JP2008072403A - Eigenmode transmission method in frequency-selective channel - Google Patents

Eigenmode transmission method in frequency-selective channel Download PDF

Info

Publication number
JP2008072403A
JP2008072403A JP2006248742A JP2006248742A JP2008072403A JP 2008072403 A JP2008072403 A JP 2008072403A JP 2006248742 A JP2006248742 A JP 2006248742A JP 2006248742 A JP2006248742 A JP 2006248742A JP 2008072403 A JP2008072403 A JP 2008072403A
Authority
JP
Japan
Prior art keywords
channel
transmission
mimo
antennas
eigenmode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006248742A
Other languages
Japanese (ja)
Inventor
Yasunori Iwanami
保則 岩波
Eiji Okamoto
英二 岡本
Yuukai Goto
悠介 後藤
Yusuke Takahashi
優輔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2006248742A priority Critical patent/JP2008072403A/en
Publication of JP2008072403A publication Critical patent/JP2008072403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radio Transmission System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein research for the MIMO (Multiple-Input Multiple-Output) system which uses a plurality of antennas for transmission and a plurality of antennas for receiving has increased recently, in response to an increasing demand for high-speed and large-capacity communication in radio communication, however, since the MIMO system is capable of multiplexed signal transmission at the same frequency, and at the same time, it has become clear that the channel capacity increases the number-of-antennas min (M, N) times than in the SISO (Single-Input Single-Output) system, where M is the number of transmitting antennas and N is the number of receiving antennas, a frequency selective channel, having a delay in channels between antennas suffers from degradation of characteristics due to the influence of delay waves and interference waves. <P>SOLUTION: As a data transmission method in a frequency selective MIMO channel system, eigenmode transmission is realized, by inserting zero zones that are called "guard intervals" into a signal, in advance, on the transmitter side in the MIMO eigenmode system. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ディジタル無線通信方式におけるデータ伝送方式に関するものである。特に、周波数選択性通信路に於けるマルチ入力マルチ出力(multiple-input multiple-output, MIMO、以下MIMOと称す)システムにおいて伝送速度を向上させる誤り制御方式を実現させる方法を提供するものである。   The present invention relates to a data transmission system in a digital wireless communication system. In particular, the present invention provides a method for realizing an error control method for improving a transmission rate in a multiple-input multiple-output (MIMO) system in a frequency selective channel.

従来技術として固有モード伝送がある。送受信機の双方が通信路情報(channel statement information, CSI)を既知としている時、通信路行列についての特異値分解を行い送受信機で処理を行うことによって、M×Nの行列で与えられた通信路をmin(M,N)本のシングル入力シングル出力(single-input single-output, SISO)システムとして扱うことが出来る。分解されたSISO通信路に対して送信機は通信路利得を知ることが出来るため、あらかじめ利得の大きい通信路には大きい送信電力を与え、利得の小さい通信路には小さい電力を配分、又は電力を配分しないことで通信路容量を拡大することが可能となる。   There is eigenmode transmission as a conventional technique. When both transceivers know channel statement information (CSI), the singular value decomposition of the channel matrix is performed and the processing is performed by the transceiver, so that the communication given as an M × N matrix The path can be treated as a min (M, N) single-input single-output (SISO) system. Since the transmitter can know the channel gain for the decomposed SISO channel, a large transmission power is given to a channel with a large gain in advance, and a small amount of power is allocated to a channel with a small gain, or power. By not allocating, it is possible to expand the communication path capacity.

上述の従来技術に於いて、実際の無線通信路環境下ではマルチパスの影響を無視することは出来ない。しかし、これまでMIMO固有モード伝送は周波数非選択性通信路に於いてのみ考えられ、周波数選択性通信路ではあまり考えられてこなかった。   In the above-described prior art, the influence of multipath cannot be ignored under an actual wireless communication path environment. However, until now, MIMO eigenmode transmission has been considered only on frequency non-selective channels, and has not been considered much on frequency selective channels.

本発明は、MIMO固有モード伝送システムに於いて周波数選択性通信路環境下での適用方法を提供することを目的としている。   An object of the present invention is to provide an application method in a frequency selective channel environment in a MIMO eigenmode transmission system.

本発明に於ける第1の発明は、周波数選択性MIMO通信路環境下に於いて送信信号にガードインターバルを付加することにより、通信路チャネル行列の特異値分解による固有モード伝送に適用し、各固有モードチャネルに注水定理に基づく電力の最適配分を行うことを特徴としている。   The first invention in the present invention is applied to eigenmode transmission by singular value decomposition of a channel channel matrix by adding a guard interval to a transmission signal in a frequency selective MIMO channel environment. It is characterized by optimal power distribution based on the water injection theorem in eigenmode channels.

また本発明に於ける第2の発明は、第1の発明をSISOマルチパス通信路に適用することを特徴としている。

このように本発明は、送受信機での通信路チャネル行列が既知である時、直接波のみではなく遅延波の電力を含めた特異値分解を行うことによって送信電力を無駄なく使用することが出来、伝送効率を向上させることが出来る。
The second invention in the present invention is characterized in that the first invention is applied to a SISO multipath communication path.

As described above, the present invention can use transmission power without waste by performing singular value decomposition including not only the direct wave but also the delay wave power when the channel channel matrix in the transceiver is known. , Transmission efficiency can be improved.

請求項1に記載の発明では、周波数選択性MIMO通信路に於いて送信信号にガードインターバル区間を挿入することによって、遅延波電力を含めた固有モード伝送を行うことにより、伝送効率の良いシステムを実現することが出来る。   In the invention according to claim 1, by performing eigenmode transmission including delayed wave power by inserting a guard interval section into a transmission signal in a frequency selective MIMO communication path, a system with good transmission efficiency is obtained. Can be realized.

請求項2に記載の発明では、固有モード伝送をSISOマルチパス通信路に適用することで遅延波電力を無駄にしない伝送を実現することが出来る。   According to the second aspect of the present invention, transmission without wasting delay wave power can be realized by applying eigenmode transmission to the SISO multipath channel.

まず本発明の概略を、図1を用いて説明する。送信側ではまず情報系列のQAM又はPSK変調を行い、特異値分解(singular value decomposition,SVD)によるユニタリー行列演算をした後、各アンテナに閾値内での電力をそれぞれ配分した注水定理に基づき各固有モードチャネルへ最適電力配分を行い送信を行う。受信側ではユニタリー行列演算によって固有モードチャネルの分離を行う。周波数選択性通信路に於けるチャネル行列を時空間方向に拡張すると次式で与えられる。   First, the outline of the present invention will be described with reference to FIG. The transmitter first performs QAM or PSK modulation of the information sequence, performs unitary matrix calculation by singular value decomposition (SVD), and then assigns each power to each antenna based on the water injection theorem. Performs optimal power distribution to the mode channel for transmission. On the receiving side, eigenmode channels are separated by unitary matrix operation. When the channel matrix in the frequency selective channel is expanded in the space-time direction, it is given by the following equation.

この時、nRを受信アンテナ本数、nTを送信アンテナ本数、Lを各通信路のマルチパス数とすると通信路行列のサイズはnRL×nT(2L-1)、送信行列のサイズはnT(2L-1)×1、受信行列のサイズはnRL×1で与えられる。ただし、受信行列は一般的に任意のnRN次元列ベクトルとして表記が可能であり、この時の通信路行列のサイズはnRN×nT(N+L-1)、受信行列のサイズはnRN×1として与えられる。ここで送信信号のエネルギーの100%の活用を受信側で図るため、あらかじめ送信信号ベクトルの前後に各(L-1)個のガードインターバル区間を付加しゼロを挿入する。この時の通信路行列のサイズはnR(N+2L-2)×nT(N+3L-3)、送信行列のサイズはnT(N+3L-3)×1、受信行列のサイズはnR(N+2L-2)×1となるが、整理をすると次式の用になる。 At this time, assuming that n R is the number of receiving antennas, n T is the number of transmitting antennas, and L is the number of multipaths for each channel, the channel matrix size is n R L × n T (2L-1), and the size of the transmission matrix Is given by n T (2L-1) × 1, and the size of the reception matrix is given by n R L × 1. However, the reception matrix can generally be expressed as an arbitrary n R N-dimensional column vector. At this time, the size of the channel matrix is n R N × n T (N + L-1), and the size of the reception matrix Is given as n R N × 1. Here, in order to use 100% of the energy of the transmission signal on the receiving side, (L-1) guard interval sections are added in advance before and after the transmission signal vector, and zeros are inserted. The channel matrix size at this time is n R (N + 2L-2) x n T (N + 3L-3), the transmission matrix size is n T (N + 3L-3) x 1, and the reception matrix size Becomes n R (N + 2L-2) × 1.

数2に於いて通信路行列のサイズはnR(N+L-1)×nTN、送信行列のサイズはnTN×1、受信行列のサイズは1×nR(N+L-1)となる。従ってK≡rank(H)≦min{nR(N+L-1), nTN}となり、通信路行列Hを特異値分解して得られる独立な固有モードチャネルの数は最大でK個となる。 The number size of the channel matrix at the 2 n R (N + L-1 ) × n T N, the size of the transmission matrix is n T N × 1, the size of the receive matrix is 1 × n R (N + L- 1). Therefore, K≡rank (H) ≦ min {n R (N + L-1), n T N}, and the maximum number of independent eigenmode channels obtained by singular value decomposition of the channel matrix H is K. It becomes.

また、物理チャネルのシンボル時間区間に関する伝送レートはR=N/(N+L-1)となる。   Also, the transmission rate for the symbol time interval of the physical channel is R = N / (N + L-1).

以下、実施例に基づいて本発明を具体的に説明するが、もとより本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples from the first.

図2に例として4×1MIMOシステムに於ける4パス通信路モデルの処理概略図を示す。1シンボル毎に3シンボルのガードインターバルを挿入することで、送信信号のエネルギーを全て活用している。   As an example, FIG. 2 shows a process schematic diagram of a 4-path channel model in a 4 × 1 MIMO system. By inserting a guard interval of 3 symbols for each symbol, all the energy of the transmitted signal is utilized.

SISOへの適用はnT=nR=1の場合であり、この時の受信信号は次式で与えられる。 The application to SISO is when n T = n R = 1, and the received signal at this time is given by the following equation.

以下に本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

通信路は4×1MIMOシステムであり、各通信路は0dB、3dBまたは6dB減衰準静的レイリーフェージング通信路(Quasi-static Rayleigh fading channel)とし、1シンボル毎遅延のタップ付き遅延線マルチパスモデルを仮定している。各アンテナに等しく電力を割り当てた場合と、注水定理に基づいた最適電力配分を行った場合とで伝送容量を計算した。   The communication channel is a 4x1 MIMO system, and each channel is a 0dB, 3dB, or 6dB attenuated quasi-static Rayleigh fading channel, and a tapped delay line multipath model with a delay per symbol is used. Assumes. The transmission capacity was calculated when power was allocated equally to each antenna and when optimal power distribution was performed based on the water injection theorem.

図3に各伝送容量を示す。横軸は、受信アンテナ1本あたりの平均受信SNRである。送信アンテナに電力を最適配分することによって、電力を等配分したものに比べ伝送容量の向上が見られた。また等電力配分、最適電力配分とも各マルチパスが等電力である場合が最も伝送容量が大きい結果が見られた。   FIG. 3 shows each transmission capacity. The horizontal axis is the average received SNR per receiving antenna. By optimally allocating power to the transmitting antennas, the transmission capacity was improved compared to the equally distributed power. In addition, in both the equal power distribution and the optimum power distribution, the result of the largest transmission capacity was observed when each multipath had the same power.

図4に2×2MIMOシステム、図5に4×4MIMOシステムの計算機シミュレーションによる誤り率(Bit Error Rate,BER)特性を示す。比較対象としてSC/MMSE(Soft Canceller followed by Minimum Mean Square Error)等化器を用いている。ただし、どちらも符号化率0.5のLDPC符号化を行っている。図4に於いては約2dB、図5に於いては約1.5dBのSC/MMSE等化器に対する利得が得られている。また注水定理を用いた場合、若干ではあるが等電力に比べ利得が得られている。   FIG. 4 shows the error rate (Bit Error Rate, BER) characteristics of the 2 × 2 MIMO system and FIG. 5 shows the 4 × 4 MIMO system by computer simulation. An SC / MMSE (Soft Canceller followed by Minimum Mean Square Error) equalizer is used for comparison. However, both perform LDPC coding at a coding rate of 0.5. The gain for the SC / MMSE equalizer is about 2 dB in FIG. 4 and about 1.5 dB in FIG. In addition, when the water injection theorem is used, a gain is obtained, although slightly, compared to the equal power.

図6にSISOシステムの計算機シミュレーションによるBER特性を示す。比較対象としてDFE(Decision Feedback Equalizer)を用いている。10-3付近で約15dBの利得が得られている。
Fig. 6 shows the BER characteristics by computer simulation of the SISO system. DFE (Decision Feedback Equalizer) is used as a comparison target. A gain of about 15 dB is obtained around 10 -3 .

ディジタル無線通信方式におけるデータ伝送方式に関するものである。特に、周波数選択性が考えられるMIMOシステムにおいて伝送速度を向上させる誤り制御方式を実現させる方法として利用可能性がある。
The present invention relates to a data transmission system in a digital wireless communication system. In particular, it can be used as a method for realizing an error control method for improving the transmission rate in a MIMO system in which frequency selectivity is considered.

Lのマルチパスを持つM×M MIMO固有モード伝送のシステムモデルを示す図である。It is a figure which shows the system model of MxM MIMO eigenmode transmission with L multipath. 4×1MIMOシステムに於ける4パス通信路モデルの概略を示すモデル図である。It is a model figure which shows the outline of the 4 path | pass channel model in a 4x1 MIMO system. 4×1MIMOシステムに於ける4パス通信路モデルでの伝送容量の特性を示す図である。It is a figure which shows the characteristic of the transmission capacity in the 4 path | route channel model in a 4x1 MIMO system. 2×2MIMOシステムに於ける2パス通信路モデルでのBER特性をSC/MMSE等化器と比較した図である。It is the figure which compared the BER characteristic in the 2 path channel model in 2x2 MIMO system with the SC / MMSE equalizer. 4×4MIMOシステムに於ける2パス通信路モデルでのBER特性をSC/MMSE等化器と比較した図である。It is the figure which compared the BER characteristic in the 2 path channel model in the 4x4 MIMO system with the SC / MMSE equalizer. SISOシステムに於ける5パス通信路モデルでのBER特性をDFE等化器と比較した図である。It is the figure which compared the BER characteristic in the 5-path channel model in a SISO system with a DFE equalizer.

Claims (2)

送受信機ともに複数のアンテナを用いた単一送信機によるマルチ入力、単一受信機によるマルチ出力(multiple-input multiple-output,MIMO、以下MIMOと称す)伝送のうち、周波数選択性通信路環境下に於いて遅延波電力を含めた送信機側でのチャネル制御を行い、各チャネルとして送信する固有モード伝送を用いて送信機の電力制御を行い、伝送効率を上げる伝送方法。 Multi-input multiple-output (MIMO, hereinafter referred to as MIMO) transmission by a single transmitter using multiple antennas for both transmitter and receiver in a frequency-selective channel environment In this transmission method, the channel control on the transmitter side including the delay wave power is performed, and the power control of the transmitter is performed using the eigenmode transmission transmitted as each channel to increase the transmission efficiency. 請求項1記載の固有モード伝送方法に於いてMIMOに対し特に送受信アンテナが一本である(single-input single-output,SISO、以下SISOと称す)マルチパス通信路に適用することにより各チャネルの干渉、符号間干渉(Inter-Symbol Interference,ISI、以下ISIと称す)の除去を行う伝送方法。 2. The eigenmode transmission method according to claim 1, wherein the channel is applied to a multipath communication path with a single transmission / reception antenna (single-input single-output, SISO, hereinafter referred to as SISO) for MIMO. A transmission method for canceling interference and inter-symbol interference (ISI).
JP2006248742A 2006-09-13 2006-09-13 Eigenmode transmission method in frequency-selective channel Pending JP2008072403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248742A JP2008072403A (en) 2006-09-13 2006-09-13 Eigenmode transmission method in frequency-selective channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248742A JP2008072403A (en) 2006-09-13 2006-09-13 Eigenmode transmission method in frequency-selective channel

Publications (1)

Publication Number Publication Date
JP2008072403A true JP2008072403A (en) 2008-03-27

Family

ID=39293601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248742A Pending JP2008072403A (en) 2006-09-13 2006-09-13 Eigenmode transmission method in frequency-selective channel

Country Status (1)

Country Link
JP (1) JP2008072403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034757A (en) * 2008-07-28 2010-02-12 Sharp Corp Communication system, receiving apparatus, and communication method
CN102239649A (en) * 2008-12-02 2011-11-09 Lg电子株式会社 Method for transmitting reference signals in a downlink multiple input multiple output system
US8098750B2 (en) 2008-07-10 2012-01-17 Infineon Technologies Ag Method and device for transmitting a plurality of data symbols
JP5178713B2 (en) * 2007-05-29 2013-04-10 シャープ株式会社 Radio receiving apparatus, radio communication system, and radio communication method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178713B2 (en) * 2007-05-29 2013-04-10 シャープ株式会社 Radio receiving apparatus, radio communication system, and radio communication method
US8098750B2 (en) 2008-07-10 2012-01-17 Infineon Technologies Ag Method and device for transmitting a plurality of data symbols
JP2010034757A (en) * 2008-07-28 2010-02-12 Sharp Corp Communication system, receiving apparatus, and communication method
CN102239649A (en) * 2008-12-02 2011-11-09 Lg电子株式会社 Method for transmitting reference signals in a downlink multiple input multiple output system
US8619693B2 (en) 2008-12-02 2013-12-31 Lg Electronics Inc. Method for transmitting reference signals in a downlink multiple input multiple output system
CN102239649B (en) * 2008-12-02 2014-03-19 Lg电子株式会社 Method for transmitting reference signals in a downlink multiple input multiple output system
US8913581B2 (en) 2008-12-02 2014-12-16 Lg Electronics Inc. Method for transmitting reference signals in a downlink multiple input multiple output system
US9276692B2 (en) 2008-12-02 2016-03-01 Lg Electronics, Inc. Method for transmitting reference signals in a downlink multiple input multiple output system
US9954593B2 (en) 2008-12-02 2018-04-24 Lg Electronics Inc. Method for transmitting reference signals in a downlink multiple input multiple output system

Similar Documents

Publication Publication Date Title
US9258041B2 (en) Methods and systems for combined cyclic delay diversity and precoding of radio signals
WO2007094832A2 (en) Recursive and trellis-based feedback reduction for mimo-ofdm with rate-limited feedback
EP2011251A1 (en) Reduced complexity beam-steered mimo ofdm system
EP2580898B1 (en) MIMO transmission and reception system with decentralized channel estimation and precoding
KR20100005649A (en) A precoding method using multi-codebook
EP2201732A2 (en) Method and system for managing precoding in a multi-user wireless communications system
CN101150343A (en) A MIMO mobile communication method and system
JP2011518466A (en) Signal transmission method for reducing feedback overhead and feedback information transmission method therefor
JP2003309540A (en) Communication method
JP2006005791A (en) Estimation of communication path and data detection method
JP2008072403A (en) Eigenmode transmission method in frequency-selective channel
KR20110045649A (en) Transmission apparatus and method for performing interference alignment thereof, and Reception apparatus and method for operating thereof
Chehri et al. Phy-MAC MIMO precoder design for sub-6 GHz backhaul small cell
WO2018056917A1 (en) Space-time channel modulation method
Kurosaki et al. SDM-COFDM scheme using feed-forward inter-channel interference canceller for broadband mobile communications
JP5339865B2 (en) Wireless receiving method and wireless receiving device
Mielczarek et al. Throughput of realistic multi-user MIMO-OFDM systems
CN113228528A (en) Precoding settings
Pham et al. MIMO beamforming for high-bit-rate transmission over frequency-selective fading channels
CN111064684B (en) Uplink spatial modulation single carrier frequency domain joint equalization method
CN102201890B (en) Data transmitting method and device
JP2009171564A (en) Wireless receiver and wireless receiving method
Kinjo et al. A QR Decomposition Algorithm with Partial Greedy Permutation for Zero-Forcing Block Diagonalization
Luechao et al. A flexible low-complexity robust THP approach for MISO downlinks with imperfect CSI
Yonis Improving Energy Efficiency from Regular to Massive MIMO for 5G Cellular Networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101