JP2008072540A - Wireless base station - Google Patents

Wireless base station Download PDF

Info

Publication number
JP2008072540A
JP2008072540A JP2006250284A JP2006250284A JP2008072540A JP 2008072540 A JP2008072540 A JP 2008072540A JP 2006250284 A JP2006250284 A JP 2006250284A JP 2006250284 A JP2006250284 A JP 2006250284A JP 2008072540 A JP2008072540 A JP 2008072540A
Authority
JP
Japan
Prior art keywords
channel
uplink
dedicated channel
base station
uplink dedicated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006250284A
Other languages
Japanese (ja)
Other versions
JP4588681B2 (en
Inventor
Yukinao Kimoto
亨尚 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2006250284A priority Critical patent/JP4588681B2/en
Publication of JP2008072540A publication Critical patent/JP2008072540A/en
Application granted granted Critical
Publication of JP4588681B2 publication Critical patent/JP4588681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wireless base station with less interference and without reducing communication capacity by appropriately specifying location in a sub channel such as an Uplink individual channel. <P>SOLUTION: An interference amount of the same channel in an Uplink control channel assignable area divided into a plurality of areas in the frequency direction is measured and a control channel is first located at a part with the fewest interference amount. After that, the interference amount of the same channel in a plurality of individual channel assignable areas is periodically measured, or its measurement results are stored and the Uplink control channels are sequentially assigned to individual channels from the one with the fewest interference amount based on the measurement results if necessary. Thus, wireless channels are precisely arranged by determining location of the Uplink channels in the frequency direction. In addition, since the Uplink individual channels are dynamically assigned to parts with less interference of the same channel, deterioration of communication quality by interference of the same channel is also suppressed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、無線基地局に関し、特に、Uplink に OFDMA(直交周波数多重多元アクセス)またはSC-FDMA(シングルキャリア周波数分割多元アクセス)を使用して、同一チャネル干渉量を測定する無線基地局に関するものである。   The present invention relates to a radio base station, and more particularly to a radio base station that measures co-channel interference using Uplink using OFDMA (Orthogonal Frequency Division Multiple Access) or SC-FDMA (Single Carrier Frequency Division Multiple Access). It is.

OFDMA や SC-FDMA は、TACS(Total Access Communication System)や AMPS(Advanced Mobile Phone Service)に代表されるFDMA (周波数分割多次元接続)とは異なり、搬送波または副搬送波ごとと、1シンボルごとに多元接続することができる。つまり、FDMA と TDMA を組み合わせた多元接続方式である。そのため、従来の FDMA のシステムより、多元接続方式に柔軟性がある。また、周波数方向の多重化については、直交性を使用しているため、従来のFDMAシステムより、周波数利用効率が高い。   Unlike FDMA (Frequency Division Multidimensional Connection) such as TACS (Total Access Communication System) and AMPS (Advanced Mobile Phone Service), OFDMA and SC-FDMA are multiple for each carrier or subcarrier and for each symbol. Can be connected. In other words, it is a multiple access method that combines FDMA and TDMA. Therefore, the multiple access method is more flexible than the conventional FDMA system. Also, frequency multiplexing has higher frequency utilization efficiency than conventional FDMA systems because it uses orthogonality for multiplexing in the frequency direction.

OFDMA等では、それぞれのセルを形成する複数の基地局において、同一の周波数のチャネルが使用されることにより、隣接セル間で干渉(同一チャネル干渉)が発生する(図6参照)。そのような干渉は、互いに干渉となり、それぞれのセルにおいて通信路容量を悪化させるので、チャネル割当の工夫により回避する必要がある。従来、干渉量を検出してチャネル割り当てを行うものが知られる(下記の特許文献1〜3参照)。特に特許文献1の[0013]段落には「基地局は、各サブキャリアのアップリンクSINR(Signal to Interference + Noise Ratio)をアクセスチャネルから(BER(bit error rate)などの測定により)直接収集することができる」旨が記載されている。   In OFDMA or the like, interference (co-channel interference) occurs between adjacent cells when channels of the same frequency are used in a plurality of base stations forming each cell (see FIG. 6). Such interference becomes interference with each other and deteriorates the channel capacity in each cell, so it is necessary to avoid it by devising channel allocation. Conventionally, there is known one that performs channel allocation by detecting the amount of interference (see Patent Documents 1 to 3 below). In particular, in the [0013] paragraph of Patent Document 1, “the base station directly collects the uplink SINR (Signal to Interference + Noise Ratio) of each subcarrier from the access channel (by measuring the bit error rate (BER), etc.). It can be done ".

また、従来の HARQ (Hybrid Automatic Repeat Request)の使用方法は、一回データの送信を行い、NACKが返信された場合に、Chase合成法では同じデータを送信し、IR(Incremental Redundancy)法では新たなデータを送信している。これは、送信の時間差による無線チャネルの変動を考慮し、受信データの誤りを分散させて、誤り訂正の符号化利得により、データの送受信を行うものである。
特表2005−502218号公報 特表2004−523934号公報 特開2006−050545号公報
In addition, the conventional method of using HARQ (Hybrid Automatic Repeat Request) is to transmit data once, and when a NACK is returned, the same data is transmitted in the Chase synthesis method, and the new method is used in the IR (Incremental Redundancy) method. Is sending data. In this method, taking into account fluctuations in the radio channel due to transmission time differences, errors in received data are distributed, and data is transmitted and received with an error correction coding gain.
JP-T-2005-502218 JP-T-2004-523934 JP 2006-050545 A

しかし、第1に挙げたUplinkにOFDMAを採用しているIEEE802.16-2005では、Uplink制御チャネルやUplink個別チャネルをどのようにサブチャネルに配置するかは規定されていない。また、UplinkにSC-FDMAを採用している3GPP Long Term Evolutionでは、Uplink個別チャネルをどのように配置するかは規定されていない。   However, IEEE802.16-2005, which employs OFDMA for the uplink mentioned above, does not stipulate how the uplink control channel or uplink dedicated channel is arranged in the subchannel. Also, in 3GPP Long Term Evolution adopting SC-FDMA for Uplink, it is not defined how to arrange Uplink dedicated channels.

