JP2008071594A - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP2008071594A
JP2008071594A JP2006248414A JP2006248414A JP2008071594A JP 2008071594 A JP2008071594 A JP 2008071594A JP 2006248414 A JP2006248414 A JP 2006248414A JP 2006248414 A JP2006248414 A JP 2006248414A JP 2008071594 A JP2008071594 A JP 2008071594A
Authority
JP
Japan
Prior art keywords
porous substrate
electrode
fuel cell
solid oxide
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006248414A
Other languages
Japanese (ja)
Other versions
JP5522882B2 (en
Inventor
Kuniaki Yoshikata
邦聡 芳片
Kazufumi Kotani
和史 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2006248414A priority Critical patent/JP5522882B2/en
Publication of JP2008071594A publication Critical patent/JP2008071594A/en
Application granted granted Critical
Publication of JP5522882B2 publication Critical patent/JP5522882B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid oxide fuel cell capable of improving output power while improving gas permeability. <P>SOLUTION: This solid oxide fuel cell is provided with a porous substrate 2, a fuel electrode 4 formed on the upper surface 23 of the porous substrate 2, an electrolyte 5 formed on the fuel electrode 4, and an air electrode 6 formed on the electrolyte 5. The porous substrate 2 is structured such that porosity is reduced toward the upper surface 23 side from its undersurface 24 side. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体酸化物形燃料電池に関するものである。   The present invention relates to a solid oxide fuel cell.

燃料電池とは外部からの燃料供給と燃焼生成物の排気とを連続的に行いながら、燃料が酸化する際に発生する化学エネルギーを電気エネルギーに直接変換できる電池である。燃料電池の種類は電解質により分類され、電解質にイオン伝導性を持つ固体酸化物を用いたものを固体酸化物形燃料電池と呼んでいる。この固体酸化物形燃料電池としては、種々のものが提案されているが、例えば特許文献1には、その強度や耐熱衝撃性を向上させるため、支持体で燃料極(アノード)、電解質、空気極(カソード)からなる単セルを支持する単室型の燃料電池が開示されている。
特開2005−174662号公報
A fuel cell is a cell that can directly convert chemical energy generated when fuel is oxidized into electric energy while continuously supplying fuel from the outside and exhausting combustion products. The types of fuel cells are classified according to the electrolyte, and those using a solid oxide having ionic conductivity for the electrolyte are called solid oxide fuel cells. Various types of solid oxide fuel cells have been proposed. For example, in Patent Document 1, in order to improve the strength and thermal shock resistance, a fuel electrode (anode), electrolyte, air, and the like are supported by a support. A single-chamber fuel cell that supports a single cell composed of an electrode (cathode) is disclosed.
JP 2005-174661 A

上記燃料電池では、支持体を多孔質とし、この支持体の気孔を介して支持体上に形成された燃料極に混合ガスを供給している。このような多孔質の支持体では、気孔率をどの程度にするかという問題を有している。つまり、支持体の気孔率を低くするとガスの透過性が悪くなるという問題が生じる一方、気孔率を高くすると、ガスの透過性は良くなるが、支持体とその上に形成された燃料極との接触面積が小さくなってしまう。その結果、支持体と燃料極との間の抵抗が大きくなり、ひいては燃料電池の出力が低くなるという問題が生じる。また、支持体の気孔率を高くすると、支持体へ電極ペ−ストを印刷する際における電極ペーストのしみ込みが激しくなり、燃料極ペーストを均一な膜厚で成膜することが困難となる。このため、燃料極上面に凹凸が発生し、その上面に形成される電解質の形成も困難となる。その結果、量産時に電池性能の安定性や再現性が乏しくなり、ひいては歩留まりが低下する。   In the fuel cell, the support is made porous, and the mixed gas is supplied to the fuel electrode formed on the support through the pores of the support. Such a porous support has a problem of how much the porosity should be. That is, if the porosity of the support is lowered, the gas permeability is deteriorated. On the other hand, if the porosity is increased, the gas permeability is improved, but the support and the fuel electrode formed on the support are formed. The contact area becomes smaller. As a result, there arises a problem that the resistance between the support and the fuel electrode is increased, and as a result, the output of the fuel cell is lowered. Further, when the porosity of the support is increased, the penetration of the electrode paste when printing the electrode paste on the support becomes severe, and it becomes difficult to form the fuel electrode paste with a uniform film thickness. For this reason, irregularities occur on the upper surface of the fuel electrode, and it becomes difficult to form an electrolyte formed on the upper surface. As a result, the stability and reproducibility of the battery performance during mass production becomes poor, and as a result, the yield decreases.

そこで、本発明は、ガス透過性を向上させつつ、発電効率の向上も図ることのできる固体酸化物形燃料電池を提供することを課題とする。   Therefore, an object of the present invention is to provide a solid oxide fuel cell capable of improving gas permeability and improving power generation efficiency.

本発明に係る固体酸化物形燃料電池は、上記課題を解決するためになされたものであり、多孔質基板と、前記多孔質基板の一方面上に形成される、燃料極及び空気極のいずれか一方の電極と、前記一方の電極上に形成される電解質と、前記電解質上に形成される他方の電極と、を備え、前記多孔質基板は、その他方面側から一方面側に向かって気孔率が低くなるよう構成されている。   A solid oxide fuel cell according to the present invention has been made to solve the above-described problems, and includes any one of a porous substrate and a fuel electrode and an air electrode formed on one surface of the porous substrate. One electrode, an electrolyte formed on the one electrode, and the other electrode formed on the electrolyte, and the porous substrate has pores from the other side toward the one side. It is comprised so that a rate may become low.

このように、多孔質基板が、均一の気孔率で構成されているのではなく、その他方面側から一方面側に向かって気孔率が低くなるように構成されているため、多孔質基板の他方面側の気孔率を高くする一方で、多孔質基板の一方面側の気孔率を低くすることができる。このように、多孔質基板の他方面側の気孔率が高いので、ガス透過性の向上を図ることができる。そして、多孔質基板の他方面側の気孔率が高くても、多孔質基板の一方面側の気孔率が低いので、多孔質基板の一方面上に形成された一方の電極と多孔質基板との接触面積を大きくすることができ、一方の電極と多孔質基板との間の抵抗を低減させることが可能となる。したがって固体酸化物形燃料電池の出力の向上を図ることができる。また、気孔率を低くすることで、電極ペ−ストのしみ込みの低減が可能となり、その結果、電池性能の安定化、歩留まり向上を図ることができる。以上より、本発明に係る固体酸化物形燃料電池では、ガス透過性の向上と発電効率の向上という相反する効果の双方を得ることができる。   In this way, the porous substrate is not configured with a uniform porosity, but is configured so that the porosity decreases from the other surface side toward the one surface side. While increasing the porosity on the direction side, the porosity on one side of the porous substrate can be decreased. Thus, since the porosity of the other surface side of the porous substrate is high, the gas permeability can be improved. And even if the porosity of the other surface side of the porous substrate is high, the porosity of the one surface side of the porous substrate is low, so one electrode formed on one surface of the porous substrate and the porous substrate The contact area can be increased, and the resistance between one electrode and the porous substrate can be reduced. Therefore, the output of the solid oxide fuel cell can be improved. Further, by reducing the porosity, it is possible to reduce the penetration of the electrode paste. As a result, the battery performance can be stabilized and the yield can be improved. As described above, in the solid oxide fuel cell according to the present invention, it is possible to obtain both conflicting effects of improving gas permeability and improving power generation efficiency.

上記のように多孔質基板の気孔率を変化させるには種々の方法があるが例えば、その一方面側に配置された第一の板状部材と、その他方面側に配置され前記第一の板状部材よりも気孔率の高い第二の板状部材とを積層して上記多孔質基板を構成することで、多孔質基板の気孔率を変化させることができる。   There are various methods for changing the porosity of the porous substrate as described above. For example, the first plate member disposed on one side of the porous substrate and the first plate disposed on the other surface side thereof are available. The porosity of the porous substrate can be changed by laminating the second plate-like member having a higher porosity than the shaped member to constitute the porous substrate.

なお、一方の電極と多孔質基板との間の導電性を向上させるためには上記第一の板状部材の気孔率を10〜30%とし、ガス透過性を向上させるためには第二の板状部材の気孔率を50〜70%とすることが好ましい。   In order to improve the conductivity between the one electrode and the porous substrate, the porosity of the first plate member is set to 10 to 30%, and in order to improve the gas permeability, a second value is used. The porosity of the plate member is preferably 50 to 70%.

本発明によれば、ガス透過性を向上させつつ、発電効率の向上も図ることのできる固体酸化物形燃料電池を提供することができる。   According to the present invention, it is possible to provide a solid oxide fuel cell capable of improving gas permeability and improving power generation efficiency.

以下、本発明に係る実施形態を添付図面に従って説明する。図1は本実施形態に係る固体酸化物形燃料電池の正面断面図、図2は本実施形態に係る固体酸化物形燃料電池の平面図である。   Embodiments according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a front sectional view of a solid oxide fuel cell according to this embodiment, and FIG. 2 is a plan view of the solid oxide fuel cell according to this embodiment.

図1及び図2に示すように、固体酸化物形燃料電池1は、平面視矩形状の多孔質基板2と、その上にやや小さく形成された平面視矩形状の単セルCとを備えている。多孔質基板2は、第一の板状部材21と第二の板状部材22とが積層されることで構成され、第一の板状部材21の気孔率が10〜30%、第二の板状部材22の気孔率が50〜70%となっている。これにより、多孔質基板2は、その上面23側の気孔率が下面(他方面)24側の気孔率に比べて低くなるように構成されている。一方、単セルCは、多孔質基板2の上面(一方面)23上、すなわち第一の板状部材21上に燃料極4、電解質5、空気極6がこの順に形成されたものである。   As shown in FIGS. 1 and 2, the solid oxide fuel cell 1 includes a porous substrate 2 having a rectangular shape in plan view, and a single cell C having a rectangular shape in plan view formed slightly smaller on the porous substrate 2. Yes. The porous substrate 2 is configured by laminating a first plate-like member 21 and a second plate-like member 22, and the porosity of the first plate-like member 21 is 10 to 30%, The porosity of the plate-like member 22 is 50 to 70%. Thereby, the porous substrate 2 is configured such that the porosity on the upper surface 23 side is lower than the porosity on the lower surface (other surface) 24 side. On the other hand, in the single cell C, the fuel electrode 4, the electrolyte 5, and the air electrode 6 are formed in this order on the upper surface (one surface) 23 of the porous substrate 2, that is, on the first plate member 21.

次に、上記燃料電池1を構成する材料について説明する。多孔質基板2を構成する第一及び第二の板状部材21,22は、例えば、耐熱性の観点から、Pt,Au,Ag,Cu、Pd、Al、Ni,Ti,Cu,Fe,Cr等の導電性金属材料から選ばれた少なくとも1種の金属からなり、他金属種と合金化されていても良い。第一の板状部材21の厚さは、10〜1000μmとすることが好ましく、100〜500μmとすることがさらに好ましい。また、第二の板状部材22の厚さは、100〜5000μmとすることが好ましく、500〜3000μmとすることがさらに好ましい。   Next, materials constituting the fuel cell 1 will be described. The first and second plate-like members 21 and 22 constituting the porous substrate 2 are, for example, Pt, Au, Ag, Cu, Pd, Al, Ni, Ti, Cu, Fe, and Cr from the viewpoint of heat resistance. It may be made of at least one metal selected from conductive metal materials such as, and may be alloyed with other metal types. The thickness of the first plate-like member 21 is preferably 10 to 1000 μm, and more preferably 100 to 500 μm. The thickness of the second plate-like member 22 is preferably 100 to 5000 μm, and more preferably 500 to 3000 μm.

燃料極4は、例えば、金属触媒と酸化物イオン導電体からなるセラミックス粉末材料との混合物を用いることができる。このとき用いられる金属触媒としては、ニッケル、鉄、コバルトや、貴金属(白金、ルテニウム、パラジウム等)等の還元性雰囲気中で安定で、水素酸化活性を有する材料を用いることができる。また、酸化物イオン導電体としては、蛍石型構造又はペロブスカイト型構造を有するものを好ましく用いることができる。蛍石型構造を有するものとしては、例えばサマリウムやガドリニウム等をドープしたセリア系酸化物、スカンジウムやイットリウムを含むジルコニア系酸化物などを挙げることができる。また、ペロブスカイト型構造を有するものとしてはストロンチウムやマグネシウムをドープしたランタン・ガレード系酸化物を挙げることができる。上記材料の中では、酸化物イオン導電体とニッケルとの混合物で、燃料極4を形成することが好ましい。なお、酸化物イオン導電体からなるセラミックス材料とニッケルとの混合形態は、物理的な混合形態であってもよいし、ニッケルへの粉末修飾などの形態であってもよい。また、上述したセラミックス材料は、1種類を単独で、或いは2種類以上を混合して使用することができる。また、燃料極4は、金属触媒を単体で用いて構成することもできる。   The fuel electrode 4 can use, for example, a mixture of a metal catalyst and a ceramic powder material made of an oxide ion conductor. As the metal catalyst used at this time, a material that is stable in a reducing atmosphere, such as nickel, iron, cobalt, or a noble metal (platinum, ruthenium, palladium, etc.) and has hydrogen oxidation activity can be used. In addition, as the oxide ion conductor, one having a fluorite structure or a perovskite structure can be preferably used. Examples of those having a fluorite structure include ceria-based oxides doped with samarium, gadolinium, and the like, and zirconia-based oxides containing scandium and yttrium. In addition, examples of those having a perovskite structure include lanthanum galide oxides doped with strontium and magnesium. Among the above materials, the fuel electrode 4 is preferably formed of a mixture of an oxide ion conductor and nickel. The mixed form of the ceramic material made of the oxide ion conductor and nickel may be a physical mixed form or a form of powder modification to nickel. Moreover, the ceramic material mentioned above can be used individually by 1 type or in mixture of 2 or more types. The fuel electrode 4 can also be configured using a metal catalyst alone.

電解質5の材料としては、固体酸化物形燃料電池の電解質として公知のものを使用することができ、例えば、サマリウムやガドリニウム等をドープしたセリア系酸化物、ストロンチウムやマグネシウムをドープしたランタン・ガレード系酸化物、スカンジウムやイットリウムを含むジルコニア系酸化物などの酸素イオン伝導性セラミックス材料を用いることができる。   As the material of the electrolyte 5, those known as electrolytes for solid oxide fuel cells can be used. For example, ceria-based oxides doped with samarium or gadolinium, lanthanum galade doped with strontium or magnesium Oxygen ion conductive ceramic materials such as oxides, zirconia-based oxides containing scandium and yttrium can be used.

空気極6を形成するセラミックス粉末材料としては、例えば、ペロブスカイト型構造等を有するCo,Fe,Ni,Cr又はMn等からなる金属酸化物を用いることができる。具体的には(Sm,Sr)CoO,(La,Sr)MnO,(La,Sr)CoO,(La,Sr)(Fe,Co)O,(La,Sr)(Fe,Co,Ni)Oなどの酸化物が挙げられ、好ましくは、(La,Sr)MnOである。上述したセラミックス材料は、1種を単独で、或いは2種以上を混合して使用することができる。 As the ceramic powder material forming the air electrode 6, for example, a metal oxide made of Co, Fe, Ni, Cr, Mn, or the like having a perovskite structure or the like can be used. Specifically, (Sm, Sr) CoO 3 , (La, Sr) MnO 3 , (La, Sr) CoO 3 , (La, Sr) (Fe, Co) O 3 , (La, Sr) (Fe, Co , Ni) O 3 and the like, and (La, Sr) MnO 3 is preferable. The ceramic material mentioned above can be used individually by 1 type or in mixture of 2 or more types.

燃料極4、電解質5及び空気極6を、セラミックス粉末材料から形成する場合、用いられる粉末の平均粒径は、好ましくは10nm〜100μmであり、さらに好ましくは50nm〜50μmであり、特に好ましくは100nm〜10μmである。なお、平均粒径は、例えば、JISZ8901にしたがって計測することができる。   When the fuel electrode 4, the electrolyte 5 and the air electrode 6 are formed from a ceramic powder material, the average particle size of the powder used is preferably 10 nm to 100 μm, more preferably 50 nm to 50 μm, and particularly preferably 100 nm. 10 μm. In addition, an average particle diameter can be measured according to JISZ8901, for example.

上記燃料極4、及び空気極6は、上述した材料を主成分として、さらにバインダー樹脂、有機溶媒などが適量加えられることにより形成される。より詳細には、上記主成分とバインダー樹脂との混合において、上記主成分が50〜95重量%となるように、バインダー樹脂等を加えることが好ましい。また、電解質5も、上記燃料極4及び空気極6と同様に、上述した材料を主成分として、バインダー樹脂、有機溶媒などが適量加えられることにより成型されるが、上記主成分とバインダーとの混合において、上記主成分の割合が80重量%以上となるように混合されることが好ましい。そして、これら燃料極4及び空気極6の膜厚は、焼結後に5μm〜100μmとなるように形成することが好ましく、10μm〜30μmとすることがさらに好ましい。また、電解質5の膜厚は、1〜100μmであることが好ましく、10〜50μmであることがさらに好ましい。   The fuel electrode 4 and the air electrode 6 are formed by adding appropriate amounts of a binder resin, an organic solvent, and the like with the above-described material as a main component. More specifically, it is preferable to add a binder resin or the like so that the main component is 50 to 95% by weight in the mixing of the main component and the binder resin. Similarly to the fuel electrode 4 and the air electrode 6, the electrolyte 5 is molded by adding an appropriate amount of a binder resin, an organic solvent, or the like with the above-described material as a main component. In the mixing, it is preferable to mix so that the ratio of the main component is 80% by weight or more. The film thickness of the fuel electrode 4 and the air electrode 6 is preferably formed to be 5 μm to 100 μm after sintering, and more preferably 10 μm to 30 μm. The thickness of the electrolyte 5 is preferably 1 to 100 μm, and more preferably 10 to 50 μm.

次に、上述した燃料電池1の製造方法について図3を参照しつつ説明する。図3は、燃料電池1の製造方法を示す説明図である。   Next, a method for manufacturing the above-described fuel cell 1 will be described with reference to FIG. FIG. 3 is an explanatory view showing a method for manufacturing the fuel cell 1.

まず、上述した材料からなる第二の板状部材22を準備する(図3(a))。そして、この第二の板状部材22上に第一の板状部材21を積層し、この第一及び第二の板状部材21,22を加熱加圧することで拡散接合させて、多孔質基板2を形成する(図3(b))。   First, the 2nd plate-shaped member 22 which consists of the material mentioned above is prepared (FIG. 3 (a)). And the 1st plate-shaped member 21 is laminated | stacked on this 2nd plate-shaped member 22, and these 1st and 2nd plate-shaped members 21 and 22 are carried out by diffusion bonding, and a porous board | substrate is carried out. 2 is formed (FIG. 3B).

続いて、上述した電解質5、燃料極4、及び空気極6用の粉末材料を主成分として、これらそれぞれにバインダー樹脂、有機溶媒などを適量加えて混練し、電解質ペースト、燃料極ペースト、空気極ペーストをそれぞれ作製する。各ペーストの粘度は、次に説明するスクリーン印刷法に適合するように10〜10mPa・s程度であることが好ましい。 Subsequently, the above-described powder materials for the electrolyte 5, the fuel electrode 4, and the air electrode 6 are used as main components, and an appropriate amount of a binder resin, an organic solvent, and the like are added and kneaded to each of them, and the electrolyte paste, fuel electrode paste, air electrode Each paste is prepared. The viscosity of each paste is preferably about 10 3 to 10 6 mPa · s so as to be compatible with the screen printing method described below.

次に、燃料極ペーストをスクリーン印刷法により多孔質基板2の上面23上に塗布した後、所定の時間及び温度で乾燥・焼結し、燃料極4を形成する(図3(c))。   Next, the fuel electrode paste is applied on the upper surface 23 of the porous substrate 2 by screen printing, and then dried and sintered at a predetermined time and temperature to form the fuel electrode 4 (FIG. 3C).

続いて、この燃料極4上に電解質ペ−ストをスクリーン印刷により塗布した後、所定の時間及び温度で乾燥・焼結することにより電解質5を形成する(図3(d))。なお、電解質5は、種々の方法で形成することができるが、金属の多孔質基板2を用い燃料極4および空気極6を多孔体として形成するには、これらよりも低温、すなわち約1200℃以下の温度で焼結することが好ましく、例えば真空法、溶射法等による低温焼成手法で形成することができる。   Subsequently, after applying an electrolyte paste onto the fuel electrode 4 by screen printing, the electrolyte 5 is formed by drying and sintering at a predetermined time and temperature (FIG. 3D). The electrolyte 5 can be formed by various methods. In order to form the fuel electrode 4 and the air electrode 6 as a porous body using the metal porous substrate 2, the temperature is lower than these, that is, about 1200 ° C. It is preferable to sinter at the following temperatures, and for example, it can be formed by a low-temperature firing method such as a vacuum method or a thermal spray method.

これに続いて、電解質5上に、空気極ペーストをスクリーン印刷法によって塗布し、所定時間及び温度で乾燥・焼結することにより空気極6を形成する(図3(e))。以上の工程により、図1及び2に示すような燃料電池1が完成する。   Subsequently, an air electrode paste is applied on the electrolyte 5 by a screen printing method, and dried and sintered at a predetermined time and temperature to form the air electrode 6 (FIG. 3E). Through the above steps, the fuel cell 1 as shown in FIGS. 1 and 2 is completed.

次に、上記のように構成された燃料電池1の発電動作について図1及び図2を参照しつつ説明する。まず、電池に対して水素、又はメタン、エタンなどの炭化水素からなる燃料ガスと空気等の酸化剤ガスとの混合ガスを高温の状態(例えば、400〜1000℃)で供給する。このとき混合ガスは、基板2の上面23及び下面24の両側に供給される。上面23側の混合ガスは、電解質5上に形成された空気極6に供給される一方で、側面から露出する燃料極4にも供給される。また、下面24側の混合ガスは、気孔率の高い第2の板状部材22から進入し、第一の板状部材21を通過して燃料極4に供給される。こうして、単セル3の燃料極4及び空気極6がそれぞれ混合ガスと接触するため、単セル3における燃料極4と空気極6との間で、電解質5を介した酸素イオン伝導が起こり、発電が行われる。   Next, the power generation operation of the fuel cell 1 configured as described above will be described with reference to FIGS. 1 and 2. First, a mixed gas of a fuel gas composed of hydrogen or a hydrocarbon such as methane or ethane and an oxidant gas such as air is supplied to the battery at a high temperature (for example, 400 to 1000 ° C.). At this time, the mixed gas is supplied to both sides of the upper surface 23 and the lower surface 24 of the substrate 2. The mixed gas on the upper surface 23 side is supplied to the air electrode 6 formed on the electrolyte 5 and is also supplied to the fuel electrode 4 exposed from the side surface. The mixed gas on the lower surface 24 side enters from the second plate member 22 having a high porosity, passes through the first plate member 21, and is supplied to the fuel electrode 4. Thus, since the fuel electrode 4 and the air electrode 6 of the single cell 3 are in contact with the mixed gas, oxygen ion conduction through the electrolyte 5 occurs between the fuel electrode 4 and the air electrode 6 in the single cell 3 to generate power. Is done.

以上のように、本実施形態によれば、多孔質基板2の上面23側を気孔率の低い第一の板状部材21で構成しているので、多孔質基板2と燃料極4との接触面積を大きくし、多孔質基板2と燃料極4との間の抵抗を低減させることができ、ひいては、固体酸化物形燃料電池1の出力向上を図ることが可能となる。また、多孔質基板2の下面24側は、気孔率の高い第二の板状部材22で構成しているので、多孔質基板2の下面24側から供給される混合ガスの透過性の向上を図ることができる。したがって、ガス透過性の向上と発電効率の向上という相反する効果の双方を得ることができる。   As described above, according to the present embodiment, the upper surface 23 side of the porous substrate 2 is constituted by the first plate-like member 21 having a low porosity, so that the contact between the porous substrate 2 and the fuel electrode 4 is achieved. The area can be increased, the resistance between the porous substrate 2 and the fuel electrode 4 can be reduced, and as a result, the output of the solid oxide fuel cell 1 can be improved. Moreover, since the lower surface 24 side of the porous substrate 2 is composed of the second plate-like member 22 having a high porosity, the permeability of the mixed gas supplied from the lower surface 24 side of the porous substrate 2 is improved. Can be planned. Accordingly, it is possible to obtain both conflicting effects of improving gas permeability and improving power generation efficiency.

以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention.

例えば、上記実施形態では、第一の板状部材21と第二の板状部材22との二つの部材で多孔質基板2を構成しているが、三つ以上の部材で構成することもできる。この場合は、多孔質基板2の下面24側から気孔率の高い順に部材を配置する。また、その他にも、多孔質基板2を下面24側から上面23側に向かって気孔率が低くなるように形成された一つの部材で構成することもできる。なお、多孔質基板2の成型時に粉末中に含有させる発泡剤の添加量を変化させることで、焼成後の多孔質基板2の気孔率を変化させることができ、これにより多孔質基板2を下面24側から上面23側に向かって気孔率が低くなるように構成することが可能となる。   For example, in the said embodiment, although the porous board | substrate 2 is comprised with two members, the 1st plate-shaped member 21 and the 2nd plate-shaped member 22, it can also comprise with three or more members. . In this case, the members are arranged in descending order of porosity from the lower surface 24 side of the porous substrate 2. In addition, the porous substrate 2 can also be configured by a single member formed such that the porosity decreases from the lower surface 24 side toward the upper surface 23 side. In addition, the porosity of the porous substrate 2 after baking can be changed by changing the addition amount of the foaming agent contained in the powder when the porous substrate 2 is molded. It is possible to configure so that the porosity decreases from the 24 side toward the upper surface 23 side.

また、上記実施形態では、単室型の固体酸化物形燃料電池1としているが、二室型の固体酸化物形燃料電池として使用することもできる。この場合は、図4に示すように、燃料極4上に形成された電解質5の周縁を、燃料極4の周縁を覆うように下方へ延ばし、多孔質基板2の上面23と連結させる。そして、隔壁25を設けるなど公知の方法で、燃料極4と空気極6とを隔壁25及び電解質5によって上下に隔離する。このように固体酸化物形燃料電池1を構成し、多孔質基板2の下面24側に燃料ガスを、上面23側に酸化剤ガスを供給すれば、二室型の固体酸化物形燃料電池1として使用することができる。また、このように、燃料極4全体を覆うように電解質5を形成することで、電解質5上に空気極6を形成する際の位置精度が低くても、燃料極4と空気極6とが接触することを防止することができ、短絡が生じうることを確実に防止することを可能とする。   Moreover, in the said embodiment, although it is set as the single chamber type solid oxide fuel cell 1, it can also be used as a two-chamber type solid oxide fuel cell. In this case, as shown in FIG. 4, the periphery of the electrolyte 5 formed on the fuel electrode 4 extends downward so as to cover the periphery of the fuel electrode 4 and is connected to the upper surface 23 of the porous substrate 2. Then, the fuel electrode 4 and the air electrode 6 are separated vertically by the partition wall 25 and the electrolyte 5 by a known method such as providing the partition wall 25. If the solid oxide fuel cell 1 is configured in this way and the fuel gas is supplied to the lower surface 24 side of the porous substrate 2 and the oxidant gas is supplied to the upper surface 23 side, the two-chamber solid oxide fuel cell 1 is provided. Can be used as Further, by forming the electrolyte 5 so as to cover the entire fuel electrode 4 as described above, the fuel electrode 4 and the air electrode 6 can be connected to each other even if the positional accuracy when the air electrode 6 is formed on the electrolyte 5 is low. Contact can be prevented, and it is possible to reliably prevent a short circuit from occurring.

また、上記実施形態では、各ペーストの塗布にスクリーン印刷法を用いているが、これに限定されるものではなく、ドクターブレード法、スプレーコート法、スピンコート法、電気泳動法、CVD,EVD,スパッタリング法、転写法等の印刷方法等、その他一般的な印刷法を用いることができる。また、印刷後の後工程として、CIP(静水圧プレス)、HIP(熱間静水圧プレス)、ホットプレス、その他の一般的なプレス工程を用いることができる。さらには、ガス流路の形成方法としてエッチング以外にも、フォトリソグラフィーや切削加工など種々の方法を用いることができる。   Moreover, in the said embodiment, although the screen printing method is used for application | coating of each paste, it is not limited to this, A doctor blade method, a spray coat method, a spin coat method, an electrophoresis method, CVD, EVD, Other general printing methods such as a sputtering method and a printing method such as a transfer method can be used. Moreover, as a post-process after printing, CIP (hydrostatic pressure press), HIP (hot isostatic press), hot press, and other general press processes can be used. In addition to etching, various methods such as photolithography and cutting can be used as a method for forming the gas flow path.

また、上記実施形態では、多孔質基板2上に一つの単セルしか形成していないが、複数の単セルを形成することもできる。   In the above embodiment, only one single cell is formed on the porous substrate 2, but a plurality of single cells can also be formed.

本発明に係る固体酸化物形燃料電池の実施形態を示す正面断面図である。1 is a front sectional view showing an embodiment of a solid oxide fuel cell according to the present invention. 本発明に係る固体酸化物形燃料電池の実施形態を示す平面図である。1 is a plan view showing an embodiment of a solid oxide fuel cell according to the present invention. 本実施形態に係る固体酸化物形燃料電池の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the solid oxide fuel cell which concerns on this embodiment. 本発明に係る固体酸化物形燃料電池の他の実施形態を示す正面断面図である。It is front sectional drawing which shows other embodiment of the solid oxide fuel cell which concerns on this invention.

符号の説明Explanation of symbols

1 固体酸化物形燃料電池
2 多孔質基板
21 第一の板状部材
22 第二の板状部材
23 上面(一方面)
24 下面(他方面)
4 燃料極
5 電解質
6 空気極
DESCRIPTION OF SYMBOLS 1 Solid oxide fuel cell 2 Porous substrate 21 1st plate-shaped member 22 2nd plate-shaped member 23 Upper surface (one side)
24 Lower surface (the other surface)
4 Fuel electrode 5 Electrolyte 6 Air electrode

Claims (3)

導電性の多孔質基板と、
前記多孔質基板の一方面上に形成される、燃料極及び空気極のいずれか一方の電極と、
前記一方の電極上に形成される電解質と、
前記電解質上に形成される他方の電極と、を備え、
前記多孔質基板は、その他方面側から一方面側に向かって気孔率が低くなるよう構成されている、固体酸化物形燃料電池。
A conductive porous substrate;
Formed on one surface of the porous substrate, either one of a fuel electrode and an air electrode;
An electrolyte formed on the one electrode;
The other electrode formed on the electrolyte,
The said porous substrate is a solid oxide fuel cell comprised so that a porosity may become low toward the one surface side from the other surface side.
前記多孔質基板は、前記一方面側に配置された第一の板状部材と、前記他方面側に配置され前記第一の板状部材よりも気孔率の高い第二の板状部材と、を積層することで構成されている、請求項1に記載の固体酸化物形燃料電池。   The porous substrate includes a first plate member disposed on the one surface side, a second plate member disposed on the other surface side and having a higher porosity than the first plate member, The solid oxide fuel cell according to claim 1, comprising: 前記第一の板状部材は、10〜30%の気孔率を有し、
前記第二の板状部材は、50〜70%の気孔率を有する、請求項2に記載の固体酸化物形燃料電池。
The first plate-like member has a porosity of 10 to 30%,
The solid oxide fuel cell according to claim 2, wherein the second plate-shaped member has a porosity of 50 to 70%.
JP2006248414A 2006-09-13 2006-09-13 Solid oxide fuel cell Expired - Fee Related JP5522882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248414A JP5522882B2 (en) 2006-09-13 2006-09-13 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248414A JP5522882B2 (en) 2006-09-13 2006-09-13 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2008071594A true JP2008071594A (en) 2008-03-27
JP5522882B2 JP5522882B2 (en) 2014-06-18

Family

ID=39293002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248414A Expired - Fee Related JP5522882B2 (en) 2006-09-13 2006-09-13 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5522882B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146628A (en) * 2010-12-20 2012-08-02 Ngk Insulators Ltd Solid oxide fuel cell
JP2012527068A (en) * 2009-05-11 2012-11-01 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ High temperature fuel cell for internal reforming of hydrocarbons

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462759A (en) * 1990-07-02 1992-02-27 Mitsubishi Heavy Ind Ltd Manufacture of flat plate type solid electrolyte fuel cell
JPH06111836A (en) * 1992-09-30 1994-04-22 Meidensha Corp Solid electrolyte fuel cell
JP2002313357A (en) * 2001-04-06 2002-10-25 Toyota Central Res & Dev Lab Inc Single-chamber fuel cell
JP2002329509A (en) * 2001-05-01 2002-11-15 Nissan Motor Co Ltd Single cell for solid electrolyte fuel cell
JP2002352816A (en) * 2001-05-22 2002-12-06 Nissan Motor Co Ltd Cell plate for fuel cell, manufacturing method therefor, and solid electrolyte fuel cell
WO2004004595A2 (en) * 2002-07-02 2004-01-15 Degudent Gmbh Method for the production of a dental bridge frame and positive model therefor
JP2004119108A (en) * 2002-09-25 2004-04-15 Nissan Motor Co Ltd Unit cell for solid oxide fuel cell, and its manufacturing method
JP2005174662A (en) * 2003-12-09 2005-06-30 Mitsui Mining & Smelting Co Ltd Single chamber fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462759A (en) * 1990-07-02 1992-02-27 Mitsubishi Heavy Ind Ltd Manufacture of flat plate type solid electrolyte fuel cell
JPH06111836A (en) * 1992-09-30 1994-04-22 Meidensha Corp Solid electrolyte fuel cell
JP2002313357A (en) * 2001-04-06 2002-10-25 Toyota Central Res & Dev Lab Inc Single-chamber fuel cell
JP2002329509A (en) * 2001-05-01 2002-11-15 Nissan Motor Co Ltd Single cell for solid electrolyte fuel cell
JP2002352816A (en) * 2001-05-22 2002-12-06 Nissan Motor Co Ltd Cell plate for fuel cell, manufacturing method therefor, and solid electrolyte fuel cell
WO2004004595A2 (en) * 2002-07-02 2004-01-15 Degudent Gmbh Method for the production of a dental bridge frame and positive model therefor
JP2004119108A (en) * 2002-09-25 2004-04-15 Nissan Motor Co Ltd Unit cell for solid oxide fuel cell, and its manufacturing method
JP2005174662A (en) * 2003-12-09 2005-06-30 Mitsui Mining & Smelting Co Ltd Single chamber fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527068A (en) * 2009-05-11 2012-11-01 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ High temperature fuel cell for internal reforming of hydrocarbons
JP2012146628A (en) * 2010-12-20 2012-08-02 Ngk Insulators Ltd Solid oxide fuel cell
US8574784B2 (en) 2010-12-20 2013-11-05 Ngk Insulators, Ltd. Solid oxide fuel cell including electrode containing dense bonding portions and porous non-bonding portions

Also Published As

Publication number Publication date
JP5522882B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP2008519404A (en) Electrochemical cell structure and its manufacturing method by controlled powder method
JP5382251B2 (en) Solid oxide fuel cell and method for producing the same
JP5422867B2 (en) Solid oxide fuel cell and method for producing the same
JP5987278B2 (en) Solid oxide fuel cell
JP2010533941A (en) Cell material variations in SOFC stacks addressing thermal gradients in all planes
JP5522882B2 (en) Solid oxide fuel cell
JP5176362B2 (en) Solid oxide fuel cell structure and solid oxide fuel cell using the same
JP2003007318A (en) Solid electrolyte fuel cell
JP5233143B2 (en) Solid oxide fuel cell
JP5211533B2 (en) Current collector for fuel electrode and solid oxide fuel cell using the same
JP5140982B2 (en) Solid oxide fuel cell and stack structure thereof
JP5345428B2 (en) Solid oxide fuel cell
JP2008234927A (en) Manufacturing method of solid oxide fuel cell
JP2008077887A (en) Single-chamber solid oxide fuel cell and stack structure thereof
JP2008047380A (en) Single chamber type solid oxide fuel cell
JP2015056363A (en) Fuel cell unit and manufacturing method therefor
JP5045024B2 (en) Single-chamber solid oxide fuel cell and method for producing the same
JP5320947B2 (en) Solid oxide fuel cell and method for producing the same
JP5124992B2 (en) Method for manufacturing stack structure of solid oxide fuel cell
JP4844040B2 (en) Solid oxide fuel cell
JP2008251241A (en) Solid oxide fuel cell and its stack structure
JP2006004691A (en) Solid oxide fuel cell
JP2007048605A (en) Solid oxide fuel cell and its manufacturing method
JP6213614B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP5011912B2 (en) Solid oxide fuel cell and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130226

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5522882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees