JP2008069823A - Self-alignment roller bearing and roller support structure for continuous casting facilities - Google Patents

Self-alignment roller bearing and roller support structure for continuous casting facilities Download PDF

Info

Publication number
JP2008069823A
JP2008069823A JP2006247915A JP2006247915A JP2008069823A JP 2008069823 A JP2008069823 A JP 2008069823A JP 2006247915 A JP2006247915 A JP 2006247915A JP 2006247915 A JP2006247915 A JP 2006247915A JP 2008069823 A JP2008069823 A JP 2008069823A
Authority
JP
Japan
Prior art keywords
self
spherical
inner ring
ring raceway
roller bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006247915A
Other languages
Japanese (ja)
Inventor
Takeshi Maeda
剛 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006247915A priority Critical patent/JP2008069823A/en
Publication of JP2008069823A publication Critical patent/JP2008069823A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor
    • F16C13/02Bearings
    • F16C13/06Bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-alignment roller bearing dispersing non-slip lines of spherical rollers and simplifying a manufacturing process and an assembly process. <P>SOLUTION: The self-alignment roller bearing 11 is provided with an inner ring having right and left double row inner ring raceway surfaces on an outer diameter surface, an outer ring having a spherical outer ring raceway surface facing the right and left double row inner ring raceway surfaces on an inner diameter surfaces, and a plurality of spherical rollers 14 having spherical rolling surface meeting the inner ring raceway surface and the outer ring raceway surface. The plurality of spherical rollers 14 includes a plurality of kinds of spherical rollers 14a, 14b having different radii of curvature of the rolling surface 17. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、自動調心ころ軸受、特に連続鋳造設備のローラ等の大きな荷重が負荷され、比較的低速で回転する回転部材を支持する自動調心ころ軸受に関するものである。   The present invention relates to a self-aligning roller bearing, and more particularly to a self-aligning roller bearing that supports a rotating member that is loaded with a large load such as a roller of a continuous casting facility and rotates at a relatively low speed.

従来の自動調心ころ軸受が、例えば、特開2002−147449号公報(特許文献1)に記載されている。図5および図6を参照して、同公報に記載されている自動調心ころ軸受101を説明する。なお、図5は自動調心ころ軸受101における球面ころ104の差動滑りの分布を示す図、図6は球面ころ104と内輪102および外輪103との接触面の摩耗状況を示す図である。   A conventional self-aligning roller bearing is described in, for example, Japanese Patent Application Laid-Open No. 2002-147449 (Patent Document 1). The self-aligning roller bearing 101 described in the publication will be described with reference to FIGS. 5 is a view showing the distribution of differential slip of the spherical roller 104 in the self-aligning roller bearing 101, and FIG. 6 is a view showing the wear state of the contact surface between the spherical roller 104 and the inner ring 102 and the outer ring 103.

まず、図5を参照して、自動調心ころ軸受101は、複列の軌道を有する内輪102と、複列一体の球面軌道を有する外輪103と、内輪102および外輪103の間に組み込まれる複数の球面ころ104と、複数の球面ころ104を転動可能に保持する保持器(図示省略)とを備える複列自動調心ころ軸受である。   First, referring to FIG. 5, the self-aligning roller bearing 101 includes an inner ring 102 having a double row raceway, an outer ring 103 having a double row integral spherical raceway, and a plurality of inner rollers 102 incorporated between the inner ring 102 and the outer ring 103. This is a double row spherical roller bearing provided with the spherical roller 104 and a cage (not shown) that holds the plurality of spherical rollers 104 in a rollable manner.

この自動調心ころ軸受101に採用される球面ころ104は、転動面104aが球面の一部を構成する曲面形状となっているので、転動時の周速が軸方向で異なる。その結果、球面ころ104の軸方向の2箇所に現れるノンスリップライン104b,104cでのみ滑りを伴わない純転がりとなり、他の部分では内輪102および外輪103の軌道面102a,103aとの間で差動滑りを生じる。また、この差動滑りはノンスリップライン104b,104cから遠ざかる程大きくなる。   Since the spherical roller 104 employed in the self-aligning roller bearing 101 has a curved surface in which the rolling surface 104a forms a part of the spherical surface, the peripheral speed at the time of rolling differs in the axial direction. As a result, only non-slip lines 104b and 104c appearing at two locations in the axial direction of the spherical roller 104 result in pure rolling without slipping, and in other portions, differential between the raceway surfaces 102a and 103a of the inner ring 102 and the outer ring 103. Causes slipping. Further, the differential slip becomes larger as the distance from the non-slip lines 104b and 104c increases.

次に図6を参照して、球面ころ104の転動面104aと内輪102および外輪103の軌道面102a,103aとの間で差動滑りを生じると、両者の接触面には摩耗を生じる。なお、摩耗量は、滑り量の増加に伴って増えるので、ノンスリップライン104b,104cの近傍で比較的少なく、ノンスリップライン104b,104cから遠ざかる程大きくなる。   Next, referring to FIG. 6, when differential slip occurs between the rolling surface 104 a of the spherical roller 104 and the raceway surfaces 102 a and 103 a of the inner ring 102 and the outer ring 103, wear occurs on the contact surfaces of both. The amount of wear increases as the amount of slip increases, so it is relatively small in the vicinity of the non-slip lines 104b and 104c and increases as the distance from the non-slip lines 104b and 104c increases.

摩耗が進行すると、差動滑りによる摩耗を生じないノンスリップライン104b,104cの位置に接触荷重が集中する。その結果、大きな接触面圧による疲労剥離が早期に発生しやすく、軸受のメンテナンス周期が短くなるという問題がある。特に、ハウジングに固定される非回転側軌道輪(多くの場合には外輪を指す)では、円周上の所定位置に荷重が集中するので、軌道面に割れが発生する等の問題が起こりやすい。また、この問題は、低速で回転することにより潤滑油が軸受全体に供給されにくい自動調心ころ軸受で顕著である。   As the wear progresses, the contact load concentrates at the positions of the non-slip lines 104b and 104c where wear due to differential slip does not occur. As a result, there is a problem that fatigue peeling due to a large contact surface pressure is likely to occur at an early stage, and the maintenance cycle of the bearing is shortened. In particular, in the non-rotating side raceway ring (in many cases, the outer race) fixed to the housing, the load concentrates at a predetermined position on the circumference, and thus problems such as cracks on the raceway surface are likely to occur. . Moreover, this problem is remarkable in the self-aligning roller bearing in which the lubricating oil is difficult to be supplied to the entire bearing by rotating at a low speed.

そこで、上記公報に記載されている自動調心ころ軸受101においては、球面ころ104を左右の端面が互いに曲率の異なる曲面で構成される非対称ころとする。そして内輪102および外輪103には、左右逆向きの球面ころ104が交互に配置されている。これにより、円周方向に並ぶ球面ころ104のノンスリップライン104b,104cを分散させて、摩耗の進行を遅らせることができると記載されている。
特開2002−147449号公報
Therefore, in the self-aligning roller bearing 101 described in the above publication, the spherical roller 104 is an asymmetric roller having left and right end surfaces configured by curved surfaces having different curvatures. The inner ring 102 and the outer ring 103 are alternately arranged with spherical rollers 104 in opposite directions. Thus, it is described that the non-slip lines 104b and 104c of the spherical rollers 104 arranged in the circumferential direction can be dispersed and the progress of wear can be delayed.
JP 2002-147449 A

従来、自動調心ころ軸受101に採用される球面ころ104の転動面104aには、内輪102および外輪103の軌道面102a,103aとの間の摩擦抵抗を低減するために研削加工が施される。この研削加工は球面ころ104の両端面を挟持して行われるが、両端面が曲面形状の球面ころ104においては、ぬすみの形成等の特別の加工が必要となる。その結果、製造工程が複雑化するという問題がある。また、自動調心ころ軸受101を組み立てる際には、球面ころ104の左右方向を意識しなければならず、組立工程も複雑化する。   Conventionally, the rolling surface 104a of the spherical roller 104 employed in the self-aligning roller bearing 101 is ground to reduce the frictional resistance between the inner ring 102 and the raceway surfaces 102a and 103a of the outer ring 103. The This grinding process is performed by sandwiching both end faces of the spherical roller 104. However, in the spherical roller 104 having both curved end faces, special processes such as forming a dullness are required. As a result, there is a problem that the manufacturing process becomes complicated. Further, when assembling the self-aligning roller bearing 101, it is necessary to be aware of the lateral direction of the spherical roller 104, and the assembly process is complicated.

そこで、この発明の目的は、球面ころのノンスリップラインを分散させると共に、製造工程および組立工程を簡素化した自動調心ころ軸受を提供することである。また、このような自動調心ころ軸受を採用することにより、メンテナンス周期を延伸した連続鋳造設備のローラ支持構造を提供することを目的とする。   Accordingly, an object of the present invention is to provide a self-aligning roller bearing in which non-slip lines of spherical rollers are dispersed and the manufacturing process and the assembling process are simplified. It is another object of the present invention to provide a roller support structure for a continuous casting facility with an extended maintenance cycle by employing such a self-aligning roller bearing.

この発明に係る自動調心ころ軸受は、外径面に左右複列の内輪軌道面を有する内輪と、内径面に左右複列の内輪軌道面に対面する球面形状の外輪軌道面を有する外輪と、内輪軌道面および外輪軌道面に沿う曲面形状の転動面を有する複数の球面ころとを備える。そして、複数の球面ころは、転動面の曲率を互いに異ならせた複数種類の球面ころを含む。   A self-aligning roller bearing according to the present invention includes an inner ring having left and right double-row inner ring raceway surfaces on an outer diameter surface, and an outer ring having a spherical outer ring raceway surface facing the left and right double-row inner ring raceway surfaces on an inner diameter surface. And a plurality of spherical rollers having curved rolling surfaces along the inner ring raceway surface and the outer ring raceway surface. The plurality of spherical rollers include a plurality of types of spherical rollers in which the rolling surfaces have different curvatures.

上記構成のように、球面ころの転動面の曲率を異ならせることにより、各球面ころのノンスリップラインを異なる位置に配置することができる。その結果、球面ころと内外輪との接触部分の局所的な摩耗を抑制することができ、接触面圧部分を分散させることが可能となる。   By making the curvature of the rolling surface of the spherical roller different as in the above configuration, the non-slip line of each spherical roller can be arranged at a different position. As a result, local wear at the contact portion between the spherical roller and the inner and outer rings can be suppressed, and the contact surface pressure portion can be dispersed.

また、球面ころの端面を平面とすることができると共に、組立時に球面ころの左右を意識する必要もなくなる。その結果、製造工程および組立工程を簡素化した自動調心ころ軸受を得ることができる。   Further, the end surface of the spherical roller can be a flat surface, and it is not necessary to be aware of the left and right sides of the spherical roller during assembly. As a result, a self-aligning roller bearing in which the manufacturing process and the assembly process are simplified can be obtained.

この発明に係る連続鋳造設備のローラ支持構造は、鋳型と、鋳型から鋳片を排出および搬送するローラと、ローラを回転自在に支持する自動調心ころ軸受とを備える。自動調心ころ軸受に注目すると、外径面に左右複列の内輪軌道面を有する内輪と、内径面に左複列の内輪軌道面に対面する球面形状の外輪軌道面を有する外輪と、内輪軌道面および外輪軌道面に沿う曲面形状の転動面を有する複数の球面ころとを有する。そして、複数の球面ころは、転動面の曲率を互いに異ならせた複数種類の球面ころを含む。   A roller support structure for a continuous casting facility according to the present invention includes a mold, a roller for discharging and conveying a slab from the mold, and a self-aligning roller bearing that rotatably supports the roller. When paying attention to the self-aligning roller bearing, an inner ring having left and right double-row inner ring raceway surfaces on the outer diameter surface, an outer ring having a spherical outer ring raceway surface facing the left double row inner ring raceway surface on the inner diameter surface, and the inner ring And a plurality of spherical rollers having curved rolling surfaces along the raceway surface and the outer ring raceway surface. The plurality of spherical rollers include a plurality of types of spherical rollers in which the rolling surfaces have different curvatures.

上記構成の自動調心ころ軸受をローラを支持する軸受として採用することにより、メンテナンス周期を延伸した連続鋳造設備のローラ支持構造を得ることができる。   By adopting the self-aligning roller bearing having the above configuration as a bearing for supporting a roller, a roller support structure for a continuous casting facility having an extended maintenance cycle can be obtained.

この発明によれば、球面ころのノンスリップラインを分散させると共に、製造工程および組立工程を簡素化した自動調心ころ軸受を得ることができる。また、このような自動調心ころ軸受を採用することにより、メンテナンス周期を延伸した連続鋳造設備のローラ支持構造を得ることができる。   According to the present invention, it is possible to obtain a self-aligning roller bearing in which non-slip lines of spherical rollers are dispersed and the manufacturing process and the assembling process are simplified. In addition, by adopting such a self-aligning roller bearing, it is possible to obtain a roller support structure for a continuous casting facility with an extended maintenance cycle.

図1および図2を参照して、この発明の一実施形態に係る自動調心ころ軸受11を説明する。なお、図1は内輪12の内輪軌道面12aに配置される複数の球面ころ14を示す図、図2はこの発明の一実施形態に係る自動調心ころ軸受11を示す図である。   A self-aligning roller bearing 11 according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a view showing a plurality of spherical rollers 14 disposed on the inner ring raceway surface 12a of the inner ring 12, and FIG. 2 is a view showing a self-aligning roller bearing 11 according to an embodiment of the present invention.

まず、図2を参照して、この発明の一実施形態に係る自動調心ころ軸受11は、内輪12と、外輪13と、複数の球面ころ14と、隣接する球面ころ14の間隔を保持する保持器15と、案内輪16とを備える。   First, referring to FIG. 2, a self-aligning roller bearing 11 according to an embodiment of the present invention maintains an interval between an inner ring 12, an outer ring 13, a plurality of spherical rollers 14, and adjacent spherical rollers 14. A cage 15 and a guide wheel 16 are provided.

内輪12は、その外径面に左右2列の内輪軌道面12a,12bを有する。また、左右の内輪軌道面12a,12bの間には、球面ころ14の端面18を案内する案内輪16が配置されている。外輪13は、その内径面に内輪軌道面12a,12b対面する球面形状の外輪軌道面13aを有する。   The inner ring 12 has two rows of inner ring raceway surfaces 12a and 12b on the outer diameter surface thereof. A guide wheel 16 for guiding the end face 18 of the spherical roller 14 is disposed between the left and right inner ring raceway surfaces 12a and 12b. The outer ring 13 has a spherical outer ring raceway surface 13a facing the inner ring raceway surfaces 12a and 12b on the inner diameter surface thereof.

保持器15は、任意の構成を採用することができる。例えば、金属を切削加工して形成した揉み抜き保持器、鉄板をプレス加工して形成したプレス保持器、樹脂材料を射出成型して形成した樹脂製保持器のいずれであってもよい。   Arbitrary structure can be employ | adopted for the holder | retainer 15. FIG. For example, any of a punching cage formed by cutting a metal, a press cage formed by pressing an iron plate, and a resin cage formed by injection molding of a resin material may be used.

球面ころ14は、球の一部を構成する曲面形状の転動面17と、平面形状の両端面18とを有する全体としてたる型の転動体である。また、球面ころ14の最大径位置がころ長さの中央に位置する対称ころである。そして、この球面ころ14は、左右の内輪軌道面12a,12bそれぞれに複数配置されて、内輪軌道面12a,12bおよび外輪軌道面13aの間を転動する。   The spherical roller 14 is a rolling element of a barrel shape as a whole having a curved rolling surface 17 constituting a part of a sphere and both planar end surfaces 18. The spherical roller 14 is a symmetric roller in which the maximum diameter position is located at the center of the roller length. A plurality of the spherical rollers 14 are arranged on each of the left and right inner ring raceway surfaces 12a and 12b, and roll between the inner ring raceway surfaces 12a and 12b and the outer ring raceway surface 13a.

さらに図1を参照して、内輪軌道面12aには、転動面17a,17bの曲率が互いに異なる第1および第2の球面ころ14a,14bが交互に配置されている。具体的には、第1の球面ころ14aは、転動面17aの曲率半径が相対的に小さいRである。一方、第2の球面ころ14bは、転動面17bの曲率半径が相対的に大きいR(R<R)である。なお、内輪軌道面12bに配置される球面ころ14も同様であるので、説明は省略する。 Further, referring to FIG. 1, first and second spherical rollers 14a and 14b having different curvatures of the rolling surfaces 17a and 17b are alternately arranged on the inner ring raceway surface 12a. Specifically, the first spherical roller 14a is, the radius of curvature of the rolling contact surface 17a is relatively small R 1. On the other hand, the second spherical roller 14b is R 2 (R 1 <R 2 ) where the radius of curvature of the rolling surface 17b is relatively large. Since the spherical rollers 14 arranged on the inner ring raceway surface 12b are the same, the description thereof is omitted.

上記構成の自動調心ころ軸受11において、ノンスリップライン19の位置は球面ころ14の転動面17の曲率に依存する。すなわち、曲率半径の小さい球面ころ14aにおいては、2つのノンスリップライン19aが中央よりに形成され、両者の間隔は小さい。一方、曲率半径の大きい球面ころ14bにおいては、2つのノンスリップライン19bが両端よりに形成され、両者の間隔は大きい。   In the self-aligning roller bearing 11 configured as described above, the position of the non-slip line 19 depends on the curvature of the rolling surface 17 of the spherical roller 14. That is, in the spherical roller 14a having a small curvature radius, the two non-slip lines 19a are formed from the center, and the distance between them is small. On the other hand, in the spherical roller 14b having a large curvature radius, two non-slip lines 19b are formed at both ends, and the distance between them is large.

このように、転動面17a,17bの曲率が互いに異なる2種類の球面ころ14a,14bを交互に配置することにより、ノンスリップライン19a,19bを分散することができる。これにより、内輪12および外輪13の軌道面12a,12b,13aの局所的な摩耗を抑制することができ、接触面圧部分を分散させることが可能となる。また、自動調心ころ軸受11の組立時に球面ころ14の左右を意識する必要がなくなるので、組立工程を簡素化することができる。   Thus, the non-slip lines 19a and 19b can be dispersed by alternately arranging the two types of spherical rollers 14a and 14b having different curvatures of the rolling surfaces 17a and 17b. Thereby, local abrasion of the raceway surfaces 12a, 12b, 13a of the inner ring 12 and the outer ring 13 can be suppressed, and the contact surface pressure portion can be dispersed. Further, since it is not necessary to be aware of the left and right of the spherical roller 14 when the self-aligning roller bearing 11 is assembled, the assembly process can be simplified.

ここで、転動面17a,17bの曲率半径を大幅に変更すると転動面17a,17bと軌道面12a,12b,13aとが点接触となり、接触面圧の増大が問題となる。しかし、RとRとの差が僅かであれば、転動面17a,17bおよび軌道面12a,12b,13aが弾性変形して両者が面接触するので、このような問題は生じない。 Here, if the curvature radii of the rolling surfaces 17a and 17b are significantly changed, the rolling surfaces 17a and 17b and the raceway surfaces 12a, 12b, and 13a are brought into point contact, and an increase in contact surface pressure becomes a problem. However, if the difference between R 1 and R 2 is small, the rolling surfaces 17a and 17b and the raceway surfaces 12a, 12b, and 13a are elastically deformed and both come into surface contact, so that such a problem does not occur.

なお、上記の実施形態においては、転動面の曲率が互いに異なる2種類の球面ころ14a,14bを交互に配置した例を示したが、これに限ることなく、任意の構成を採用することができる。   In the above embodiment, an example in which two types of spherical rollers 14a and 14b having different rolling surface curvatures are alternately arranged has been shown. However, the present invention is not limited to this, and any configuration may be adopted. it can.

例えば、転動面の曲率が互いに異なる3種類以上の球面ころを配置してもよい。これにより、ノンスリップライン19をさらに分散させることができる。また、複数種類の球面ころをランダムに並べてもよい。これにより、自動調心ころ軸受11の組立時に球面ころ14の種類を意識する必要がなくなるので、さらに組立工程を簡素化することができる。   For example, you may arrange | position three or more types of spherical rollers from which the curvature of a rolling surface differs mutually. Thereby, the non-slip line 19 can be further dispersed. A plurality of types of spherical rollers may be arranged at random. This eliminates the need to be aware of the type of the spherical roller 14 when assembling the self-aligning roller bearing 11, thereby further simplifying the assembly process.

また、上記の実施形態における自動調心ころ軸受11は、左右の内輪軌道面12a,12bの間に案内輪16を配置した例を示したが、これに限ることなく、この発明はあらゆる構成の自動調心ころ軸受に採用することができる。   In the self-aligning roller bearing 11 in the above embodiment, the guide wheel 16 is disposed between the left and right inner ring raceway surfaces 12a and 12b. However, the present invention is not limited to this, and the present invention has all configurations. It can be used for self-aligning roller bearings.

例えば、図3を参照して、この発明の他の実施形態に係る自動調心ころ軸受21を説明する。なお、自動調心ころ軸受21の基本構成は自動調心ころ軸受11と共通するので、共通点の説明は省略し、相違点を中心に説明する。   For example, a self-aligning roller bearing 21 according to another embodiment of the present invention will be described with reference to FIG. Since the basic configuration of the self-aligning roller bearing 21 is the same as that of the self-aligning roller bearing 11, the description of the common points will be omitted and the differences will be mainly described.

この発明の他の実施形態に係る自動調心ころ軸受21は、内輪22と、外輪23と、複数の球面ころ24と、保持器25とを備える複列の自動調心ころ軸受である。また、内輪22の左右の内輪軌道面22a,22bの間には中鍔22cが設けられており、軸方向両端部には外鍔22dが設けられている。この鍔部22cは、球面ころ24の端面を案内する機能を有する。   A self-aligning roller bearing 21 according to another embodiment of the present invention is a double-row self-aligning roller bearing including an inner ring 22, an outer ring 23, a plurality of spherical rollers 24, and a cage 25. Further, an intermediate collar 22c is provided between the left and right inner ring raceway surfaces 22a and 22b of the inner ring 22, and an outer collar 22d is provided at both axial ends. The flange portion 22 c has a function of guiding the end surface of the spherical roller 24.

上記構成の自動調心ころ軸受21において、左右の内輪軌道面22a,22bに転動面27の曲率を互いに異ならせた球面ころ24を交互に配置することによっても、この発明の効果を得ることができる。   In the self-aligning roller bearing 21 having the above-described configuration, the effect of the present invention can also be obtained by alternately arranging the spherical rollers 24 having the rolling surfaces 27 having different curvatures on the left and right inner ring raceway surfaces 22a and 22b. Can do.

さらに、上記の各実施形態においては、最大径位置がころ長さの中央に位置する対称ころを採用した例を示したが、これに限ることなく、この発明は、ころの最大径位置がころの長さ方向の中央に存在しない非対称ころを有する自動調心ころ軸受にも適用することができる。   Furthermore, in each of the above-described embodiments, an example is shown in which a symmetric roller is used in which the maximum diameter position is located at the center of the roller length. However, the present invention is not limited to this, and the present invention is not limited to this. The present invention can also be applied to a self-aligning roller bearing having an asymmetric roller that does not exist in the center in the length direction.

次に、図4を参照して、この発明の一実施形態に係るローラ支持構造を採用した連続鋳造設備31を説明する。なお、図4は連続鋳造設備31の図解図である。   Next, with reference to FIG. 4, the continuous casting equipment 31 which employ | adopted the roller support structure which concerns on one Embodiment of this invention is demonstrated. FIG. 4 is an illustrative view of the continuous casting equipment 31.

連続鋳造設備31は、溶鋼を受け入れると共に溶鋼中の介在物を除去する取鍋32およびタンディシュ33と、溶鋼を所定の形状に鋳造する鋳型34と、鋳型34から鋳片35を引き抜くピンチロール36と、鋳片35を搬送するガイドロール37と、鋳片35を所定の大きさに切断するトーチ38とを備える。   The continuous casting equipment 31 includes a ladle 32 and a tundish 33 for receiving molten steel and removing inclusions in the molten steel, a mold 34 for casting the molten steel into a predetermined shape, and a pinch roll 36 for extracting a slab 35 from the mold 34. A guide roll 37 for conveying the slab 35 and a torch 38 for cutting the slab 35 into a predetermined size.

精錬が終了した溶鋼は、まず取鍋32に注入され、タンディシュ33を経て鋳型34に到達する。また、取鍋32およびタンディシュ33では、溶鋼の表面に浮遊する介在物が除去される。鋳型34は、例えば銅製であって常に水冷されている。これにより、鋳型34に接した溶鋼は、所定の形状に成形されると共に急冷されて表面が凝固する。   The molten steel after the refining is first poured into the ladle 32 and reaches the mold 34 through the tundish 33. In addition, in the ladle 32 and the tundish 33, inclusions floating on the surface of the molten steel are removed. The mold 34 is made of, for example, copper and is always water-cooled. As a result, the molten steel in contact with the mold 34 is molded into a predetermined shape and rapidly cooled to solidify the surface.

次に、ピンチロール36は、鋳型34内から引き抜いた鋳片35をガイドロール37に受け渡す。複数のガイドロール37は、鋳片35を挟持した状態でトーチ38まで案内する。その際、鋳片35はスプレー冷却されて全体が凝固する。最後に、切断機としてのトーチ38によって、鋳片35が所定の大きさに切断される。   Next, the pinch roll 36 transfers the slab 35 extracted from the mold 34 to the guide roll 37. The plurality of guide rolls 37 guide to the torch 38 with the slab 35 sandwiched therebetween. At that time, the slab 35 is spray-cooled and solidified as a whole. Finally, the slab 35 is cut into a predetermined size by a torch 38 as a cutting machine.

この連続鋳造設備31は、鋼の強度、加工性、および耐疲労性等の機械的性質を低下させる酸化物等の介在物を溶鋼中から除去すると共に、圧延工程における加工を容易にするためにスラブと呼ばれる半製品を製造する。   The continuous casting equipment 31 removes inclusions such as oxides that lower mechanical properties such as strength, workability, and fatigue resistance of steel from the molten steel, and facilitates processing in the rolling process. Manufactures semi-finished products called slabs.

上記構成の連続鋳造設備31において、ピンチロール36やガイドロール37は、鋳片35を挟持する際に大きく撓む。また、ピンチロール36やガイドロール37の回転速度は、比較的低速である。そこで、このようなロール36,37を支持する軸受(図示省略)としては、撓みに対して調心性を有する自動調心ころ軸受11,21が適している。   In the continuous casting equipment 31 configured as described above, the pinch roll 36 and the guide roll 37 are greatly bent when the slab 35 is sandwiched. Moreover, the rotational speed of the pinch roll 36 and the guide roll 37 is relatively low. Therefore, as the bearings (not shown) for supporting the rolls 36 and 37, the self-aligning roller bearings 11 and 21 having alignment with respect to bending are suitable.

また、この発明の実施形態に係る自動調心ころ軸受11,21は、ノンスリップライン19,29を分散配置することによって長寿命となっている。その結果、連続鋳造設備31のメンテナンス周期を延伸することができる。   In addition, the self-aligning roller bearings 11 and 21 according to the embodiment of the present invention have a long life by disposing the non-slip lines 19 and 29 in a distributed manner. As a result, the maintenance cycle of the continuous casting equipment 31 can be extended.

なお、上記の各実施形態に係る自動調心ころ軸受11,21は、連続鋳造設備31に限らず、あらゆる用途に使用することができる。特に、建設機械、一般産業機械、風力発電機等の高荷重環境下で使用する場合に有利な効果を奏する。   In addition, the self-aligning roller bearings 11 and 21 according to each embodiment described above can be used not only for the continuous casting equipment 31 but also for any application. In particular, it has an advantageous effect when used in a high load environment such as construction machines, general industrial machines, wind power generators and the like.

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

この発明は、自動調心ころ軸受に有利に利用される。   The present invention is advantageously used for a self-aligning roller bearing.

図1に示す自動調心ころ軸受の内輪軌道面に配置される球面ころを示す図である。It is a figure which shows the spherical roller arrange | positioned at the inner ring raceway surface of the self-aligning roller bearing shown in FIG. この発明の一実施形態に係る自動調心ころ軸受を示す図である。It is a figure which shows the self-aligning roller bearing which concerns on one Embodiment of this invention. この発明の他の実施形態に係る自動調心ころ軸受を示す図である。It is a figure which shows the self-aligning roller bearing which concerns on other embodiment of this invention. この発明の一実施形態に係る連続鋳造設備を示す図である。It is a figure which shows the continuous casting installation which concerns on one Embodiment of this invention. 従来の自動調心ころ軸受における差動すべりの分布を示す図である。It is a figure which shows distribution of the differential slide in the conventional self-aligning roller bearing. 従来の自動調心ころ軸受における摩耗状況を示す図である。It is a figure which shows the wear condition in the conventional self-aligning roller bearing.

符号の説明Explanation of symbols

11,21,101 自動調心ころ軸受、12,22,102 内輪、12a,12b,22a,22b,102a 内輪軌道面、13,23,103、外輪、13a,23a103a 外輪軌道面、14,14a,14b,24,104 球面ころ、15,25 保持器、16 案内輪、17,17a,17b,27,104a 転動面、18,18a,18b,28 端面、19,19a,19b,104b,104c ノンスリップライン、22c 中鍔、22d 外鍔、31 連続鋳造設備、32 取鍋、33 タンディシュ、34 鋳型、35 鋳片、36 ピンチロール、37 ガイドロール、38 トーチ。   11, 21, 101 Spherical roller bearing, 12, 22, 102 Inner ring, 12a, 12b, 22a, 22b, 102a Inner ring raceway surface, 13, 23, 103, Outer ring, 13a, 23a103a Outer ring raceway surface, 14, 14a, 14b, 24, 104 Spherical roller, 15, 25 Cage, 16 Guide wheel, 17, 17a, 17b, 27, 104a Rolling surface, 18, 18a, 18b, 28 End surface, 19, 19a, 19b, 104b, 104c Non-slip Line, 22c Medium length, 22d Outer length, 31 Continuous casting equipment, 32 Ladle, 33 Tundish, 34 Mold, 35 Slab, 36 Pinch roll, 37 Guide roll, 38 Torch.

Claims (2)

外径面に左右複列の内輪軌道面を有する内輪と、
内径面に前記左右複列の内輪軌道面に対面する球面形状の外輪軌道面を有する外輪と、
前記内輪軌道面および前記外輪軌道面に沿う曲面形状の転動面を有する複数の球面ころとを備え、
前記複数の球面ころは、前記転動面の曲率を互いに異ならせた複数種類の球面ころを含む、自動調心ころ軸受。
An inner ring having left and right double-row inner ring raceway surfaces on the outer diameter surface;
An outer ring having a spherical outer ring raceway surface facing the inner ring raceway surface of the left and right double rows on the inner diameter surface;
A plurality of spherical rollers having a curved rolling surface along the inner ring raceway surface and the outer ring raceway surface;
The plurality of spherical rollers are self-aligning roller bearings including a plurality of types of spherical rollers in which the rolling surfaces have different curvatures.
鋳型と、
前記鋳型から鋳片を排出および搬送するローラと、
前記ローラを回転自在に支持する自動調心ころ軸受とを備え、
前記自動調心ころ軸受は、外径面に左右複列の内輪軌道面を有する内輪と、内径面に前記左右複列の内輪軌道面に対面する球面形状の外輪軌道面を有する外輪と、前記内輪軌道面および前記外輪軌道面に沿う曲面形状の転動面を有する複数の球面ころとを有し、前記複数の球面ころは、前記転動面の曲率を互いに異ならせた複数種類の球面ころを含む、連続鋳造設備のローラ支持構造。
A mold,
A roller for discharging and conveying the slab from the mold;
A self-aligning roller bearing that rotatably supports the roller,
The self-aligning roller bearing includes an inner ring having right and left double-row inner ring raceway surfaces on an outer diameter surface, an outer ring having a spherical outer ring raceway surface facing the left and right double row inner ring raceway surfaces on an inner diameter surface, and A plurality of spherical rollers having a curved rolling surface along the inner ring raceway surface and the outer ring raceway surface, and the plurality of spherical rollers have a plurality of types of spherical rollers having different curvatures of the rolling surfaces. Including a roller support structure for continuous casting equipment.
JP2006247915A 2006-09-13 2006-09-13 Self-alignment roller bearing and roller support structure for continuous casting facilities Withdrawn JP2008069823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006247915A JP2008069823A (en) 2006-09-13 2006-09-13 Self-alignment roller bearing and roller support structure for continuous casting facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247915A JP2008069823A (en) 2006-09-13 2006-09-13 Self-alignment roller bearing and roller support structure for continuous casting facilities

Publications (1)

Publication Number Publication Date
JP2008069823A true JP2008069823A (en) 2008-03-27

Family

ID=39291593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247915A Withdrawn JP2008069823A (en) 2006-09-13 2006-09-13 Self-alignment roller bearing and roller support structure for continuous casting facilities

Country Status (1)

Country Link
JP (1) JP2008069823A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202453A (en) * 2011-03-24 2012-10-22 Jtekt Corp Self-aligning roller bearing
JP2013234690A (en) * 2012-05-07 2013-11-21 Jtekt Corp Self-aligning roller bearing and rotating equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202453A (en) * 2011-03-24 2012-10-22 Jtekt Corp Self-aligning roller bearing
JP2013234690A (en) * 2012-05-07 2013-11-21 Jtekt Corp Self-aligning roller bearing and rotating equipment

Similar Documents

Publication Publication Date Title
JP6512264B2 (en) Cylindrical roller bearing
JP5286962B2 (en) Rolling bearing with aligning ring and roll device for continuous casting machine using the same
JP2009074600A (en) Roller bearing
JP2008069823A (en) Self-alignment roller bearing and roller support structure for continuous casting facilities
US9885385B2 (en) Spacer device, toroidal roller bearing and method
JP2010090927A (en) Bearing device
US11105371B2 (en) Retained roller set and roller bearing including same
JP2009236278A (en) Bearing device
US20160178002A1 (en) Double-row spherical roller bearing
JP2010151244A (en) Roller bearing
JP2017115947A (en) Roller bearing and continuous casting machine
JP5197622B2 (en) Non-rotating shaft for continuous casting equipment
JP6191205B2 (en) Outer ring split type rolling bearing and manufacturing method thereof
JP2006266304A (en) Double row conical roller bearing with aligning ring
JP4526084B2 (en) Cylindrical roller bearing
JP2017009034A (en) Roller bearing
JP2003343554A (en) Automatic aligning roller bearing
JP2014052069A (en) Cylindrical roller bearing
JP5115838B2 (en) Bearing device
JP6185306B2 (en) Cylindrical roller bearing with aligning ring
JPH1068415A (en) Roll shaft supporting device
JP2022116680A (en) rolling bearing
JP2022116678A (en) rolling bearing
JP5652129B2 (en) Double row cylindrical roller bearings for multi-stage rolling rolls
JP2007030012A (en) Continuous casting segment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201