilane polymer include a low molecular weight polymer (oligomer) having a degree of polymerization of about 2 to 15 and a silicate polymer having a higher degree of polymerization, which are liquid. Examples of solid materials that can be used in combination with these include silicon oxide. In the above reaction sintering method, silicon oxide includes silica gel (liquid containing colloidal ultrafine silica, containing OH group or alkoxyl group), silicon dioxide (silica gel, fine silica, quartz powder), etc. in addition to SiO. . These silicon sources may be used alone or in combination of two or more.

これらケイ素源の中でも、均質性やハンドリング性が良好な観点から、テトラエトキシシランのオリゴマー及びテトラエトキシシランのオリゴマーと微粉末シリカとの混合物等が好適である。また、これらのケイ素源は高純度の物質が用いられ、初期の不純物含有量が20ppm以下であることが好ましく、5ppm以下であることがさらに好ましい。   Among these silicon sources, from the viewpoint of good homogeneity and handling properties, an oligomer of tetraethoxysilane, a mixture of an oligomer of tetraethoxysilane and fine powder silica, and the like are preferable. These silicon sources are high-purity substances, and the initial impurity content is preferably 20 ppm or less, more preferably 5 ppm or less.

炭素源として用いられる物質は、酸素を分子内に含有し、加熱により炭素を残留する高純度有機化合物であることが好ましい。具体的には、フェノール樹脂、フラン樹脂、エポキシ樹脂、フェノキシ樹脂やグルコース等の単糖類、蔗糖等の少糖類、セルロース、デンプン等の多糖類などの等の各種糖類が挙げられる。これらはケイ素源と均質に混合するという目的から、常温で液状のもの、溶媒に溶解するもの、熱可塑性あるいは熱融解性のように加熱することにより軟化するものあるいは液状となるものが主に用いられる。なかでも、レゾール型フェノール樹脂やノボラック型フェノール樹脂が好適である。特に、レゾール型フェノール樹脂が好適に使用される。   The substance used as the carbon source is preferably a high-purity organic compound that contains oxygen in the molecule and remains carbon by heating. Specific examples include various sugars such as phenol resin, furan resin, epoxy resin, phenoxy resin, monosaccharides such as glucose, oligosaccharides such as sucrose, polysaccharides such as cellulose and starch. For the purpose of homogeneously mixing with the silicon source, these are mainly used in liquid form at room temperature, those that dissolve in a solvent, those that soften or become liquid when heated, such as thermoplasticity or heat melting properties. It is done. Of these, resol type phenol resins and novolac type phenol resins are preferred. In particular, a resol type phenol resin is preferably used.

(炭化ケイ素ヒータの製造方法)
(実施形態)
実施形態にかかる炭化ケイ素ヒータの製造方法は、(イ)炭素繊維を所望の形状に成形する工程と、(ロ)炭素繊維に炭素源を含浸させる工程と、(ハ)炭素源を含浸させた炭素繊維に溶融したケイ素源を含浸させ、炭素源とケイ素源を反応させて炭化ケイ素ヒータを得る工程と、を含む。各工程毎に詳細に説明する。
(Method for producing silicon carbide heater)
(Embodiment)
The manufacturing method of the silicon carbide heater according to the embodiment includes (a) a step of molding carbon fiber into a desired shape, (b) a step of impregnating the carbon fiber with the carbon source, and (c) impregnating the carbon source. Impregnating a carbon fiber with a molten silicon source and reacting the carbon source and the silicon source to obtain a silicon carbide heater. Each step will be described in detail.

(イ)炭素繊維を所望の形状に成形する。例えばシート状の炭素繊維を棒状体に巻きつけることにより、炭素繊維を円柱状に成形することができる。その他にも、紐状又は帯状の炭素繊維を棒状体に巻きつけることにより、コイル状に成形することも可能である。
(ロ)炭素繊維に炭素源を含浸させる。その後、真空炉もしくは雰囲気炉において炭素繊維に含浸させた炭素源を炭化する。炭素源としてはフェノール樹脂及びエポキシ樹脂のいずれか一方を用いることが好ましい。この場合、炭素繊維に炭素源を含浸させた後に炭素源を加熱又は放射線により硬化させた後に炭化させることが好ましい。
(ハ)炭素源を含浸させた炭素繊維に溶融したケイ素源を含浸させる。そして、炭素繊維や含浸した樹脂の炭化物とケイ素源を反応させる。ケイ素源としては、金属ケイ素もしくはケイ素化合物を用いることができる。炭素源を含浸させた炭素繊維に溶融したケイ素源を含浸させる他にも、ケイ素ガスを炭素繊維に吹き付ける方法もある。
(A) The carbon fiber is formed into a desired shape. For example, by winding a sheet-like carbon fiber around a rod-shaped body, the carbon fiber can be formed into a columnar shape. In addition, it is also possible to form a coil shape by winding a string-like or belt-like carbon fiber around a rod-like body.
(B) Impregnating carbon fiber with a carbon source. Thereafter, the carbon source impregnated in the carbon fiber is carbonized in a vacuum furnace or an atmospheric furnace. As the carbon source, it is preferable to use either a phenol resin or an epoxy resin. In this case, it is preferable that carbon fiber is impregnated with carbon source and then carbonized after being heated or cured by radiation.
(C) impregnating a carbon source impregnated with a carbon source with a molten silicon source; Then, the carbon source and the carbide of the impregnated resin are reacted with the silicon source. As the silicon source, metallic silicon or a silicon compound can be used. In addition to impregnating the melted silicon source into the carbon fiber impregnated with the carbon source, there is a method of blowing silicon gas onto the carbon fiber.

実施形態にかかる炭化ケイ素ヒータの製造方法によれば、従来困難であった円筒状やコイル状等といった複雑な立体形状を備える炭化ケイ素ヒータを製造することができる。(ロ)工程で得られた成形品は炭素繊維と樹脂で出来ているため破損しにくくハンドリングしやすい。   According to the method for manufacturing a silicon carbide heater according to the embodiment, it is possible to manufacture a silicon carbide heater having a complicated three-dimensional shape such as a cylindrical shape or a coil shape, which has been difficult in the past. (B) Since the molded product obtained in the process is made of carbon fiber and resin, it is hard to break and easy to handle.

上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。以下に実施形態の変形例を例示する。   As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. The modification of embodiment is illustrated below.

(実施形態の変形例1)
例えば、実施形態にかかる炭化ケイ素ヒータの製造方法の変形例1としては、(イ)炭素源を含浸させたプリプレグを所望の形状に成形する工程と、(ロ)炭素源を含浸させたプリプレグに溶融したケイ素源を含浸させ、炭素源とケイ素源を反応させて炭化ケイ素ヒータを得る工程と、を含む炭化ケイ素ヒータの製造方法が挙げられる。各工程毎に詳細に説明する。
(Modification 1 of embodiment)
For example, as a first modification of the method for manufacturing a silicon carbide heater according to the embodiment, (a) a step of forming a prepreg impregnated with a carbon source into a desired shape, and (b) a prepreg impregnated with a carbon source And a step of impregnating a molten silicon source and reacting a carbon source and a silicon source to obtain a silicon carbide heater. Each step will be described in detail.

(イ)プリプレグを所望の形状に成形する。例えば実施形態の(イ)工程と同様にして円柱状、コイル状に成形する。またプリプレグを複数枚重ね合わせた後プレス成形し、硬化後機械で精密に加工することにより目的の形状としても構わない。その後、実施形態の(ロ)工程と同様にして炭素源を炭化する。
(ロ)実施形態の(ハ)工程と同様にして、炭素源を含浸させたプリプレグに溶融したケイ素源を含浸させ、そして炭素繊維や含浸した樹脂の炭化物とケイ素源を反応させる。
(A) A prepreg is formed into a desired shape. For example, it is formed into a cylindrical shape or a coil shape in the same manner as in the step (a) of the embodiment. Alternatively, a plurality of prepregs may be stacked and then press-molded, and after curing, processed precisely with a machine to obtain a desired shape. Thereafter, the carbon source is carbonized in the same manner as in the step (b) of the embodiment.
(B) In the same manner as in the step (c) of the embodiment, the molten silicon source is impregnated into the prepreg impregnated with the carbon source, and the carbon source and the carbide of the impregnated resin are reacted with the silicon source.

実施形態においては、炭素繊維を所望の形状に成形した後に、炭素繊維に炭素源を含浸させていた。ところが、実施形態の変形例においては、予め炭素源を含浸させておいたプリプレグを所望の形状に成形する。そのため、炭素源を含浸させる工程を省略できることから生産工程の簡略化と生産時間の短縮を図ることができる。   In the embodiment, after forming the carbon fiber into a desired shape, the carbon fiber is impregnated with the carbon source. However, in a modification of the embodiment, a prepreg impregnated with a carbon source in advance is formed into a desired shape. Therefore, since the step of impregnating the carbon source can be omitted, the production process can be simplified and the production time can be shortened.

(実施形態の変形例2)
実施形態においては、円筒状やコイル状等といった複雑な立体形状を備える炭化ケイ素ヒータの製造方法を例示した。しかし、織物状の炭素繊維を重ね合わせた後に樹脂を含浸させて炭素繊維同士を接合させた後に面状のヒータに切り出しても構わない。更に切り出したヒータの電極用にパイプ状の炭化ケイ素ヒータを接合しても良い。
実施形態を変形することにより、炭化ケイ素ヒータの形状を自由に設計することができることにより、炭化ケイ素ヒータの用途が拡大する。
(Modification 2 of embodiment)
In the embodiment, a method for manufacturing a silicon carbide heater having a complicated three-dimensional shape such as a cylindrical shape or a coil shape is illustrated. However, after superposing woven carbon fibers, the resin may be impregnated to bond the carbon fibers together, and then cut into a planar heater. Further, a pipe-like silicon carbide heater may be joined to the cut out heater electrode.
By modifying the embodiment, the shape of the silicon carbide heater can be freely designed, so that the application of the silicon carbide heater is expanded.

このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

(炭化ケイ素ヒータ)
上記の製造方法により得られる炭化ケイ素ヒータの主な物性について列記すると以下の通りである。例えば、曲げ強度は100MPa以上、好ましくは150MPa以上である。熱伝導率は100W/mk以上、密度は2.0〜3.0g/cm3以上、好ましくは2.2〜2.9g/cm3、体積固有抵抗は室温において0.01〜0.1Ω・cmであり、1000℃において0.01〜0.001Ω・cmある。
(Silicon carbide heater)
The main physical properties of the silicon carbide heater obtained by the above manufacturing method are listed as follows. For example, the bending strength is 100 MPa or more, preferably 150 MPa or more. The thermal conductivity is 100 W / mk or more, the density is 2.0 to 3.0 g / cm 3 or more, preferably 2.2 to 2.9 g / cm 3 , and the volume resistivity is 0.01 to 0.1 Ω · at room temperature. cm, and 0.01 to 0.001 Ω · cm at 1000 ° C.

(実施例1)
直径1mmの炭素繊維製組紐(繊維径7μm)を直径8mmの丸棒に巻き付けフィラメント状にした。炭素繊維製組紐の両端部を100mm程度真直ぐに伸ばして固定した。固定した炭素繊維製組紐にフェノール樹脂を10wt.%溶解したエタノール溶液を含浸させた。その後、フェノール樹脂を含浸した炭素繊維製組紐を温度130℃に設定された乾燥機に入れフェノール樹脂を熱硬化させ、炭素繊維製組紐の形状をフィラメント状に固定した。炭素繊維製組紐の両端部を金属シリコンを入れた坩堝内に置き、雰囲気炉中で1500℃、窒素圧力100Paで3時間加熱し溶融したシリコンを含浸し炭素繊維と反応させ炭化ケイ素化した。出来上がったフィラメント状の炭化ケイ素ヒータは大部分が炭化ケイ素から成り、一部が反応し残った炭素繊維と炭素繊維の隙間に入った金属シリコンから成っていた。
(Example 1)
A braid made of carbon fiber having a diameter of 1 mm (fiber diameter: 7 μm) was wound around a round bar having a diameter of 8 mm to form a filament. Both ends of the carbon fiber braid were straightened and fixed about 100 mm. 10 wt. Of phenolic resin is attached to the fixed carbon fiber braid. % Ethanol solution was impregnated. Thereafter, the carbon fiber braid impregnated with the phenol resin was placed in a dryer set at a temperature of 130 ° C., the phenol resin was thermoset, and the shape of the carbon fiber braid was fixed in a filament shape. Both ends of the carbon fiber braid were placed in a crucible containing metal silicon, heated in an atmosphere furnace at 1500 ° C. under a nitrogen pressure of 100 Pa for 3 hours, impregnated with molten silicon, reacted with carbon fiber to form silicon carbide. The finished filament-like silicon carbide heater was mostly made of silicon carbide, and partly made of carbon silicon remaining in the reaction and metallic silicon in the gap between the carbon fibers.

(実施例2)
シート状炭素繊維に樹脂を含浸したプリプレグを用意した。プリペレグを内径8mm、外径10mm、長さ300mmの型に巻いて円筒状とした。更にプリプレグの両端の100mmにプリプレグを巻き付け外径14mmとし、乾燥機で130℃で加熱し樹脂を熱硬化し棒状のヒータ形状とした。両端にケイ素を含浸するための炭素繊維紐を取り付け、炭素繊維紐を金属ケイ素を入れた坩堝内に置き、雰囲気炉で1500℃、窒素圧力100Paで3時間加熱し溶融したケイ素を含浸し炭素繊維と反応させて炭化ケイ素ヒータを得た。得られた棒状の炭化ケイ素ヒータは実施例1と同様の組織であった。
(Example 2)
A prepreg in which a sheet-like carbon fiber was impregnated with a resin was prepared. The prepreg was wound around a mold having an inner diameter of 8 mm, an outer diameter of 10 mm, and a length of 300 mm to form a cylindrical shape. Further, the prepreg was wound around 100 mm at both ends of the prepreg so as to have an outer diameter of 14 mm, and heated at 130 ° C. with a dryer to thermally cure the resin to obtain a rod-like heater shape. A carbon fiber string for impregnating silicon is attached to both ends, the carbon fiber string is placed in a crucible containing metal silicon, heated in an atmosphere furnace at 1500 ° C. and a nitrogen pressure of 100 Pa for 3 hours, and impregnated with molten silicon to be carbon fiber To obtain a silicon carbide heater. The obtained rod-shaped silicon carbide heater had the same structure as in Example 1.

(実施例3)
シート状炭素繊維に樹脂を含浸したプリプレグを用意した。用意したプリペレグを重ね合わせて厚さ1mmのシートとした。その後乾燥機で130℃で加熱し樹脂を熱硬化させた。熱硬化させたプリプレグを平面状のエレメント形状に加工した。次にシートを内径8mm、外径12mmに丸め、長さ100mmの円筒状の丸棒を作製した。その後乾燥機で130℃に加熱し樹脂を熱硬化させた。エレメント両端部に丸棒を接着しヒータ形状とした。丸棒の両端にシリコンを含浸するための炭素繊維紐を取り付け、炭素繊維紐を金属シリコンを入れた坩堝内に置き、雰囲気炉中で1500℃、窒素圧力100Paで3時間加熱し溶融したシリコンを含浸し炭素繊維と反応させ炭化ケイ素ヒータを得た。得られた炭化ケイ素ヒータは実施例1と同様の組織であった。
(Example 3)
A prepreg in which a sheet-like carbon fiber was impregnated with a resin was prepared. The prepared prepregs were superposed to form a 1 mm thick sheet. Thereafter, the resin was thermally cured by heating at 130 ° C. with a dryer. The thermoset prepreg was processed into a planar element shape. Next, the sheet was rolled to an inner diameter of 8 mm and an outer diameter of 12 mm to produce a cylindrical round bar having a length of 100 mm. Thereafter, the resin was heated to 130 ° C. with a dryer to thermally cure the resin. A round bar was bonded to both ends of the element to form a heater. A carbon fiber string for impregnating silicon is attached to both ends of the round bar, the carbon fiber string is placed in a crucible containing metal silicon, and the molten silicon is heated in an atmosphere furnace at 1500 ° C. and a nitrogen pressure of 100 Pa for 3 hours. The silicon carbide heater was obtained by impregnation and reaction with carbon fiber. The obtained silicon carbide heater had the same structure as in Example 1.

Claims (10)

炭素繊維に炭素源を含浸させる工程と、
前記炭素源を含浸させた前記炭素繊維に溶融したケイ素源を含浸させ、前記炭素源と前記ケイ素源を反応させて炭化ケイ素ヒータを得る工程と、
を含むことを特徴とする炭化ケイ素ヒータの製造方法。
Impregnating carbon fiber with a carbon source;
Impregnating the carbon fiber impregnated with the carbon source with a molten silicon source, and reacting the carbon source with the silicon source to obtain a silicon carbide heater;
A method for producing a silicon carbide heater, comprising:
前記炭素繊維に前記炭素源を含浸させる工程において、円柱状に成形したシート状の炭素繊維に前記炭素源を含浸させることを特徴とする請求項1に記載の炭化ケイ素ヒータの製造方法。   2. The method for manufacturing a silicon carbide heater according to claim 1, wherein in the step of impregnating the carbon source into the carbon fiber, the carbon source is impregnated into a sheet-like carbon fiber formed into a columnar shape. 前記炭素繊維に前記炭素源を含浸させる工程において、コイル状に成形した炭素繊維に前記炭素源を含浸させることを特徴とする請求項1に記載の炭化ケイ素ヒータの製造方法。   2. The method of manufacturing a silicon carbide heater according to claim 1, wherein in the step of impregnating the carbon source with the carbon fiber, the carbon source is impregnated with the carbon fiber formed in a coil shape. 前記ケイ素源は、金属ケイ素もしくはケイ素化合物であることを特徴とする請求項1〜3のいずれかに記載の炭化ケイ素ヒータの製造方法。   The method for manufacturing a silicon carbide heater according to claim 1, wherein the silicon source is metallic silicon or a silicon compound. 前記炭素源は、フェノール樹脂であることを特徴とする請求項1〜4のいずれかに記載の炭化ケイ素ヒータの製造方法。   The said carbon source is a phenol resin, The manufacturing method of the silicon carbide heater in any one of Claims 1-4 characterized by the above-mentioned. 炭素源を含浸させたプリプレグに溶融したケイ素源を含浸させ、前記炭素源と前記ケイ素源を反応させて炭化ケイ素ヒータを得る工程を含むことを特徴とする炭化ケイ素ヒータの製造方法。   A method for producing a silicon carbide heater, comprising: impregnating a molten silicon source into a prepreg impregnated with a carbon source, and reacting the carbon source with the silicon source to obtain a silicon carbide heater. 円柱状に成形した前記プリプレグに前記ケイ素源を含浸させることを特徴とする請求項6に記載の炭化ケイ素ヒータの製造方法。   The method for manufacturing a silicon carbide heater according to claim 6, wherein the silicon source is impregnated into the prepreg formed into a columnar shape. 複数枚重ね合わせた前記プリプレグに前記ケイ素源を含浸させることを特徴とする請求項6に記載の炭化ケイ素ヒータの製造方法。   The method for manufacturing a silicon carbide heater according to claim 6, wherein the silicon source is impregnated into a plurality of the prepregs stacked together. 前記ケイ素源は、金属ケイ素もしくはケイ素化合物であることを特徴とする請求項6〜8のいずれかに記載の炭化ケイ素ヒータの製造方法。   The method for producing a silicon carbide heater according to claim 6, wherein the silicon source is metallic silicon or a silicon compound. 前記炭素源は、フェノール樹脂であることを特徴とする請求項6〜9のいずれかに記載の炭化ケイ素ヒータの製造方法。   The said carbon source is a phenol resin, The manufacturing method of the silicon carbide heater in any one of Claims 6-9 characterized by the above-mentioned.
JP2006254747A 2006-09-20 2006-09-20 Method of manufacturing silicon carbide heater Pending JP2008074656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006254747A JP2008074656A (en) 2006-09-20 2006-09-20 Method of manufacturing silicon carbide heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006254747A JP2008074656A (en) 2006-09-20 2006-09-20 Method of manufacturing silicon carbide heater

Publications (1)

Publication Number Publication Date
JP2008074656A true JP2008074656A (en) 2008-04-03

Family

ID=39347100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006254747A Pending JP2008074656A (en) 2006-09-20 2006-09-20 Method of manufacturing silicon carbide heater

Country Status (1)

Country Link
JP (1) JP2008074656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019119609A1 (en) * 2017-12-21 2019-06-27 深圳市卓力能电子有限公司 Preparation process for novel porous heating ceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019119609A1 (en) * 2017-12-21 2019-06-27 深圳市卓力能电子有限公司 Preparation process for novel porous heating ceramic

Similar Documents

Publication Publication Date Title
KR101660965B1 (en) Thermal insulation and method of producing the same
KR101608497B1 (en) Thermal insulation and method of producing the same
JP6732732B2 (en) Method for producing hydrophobic heat insulating molded article
WO2007119526A1 (en) In-line heater and method for manufacturing same
TWI403490B (en) Thermal insulating material and method for manufacturing the same
JP6321814B2 (en) Benzimidazole airgel materials
JPH0365527A (en) Silicon oxicarbide glass and its article
JP5819947B2 (en) Ceramic sintered body and method for producing ceramic sintered body
JP2009544865A5 (en)
JP6055842B2 (en) Glass fiber board containing inorganic binder and method for producing the same
JPH05186266A (en) Production of carbon fiber-reinforced silicon carbide composite ceramic
WO2004043876A1 (en) Silicon carbide sintered product and method for production thereof
KR20130104754A (en) Thermal conductive resin composites comprising carbon nano tubes and method of preparing the same
KR101130184B1 (en) Continuous Manufacturing Process for the Core of Vacuum Heat Insulator
US20150099120A1 (en) Spherical silicon carbide powder and a method for manufacturing same
KR102149834B1 (en) A method for manufacturing of a porous silicon carbide sintered body by carbothermal reduction process
JP2013535395A (en) Silicon carbide and method for producing the same
JP2008074656A (en) Method of manufacturing silicon carbide heater
CN108863390A (en) Carbon complex composition and the carbon heater manufactured using it
WO2006057404A1 (en) Heater unit
JP2008143748A (en) Silicon carbide sintered compact free from warp and method for producing the same
KR100673432B1 (en) Method for preparation of a carbon composite containing carbon nanotube
JP4619118B2 (en) Sputtering target and manufacturing method thereof
JP2002255664A (en) C/c composite material and production method therefor
JP5130099B2 (en) Method for producing sintered silicon carbide