また、第2に挙げた特許文献1に記載された方法の場合、ガードインターバルを超える遅延波や高速フェーディングが起こりうるマルチパス環境では、自己の信号が干渉となるのでSINRが悪化し、同一チャネル干渉ではないにもかかわらず、チャネル割当が行われなくなる。そのようなチャネルは、フェーディング等に強い変調方式を用いれば利用可能であるので、無条件に使用しないという判断は、システム全体の通信容量を低下させるという問題がある。   In addition, in the case of the method described in Patent Document 1 cited secondly, in a multipath environment in which delayed waves exceeding the guard interval and high-speed fading may occur, the SINR deteriorates because the own signal becomes interference, and the same. Despite not being channel interference, channel allocation is not performed. Since such a channel can be used by using a modulation scheme that is resistant to fading or the like, the determination that it is not used unconditionally has a problem of reducing the communication capacity of the entire system.

さらに、第3に挙げた従来の HARQ (Hybrid Automatic Repeat Request)の使用方法は、一回データの送信を行い、NACKが返信された場合に、Chase合成法では同じデータを送信し、IR(Incremental Redundancy)法では新たなデータを送信していた。これは、送信の時間差による無線チャネルの変動を考慮し、受信データの誤りを分散させて、誤り訂正の符号化利得により、データの送受信を行うものであるが、時間差を利用するため、データに遅延が生じる。   Furthermore, the conventional method of using HARQ (Hybrid Automatic Repeat Request) described in the third is that when data is transmitted once and NACK is returned, the same data is transmitted in the Chase combining method, and IR (Incremental Redundancy) was sending new data. In this method, taking into account fluctuations in the radio channel due to transmission time differences, errors in received data are distributed, and data transmission / reception is performed using error correction coding gains. There is a delay.

本発明は、上述した問題点を解決するためになされたものであり、無線基地局に対するUplinkをOFDMAまたはSC-FDMAとし、Uplink制御チャネルやUplink個別チャネルをどのようにサブチャネルに配置するかを適切に規定し、干渉が生じたときに同一チャネル干渉であるか否かを的確に判断することで通信容量を低下させないようにし、データの送受信に遅延をもたらさないようにする無線基地局を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. Uplink for a radio base station is OFDMA or SC-FDMA, and how an uplink control channel and an uplink dedicated channel are arranged in subchannels. Providing a radio base station that appropriately defines and prevents the communication capacity from being reduced by accurately determining whether or not the interference is the same channel when interference occurs, and does not cause delay in data transmission / reception The purpose is to do.

上述した課題を解決するため、本発明に係る無線基地局は、UplinkにOFDMAまたはSC-FDMAを使用する無線基地局において、無線基地局は、すでに割り当てられているUplink個別チャネル上の同一チャネル干渉量を測定するために、当該Uplink個別チャネル上にデータが存在しない部分であるNullデータ期間を生成するように移動機に指示するとともに、Nullデータ期間をどのタイミングにするかについて、無線基地局内で、ランダム・バックオフを行い、その結果に基づいてNullデータ期間の挿入タイミングを決定し、移動機に対し、Uplink個別チャネル上に、Nullデータ期間を作るように指示し、移動機に指示したNullデータ期間で、同一チャネル干渉量を測定する。   In order to solve the above-described problems, a radio base station according to the present invention uses a radio base station that uses OFDMA or SC-FDMA for uplink, and the radio base station performs co-channel interference on an uplink dedicated channel that has already been allocated. In order to measure the amount, the mobile station is instructed to generate a Null data period, which is a part where no data exists on the Uplink dedicated channel, and at which timing the Null data period is set in the radio base station. , Perform random backoff, determine the insertion timing of the Null data period based on the result, instruct the mobile unit to create a Null data period on the Uplink dedicated channel, and instruct the mobile unit The amount of co-channel interference is measured in the data period.

本発明は上述のように構成されているので、無線基地局は、すでに割り当てられているUplink個別チャネル上の同一チャネル干渉量を測定するために、当該Uplink個別チャネル上にNullデータ期間を設定し、すでに割り当てられているUplink個別チャネルの通信品質が劣化しないように動的に管理できる。また、Nullデータ期間の挿入タイミングを決定する場合に、ランダム・バックオフを行っているので、隣接したセルと同じタイミングでNullデータ期間が発生してしまう問題を少なくし、データ遅延を防ぐとともに同一チャネル干渉を的確に把握可能にしている。   Since the present invention is configured as described above, the radio base station sets a null data period on the uplink dedicated channel in order to measure the co-channel interference amount on the uplink dedicated channel that has already been allocated. , It can be managed dynamically so that the communication quality of the uplink dedicated channel already allocated does not deteriorate. In addition, when determining the insertion timing of the Null data period, random backoff is performed, thereby reducing the problem that the Null data period occurs at the same timing as the adjacent cells, preventing data delay and the same. Channel interference can be accurately grasped.

また、本発明において、前記無線基地局は、前記測定の結果から、同一チャネル干渉量がUplink個別チャネルの通信品質を満たさないと判断された場合には、当該Uplink個別チャネルを別のUplink個別チャネル割り当て可能領域に移動させる場合に、移動機からの帯域要求量に応じて、移動先の個別チャネルの帯域幅を変化させる。   Further, in the present invention, when it is determined from the measurement result that the same channel interference amount does not satisfy the communication quality of the uplink dedicated channel, the radio base station determines that the uplink dedicated channel is a different uplink dedicated channel. When moving to the assignable area, the bandwidth of the individual channel of the movement destination is changed according to the bandwidth request amount from the mobile device.

さらに、本発明において、前記無線基地局は、前記測定の結果から、同一チャネル干渉量がUplink個別チャネルの通信品質を満たさないと判断され、当該Uplink個別チャネルを別のUplink個別チャネルに割り当てようとしたとき、新たな1つの個別チャネルで通信品質を満たすことができない場合には、現状の個別チャネルにさらなる一つの個別チャネルを追加し、そして、Uplink送信データが短い場合には、現状のUplink個別チャネルと新規追加したUplink個別チャネルとで同じUplink送信データを送信させ、無線基地局でChase 合成法のHARQ(Hybrid Automatic Repeat Request)を行い、Uplink送信データが長い場合には、現状のUplink個別チャネルと新規追加したUplink個別チャネルとで、1つのUplink送信データを2つのUplink個別チャネルに分離して、送信させ、無線基地局でIncremental Redundancy法のHARQ(Hybrid Automatic Repeat Request)を行う。   Further, in the present invention, the radio base station determines from the measurement result that the co-channel interference amount does not satisfy the communication quality of the uplink dedicated channel, and tries to allocate the uplink dedicated channel to another uplink dedicated channel. When the communication quality cannot be satisfied with one new individual channel, one more individual channel is added to the current individual channel, and when the uplink transmission data is short, the current uplink individual The same uplink transmission data is transmitted between the channel and the newly added uplink dedicated channel, the HARQ (Hybrid Automatic Repeat Request) of the Chase combining method is performed at the radio base station, and if the uplink transmission data is long, the current uplink dedicated channel And the newly added Uplink dedicated channel, one Uplink transmission data is separated into two Uplink dedicated channels and transmitted, and the wireless base Performing HARQ (Hybrid Automatic Repeat Request) of Incremental Redundancy method at the station.

以上に詳述したように本発明によれば、無線基地局において、同一チャネル干渉量を測定し、Uplinkチャネルの周波数方向の配置を決めることにより、無線システムを緻密に配置することが可能になる。また、同一チャネル干渉が少ない部分に動的にUplink個別チャネルを割り当てるため、同一チャネル干渉による通信品質の劣化も抑えることが可能になる。また、同時刻のUplinkでHARQを併用することにより、データの遅延を防ぐことができる。   As described above in detail, according to the present invention, a radio base station can precisely arrange a radio system by measuring the amount of co-channel interference and determining the arrangement of uplink channels in the frequency direction. . In addition, since an uplink dedicated channel is dynamically allocated to a portion with less co-channel interference, it is possible to suppress deterioration in communication quality due to co-channel interference. In addition, data delay can be prevented by using HARQ together with Uplink at the same time.

以下、本発明の実施の形態について図面を参照しつつ説明する。
図1ないし図19は、この発明の無線基地局の実施の形態が有する種々の機能を個別に説明するための図、図20は本発明の実施の形態における無線通信システムを示すブロック図である。
Embodiments of the present invention will be described below with reference to the drawings.
1 to 19 are diagrams for individually explaining various functions of the radio base station according to the embodiment of the present invention, and FIG. 20 is a block diagram showing the radio communication system according to the embodiment of the present invention. .

図20に示される本実施の形態における無線通信システムは、無線基地局1と複数の移動局2を備える。無線基地局1は、チャネル制御を行なうチャネル制御部11と、本実施の形態における所定の指示を行なう指示部12と、変調部13と、復調部14と、本実施の形態においてチャネル干渉量を測定する品質測定部15を備える。複数の移動局2は、制御部21、復調部22、変調部23を備える。   The wireless communication system in the present embodiment shown in FIG. 20 includes a wireless base station 1 and a plurality of mobile stations 2. The radio base station 1 includes a channel control unit 11 that performs channel control, an instruction unit 12 that performs a predetermined instruction in the present embodiment, a modulation unit 13, a demodulation unit 14, and a channel interference amount in the present embodiment. A quality measuring unit 15 for measuring is provided. The plurality of mobile stations 2 includes a control unit 21, a demodulation unit 22, and a modulation unit 23.

以下、本実施の形態の動作について、図1ないし図19を用いて説明する。
(1)先ず、図1および図2を参照してUplink制御チャネルの割り当て方法について説明する。
1)無線基地局における品質測定部15は、指示部12の指示に基づいて、Uplink制御チャネルの周波数方向の配置位置を決めるために、図1で示されるような帯域内にある“Uplinkの制御チャネル割り当て可能領域1,2,〜,n-1,n,n+1”のそれぞれについて同一チャネル干渉量をまず測定する。
2)上記測定により、チャネル制御部11は、品質測定部15の測定結果に基づいて、同一チャネル干渉量が一番少ないところ、例えば、図2に示されるような領域にUplink制御チャネルを配置する。このUplink制御チャネルは、例えば、IEEE802.16-2005では、Ranging、CQICH、ACK-CHに相当する。このように一番干渉量の少ないところに配置することで、制御チャネルの同一チャネル干渉を減少させることができる。
Hereinafter, the operation of the present embodiment will be described with reference to FIGS.
(1) First, an uplink control channel allocation method will be described with reference to FIG. 1 and FIG.
1) The quality measurement unit 15 in the radio base station determines “uplink control within the band as shown in FIG. 1 in order to determine the arrangement position of the uplink control channel in the frequency direction based on the instruction from the instruction unit 12. First, the same channel interference amount is measured for each of the channel allocatable regions 1, 2, to, n-1, n, n + 1 ".
2) Based on the measurement, the channel control unit 11 arranges the uplink control channel in the region where the co-channel interference amount is the smallest, for example, as shown in FIG. 2, based on the measurement result of the quality measurement unit 15. . The uplink control channel corresponds to, for example, Ranging, CQICH, and ACK-CH in IEEE 802.16-2005. Thus, by arranging in the place with the least amount of interference, the co-channel interference of the control channel can be reduced.

(2)Uplink個別チャネルの割り当て方法:
1)無線基地局の品質測定部15は、Uplink個別チャネルの周波数方向の配置位置を決めるために、Uplink制御チャネルとすでに存在する個別チャネルを除く領域について同一チャネル干渉量を周期的に測定し、同一チャネル干渉量を図示しないメモリに記憶させておく。この動きを示しているのが図3である。
2)上記の測定結果、または、メモリ内にある測定結果より、チャネル制御部11は、同一チャネル干渉量が一番少ないところにUplink個別チャネルを配置する。図4に、Uplink個別チャネルを配置した例を示す。例えば、IEEE802.16-2005では、UplinkのBurstと言われている部分がUplink個別チャネルに相当し、Uplink個別チャネルの最小単位はサブチャネルというものから決定される。BurstはUplink、Downlinkのそれぞれのサブフレームに含まれている。また、Burstは、OFDMAシンボルが異なると異なった周波数を使用できる。また、3GPP Long Term Evolution(3GPP TR 25.814)のDPCHが個別チャネルに相当し、Chunk bandwidthが1個別チャネルの周波数方向のサイズを表しており、Chunk(副搬送波の固まり)はスロットごとに周波数を変更できる。つまり、図5に示すように、時間の途中で周波数成分が変わるように、Uplink個別チャネルを配置できる。
(2) Uplink dedicated channel allocation method:
1) The quality measurement unit 15 of the radio base station periodically measures the same channel interference amount in an area excluding the uplink control channel and the existing dedicated channel in order to determine the arrangement position of the uplink dedicated channel in the frequency direction, The amount of co-channel interference is stored in a memory (not shown). FIG. 3 shows this movement.
2) From the above measurement result or the measurement result in the memory, the channel control unit 11 arranges the uplink dedicated channel where the same channel interference amount is the smallest. FIG. 4 shows an example in which Uplink dedicated channels are arranged. For example, in IEEE802.16-2005, the part called Uplink Burst corresponds to the Uplink dedicated channel, and the minimum unit of the Uplink dedicated channel is determined from the subchannel. Burst is included in each subframe of Uplink and Downlink. Also, Burst can use different frequencies for different OFDMA symbols. In addition, DPCH of 3GPP Long Term Evolution (3GPP TR 25.814) corresponds to the individual channel, Chunk bandwidth represents the size of one individual channel in the frequency direction, and Chunk (cluster of subcarriers) changes the frequency for each slot. it can. That is, as shown in FIG. 5, Uplink dedicated channels can be arranged so that frequency components change in the middle of time.

(3)Uplink個別チャネルの再割り当て方法:
1)無線基地局の指示部12は、すでに割り当てられているUplink個別チャネル上の同一チャネル干渉量を測定するために、当該Uplink個別チャネル上にデータが存在しない部分(Nullデータ期間)を生成するように、移動機に指示する。この指示に基づき、図6に示されるように、すでに割り当てられているUplink個別チャネル上に設定されたNullデータ期間において、無線基地局の品質測定部15が同一チャネル干渉量を測定する。Nullデータ期間をどのタイミングにするかは、無線基地局内で、指示部12の指示に基づいてランダム・バックオフを行い、その結果から、Nullデータ期間の挿入タイミングを決定する。このように、ランダム・バックオフを行うことにより、隣接セルと同じタイミングでNullデータ期間が発生してしまう問題が少なくなる。そのことについて図7及び図8を参照して以下に説明する。
(3) Uplink dedicated channel reassignment method:
1) The instruction unit 12 of the radio base station generates a portion (Null data period) in which no data exists on the uplink dedicated channel in order to measure the co-channel interference amount on the uplink dedicated channel that has already been allocated. Instruct the mobile device to Based on this instruction, as shown in FIG. 6, the quality measuring unit 15 of the radio base station measures the co-channel interference amount in the null data period set on the uplink dedicated channel that has already been allocated. To determine the timing of the null data period, random backoff is performed based on an instruction from the instruction unit 12 in the radio base station, and the insertion timing of the null data period is determined based on the result. Thus, by performing random back-off, the problem that a null data period occurs at the same timing as the adjacent cell is reduced. This will be described below with reference to FIGS.

図7は、無線基地局RS1と無線基地局RS1の配下の端末(移動機)TM1が存在し、さらに、無線基地局RS2と無線基地局RS2の配下の端末(移動機)TM2が存在するとき、両方のセルで同じ周波数(同一チャネル)を使用している状態を示している。このような状態において、図8に示されるように、ランダム・バックオフによれば、隣接セル間でNullデータ期間が重なることが少なくなる。このような処理の後、移動機は無線基地局の指示に従い、Uplink個別チャネル上に、Nullデータ期間を作る。無線基地局は、移動機に指示したNullデータ期間で、同一チャネル干渉量を測定し、メモリに記憶する。   FIG. 7 shows a case where there are terminals (mobile devices) TM1 subordinate to the radio base station RS1 and the radio base station RS1, and there are terminals (mobile devices) TM2 subordinate to the radio base station RS2 and the radio base station RS2. This shows a state where the same frequency (same channel) is used in both cells. In such a state, as shown in FIG. 8, according to random backoff, it is less likely that Null data periods overlap between adjacent cells. After such processing, the mobile station creates a null data period on the uplink dedicated channel according to the instructions of the radio base station. The radio base station measures the co-channel interference amount in the Null data period instructed to the mobile device and stores it in the memory.

2)上記測定結果、又は、メモリ内にある当該測定結果より、同一チャネル干渉量が通信品質を満たさないと無線基地局の品質測定部15が判断した場合には、図9に示すように、当該Uplink個別チャネルを別のUplink個別チャネル割り当て可能領域に次のフレームで移動(再配置)させる。また、移動機の帯域要求量に応じて、移動先の個別チャネルの帯域幅を変化させる。 2) If the quality measurement unit 15 of the radio base station determines from the above measurement result or the measurement result in the memory that the co-channel interference amount does not satisfy the communication quality, as shown in FIG. The uplink dedicated channel is moved (rearranged) to another Uplink dedicated channel assignable area in the next frame. Further, the bandwidth of the individual channel of the movement destination is changed according to the bandwidth request amount of the mobile device.

例えば、移動機が音声通信を行っている場合には、移動前の帯域が音声通信を行うのに十分な帯域幅があるのなら移動先の帯域幅は図11に示すように小さくなることもあり、画像通信の場合には移動先の帯域を図10に示すように広げるというように、移動機のアプリケーションと帯域要求量に応じて、移動先の帯域を変化させる場合もある。この場合、移動先は、残っているUplink個別チャネル可能領域で同一チャネル干渉量が一番少ないところとする。この移動の指示は、無線基地局が移動機に通知する。   For example, when the mobile device is performing voice communication, if the bandwidth before the movement has sufficient bandwidth for performing voice communication, the bandwidth of the destination may be reduced as shown in FIG. In the case of image communication, the destination band may be changed in accordance with the application of the mobile device and the required bandwidth, such as expanding the destination band as shown in FIG. In this case, it is assumed that the destination of movement is the least amount of co-channel interference in the remaining uplink dedicated channel possible area. The wireless base station notifies the mobile device of this movement instruction.

3)Nullデータ期間で同一チャネル干渉量を測定する簡略化方式として、当該Uplink個別チャネルのCRCエラー回数の累積数、又は、簡易的なBERを使うことも可能である。送信1回分の簡易的なBER測定としては(式1)で、トータルな簡易BERは(式1)を累積したもので計算することができる。 3) As a simplified method of measuring the co-channel interference amount in the null data period, it is also possible to use the cumulative number of CRC errors of the uplink individual channel or a simple BER. As a simple BER measurement for one transmission, (Equation 1) is used, and the total simplified BER can be calculated by accumulating (Equation 1).

1回送信分の簡易BER
=1回の送信データ量におけるCRCエラーの数/1回の送信データ量
(式1)
Simple BER for one transmission
= Number of CRC errors in one transmission data amount / One transmission data amount
(Formula 1)

4)無線基地局1は、上記の品質測定部15による同一チャネル干渉量測定より、Uplink個別チャネルが通信品質を満たさないと判断して、当該Uplink個別チャネルを別の周波数に移動させようとして、他の同一チャネル干渉量を調べた結果、新たな1つのUplink個別チャネルで通信品質を満たすことができないと判断した場合には、その調べた結果の中で一番同一チャネル干渉量の少ない部分に、新たなUplink個別チャネルを追加する。つまり、図12に示すように、前回までの個別チャネルと新規追加個別チャネルの2チャンネルを割り当てる。 4) The radio base station 1 determines that the uplink dedicated channel does not satisfy the communication quality based on the same channel interference amount measurement by the quality measuring unit 15, and tries to move the uplink dedicated channel to another frequency. As a result of examining other co-channel interference amounts, if it is determined that the communication quality cannot be satisfied with one new uplink dedicated channel, the smallest co-channel interference amount in the examined results Add a new Uplink dedicated channel. That is, as shown in FIG. 12, two channels, the individual channel up to the previous time and the newly added individual channel, are allocated.

上述の2本のUplink個別チャンネルを使用して、HARQ(Hybrid AutomaticRepeat Request)を行う場合について説明する。従来のHARQは、一回データの送信を行い、NACKが返信された場合、Chase合成法では同じデータを送信し、IR(Incremental Redundancy)法では新たなデータを送信している。これは、送信の時間差による無線チャネルの変動(無相関性)を考慮し、受信データの誤りを分散させて、誤り訂正の訂正能力の利得を使い、データの送受信に利得を持たせていた。しかし、時間差を使用するため、データの遅延が生じる。そのため、音声や画像などの遅延に厳しいデータを送信する場合にはこの遅延が問題となる。   A case where HARQ (Hybrid Automatic Repeat Request) is performed using the above-described two uplink dedicated channels will be described. In conventional HARQ, when data is transmitted once and NACK is returned, the same data is transmitted by the Chase combining method, and new data is transmitted by the IR (Incremental Redundancy) method. This takes into account fluctuations (non-correlation) of the radio channel due to transmission time differences, disperses errors in received data, and uses gain of error correction correction capability to give gain to data transmission / reception. However, since a time difference is used, data delay occurs. Therefore, this delay becomes a problem when data severe in delay such as voice and image is transmitted.

しかし、OFDMAやSC-FDMAのシステムは広帯域(5〜20MHz帯)を使うのが一般的であり、広帯域通信の場合には、図13に示すように、周波数選択性フェーディングになる。そのため、周波数的に離れた2本のUplink個別チャネルを使用すると、図14に示すようになる。このようにすると、1フレーム内で無相関なUplink個別チャネルを確保することができる。そこで、図15に示すように、この2本のUplink個別チャネル上でHARQを使用する。   However, OFDMA and SC-FDMA systems generally use a wide band (5 to 20 MHz band). In the case of broadband communication, frequency selective fading is performed as shown in FIG. For this reason, when two uplink dedicated channels that are separated in frequency are used, the result is as shown in FIG. In this way, an uncorrelated Uplink dedicated channel can be secured within one frame. Therefore, as shown in FIG. 15, HARQ is used on these two uplink dedicated channels.

この場合、音声などの短いデータには、Chase合成法HARQを適用する。この場合には、図16に示すように、2本のUplink個別チャネルで同じデータを送信する。そして、無線基地局において、図17に示すように、それぞれの個別チャネルのSINRに基づき、重み付けをおこなって、合成を行なう。このようにすることで、データの遅延が生じない。   In this case, the Chase synthesis method HARQ is applied to short data such as speech. In this case, as shown in FIG. 16, the same data is transmitted using two uplink dedicated channels. Then, in the radio base station, as shown in FIG. 17, weighting is performed based on the SINR of each individual channel, and synthesis is performed. By doing so, data delay does not occur.

また、画像などの長いデータには、IR合成法HARQを適用する。この場合には、図18に示すように、データを分割して、2本のUplink個別チャネルで異なったデータを送信する。そして、無線基地局において、図19に示すように、受信データの組み立てを行う。この場合、2本のUplink個別チャネルが無相関になるので、誤りが分散され、誤り訂正の符号化利得により、受信データが正しく復号化される確率が高い。そのため、データの遅延が生じにくくなる。   The IR synthesis method HARQ is applied to long data such as images. In this case, as shown in FIG. 18, the data is divided and different data is transmitted using the two uplink dedicated channels. Then, the radio base station assembles received data as shown in FIG. In this case, since the two uplink dedicated channels are uncorrelated, the error is dispersed, and the probability that received data is correctly decoded by the coding gain of error correction is high. Therefore, data delay is less likely to occur.

次に、上記の各種の機能を備えた無線基地局の動作例について説明する。この場合の例として、IEEE802.16e(以下WiMAXと呼ぶ)に従って構成された無線基地局の場合について説明する。帯域幅5MHzのWiMAXでは、FFTサイズが512であり、Uplinkに272本のサブキャリアが利用できる。それらのサブキャリアが17個のサブチャネル(単にチャネルとも言う)を構成している。サブチャネルの同一チャネル干渉は、基地局において受信したUpLink信号のFFT結果から、サブチャネルを構成する各サブキャリアの電力を加算した値として得られる。   Next, an operation example of a radio base station having the various functions described above will be described. As an example of this case, a case of a radio base station configured according to IEEE 802.16e (hereinafter referred to as WiMAX) will be described. With WiMAX having a bandwidth of 5 MHz, the FFT size is 512, and 272 subcarriers can be used for Uplink. These subcarriers constitute 17 subchannels (also simply referred to as channels). The co-channel interference of the subchannel is obtained as a value obtained by adding the power of each subcarrier constituting the subchannel from the FFT result of the UpLink signal received at the base station.

無線基地局が起動すると、UpLinkにサブチャネルが全く割り当てられていない状態で、全サブチャネルの同一チャネル干渉を測定し(図1)、テーブルとして保持する(ステップS1)。このテーブルは、サブチャネル番号と、同一チャネル干渉量と、そのチャネルの使用状態(どのチャネルやBurstが割り当てられているか)と、そのサブチャネルに要求される品質を保てる限界の同一チャネル干渉量とが対応付けている。限界の干渉量はそのサブチャネルで使用される変調方式と誤り訂正符号などによりに決まる。   When the radio base station is activated, in the state where no subchannel is assigned to UpLink, the same channel interference of all subchannels is measured (FIG. 1) and held as a table (step S1). This table shows the sub-channel number, the co-channel interference amount, the usage status of the channel (which channel or Burst is allocated), and the co-channel interference amount that can limit the quality required for the sub-channel. Is associated. The limit amount of interference is determined by the modulation scheme and error correction code used in the subchannel.

無線基地局は、同一チャネル干渉が最も少ないサブチャネルから順に、UL-CQICH、UL-Ranging、UL-AchCHなどの制御チャンネルを割り当てるように決定する(ステップS2;図2)。そしてDownLinkに含まれるUL-MAPにその割り当て情報を記して、送信するととともに、テーブルの使用状態を更新する。
無線基地局は、一定の時間周期(例えばフレーム周期)で同一チャネル干渉を測定し、テーブルを更新する(ステップS3)。
The radio base station determines to allocate control channels such as UL-CQICH, UL-Ranging, UL-AchCH in order from the subchannel with the least co-channel interference (step S2; FIG. 2). Then, the allocation information is recorded in the UL-MAP included in DownLink and transmitted, and the usage status of the table is updated.
The radio base station measures co-channel interference at a constant time period (for example, a frame period) and updates the table (step S3).

無線基地局は、テーブルを参照し、干渉量が限界干渉量を超えているチャネルがある場合(そのチャネルと仮にチャネルAとする)、未使用のチャネルで干渉量が最小のものを検索する(ステップS4)。
無線基地局は、検索された未使用のチャネルの干渉量がチャネルAの限界干渉量以下であれば、テーブルを書き換えてチャネル割当を交換する(図9)。つまり検索された未使用チャネルがチャネルAに代わって割り当てられる(ステップS5)。
When there is a channel whose interference amount exceeds the limit interference amount (assuming that channel is channel A), the radio base station searches for an unused channel with the smallest interference amount (referred to as channel A) ( Step S4).
If the interference amount of the unused channel found is equal to or less than the limit interference amount of channel A, the radio base station rewrites the table and exchanges the channel assignment (FIG. 9). That is, the searched unused channel is assigned instead of channel A (step S5).

無線基地局は、限界干渉量を超えている場合、テーブルを書き換えて検索された未使用のチャネルとチャネルAの両方を割り当てる(ステップS6;図15,16)。   When the limit interference amount is exceeded, the radio base station rewrites the table and assigns both the unused channel and channel A that are searched (step S6; FIGS. 15 and 16).

無線基地局は、新たなチャネル割当要求があった場合、テーブルを参照し、残っている未使用のチャネルで干渉量が最小のものに割当を行い(図4)、テーブルを更新する(ステップS7)。   When there is a new channel assignment request, the radio base station refers to the table, assigns the remaining unused channels with the smallest amount of interference (FIG. 4), and updates the table (step S7). ).

無線基地局は、現状のテーブルを参照してUL-MAPを作成し、DownLinkに含めて送信する(ステップS8)。以後ステップS3からS8を繰り返す。
その結果、端末(移動機)はUL-MAPを受信し、それが指示する個別チャネルを用いてUpLinkを送出する。従って、UpLinkで測定された同一チャネル干渉は、次のフレームのUpLinkに即時に反映されることもある。
The radio base station creates a UL-MAP by referring to the current table, and transmits it by including it in DownLink (step S8). Thereafter, steps S3 to S8 are repeated.
As a result, the terminal (mobile device) receives the UL-MAP and transmits UpLink using the dedicated channel indicated by it. Therefore, the co-channel interference measured by UpLink may be immediately reflected in UpLink of the next frame.

Uplinkの制御チャネル割り当て可能領域について、周波数方向の配置を決めるために、同一チャネル干渉量を周波数方向に測定する方法を示す図である。It is a figure which shows the method of measuring the co-channel interference amount in a frequency direction, in order to determine the arrangement | positioning of a frequency direction about the control channel assignable area | region of Uplink. 図1で示されたように同一チャネル干渉量を測定した結果に基づいて、最も干渉量の少なかったところにUplink制御チャネルを配置した例を示す図である。It is a figure which shows the example which has arrange | positioned the Uplink control channel in the place where there was the least interference amount based on the result of having measured the amount of co-channel interference as shown in FIG. Uplink個別チャネルの周波数方向の配置位置を決めるために、同一チャネル干渉量を測定する方法を示す図である。It is a figure which shows the method of measuring the co-channel interference amount in order to determine the arrangement position of the frequency direction of an uplink dedicated channel. 図3で示された方法によって同一チャネル干渉量を測定した結果に基づいて、最も干渉量の少なかったところにUplink個別チャネルを割り当てた例を示す図である。It is a figure which shows the example which allocated the uplink separate channel to the place with the least interference amount based on the result of having measured the amount of co-channel interference by the method shown by FIG. 個別チャネルに割り当てられた領域の周波数成分が時間の途中で変更された場合を示す図である。It is a figure which shows the case where the frequency component of the area | region allocated to the separate channel is changed in the middle of time. 既に配置されているUplink個別チャネル上の同一チャネル干渉量を測定する方法を示す図である。It is a figure which shows the method of measuring the co-channel interference amount on the uplink dedicated channel already arrange | positioned. 2つの隣接する無線基地局の間で同じ周波数(同一チャネル)を使用している状態を示す図である。It is a figure which shows the state which is using the same frequency (same channel) between two adjacent radio base stations. 図7の環境において、ランダムバックオフにより、Nullデータ領域の時間が異なり、隣接同一チャネルの干渉量が測定できることを示す図である。In the environment of FIG. 7, it is a figure which shows that the time of a Null data area | region differs by random backoff, and can measure the interference amount of an adjacent same channel. 図6や図8に示される測定結果、または、メモリに記憶されている当該測定結果に基づき、同一チャネル干渉量が通信品質を満たさないと無線基地局が判断した場合には、当該Uplink個別チャネルを別のUplink個別チャネル割り当て可能領域に移動させる方法を示す図である。If the radio base station determines that the co-channel interference amount does not satisfy the communication quality based on the measurement result shown in FIG. 6 or FIG. 8 or the measurement result stored in the memory, the uplink dedicated channel It is a figure which shows the method of moving to another uplink dedicated channel allocatable area | region. 図9に示されるように、当該Uplink個別チャネルを別のUplink個別チャネル割り当て可能領域に移動させる場合に、移動先の新規の帯域割り当て量を増加させて移動させる方法を示す図である。As shown in FIG. 9, when moving the Uplink dedicated channel to another Uplink dedicated channel allocatable area, it is a diagram illustrating a method of moving by increasing the new bandwidth allocation amount of the destination. 図9に示されるように、当該Uplink個別チャネルを別のUplink個別チャネル割り当て可能領域に移動させる場合に、移動先の新規の帯域割り当て量を減少させて移動させる方法を示す図である。As shown in FIG. 9, when moving the uplink dedicated channel to another uplink dedicated channel allocatable area, it is a diagram illustrating a method of moving by reducing the new bandwidth allocation amount of the destination. すでに配置されているUplink個別チャネルが同一チャネル干渉量により、あらたにUplink個別チャネルを追加した例を示す図である。It is a figure which shows the example which added the uplink separate channel by the uplink separate channel already arrange | positioned by the same channel interference amount. 広帯域通信では、周波数選択性フェーディングになることを示す図である。It is a figure which shows that it becomes frequency selective fading in wideband communication. 図13に示されるように、周波数選択フェーディングが存在する時に、新規追加個別チャネルが配置される例を示す図である。FIG. 13 is a diagram illustrating an example in which a newly added dedicated channel is arranged when frequency selective fading exists as shown in FIG. すでに配置されているUplink個別チャネルと新規追加Uplink個別チャネルとで、HARQを行う場合の動作例を示す図である。It is a figure which shows the operation example in the case of performing HARQ with the uplink separate channel already arrange | positioned and the newly added Uplink separate channel. すでに配置されているUplink個別チャネルと新規追加Uplink個別チャネルとで、Chase合成法HARQを行う場合のUplink送信データ割り当て方法を示す図である。It is a figure which shows the Uplink transmission data allocation method in the case of performing Chase synthetic | combination method HARQ with the uplink separate channel already arrange | positioned and a newly added Uplink separate channel. 無線基地局でのChase合成法HARQの復号を示す図である。It is a figure which shows decoding of Chase combining method HARQ in a radio base station. すでに配置されているUplink個別チャネルと新規追加Uplink個別チャネルとで、IR(Incremental Redundancy)法HARQを行う場合のUplink送信データ割り当て方法を示す図である。It is a figure which shows the uplink transmission data allocation method in the case of performing IR (Incremental Redundancy) method HARQ with the uplink dedicated channel already arrange | positioned and the newly added Uplink dedicated channel. 無線基地局でのIR法HARQの復号を示す図である。It is a figure which shows decoding of IR method HARQ in a wireless base station. 本発明の実施の形態における無線通信システムを示すブロック図であるIt is a block diagram which shows the radio | wireless communications system in embodiment of this invention.

符号の説明Explanation of symbols

1,RS1,RS2 無線基地局、2,TM1,TM2 端末(移動機),11 チャネル制御部、12 指示部、13 変調部、14 復調部、15 品質測定部、21 制御部、22 復調部、23 変調部。 1, RS1, RS2 radio base station, 2, TM1, TM2 terminal (mobile device), 11 channel control unit, 12 instruction unit, 13 modulation unit, 14 demodulation unit, 15 quality measurement unit, 21 control unit, 22 demodulation unit, 23 Modulator.

Claims (3)

UplinkにOFDMAまたはSC-FDMAを使用する無線基地局において同一チャネル干渉量を測定する無線基地局であって、
既に割り当てられているUplink個別チャネル上にデータが存在しない部分であるNullデータ期間を生成するように移動機に指示するとともに、Nullデータ期間をどのタイミングにするかについて、ランダム・バックオフを行い、その結果に基づいてNullデータ期間の挿入タイミングを決定し、移動機に対し、Uplink個別チャネル上に、Nullデータ期間を作るように指示し、移動機に指示したNullデータ期間で同一チャネル干渉量を測定する無線基地局。
A radio base station that measures co-channel interference in a radio base station that uses OFDMA or SC-FDMA for uplink,
Instructs the mobile station to generate a null data period, which is a part where no data exists on the uplink dedicated channel that has already been allocated, and performs a random back-off as to when the null data period should be Based on the result, the insertion timing of the Null data period is determined, the mobile unit is instructed to create a Null data period on the Uplink dedicated channel, and the same channel interference amount is determined in the Null data period instructed to the mobile unit. Radio base station to measure.
請求項1に記載の無線基地局において、
前記測定結果から、同一チャネル干渉量がUplink個別チャネルの通信品質を満たさないと判断された場合には、当該Uplink個別チャネルを別のUplink個別チャネル割り当て可能領域に移動させる場合に、移動機からの帯域要求量に応じて移動先の個別チャネルの帯域幅を変化させることを特徴とする無線基地局。
In the radio base station according to claim 1,
When it is determined from the measurement result that the same channel interference amount does not satisfy the communication quality of the uplink dedicated channel, when moving the uplink dedicated channel to another uplink dedicated channel assignable area, A radio base station that changes the bandwidth of a dedicated channel of a moving destination in accordance with a bandwidth request amount.
請求項1に記載の無線基地局において、
前記測定の結果から、同一チャネル干渉量がUplink個別チャネルの通信品質を満たさないと判断され、当該Uplink個別チャネルを別のUplink個別チャネルに割り当てようとしたとき、新たな1つの個別チャネルで通信品質を満たすことができない場合には、現状の個別チャネルにさらなる一つの個別チャネルを追加し、Uplink送信データが短い場合には、現状のUplink個別チャネルと新規追加したUplink個別チャネルとで同じUplink送信データを送信させ、Chase 合成法のHARQ(Hybrid Automatic Repeat Request)を行い、Uplink送信データが長い場合には、現状のUplink個別チャネルと新規追加したUplink個別チャネルとで、1つのUplink送信データを2つのUplink個別チャネルに分離して送信させ、Incremental Redundancy法のHARQ(Hybrid Automatic Repeat Request)を行うことを特徴とする無線基地局。
In the radio base station according to claim 1,
From the result of the measurement, when it is determined that the co-channel interference amount does not satisfy the communication quality of the uplink dedicated channel and it is attempted to assign the uplink dedicated channel to another uplink dedicated channel, the communication quality of the new single dedicated channel If it is not possible to satisfy this condition, add another dedicated channel to the current dedicated channel. If the Uplink transmission data is short, the same Uplink transmission data is used for the current Uplink dedicated channel and the newly added Uplink dedicated channel. If the uplink transmission data is long, two uplink transmission data are transferred to the current uplink dedicated channel and the newly added uplink dedicated channel, if HARQ (Hybrid Automatic Repeat Request) of Chase combining method is performed. It is separated and transmitted to uplink dedicated channels, and HARQ (Hybrid Automatic Repeat Request) of Incremental Redundancy method is performed. Base station.
JP2006250284A 2006-09-15 2006-09-15 Wireless base station Expired - Fee Related JP4588681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006250284A JP4588681B2 (en) 2006-09-15 2006-09-15 Wireless base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006250284A JP4588681B2 (en) 2006-09-15 2006-09-15 Wireless base station

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008069085A Division JP2008245277A (en) 2008-03-18 2008-03-18 Control method of radio base station

Publications (2)

Publication Number Publication Date
JP2008072540A true JP2008072540A (en) 2008-03-27
JP4588681B2 JP4588681B2 (en) 2010-12-01

Family

ID=39293708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250284A Expired - Fee Related JP4588681B2 (en) 2006-09-15 2006-09-15 Wireless base station

Country Status (1)

Country Link
JP (1) JP4588681B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093621A1 (en) * 2007-01-31 2008-08-07 Sharp Kabushiki Kaisha Mobile communication system, base station device, and mobile station device
JP2014014112A (en) * 2008-04-14 2014-01-23 Qualcomm Incorporated Allocation of control resources of femto cell to prevent interference with macro cell
JP2017512047A (en) * 2014-03-06 2017-04-27 大唐移▲動▼通信▲設▼▲備▼有限公司 Method and apparatus for adjusting channel frequency domain offset of physical random access channel (PRACH)
CN112424362A (en) * 2019-04-08 2021-02-26 Dna2.0股份有限公司 Integration of a nucleic acid construct into a eukaryotic cell using transposase from medaka

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520164A (en) * 2004-01-28 2007-07-19 クゥアルコム・インコーポレイテッド Interference estimation in wireless communication systems
JP2007525045A (en) * 2003-02-24 2007-08-30 クゥアルコム・フラリオン・テクノロジーズ、インコーポレイテッド Pilot signal used in multi-sector cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525045A (en) * 2003-02-24 2007-08-30 クゥアルコム・フラリオン・テクノロジーズ、インコーポレイテッド Pilot signal used in multi-sector cell
JP2007520164A (en) * 2004-01-28 2007-07-19 クゥアルコム・インコーポレイテッド Interference estimation in wireless communication systems

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093621A1 (en) * 2007-01-31 2008-08-07 Sharp Kabushiki Kaisha Mobile communication system, base station device, and mobile station device
JP2009171613A (en) * 2007-01-31 2009-07-30 Sharp Corp Base station device
JP4431630B2 (en) * 2007-01-31 2010-03-17 シャープ株式会社 Mobile communication system, base station apparatus and mobile station apparatus
JPWO2008093621A1 (en) * 2007-01-31 2010-05-20 シャープ株式会社 Mobile communication system, base station apparatus and mobile station apparatus
JP4511633B1 (en) * 2007-01-31 2010-07-28 シャープ株式会社 Mobile communication system and base station apparatus
JP2010166588A (en) * 2007-01-31 2010-07-29 Sharp Corp Mobile communication system and base station apparatus
JP2010166587A (en) * 2007-01-31 2010-07-29 Sharp Corp Mobile communication system, base station apparatus and communication method
JP4558843B2 (en) * 2007-01-31 2010-10-06 シャープ株式会社 Mobile communication system, base station apparatus and communication method
US8040848B2 (en) 2007-01-31 2011-10-18 Sharp Kabushiki Kaisha Mobile communication system, base station apparatus, and mobile station apparatus
US8270362B2 (en) 2007-01-31 2012-09-18 Sharp Kabushiki Kaisha Mobile communication system, base station apparatus, and method to reduce inter-cell interference for same
US8488561B2 (en) 2007-01-31 2013-07-16 Sharp Kabushiki Kaisha Mobile communication system, base station apparatus, and method to reduce inter-cell interference for same
JP2014014112A (en) * 2008-04-14 2014-01-23 Qualcomm Incorporated Allocation of control resources of femto cell to prevent interference with macro cell
JP2015228667A (en) * 2008-04-14 2015-12-17 クゥアルコム・インコーポレイテッドQualcomm Incorporated Allocating control resources of femto cells for preventing interference with macro cells
JP2017512047A (en) * 2014-03-06 2017-04-27 大唐移▲動▼通信▲設▼▲備▼有限公司 Method and apparatus for adjusting channel frequency domain offset of physical random access channel (PRACH)
US9900913B2 (en) 2014-03-06 2018-02-20 Datang Mobile Communications Equipment Co., Ltd. Method and device for adjusting channel frequency domain offset of physical random access channel
CN112424362A (en) * 2019-04-08 2021-02-26 Dna2.0股份有限公司 Integration of a nucleic acid construct into a eukaryotic cell using transposase from medaka

Also Published As

Publication number Publication date
JP4588681B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
US11483784B2 (en) Transmission and reception of synchronization signal blocks in a wireless network
US20240049270A1 (en) Method for transmitting physical channels, user equipment therefor, method and user equipment for relay transmission
US10601566B2 (en) Multiple slot long physical uplink control channel (PUCCH) design for 5th generation (5G) new radio (NR)
US20220140964A1 (en) Two-stage physical sidelink control channel (pscch) for sidelink communications
US20220061041A1 (en) Two-stage sidelink control information for sidelink communications
US20210360667A1 (en) Method and apparatus for transmitting and receiving downlink control channel in communication system
EP3836680A1 (en) Information transmission method, monitoring method and device, base station, terminal and storage medium
EP2995106B1 (en) Method, apparatus and computer program for wireless communications
KR102444764B1 (en) Base station apparatus, terminal apparatus and communication method
US8644232B2 (en) Method for allocating uplink ACK/NACK channels
US20200329481A1 (en) Method and apparatus for configuring sensing gap in frame structure for new radio access technology in wireless communication system
EP3455991B1 (en) Configuration of downlink transmissions
US11546197B2 (en) Terminal apparatus, base station apparatus, and communication method
KR20180081464A (en) Method and apparatus for transmitting and receiving control channel in communication system
CN113615244A (en) User equipment, base station and method
JP5934700B2 (en) Relay station, base station, transmission method, and reception method
JP2015507905A (en) Method and apparatus for improved control channel based operation in a wireless communication system
US20210051702A1 (en) Configured grant uplink control information (uci) multiplexing for new radio-unlicensed (nr-u)
JPWO2007088854A1 (en) Radio communication system, radio transmission apparatus, and RACH transmission method
EP3668138A1 (en) Communication device and communication method
US20220225295A1 (en) Methods and Apparatus for Resource Selection
US20200245269A1 (en) Base station apparatus and communication method
JP4588681B2 (en) Wireless base station
CN112753237A (en) User equipment, base station, method for user equipment and method for base station
JPWO2008084624A1 (en) Base station apparatus, mobile station, radio communication system, and communication control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140917

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees