JP2008074628A - Metal-containing composite structure and method of manufacturing the same - Google Patents

Metal-containing composite structure and method of manufacturing the same Download PDF

Info

Publication number
JP2008074628A
JP2008074628A JP2006252032A JP2006252032A JP2008074628A JP 2008074628 A JP2008074628 A JP 2008074628A JP 2006252032 A JP2006252032 A JP 2006252032A JP 2006252032 A JP2006252032 A JP 2006252032A JP 2008074628 A JP2008074628 A JP 2008074628A
Authority
JP
Japan
Prior art keywords
metal
cnt
cnf
solution
network structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006252032A
Other languages
Japanese (ja)
Other versions
JP5145603B2 (en
Inventor
Wataru Ueda
渉 上田
Hitoshi Ogiwara
仁志 荻原
Masahiro Sadakane
正洋 定金
Kiyuuichiro Uchida
久一朗 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Tosco Co Ltd
Original Assignee
Hokkaido University NUC
Tosco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Tosco Co Ltd filed Critical Hokkaido University NUC
Priority to JP2006252032A priority Critical patent/JP5145603B2/en
Publication of JP2008074628A publication Critical patent/JP2008074628A/en
Application granted granted Critical
Publication of JP5145603B2 publication Critical patent/JP5145603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal-containing composite structure manufactured without being restricted by the composition or the shape of a base material and further the kind of a metal (including oxide or the like) to be applied on the surface and a method of manufacturing the same. <P>SOLUTION: A network structure of carbon nanotube and/or carbon nanofiber is used as a lost pattern mold and metal-containing net-like structure 4 formed on the outside surface of the mold is provided on the surface of a base material 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、基材表面に含金属構造が形成された複合構造体及びその製造方法に関する。   The present invention relates to a composite structure in which a metal-containing structure is formed on a substrate surface and a method for manufacturing the same.

金属酸化物の機能(触媒機能等)を向上させるためには、その比表面積を増大させることが有効である。そこで、界面活性剤をテンプレート(鋳型)として用い、金属酸化物の微細構造を形成する技術が以下のように報告されている。まず、界面活性剤が金属酸化物をメソポーラス構造を持つよう組織化することに着目し、金属アルコキシドの有機溶媒溶液と界面活性剤とを加え、アルコキシドをゾルゲル法によってメソポーラス状に固化した後、界面活性剤を水洗によって取り除く技術がある(特許文献1)。又、金属アルコキシドの有機溶媒溶液と、界面活性剤と、水とを接触させて混合し、ゾルゲル法によって固化させることにより、ナノチューブ状の金属酸化物構造体を得る技術がある(特許文献2)。
一方、例えば炭素繊維表面に金属酸化物をコーティングする技術がある(特許文献3)。
In order to improve the function (catalyst function, etc.) of the metal oxide, it is effective to increase its specific surface area. Therefore, a technique for forming a metal oxide fine structure using a surfactant as a template has been reported as follows. First, focusing on the fact that the surfactant organizes the metal oxide to have a mesoporous structure, an organic solvent solution of the metal alkoxide and the surfactant are added, and the alkoxide is solidified into a mesoporous form by the sol-gel method. There is a technique for removing an activator by washing with water (Patent Document 1). In addition, there is a technique for obtaining a nanotube-shaped metal oxide structure by bringing an organic solvent solution of a metal alkoxide, a surfactant, and water into contact and mixing, and solidifying by a sol-gel method (Patent Document 2). .
On the other hand, for example, there is a technique of coating a metal oxide on a carbon fiber surface (Patent Document 3).

特開2003-277062号公報JP 2003-277062 A 特開2003-034531号公報JP2003-034531 特開2002-180370号公報JP 2002-180370 A

しかしながら、上記した特許文献1、2記載の技術の場合、ゾルゲル法によるアルコキシドの固化に数日以上を要するため、二種以上の金属アルコキシドを用いると各アルコキシドの加水分解速度に差が生じ、複合金属酸化物の製造が困難になるという問題がある。又、固化時間が長くなると生産効率も低下する。
又、これらの方法の場合、溶液中の界面活性剤を鋳型とするため、金属酸化物構造体の単体を得ることはできるが、基材表面に金属酸化物構造体を形成させることができない。
However, in the case of the techniques described in Patent Documents 1 and 2 described above, it takes several days or more to solidify the alkoxide by the sol-gel method. There exists a problem that manufacture of a metal oxide becomes difficult. In addition, the production efficiency decreases as the solidification time increases.
In these methods, since the surfactant in the solution is used as a template, a single metal oxide structure can be obtained, but the metal oxide structure cannot be formed on the substrate surface.

一方、例えばシリカファイバー等の繊維の表面に金属酸化物をコーティングすることは困難とされており、このような基材表面に金属酸化物を均一にコーティングする技術が要望されている。つまり、基材の組成や形状の制約を受けず、又、コーティングされる金属(酸化物)の種類の制約を受けない汎用性の高いコーティング手法が要望されている。
すなわち、本発明は、基材の組成や形状の制約を受けず、又、その表面に被覆する金属等(酸化物等を含む)の種類の制約を受けずに金属等を基材表面に均一に被覆できる含金属複合構造体及びその製造方法の提供を目的とする。
On the other hand, for example, it is difficult to coat a metal oxide on the surface of a fiber such as silica fiber, and a technique for uniformly coating the metal oxide on the surface of such a substrate is desired. That is, there is a demand for a highly versatile coating technique that is not subject to restrictions on the composition and shape of the substrate and that is not restricted by the type of metal (oxide) to be coated.
That is, the present invention is not subject to restrictions on the composition and shape of the base material, and is uniform on the base material surface without being restricted by the type of metal or the like (including oxides) coated on the surface. An object of the present invention is to provide a metal-containing composite structure that can be coated on the surface and a method for producing the same.

このような課題を解決するために、本発明の含金属複合構造体は、基材表面に、カーボンナノチューブ及び/又はカーボンナノファイバーの網目構造を消失性鋳型とし該鋳型の表面の外側に形成された含金属網目構造を有することを特徴とする。   In order to solve such a problem, the metal-containing composite structure of the present invention is formed on the surface of the base material on the outside of the surface of the template using the network structure of carbon nanotubes and / or carbon nanofibers as a vanishing template. It has a metal-containing network structure.

本発明の含金属複合構造体の製造方法は、基材表面に部分的に触媒金属を担持する工程と、前記金属触媒を担持した基材に炭素源となるガスを導入し、前記触媒金属表面にカーボンナノチューブ及び/又はカーボンナノファイバーを網目状に成長させる工程と、前記カーボンナノチューブ及び/又はカーボンナノファイバーの少なくとも表面に金属塩の溶液又は金属アルコキシドの溶液を保持させる工程と、前記溶液を保持した前記カーボンナノチューブ及び/又はカーボンナノファイバーを加熱して消失させ、前記溶液中の金属を含む含金属網目構造を前記基材表面に生成させる工程とを有することを特徴とする。   The method for producing a metal-containing composite structure of the present invention comprises a step of partially supporting a catalytic metal on the surface of a base material, a gas serving as a carbon source being introduced into the base material supporting the metal catalyst, A step of growing carbon nanotubes and / or carbon nanofibers in a network, a step of holding a metal salt solution or a metal alkoxide solution on at least the surface of the carbon nanotubes and / or carbon nanofibers, and holding the solution The carbon nanotubes and / or carbon nanofibers are heated to disappear, and a metal-containing network structure containing the metal in the solution is generated on the surface of the substrate.

本発明の含金属複合構造体の製造方法において、前記含金属網目構造をさらに酸化、窒化、硫化、又は還元する工程を有することが好ましい。   In the method for producing a metal-containing composite structure of the present invention, it is preferable to further include a step of oxidizing, nitriding, sulfiding, or reducing the metal-containing network structure.

この発明によれば、基材の組成や形状の制約を受けず、又、その表面に被覆する金属等(酸化物等を含む)の種類の制約を受けずに金属等を基材表面に均一に被覆できる。   According to the present invention, the metal or the like is uniformly applied to the surface of the base material without being restricted by the composition and shape of the base material, and without being restricted by the type of metal or the like (including oxides) coated on the surface. Can be coated.

<含金属複合構造体>
本発明の含金属複合構造体は、基材表面に、カーボンナノチューブ及び/又はカーボンナノファイバーの網目構造を消失性鋳型とし該鋳型の表面の外側に形成された含金属網目構造を有する。
なお、以下の説明では、カーボンナノチューブ及び/又はカーボンナノファイバーを総称して「CNT/CNF」と略記する。
<Metal-containing composite structure>
The metal-containing composite structure of the present invention has a metal-containing network structure formed on the outer surface of the surface of the base material using the network structure of carbon nanotubes and / or carbon nanofibers as a disappearing template.
In the following description, carbon nanotubes and / or carbon nanofibers are generically abbreviated as “CNT / CNF”.

(基材)
基材としては、例えば、各種無機ファイバー(石英ファイバー、シリカファイバー)、石英、アルミナ、シリコン酸化物の板等の各種無機材料が挙げられる。基材の形状も板状、ファイバー状等、特に制限されない。特に、後述する炭素源と反応せず、触媒金属とも反応しない材料であればよい。
(Base material)
Examples of the base material include various inorganic materials such as various inorganic fibers (quartz fiber, silica fiber), quartz, alumina, and a silicon oxide plate. The shape of the substrate is not particularly limited, such as a plate shape or a fiber shape. In particular, any material that does not react with the carbon source described later and does not react with the catalyst metal may be used.

(CNT/CNFの網目構造)
CNT/CNFは網目構造を形成する。網目構造(網目状)とは、基材表面に複数本成長したCNT/CNFが相互に絡み合った構造をいう。CNT/CNFの長さがある程度以上ないと、網目構造が得られない。CNT/CNFの長さを厳密に規定することはできないが、通常0.1−30 μm程度である。又、CNT/CNFの直径は通常、10−200 nm程度であり、隣接するCNT/CNF同士の間隙は通常、20 nm−2 μm程度である。
なお、CNT/CNFが基材上にまっすぐ(直毛)成長し、互いに接点を有しない場合は本発明の網目構造に含まない。このような場合、CNT/CNFを鋳型とする含金属構造体もそれぞれまっすぐなチューブ状となり、他のチューブと接しないために強度が低くなって折れやすいという問題がある。
又、基材表面からのCNT/CNFの網目構造の厚みはCNT/CNFの長さにほぼ対応し,0.1−30 μm程度である。
(CNT / CNF network structure)
CNT / CNF forms a network structure. The network structure (network-like) refers to a structure in which a plurality of CNT / CNF grown on the surface of a substrate are intertwined with each other. If the length of CNT / CNF is not more than a certain level, a network structure cannot be obtained. Although the length of CNT / CNF cannot be strictly defined, it is usually about 0.1-30 μm. The diameter of CNT / CNF is usually about 10-200 nm, and the gap between adjacent CNT / CNF is usually about 20 nm-2 μm.
In addition, when CNT / CNF grows straight (straight hair) on a base material and does not have a contact with each other, it is not included in the network structure of the present invention. In such a case, each of the metal-containing structures using CNT / CNF as a mold also has a straight tube shape, and there is a problem that the strength is low because it is not in contact with other tubes and is easily broken.
The thickness of the CNT / CNF network structure from the surface of the base material corresponds to the length of the CNT / CNF and is about 0.1-30 μm.

CNT/CNFの表面に、例えば後述する金属塩の溶液又は金属アルコキシドの溶液を保持させ、CNT/CNFを加熱することにより、CNT/CNFが消失する。そして、CNT/CNFの表面の外側に、上記溶液が乾燥してなる含金属網目構造が形成される。含金属網目構造はCNT/CNF表面を鋳型とするため、それぞれほぼ中空の含金属チューブが網目状に絡み合った構造となる。又、含金属網目構造の大きさは、鋳型であるCNT/CNFの直径や長さに対し含金属の保持(付着)厚みを考慮したものとなる。
CNT/CNFの加熱温度は通常、室温〜1000℃程度とすることができ、加熱雰囲気としては、CNT/CNFを構成する炭素が酸化する雰囲気(例えば酸素(C+O2→CO2))、又は還元する雰囲気(例えば水素(2H2+C→CH4))とすることができる。
本発明においては、鋳型であるCNT/CNFが網目構造になっているため、基材表面のうちCNT/CNFで覆われていない部分が少なく、又、CNT/CNFの表面積も増大する。そのため、表面に確実に金属塩の溶液又は金属アルコキシドの溶液を保持させることができ、含金属網目構造で基材表面を均一に被覆するとともに、被覆欠陥が少ない。さらに、網目状の含金属構造により含金属の表面積が増大するため、含金属の活性(例えば、触媒の場合の触媒能)がより高くなる。
For example, a metal salt solution or a metal alkoxide solution described below is held on the surface of the CNT / CNF, and the CNT / CNF disappears by heating the CNT / CNF. Then, a metal-containing network structure formed by drying the solution is formed outside the surface of the CNT / CNF. Since the metal-containing network structure uses the CNT / CNF surface as a template, each of the hollow metal-containing tubes is intertwined in a network shape. In addition, the size of the metal-containing network structure takes into account the holding (adhesion) thickness of the metal-containing with respect to the diameter and length of the CNT / CNF as a mold.
The heating temperature of CNT / CNF can usually be room temperature to about 1000 ° C., and the heating atmosphere is an atmosphere in which carbon constituting CNT / CNF is oxidized (for example, oxygen (C + O 2 → CO 2 )), Alternatively, the atmosphere can be reduced (for example, hydrogen (2H 2 + C → CH 4 )).
In the present invention, since the template CNT / CNF has a network structure, there are few portions of the substrate surface that are not covered with CNT / CNF, and the surface area of CNT / CNF also increases. Therefore, it is possible to reliably hold a metal salt solution or a metal alkoxide solution on the surface, uniformly coat the substrate surface with a metal-containing network structure, and reduce coating defects. Furthermore, since the metal-containing surface area is increased by the network-like metal-containing structure, the metal-containing activity (for example, catalytic ability in the case of a catalyst) becomes higher.

(含金属網目構造)
含金属網目構造は、CNT/CNFの表面に保持した金属塩の溶液又は金属アルコキシドの溶液を適宜乾燥させ、さらに必要に応じて、酸化、窒化、硫化、又は還元することにより得ることができる。上記溶液に含まれる金属としては特に制限されないが、遷移金属,貴金属,各種ペロブスカイト型複合酸化物に含まれる金属元素が挙げられる。従って、本発明において「含金属」とは、上記溶液に含まれる金属元素の単体、又はその金属元素の酸化物、窒化物、硫化物若しくは水酸化物等を意味する。
又、上記CNT/CNFの網目構造の目が細かい(密)な場合や、CNT/CNFへの上記溶液の保持量が多い場合、上記溶液がCNT/CNFの表面だけでなく、表面張力により隣接するCNT/CNF間の空隙にも保持されることがある。この場合には、得られた含金属網目構造の網目の一部が埋められた状態となるが、このような場合も本発明に含むものとする。
(Metal-containing network structure)
The metal-containing network structure can be obtained by appropriately drying a metal salt solution or a metal alkoxide solution held on the surface of the CNT / CNF, and further oxidizing, nitriding, sulfurating, or reducing as necessary. Although it does not restrict | limit especially as a metal contained in the said solution, The metal element contained in a transition metal, a noble metal, and various perovskite type complex oxide is mentioned. Accordingly, in the present invention, the “metal-containing” means a single element of a metal element contained in the solution, or an oxide, nitride, sulfide, hydroxide, or the like of the metal element.
In addition, when the mesh structure of the CNT / CNF is fine (dense) or when the amount of the solution retained on the CNT / CNF is large, the solution is not only adjacent to the surface of the CNT / CNF but also due to surface tension. May also be retained in the gap between CNT / CNF. In this case, a part of the mesh of the obtained metal-containing network structure is filled, and such a case is also included in the present invention.

図1は、基材2(シリカファイバー)表面にCNT/CNFを網目状に形成した状態を示すSEM像である。なお、この図では、CNT/CNFの網目構造10の一部を剥離して下地の基材2が視認できるようにしているが、通常、基材2の表面を網目構造10がほぼ均一に覆っている。
図1によれば、網目構造10の形態は、複数のチューブが絡み合った網目状であることがわかる。又、基材2の直径約5μmに対し、網目構造10の厚みは1-5μm程度であることがわかる。
FIG. 1 is an SEM image showing a state in which CNT / CNF is formed in a network on the surface of a substrate 2 (silica fiber). In this figure, a part of the CNT / CNF network structure 10 is peeled off so that the underlying base material 2 can be visually recognized. However, the surface of the base material 2 is generally covered with the network structure 10 almost uniformly. ing.
According to FIG. 1, it can be seen that the form of the mesh structure 10 is a mesh shape in which a plurality of tubes are intertwined. Further, it can be seen that the thickness of the network structure 10 is about 1-5 μm with respect to the diameter of the substrate 2 of about 5 μm.

<含金属複合構造体の製造方法>
次に、含金属複合構造体の製造方法について説明する。
(触媒金属担持工程)
まず、基材表面に部分的に触媒金属を担持する。基材表面に触媒金属を担持すると、後述する炭素源が熱分解した際、触媒金属の位置のみにカーボンが蒸着、成長し、CNT/CNFが形成される。従って、触媒金属としてはカーボンを成長させる元素、例えばFe,Co,Ni,Pd,Mo,Cu等の金属、又はこれらの群から選ばれる任意の2種以上を組み合わせた合金を用いることができる。又、基材としては、上記したものが挙げられる。
なお、担持するものとして、例えばNiOのような金属酸化物を用いる場合もあるが、金属酸化物は触媒として作用せず、NiOに炭素源(メタン等)を高温で接触させた際にNiOがメタン等により還元され,反応中は金属Niとして存在し,金属Niが触媒として作用することになる。
<Method for producing metal-containing composite structure>
Next, the manufacturing method of a metal containing composite structure is demonstrated.
(Catalyst metal loading process)
First, a catalyst metal is partially supported on the substrate surface. When the catalyst metal is supported on the substrate surface, when a carbon source described later is thermally decomposed, carbon is deposited and grows only at the position of the catalyst metal to form CNT / CNF. Therefore, as the catalyst metal, an element that grows carbon, for example, a metal such as Fe, Co, Ni, Pd, Mo, or Cu, or an alloy that combines any two or more selected from these groups can be used. Moreover, what was mentioned above is mentioned as a base material.
For example, a metal oxide such as NiO may be used as a carrier, but the metal oxide does not act as a catalyst. When NiO is brought into contact with a carbon source (such as methane) at a high temperature, NiO is not supported. It is reduced by methane or the like and exists as metallic Ni during the reaction, and metallic Ni acts as a catalyst.

触媒金属の担持法としては、いわゆる含浸法と呼ばれ,金属塩を溶解した溶液中に基材を浸漬し,溶液を乾燥除去することで金属塩をシリカ上に分散して付着させる手法がある。又、この他、イオン交換法,蒸着(CVD)法等が触媒金属の担持法として公知であり、本発明では、従来公知のあらゆる触媒金属担持法を適用することができる。
触媒金属の担持量は基材に対して1-50wt%程度,担持された触媒金属の粒径は10-200nm程度とすることができ、又、含浸法を用いる場合、溶液中の金属イオン濃度は0.01-1mol/L程度とすることができる。
なお、基材表面に分散して担持した触媒金属上にカーボンナノチューブが成長することは、例えば特開平09-031757号公報に記載されている。
The catalyst metal loading method is a so-called impregnation method, in which the base material is immersed in a solution in which the metal salt is dissolved, and the solution is removed by drying to disperse the metal salt on the silica and adhere to it. . In addition, ion exchange methods, vapor deposition (CVD) methods, and the like are known as catalyst metal loading methods, and any conventionally known catalyst metal loading method can be applied in the present invention.
The amount of catalyst metal supported can be about 1-50 wt% with respect to the substrate, and the particle size of the supported catalyst metal can be about 10-200 nm. Also, when using the impregnation method, the concentration of metal ions in the solution Can be about 0.01-1 mol / L.
Incidentally, the growth of carbon nanotubes on the catalyst metal dispersed and supported on the substrate surface is described in, for example, JP-A-09-031757.

(CNT/CNFの成長工程)
次に、触媒金属を担持した基材にCNT/CNFの炭素源となるガスを導入し、触媒金属表面にCNT/CNFを網目状に成長させる(CVD法;化学気相成長法)。網目状の定義は既に説明した通りである。
炭素源となるガスとしては、炭化水素ガスや一酸化炭素ガスを挙げることができ、炭化水素ガスとしては例えばメタン、エタン,エチレン,アセチレン,プロパンなどがあるがこれらに限定されない。又、常温で液体の炭化水素も気化して導入することで炭素源として用いることができる。炭化水素以外の炭素源としては,各種アルコール,芳香族化合物等,炭素原子と水素原子を含む有機物を挙げることができる。
(CNT / CNF growth process)
Next, a gas that is a carbon source of CNT / CNF is introduced into the base material supporting the catalyst metal, and CNT / CNF is grown in a network form on the surface of the catalyst metal (CVD method; chemical vapor deposition method). The definition of the mesh shape is as described above.
Examples of the carbon source gas include hydrocarbon gas and carbon monoxide gas. Examples of the hydrocarbon gas include, but are not limited to, methane, ethane, ethylene, acetylene, and propane. Also, hydrocarbons that are liquid at normal temperature can be used as a carbon source by being vaporized and introduced. Examples of carbon sources other than hydrocarbons include organic substances containing carbon and hydrogen atoms, such as various alcohols and aromatic compounds.

炭素源は熱分解し、炭素原子が触媒金属上に蒸着し、金属触媒表面から外側に向かって成長してファイバー状やチューブ状のCNT/CNFとなる。通常、基材の周囲を400〜1000℃程度に加熱し,ここにガスを流通させることで,ガスが加熱されて基材に接触して反応する。加熱雰囲気は特に限定されず、水素等を共存させて還元雰囲気で反応を行うこともできるが、原料炭化水素が消費されるような酸化雰囲気は通常用いない。反応時の圧力は特に制限されず、減圧下でも高圧でもよい。
上記した工程により、通常、直径10−200 nm程度で長さ0.1−30 μm程度のCNT/CNFが成長し、これらが絡み合って網目構造となる。CNT/CNFの径や長さ、隣接するCNT/CNFの間隔は,用いる触媒金属の種類,触媒金属の粒子径(10−200 nm),反応温度(450−1000℃),炭素源となるガス、炭化水素、アルコール等の種類,反応時間(数分から数十時間まで)、後述する前駆体溶液のCNT/CNFへの付着回数等を変えることにより制御可能であり、これらの因子を制御することで、網目構造を得ることができる。
The carbon source is thermally decomposed, carbon atoms are deposited on the catalytic metal, and grows outward from the surface of the metal catalyst to form fiber-like or tube-like CNT / CNF. Usually, the periphery of the substrate is heated to about 400 to 1000 ° C., and the gas is circulated therethrough, whereby the gas is heated and contacts the substrate to react. The heating atmosphere is not particularly limited, and the reaction can be performed in a reducing atmosphere in the presence of hydrogen or the like, but an oxidizing atmosphere in which the raw material hydrocarbon is consumed is not usually used. The pressure during the reaction is not particularly limited, and may be a reduced pressure or a high pressure.
Through the above process, CNT / CNF having a diameter of about 10 to 200 nm and a length of about 0.1 to 30 μm grows, and these are intertwined to form a network structure. The diameter and length of CNT / CNF, and the interval between adjacent CNT / CNFs are the type of catalyst metal used, the particle diameter of the catalyst metal (10-200 nm), the reaction temperature (450-1000 ° C), and the gas used as the carbon source. It can be controlled by changing the type of hydrocarbon, alcohol, etc., reaction time (from several minutes to several tens of hours), the number of times the precursor solution described later adheres to CNT / CNF, etc., and controlling these factors Thus, a network structure can be obtained.

(金属塩の溶液又は金属アルコキシドの溶液の保持工程)
次に、CNT/CNFの少なくとも表面に金属塩の溶液又は金属アルコキシドの溶液(以下、適宜、「前駆体溶液」という)を保持させる。前駆体溶液に含まれる金属としては、既に説明したように、例えば遷移金属,貴金属,各種ペロブスカイト型複合酸化物に含まれる金属元素が挙げられる。
金属塩としては特に制限されないが、これらの金属の塩化物、硝酸塩,硫酸塩,塩化物,水酸化物などが挙げられる。金属のアルコキシドとしては特に制限されないが、これらの金属のエトキシド,プロポキシド,ブトキシド,メトキシプロピレイトなどが挙げられる。又、前駆体溶液の溶媒としては特に制限されないが、例えばメタノール,エタノール,プロパノール,ブタノール,アセトン,水,四塩化炭素,クロロメタン,2−メトキシエタノールなどが挙げられる。
通常、CNT/CNFへ前駆体溶液を保持させる方法は特に制限なく、CNT/CNFを前駆体溶液中に浸漬する方法や、前駆体溶液をスプレーする方法等が挙げられる。又、前駆体溶液はCNT/CNFの表面に加え、これ以外の部分、例えばカーボンナノチューブの内部や隣接するCNT/CNFの間に保持されてもよい。
(Metal salt solution or metal alkoxide solution holding step)
Next, a metal salt solution or a metal alkoxide solution (hereinafter, appropriately referred to as “precursor solution”) is held on at least the surface of CNT / CNF. As already described, examples of the metal contained in the precursor solution include transition metals, noble metals, and metal elements contained in various perovskite complex oxides.
Although it does not restrict | limit especially as a metal salt, The chloride, nitrate, sulfate, chloride, hydroxide, etc. of these metals are mentioned. The metal alkoxide is not particularly limited, and examples thereof include ethoxide, propoxide, butoxide, and methoxypropylate of these metals. The solvent for the precursor solution is not particularly limited, and examples thereof include methanol, ethanol, propanol, butanol, acetone, water, carbon tetrachloride, chloromethane, and 2-methoxyethanol.
Usually, the method of holding the precursor solution in CNT / CNF is not particularly limited, and examples thereof include a method of immersing CNT / CNF in the precursor solution and a method of spraying the precursor solution. In addition to the surface of the CNT / CNF, the precursor solution may be held in other parts, for example, inside the carbon nanotube or between adjacent CNT / CNF.

上記したようにCNT/CNFが網目構造になっているため、基材表面のうちCNT/CNFで覆われていない部分が少なく、又、CNT/CNFの表面積が増大する。そのため、基材表面に確実かつ均一に前駆体溶液を保持させることができる。例えば、従来はコーティングが困難であった基材(例えばシリカファイバー)上に前駆体溶液を均一に保持することができ、この前駆体溶液を乾燥等させることにより含金属網目構造で基材を被覆することができる。
さらに、前駆体溶液を上記網目構造に物理的に保持すればよいため、前駆体溶液に溶解する金属であれば、その種類に制限を受けることがない。例えば、従来、ナノチューブ状の金属酸化物構造体を得る方法は、ゾルゲル法に限定されていたが、本発明の製造方法によれば、前駆体溶液に溶解する金属であればよい。
Since the CNT / CNF has a network structure as described above, the portion of the substrate surface that is not covered with the CNT / CNF is small, and the surface area of the CNT / CNF is increased. Therefore, the precursor solution can be reliably and uniformly held on the substrate surface. For example, a precursor solution can be uniformly held on a substrate (for example, silica fiber) that has been difficult to coat conventionally, and the substrate is coated with a metal-containing network structure by drying the precursor solution. can do.
Furthermore, since the precursor solution only needs to be physically held in the network structure, there is no limitation on the type of the metal as long as it is a metal that dissolves in the precursor solution. For example, conventionally, the method for obtaining a nanotube-shaped metal oxide structure has been limited to the sol-gel method, but according to the production method of the present invention, any metal that dissolves in the precursor solution may be used.

(前駆体溶液の乾燥)
CNT/CNFに保持された前駆体溶液を乾燥させ、さらに適宜酸化等させることにより前駆体溶液中の金属を構造体に変化させることができる。この乾燥工程は独立して設けなくともよく、後述するCNT/CNFの加熱・消失工程で乾燥を兼用してもよいが、前駆体溶液をCNT/CNFに複数回付着させる場合には乾燥工程を独立して設けることが好ましい。
これは、前駆体溶液をCNT/CNFに複数回付着させる場合、溶液が網目構造に付着したままであると次の溶液を付着させることが困難になり,また前駆体(塩やアルコキシド等)が残っていると次の溶液を付着させた際に,最初から残っていた前駆体が次の溶液中に溶出する恐れがあるためである。特に、乾燥によって前駆体の分解(例えば硝酸塩を酸化物に変化させる)を促進することで後者の問題を回避できる。
乾燥雰囲気は、酸化雰囲気(酸素下など),還元雰囲気(水素下など),不活性ガス雰囲気等,前駆体溶液の種類等に応じて適宜選定することができる。又、乾燥温度は室温〜500℃程度とすることができる。
(Drying of precursor solution)
The precursor solution held in the CNT / CNF can be dried, and further appropriately oxidized to change the metal in the precursor solution into a structure. This drying process does not have to be provided independently, and drying may be used in the heating / disappearing process of CNT / CNF, which will be described later.However, when the precursor solution is adhered to the CNT / CNF multiple times, the drying process is performed. It is preferable to provide them independently.
This is because when the precursor solution is attached to the CNT / CNF multiple times, if the solution remains attached to the network structure, it becomes difficult to attach the next solution, and the precursor (salt, alkoxide, etc.) This is because the remaining precursor may be eluted into the next solution when the next solution is deposited if it remains. In particular, the latter problem can be avoided by promoting the decomposition of the precursor (for example, changing nitrate to an oxide) by drying.
The drying atmosphere can be appropriately selected according to the type of the precursor solution, such as an oxidizing atmosphere (such as under oxygen), a reducing atmosphere (such as under hydrogen), an inert gas atmosphere, and the like. The drying temperature can be about room temperature to 500 ° C.

(CNT/CNFの加熱・消失工程)
次に、前駆体溶液を保持したCNT/CNFを加熱して消失させ、既に説明したように、CNT/CNFを鋳型とし前駆体溶液中の金属を含む含金属網目構造を形成する。加熱により、前駆体溶液中の金属以外の成分は除去され、残存した金属は加熱雰囲気に応じて酸化又は還元される。CNT/CNFの加熱温度や加熱雰囲気は既に説明した通りである。
例えば、含酸素雰囲気(例えば空気)中で加熱(400-800℃程度)すると、カーボンナノチューブ(ファイバー)の炭素がC+ O2 →CO2の反応式に示される酸化反応により除去され、前駆体溶液中の金属が酸化されて金属酸化物からなる含金属網目構造が形成される。
(CNT / CNF heating / dissipation process)
Next, the CNT / CNF holding the precursor solution is heated to disappear, and as described above, a metal-containing network structure including the metal in the precursor solution is formed using CNT / CNF as a template. By heating, components other than the metal in the precursor solution are removed, and the remaining metal is oxidized or reduced according to the heating atmosphere. The heating temperature and heating atmosphere of CNT / CNF are as described above.
For example, when heated (about 400-800 ° C) in an oxygen-containing atmosphere (for example, air), the carbon of the carbon nanotube (fiber) is removed by the oxidation reaction shown in the reaction formula of C + O 2 → CO 2 , and the precursor solution The metal inside is oxidized to form a metal-containing network structure made of a metal oxide.

さらに、含金属網目構造中の金属酸化物を金属に還元することもできる。還元条件としては、例えば水素流通下,室温〜1000℃程度の温度で,数時間処理することが挙げられる。
又、上記した例に限られず、含金属網目構造を窒化又は硫化させて窒化物や硫化物とすることもできる。
Furthermore, the metal oxide in the metal-containing network structure can be reduced to a metal. Examples of reducing conditions include treatment for several hours at a temperature of room temperature to about 1000 ° C. under a hydrogen flow.
Further, the present invention is not limited to the above example, and the metal-containing network structure can be nitrided or sulfided to form nitrides or sulfides.

以下、実施例により本発明を詳細に説明するが、本発明はこれにより限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this.

<触媒金属の担持>
基材としてシリカファイバー(商品名:Qiartz Wool Grade Fine, 販売元 東ソー株式会社,製造元 東ソー・エスジーエム株式会社,直径2−6μm)0.2gを用い、硝酸ニッケル0.3mol/Lのアセトン溶液約10mlに一分程度浸漬した。浸漬したファイバーから余分な溶液を落とし、空気中で300℃,30分の加熱処理をし、シリカファイバー表面に触媒金属としてNiO微粒子を担持させた(XRDによりNiOであることを確認した。NiO微粒子の粒子径は判定できなかったが生成するカーボンナノチューブ(ファイバー)の直径にほぼ対応するため、Ni(NiOが還元したもの)の粒子径もおよそ10-200 nmの範囲内である。
<Supporting catalyst metal>
Silica fiber (trade name: Qiartz Wool Grade Fine, sold by Tosoh Corporation, manufacturer Tosoh SGM Co., Ltd., diameter 2-6 μm) 0.2 g as a base material, about 10 ml acetone solution of nickel nitrate 0.3 mol / L Soaked for about 1 minute. The excess solution was dropped from the immersed fiber, and heat treatment was performed in air at 300 ° C. for 30 minutes to support NiO fine particles as a catalyst metal on the surface of the silica fiber (confirmed to be NiO by XRD. NiO fine particles. The particle size of Ni (which has been reduced by NiO) is also in the range of about 10-200 nm, because the particle size of the carbon nanotubes (fibers) almost corresponds to the diameter of the produced carbon nanotubes (fibers).

<CNT/CNFの成長>
NiOを担持した上記シリカファイバーを石英製固定床流通式反応装置に設置した(自作装置、装置内は常圧で,メタン流通前に室温で不活性ガスを流通させ空気を除去)。反応装置に99.99%メタンガスを通し、400-1000℃に加熱したファイバーに接触させることにより,シリカファイバー上のNiOを起点としてCNT/CNFを成長させた。得られたCNT/CNFの直径は10−200 nm程度の範囲で、長さ0.1−30 μm程度であり、多数のCNT/CNFが絡み合って網目構造を形成していることをSEM像で確認した(図1)。
<CNT / CNF growth>
The silica fiber carrying NiO was installed in a quartz fixed-bed flow reactor (self-made device, the inside of the device was at normal pressure, and an inert gas was circulated at room temperature before methane flow to remove air). CNT / CNF was grown from NiO on silica fiber as a starting point by passing 99.99% methane gas through the reactor and contacting the fiber heated to 400-1000 ° C. The diameter of the obtained CNT / CNF is in the range of about 10-200 nm and the length is about 0.1-30 μm, and it was confirmed by SEM images that a large number of CNT / CNF were intertwined to form a network structure. (FIG. 1).

<前駆体溶液の保持>
次に、CNT/CNFを成長させたシリカファイバーを、硝酸ランタン0.15mol/L・硝酸マンガン六水和物0.15mol/Lのアセトン溶液に浸漬した。シリカファイバーを溶液から引き上げて余分な溶液を落とした後, 300℃で30分乾燥させた。これを室温まで冷却後,再び硝酸ランタン・硝酸マンガン六水和物のアセトン溶液に浸漬し、同様に乾燥させた。この浸漬・乾燥工程を4回繰返した。
<Retention of precursor solution>
Next, the silica fiber on which CNT / CNF was grown was immersed in an acetone solution of lanthanum nitrate 0.15 mol / L / manganese nitrate hexahydrate 0.15 mol / L. The silica fiber was pulled up from the solution to remove excess solution, and then dried at 300 ° C for 30 minutes. After cooling this to room temperature, it was again immersed in an acetone solution of lanthanum nitrate / manganese nitrate hexahydrate and dried in the same manner. This dipping / drying process was repeated four times.

<CNT/CNFの加熱除去>
次に、シリカファイバーを空気中で350〜1000℃程度で数時間加熱処理した。得られた試料のSEM像を図2に示す。
なお、図2の試料は、シリカファイバーの全面が網目状に被覆されている。もとのシリカファイバーの直径は6μm程度であり、網目状の被覆の直径は12μm程度であった。
又、この被覆をX線回折装置 (XRD)で同定し、ペロブスカイト型のLaMnO3であることを確認した。
このように、本発明の実施例によれば、CNT/CNFの網目構造を消失性鋳型とする網目状の金属酸化物(LaMnO3)がシリカファイバー上に均一に被覆される。
<Heat removal of CNT / CNF>
Next, the silica fiber was heat-treated at about 350 to 1000 ° C. for several hours in the air. The SEM image of the obtained sample is shown in FIG.
In the sample of FIG. 2, the entire surface of the silica fiber is coated in a mesh shape. The diameter of the original silica fiber was about 6 μm, and the diameter of the mesh-like coating was about 12 μm.
This coating was identified by an X-ray diffractometer (XRD) and confirmed to be a perovskite type LaMnO 3 .
As described above, according to the example of the present invention, a network-like metal oxide (LaMnO 3 ) having a CNT / CNF network structure as a disappearing template is uniformly coated on a silica fiber.

図3は、図2の径方向(輪切り)断面を示すTEM(透過電子顕微鏡)像である。この図より、網目状の金属酸化物(LaMnO3)層のうち、シリカファイバー2側から金属酸化物層の中心までの内側層4aは、外側に行くほど像が暗く、金属酸化物の網目が密集している。同様に、金属酸化物層の中心から金属酸化物層の最外層に向かう外側層4bは、内側に行くほど像が暗く、金属酸化物の網目が密集している。つまり、金属酸化物層はその中心部分が最もの網の密度が高いことがわかる。 FIG. 3 is a TEM (Transmission Electron Microscope) image showing the radial (circular) cross section of FIG. From this figure, of the network-like metal oxide (LaMnO 3 ) layer, the inner layer 4a from the silica fiber 2 side to the center of the metal oxide layer has a darker image as it goes outward, and the metal oxide network is It is dense. Similarly, the outer layer 4b from the center of the metal oxide layer toward the outermost layer of the metal oxide layer has a darker image as it goes inward, and the metal oxide network is dense. That is, it can be seen that the metal oxide layer has the highest net density at the center.

<比較例>
比較として、カーボンナノチューブ(ファイバー)をシリカファイバー表面に形成させなかったこと以外は実施例とまったく同様にして、シリカファイバー表面に金属酸化物(LaMnO3)を形成させた。
図4は、比較例の試料のSEM像を示す。もとのシリカファイバーの直径は5μm程度であり、金属酸化物で被覆後の直径は7μm程度であるので、シリカファイバーが金属酸化物でほとんど覆われなかったことがわかる。
<Comparative example>
As a comparison, a metal oxide (LaMnO 3 ) was formed on the silica fiber surface in exactly the same manner as in the example except that the carbon nanotubes (fibers) were not formed on the silica fiber surface.
FIG. 4 shows an SEM image of the sample of the comparative example. Since the diameter of the original silica fiber is about 5 μm and the diameter after coating with the metal oxide is about 7 μm, it can be seen that the silica fiber was hardly covered with the metal oxide.

<触媒能の測定>
得られた本発明の試料(網目状LaMnO3で被覆されたシリカファイバー)を触媒として用い、プロパンの完全酸化反応を行い触媒能(プロパン転化率)を測定した。反応ガスとしては、プロパン1%,酸素10%,He希釈したものを用い,これを100ml/minで試料に流通させた。転化率はガスクロマトグラフによるプロパンの定量分析により算出した。比較として、クエン酸法(ペチニ法、アモルファス酸前駆体法)によって作成したペロブスカイト型LaMnO3粉末を用いた(650℃で焼成)。クエン酸法は、生成する酸化物の表面積を増大させるため、材料となる金属塩を混合する際にクエン酸を加えて金属錯体を形成させ、金属の分散度を高める方法である。
なお、触媒能の測定にあたり、本発明の試料と比較試料のLaMnO3の質量を同一とした。
図5は、プロパン転化率について得られた結果を示す.比較試料より本発明の試料の方がプロパン完全酸化活性が高く、網目状のLaMnO3をシリカファイバー上に有すると触媒活性が向上することがわかった。
<Measurement of catalytic activity>
Using the obtained sample of the present invention (silica fiber coated with reticulated LaMnO 3 ) as a catalyst, a complete oxidation reaction of propane was performed to measure the catalytic ability (propane conversion). As the reaction gas, propane 1%, oxygen 10%, and He diluted were used and circulated through the sample at 100 ml / min. The conversion rate was calculated by quantitative analysis of propane by gas chromatography. For comparison, a perovskite-type LaMnO 3 powder prepared by the citric acid method (Petini method, amorphous acid precursor method) was used (calcined at 650 ° C.). In the citric acid method, in order to increase the surface area of the oxide to be produced, citric acid is added to form a metal complex when mixing the metal salt as a material to increase the degree of metal dispersion.
In the measurement of catalytic ability, the mass of LaMnO 3 of the sample of the present invention and that of the comparative sample were the same.
FIG. 5 shows the results obtained for the propane conversion. It was found that the sample of the present invention had a higher propane complete oxidation activity than the comparative sample, and the catalytic activity was improved when the network-like LaMnO 3 was present on the silica fiber.

CNT/CNFで被覆された基材のSEM像を示す図である。It is a figure which shows the SEM image of the base material coat | covered with CNT / CNF. 金属酸化物で被覆された基材のSEM像を示す別の図である。It is another figure which shows the SEM image of the base material coat | covered with the metal oxide. 図2の径方向(輪切り)断面のTEM像を示す図である。It is a figure which shows the TEM image of the radial direction (ring cut) cross section of FIG. 比較例のコーティング後の試料のSEM像を示す図である。It is a figure which shows the SEM image of the sample after the coating of a comparative example. 本発明の試料と比較試料のプロパン転化率を示す図である。It is a figure which shows the propane conversion rate of the sample of this invention, and a comparative sample.

符号の説明Explanation of symbols

2 基材(シリカファイバー)
4 含金属網目構造(金属酸化物)
10 CNT/CNFの網目構造
2 Base material (silica fiber)
4 Metal-containing network structure (metal oxide)
10 CNT / CNF network structure

Claims (3)

基材表面に、カーボンナノチューブ及び/又はカーボンナノファイバーの網目構造を消失性鋳型とし該鋳型の表面の外側に形成された含金属網目構造を有することを特徴とする含金属複合構造体。 A metal-containing composite structure having a metal-containing network structure formed on the outer surface of a surface of a base material having a network structure of carbon nanotubes and / or carbon nanofibers as a vanishing template. 基材表面に部分的に触媒金属を担持する工程と、
前記金属触媒を担持した基材に炭素源となるガスを導入し、前記触媒金属表面にカーボンナノチューブ及び/又はカーボンナノファイバーを網目状に成長させる工程と、
前記カーボンナノチューブ及び/又はカーボンナノファイバーの少なくとも表面に金属塩の溶液又は金属アルコキシドの溶液を保持させる工程と、
前記溶液を保持した前記カーボンナノチューブ及び/又はカーボンナノファイバーを加熱して消失させ、前記溶液中の金属を含む含金属網目構造を前記基材表面に生成させる工程と
を有することを特徴とする含金属複合構造体の製造方法。
A step of partially supporting the catalyst metal on the surface of the substrate;
Introducing a gas serving as a carbon source into the base material supporting the metal catalyst, and growing carbon nanotubes and / or carbon nanofibers on the surface of the catalyst metal in a network;
Holding a metal salt solution or a metal alkoxide solution on at least the surface of the carbon nanotube and / or carbon nanofiber;
Heating the carbon nanotubes and / or carbon nanofibers holding the solution to form a metal-containing network structure containing the metal in the solution on the substrate surface. A method for producing a metal composite structure.
前記含金属網目構造をさらに酸化、窒化、硫化、又は還元する工程を有することを特徴とする請求項1記載の含金属複合構造体の製造方法。 The method for producing a metal-containing composite structure according to claim 1, further comprising a step of oxidizing, nitriding, sulfiding or reducing the metal-containing network structure.
JP2006252032A 2006-09-19 2006-09-19 Metal-containing composite structure and method for producing the same Expired - Fee Related JP5145603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252032A JP5145603B2 (en) 2006-09-19 2006-09-19 Metal-containing composite structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252032A JP5145603B2 (en) 2006-09-19 2006-09-19 Metal-containing composite structure and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008074628A true JP2008074628A (en) 2008-04-03
JP5145603B2 JP5145603B2 (en) 2013-02-20

Family

ID=39347073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252032A Expired - Fee Related JP5145603B2 (en) 2006-09-19 2006-09-19 Metal-containing composite structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP5145603B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220980A (en) * 2012-04-18 2013-10-28 Okayama Univ Method of manufacturing oxide
JP2013543472A (en) * 2010-09-23 2013-12-05 インディアン インスティテュート オブ テクノロジー カーンプル Carbon nanofiber / carbon nanocoil coated substrate and nanocomposite
CN113808856A (en) * 2021-08-13 2021-12-17 常州大学 Honeycomb-shaped LaMnO3Preparation method of super capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231457A (en) * 2003-01-29 2004-08-19 National Institute For Materials Science Boron nitride nanotube containing metallic molybdenum nanoparticle and its manufacturing method
JP2006096651A (en) * 2004-09-06 2006-04-13 Tokyo Institute Of Technology Method for manufacturing inorganic oxide material, inorganic oxide material, and carbon-metal compound oxide material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231457A (en) * 2003-01-29 2004-08-19 National Institute For Materials Science Boron nitride nanotube containing metallic molybdenum nanoparticle and its manufacturing method
JP2006096651A (en) * 2004-09-06 2006-04-13 Tokyo Institute Of Technology Method for manufacturing inorganic oxide material, inorganic oxide material, and carbon-metal compound oxide material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543472A (en) * 2010-09-23 2013-12-05 インディアン インスティテュート オブ テクノロジー カーンプル Carbon nanofiber / carbon nanocoil coated substrate and nanocomposite
JP2013220980A (en) * 2012-04-18 2013-10-28 Okayama Univ Method of manufacturing oxide
CN113808856A (en) * 2021-08-13 2021-12-17 常州大学 Honeycomb-shaped LaMnO3Preparation method of super capacitor

Also Published As

Publication number Publication date
JP5145603B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP6366305B2 (en) Method for producing graphene
JP4730707B2 (en) Catalyst for carbon nanotube synthesis and method for producing the same, catalyst dispersion, and method for producing carbon nanotube
US8541054B2 (en) Methods for preparation of one-dimensional carbon nanostructures
JP2006136878A (en) Method and apparatus for producing filter medium of nano-filter
US20090320991A1 (en) Methods of synthesis of nanotubes and uses thereof
JP2013540683A (en) Glass substrate having grown carbon nanotube and method for producing the same
US20060067872A1 (en) Method of preparing catalyst base for manufacturing carbon nanotubes and method of manufacturing carbon nanotubes employing the same
JP4958138B2 (en) Catalyst for carbon nanocoil production
JP2011190172A (en) Method for manufacturing one-dimensional carbon nanostructure
JP5622278B2 (en) Base material for manufacturing aligned carbon nanotube aggregate, method for manufacturing aligned carbon nanotube assembly, and method for manufacturing base material for manufacturing aligned carbon nanotube assembly
US8758715B2 (en) Porous wall hollow glass microspheres as a medium or substrate for storage and formation of novel materials
US20030072942A1 (en) Combinative carbon material
WO2018151278A1 (en) Manufacturing methods for supported catalyst and carbon nanostructure
JP4834957B2 (en) Catalyst structure and carbon nanotube production method using the same
JP5145603B2 (en) Metal-containing composite structure and method for producing the same
JP5156896B2 (en) Method for producing catalyst for producing carbon nanocoil and method for producing carbon nanocoil
DK2719660T3 (en) Method for synthesizing carbon nanowires at high density on surface of pores or gaps in structure, and hierarchical structure synthesized by the method
CN110694615B (en) Preparation method of Pt-based catalyst with adjustable pore diameter and limited titanium oxide nanotube and application of Pt-based catalyst prepared by preparation method
CN108367278B (en) The method and apparatus strengthened for chemical technology
KR101151836B1 (en) High-yield Supporting Method of Uniform Nano-catalyst on surface of the carbonized cellulose, And The Nano-catalyst Support Using The Same
JP2010138033A (en) Substrate for synthesizing cnt, production method of the substrate, and production method of cnt
KR101383821B1 (en) Direct synthesis method of carbon nanotube using intermetallic nano-catalysts formed on surface of various metal substrates and the structure thereof
Anderson et al. Tunable CuO nanostructured thin films derived from metal–organic frameworks for dehydrogenation of alcohols
JP5560060B2 (en) Catalyst for producing carbon nanocoil, method for producing the same, and carbon nanocoil
JP6810408B2 (en) Catalyst carrier and its preparation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121109

R150 Certificate of patent or registration of utility model

Ref document number: 5145603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees