JP2008069525A - Base course material using neutralized slag, and its manufacturing method - Google Patents

Base course material using neutralized slag, and its manufacturing method Download PDF

Info

Publication number
JP2008069525A
JP2008069525A JP2006247429A JP2006247429A JP2008069525A JP 2008069525 A JP2008069525 A JP 2008069525A JP 2006247429 A JP2006247429 A JP 2006247429A JP 2006247429 A JP2006247429 A JP 2006247429A JP 2008069525 A JP2008069525 A JP 2008069525A
Authority
JP
Japan
Prior art keywords
blast furnace
weight
furnace slag
neutralized
lime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006247429A
Other languages
Japanese (ja)
Other versions
JP4942433B2 (en
Inventor
Tetsuya Hanamura
哲也 花村
Masahiro Uemori
政宏 上森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2006247429A priority Critical patent/JP4942433B2/en
Publication of JP2008069525A publication Critical patent/JP2008069525A/en
Application granted granted Critical
Publication of JP4942433B2 publication Critical patent/JP4942433B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Road Paving Structures (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base course material which is mainly composed of neutralized slag reducing the level of an influence on water, while maintaining and enhancing the high bearing capacity of the base course of the neutralized slag produced during the manufacture of a titanium oxide by a sulphuric acid method. <P>SOLUTION: This base course material is composed of the neutralized slag which is produced during the manufacture of the titanium oxide by the sulphuric acid method, and blast furnace slag which is additionally mixed into the neutralized slag at a ratio of 15-50 wt.% as numbers included in the total. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、硫酸法による酸化チタン製造時に発生する中和滓を有効利用した路盤材料に関し、特に高炉スラグや石灰を添加することにより路盤材料に要求される塑性指数や修正CBR(modified California bearing ratio)、一軸圧縮強度といった品質基準値や性質を大幅に改善した産業副産物利用型の路盤材料及びその製造方法に関する。 The present invention relates to a roadbed material that effectively uses neutralized soot generated during the production of titanium oxide by the sulfuric acid method, and in particular, by adding blast furnace slag and lime, a plasticity index and a modified CBR (modified California bearing ratio) required for the roadbed material. ), An industrial by-product-use roadbed material that greatly improves quality standard values and properties such as uniaxial compressive strength, and a manufacturing method thereof.

近年、地球環境の保全の意識の高まりから、各種産業副産物(廃棄物)の有効利用、すなわち、これらをリサイクル原料として再利用することが検討されている。このような背景の下で、硫酸法により酸化チタン製造する場合に発生する中和滓もリサイクル原料の代表例であり、この中和滓のさらなる有効利用の道筋が模索されている。 In recent years, due to increasing awareness of global environment conservation, various industrial by-products (wastes) are being effectively used, that is, reusing them as recycled raw materials. Under such a background, neutralized soot generated when titanium oxide is produced by the sulfuric acid method is also a representative example of a recycled raw material, and a route for further effective use of this neutralized soot is being sought.

硫酸法により酸化チタン製造には、原料のイルメナイト鉱又はチタンスラグを溶解するために大量の硫酸が使用される。中和滓はこの使用済み硫酸を中和処理し、それを沈降分離・脱水することにより排出される。中和滓の製造プロセスの典型的な一例を図1に示す。 In the production of titanium oxide by the sulfuric acid method, a large amount of sulfuric acid is used to dissolve the raw material ilmenite ore or titanium slag. The neutralized soot is discharged by neutralizing this spent sulfuric acid, separating and dewatering it. A typical example of the process for producing the neutralized soot is shown in FIG.

このような中和滓を有効利用する例としては、例えば、石膏としてボードやセメントなどの建築資材用原料などに再利用する例が知られている。しかしながら、建築資材用原料として使用できる量は発生する中和滓に対し極めて少ないため、その殆どが産業廃棄物として処分されていた。 As an example of effectively using such neutralized soot, an example of reusing it as a raw material for building materials such as board or cement as a plaster is known. However, since the amount that can be used as a raw material for building materials is extremely small relative to the generated neutralized soot, most of them have been disposed of as industrial waste.

また、中和滓はそれ自体路盤材料としての高い支持力を有するものの、その支持力は非常に水の影響を受けやすいという特性があるため、実際の自然環境における路盤材料への適用は殆ど検討されていなかった。
特開2002−146709号公報 特開2003−12363号公報 特開2005−42497号公報 特開2005−42497号公報 特開2005−139829号公報 特開2006−721号公報
In addition, although the neutralization pad itself has a high bearing capacity as a roadbed material, the bearing capacity is very susceptible to water, so application to roadbed materials in the actual natural environment is almost examined. Was not.
JP 2002-146709 A JP 2003-12363 A Japanese Patent Laid-Open No. 2005-42497 Japanese Patent Laid-Open No. 2005-42497 JP 2005-139829 A JP 2006-721 A

そこで、本発明の目的は、硫酸法による酸化チタン製造時に発生する中和滓を路盤に適用した場合の高い支持力を維持、向上させながら、路盤材料として適用する際に問題となる水に対する影響の度合いを小さくした中和滓を主原料とする路盤材料を提供することにある。 Therefore, the object of the present invention is to affect the water which is a problem when applied as a roadbed material while maintaining and improving the high bearing capacity when the neutralized soot generated during the production of titanium oxide by the sulfuric acid method is applied to the roadbed. An object of the present invention is to provide a roadbed material mainly made of neutralized soot with a reduced degree of the above.

本発明者等は、中和滓の粘土分の含有比率を少なくし水に対する影響の度合いを小さくするため、塑性指数の低下が期待できる水硬性の高い添加材料を探索した。その結果、水硬性の高い材料としては高炉スラグが適しており、中和滓に適量の高炉スラグを添加した場合、水に対する影響の度合いを基準値より小さくできることを見出した。 In order to reduce the content ratio of the clay in the neutralized lees and reduce the degree of influence on water, the present inventors searched for an additive material with high hydraulic properties that can be expected to lower the plasticity index. As a result, it was found that blast furnace slag is suitable as a material having high hydraulic properties, and when an appropriate amount of blast furnace slag is added to the neutralized soot, the degree of influence on water can be made smaller than the reference value.

すなわち、請求項1に記載された発明は、硫酸法による酸化チタン製造時に発生する中和滓と、前記中和滓へ内数で15〜50重量%、さらに好ましくは20〜40重量%の割合で混合されている高炉スラグとからなる路盤材料及びその製造方法である。 That is, the invention described in claim 1 is a ratio of neutralized soot generated during the production of titanium oxide by the sulfuric acid method, and 15 to 50% by weight, more preferably 20 to 40% by weight, in the neutralized soot. It is the roadbed material which consists of blast furnace slag mixed by (4), and its manufacturing method.

イルメナイト鉱又はチタンスラグを出発原料として、硫酸法により酸化チタン製造する場合に発生する中和滓は、例えば、表1に示されるような成分を有する。表1から理解されるように、中和滓は多くの鉄分を含んでおり、鉄鋼スラグと同様に路盤材料としての適用が期待される。また、溶出試験によっても、中和滓単体では環境有害物質が検出されることはなかった。 The neutralization soot generated when producing titanium oxide by the sulfuric acid method using ilmenite or titanium slag as a starting material has components as shown in Table 1, for example. As can be seen from Table 1, the neutralized soot contains a large amount of iron, and is expected to be used as a roadbed material in the same way as steel slag. Also, in the elution test, no environmentally hazardous substances were detected in the neutralized soot alone.

Figure 2008069525
Figure 2008069525

しかしながら、中和滓単体では、「JIS A 1205」に基づく液性限界試験及び塑性限界試験より求めた塑性指数が20〜25と、路盤材料選定において基準となる塑性指数18よりも高いため、中和滓単独での路盤材料への適用は極めて困難である。そこで、本発明では、中和滓へ水硬性の高い高炉スラグを添加することにより、水に対し支持力が殆ど影響を受けることがない路盤材料及びその製造方法を発明するに至った。 However, with the neutralized soot alone, the plasticity index obtained from the liquid limit test and plastic limit test based on “JIS A 1205” is 20 to 25, which is higher than the plastic index 18 which is the standard in selecting roadbed materials. It is extremely difficult to apply Wa-an alone to roadbed materials. Therefore, in the present invention, by adding blast furnace slag having high hydraulic properties to the neutralized soot, a roadbed material in which the bearing capacity is hardly affected by water and a manufacturing method thereof have been invented.

すなわち、本発明によれば、中和滓へ内数で15〜50重量%、さらに好ましくは20〜40重量%の割合で高炉スラグを混合することにより、塑性指数を18以下に改善した路盤材料及びその製造方法を提供することができる。 That is, according to the present invention, the roadbed material whose plasticity index is improved to 18 or less by mixing blast furnace slag with a ratio of 15 to 50% by weight, more preferably 20 to 40% by weight, to the neutralization trough according to the present invention. And a manufacturing method thereof.

路盤材料に含まれる高炉スラグの混合割合は、15重量%より低い場合、路盤材料の塑性指数が18を超えてしまい、水に対して安定した支持力を得られなくなる。一方、高炉スラグの混合割合を高くすれば高くするほど中和滓と高炉スラグからなる路盤材料の塑性指数は小さくなるが、高炉スラグの混合割合が50%を超えてしまうと中和滓を有効利用するという本発明の目的に反することになるので、この値を上限値と定めた。したがって、中和滓を有効利用するという目的に拘らなければ、中和滓に混合する高炉スラグの混合割合を50重量%より高くして路盤材料の塑性指数をさらに低下させることも可能である。 When the mixing ratio of the blast furnace slag contained in the roadbed material is lower than 15% by weight, the plasticity index of the roadbed material exceeds 18, and a stable supporting force for water cannot be obtained. On the other hand, the higher the mixing ratio of blast furnace slag, the smaller the plasticity index of the subbase material made of neutralized soot and blast furnace slag, but the neutralizing soot becomes effective when the mixing ratio of blast furnace slag exceeds 50% Since this would be contrary to the purpose of the present invention to use, this value was determined as the upper limit value. Therefore, if the purpose of effectively using the neutralized soot is not concerned, the mixing ratio of the blast furnace slag mixed with the neutralized soot can be made higher than 50% by weight to further reduce the plastic index of the roadbed material.

また、中和滓は、元来、路盤材料の強さを評価するための相対的強度を表す修正CBR(modified California bearing ratio)において、中和滓(乾燥品)で110%、中和滓(未乾燥品)で41%と既に路盤材料に要求される基準値を満たしている。しかしながら、中和滓に高炉スラグを15%混合すると修正CBRはそれぞれさらに118%、55%まで向上する。 In addition, the neutralized cocoon is originally a modified CBR (modified California bearing ratio) representing the relative strength for evaluating the strength of the roadbed material. (Dried product) is 41% and already satisfies the standard value required for roadbed materials. However, when 15% of blast furnace slag is mixed with the neutralized soot, the modified CBR is further improved to 118% and 55%, respectively.

なお、中和滓へ高炉スラグを混合した場合であっても、溶出試験において本発明による路盤材料から六価クロムは検出されなかった。この要因は定かではないが、中和滓単体には六価クロムが含まれていないこと及び高炉スラグによる六価クロム抑制効果が寄与したものと推察される。 Even when blast furnace slag was mixed into the neutralization tub, hexavalent chromium was not detected from the roadbed material according to the present invention in the elution test. Although this factor is not clear, it is assumed that the neutralized soot alone does not contain hexavalent chromium and that the blast furnace slag has an effect of suppressing hexavalent chromium.

請求項2に記載された発明は、請求項1に記載の路盤材料100重量部に対し、石灰をさらに3重量部以上添加した路盤材料である。 The invention described in claim 2 is a roadbed material obtained by further adding 3 parts by weight or more of lime to 100 parts by weight of the roadbed material according to claim 1.

中和滓へ高炉スラグを混合した路盤材料はその塑性指数を大幅に改善することできるから、例えば、塑性指数を18以下に低下させた路盤材料は石灰系安定処理路盤の施工に使用することができ、また、塑性指数を9まで低下させた路盤材料はセメント系安定処理路盤や下層路盤におけるアスファルト系安定処理路盤に使用することができる。そこで、請求項2に記載された発明では、上記の適用範囲の中で石灰系安定処理路盤に適した石灰の添加量が存在することを実験により見出した。 Since the roadbed material in which blast furnace slag is mixed with the neutralized iron can greatly improve its plasticity index, for example, the roadbed material with the plasticity index lowered to 18 or less can be used for the construction of lime-based stabilized roadbeds. In addition, the roadbed material having a plasticity index reduced to 9 can be used for cement-based stable treated roadbeds and asphalt-based stable treated roadbeds in lower layer roadbeds. Therefore, in the invention described in claim 2, it has been found through experiments that there is an added amount of lime suitable for the lime-based stable treated roadbed within the above-mentioned application range.

その結果、中和滓及び高炉スラグからなる路盤材料100重量部に対し、石灰をさらに3重量部以上添加した場合、一軸圧縮強さは10kgf/cm以上と、下層路盤における一軸圧縮強さの基準値7kgf/cm以上及び上層路盤における一軸圧縮強さの基準値10kgf/cm以上のいずれの基準値もクリアできることが判った。 As a result, when 3 parts by weight or more of lime is further added to 100 parts by weight of the base material made of neutralized soot and blast furnace slag, the uniaxial compressive strength is 10 kgf / cm 2 or more, which is the uniaxial compressive strength of the lower base course. It was found that both the reference value 7 kgf / cm 2 or more and the uniaxial compressive strength reference value 10 kgf / cm 2 or more in the upper roadbed can be cleared.

なお、中和滓及び高炉スラグからなる混合物へ石灰を添加した場合であっても、溶出試験において本発明による路盤材料から六価クロムは検出されなかった。この要因は定かではないが、中和滓単体には六価クロムが含まれていないこと及び高炉スラグによる六価クロム抑制効果が寄与したものと推察される。 Even when lime was added to the mixture composed of neutralized soot and blast furnace slag, hexavalent chromium was not detected from the roadbed material according to the present invention in the dissolution test. Although this factor is not clear, it is assumed that the neutralized soot alone does not contain hexavalent chromium and that the blast furnace slag has an effect of suppressing hexavalent chromium.

請求項3に記載された発明は請求項2に記載の路盤材料の中、中和滓80重量部と高炉スラグ20重量部の混合物に対し、石灰を3〜4重量部添加した路盤材料に限定したものである。 The invention described in claim 3 is limited to a roadbed material in which 3 to 4 parts by weight of lime is added to a mixture of 80 parts by weight of neutralization dredging and 20 parts by weight of blast furnace slag in the roadbed material of claim 2. It is a thing.

中和滓、高炉スラグ及び石灰の成分には酸化カルシウム(CaO)が含まれており、これが水と反応すると体積が約2倍となるため、本発明による路盤材料を石灰系安定処理路盤へ適用した場合の体積膨張が懸念される。しかしながら、中和滓80重量部と高炉スラグ20重量部の混合物に対して、石灰の添加量を好ましくは外数で3〜6重量%、さらに好ましくは3〜4重量%の範囲に限定すれば、水浸膨張試験において、本発明による路盤材料の体積膨張率を0.6%未満に抑えることができ、基準値の体積膨張率1.5%を大幅に下回ることが判った。 The components of neutralized soot, blast furnace slag, and lime contain calcium oxide (CaO), and when this reacts with water, the volume is approximately doubled. Therefore, the roadbed material according to the present invention is applied to the lime-based stabilized roadbed. There is concern about volume expansion. However, if the amount of lime added is preferably 3 to 6% by weight, more preferably 3 to 4% by weight, based on a mixture of 80 parts by weight of neutralized soot and 20 parts by weight of blast furnace slag. In the water immersion expansion test, it was found that the volume expansion coefficient of the roadbed material according to the present invention can be suppressed to less than 0.6%, which is significantly lower than the reference value of 1.5%.

本発明によれば、硫酸法による酸化チタン製造時に発生する中和滓へ適量の高炉スラグを混合することにより、塑性指数が大幅に改善された、すなわち、水に対して支持力が殆ど影響を受けることがない路盤材料及びその製造方法を提供することができる。 According to the present invention, by mixing an appropriate amount of blast furnace slag into the neutralized soot generated during the production of titanium oxide by the sulfuric acid method, the plasticity index is greatly improved, that is, the bearing capacity has almost no influence on water. A roadbed material that is not received and a method of manufacturing the same can be provided.

また、本発明によれば、塑性指数を6から18の間までに低下させた路盤材料は石灰系安定処理路盤材料として使用することができ、また、塑性指数を9以下にまで低下させた路盤材料はセメント系安定処理路盤材料及び下層路盤におけるアスファルト系安定処理路盤材料として使用することができる。 Further, according to the present invention, a roadbed material having a plasticity index reduced to between 6 and 18 can be used as a lime-based stable treated roadbed material, and a roadbed material having a plasticity index reduced to 9 or less. The material can be used as cement-based stable treated roadbed material and asphalt-based stable treated roadbed material in lower layer roadbed.

このため、本発明によれば、特に石灰系安定処理路盤材料としてさらに適量の石灰の添加することにより、下層路盤及び上層路盤におけるいずれの一軸圧縮強さの基準値を上回る一軸圧縮強さが10kgf/cm以上の路盤材料及びその製造方法を提供することができる。 Therefore, according to the present invention, particularly by adding an appropriate amount of lime as a lime-based stable treated roadbed material, the uniaxial compression strength exceeding the standard value of any uniaxial compression strength in the lower layer roadbed and the upper layer roadbed is 10 kgf. / Cm 2 or more roadbed material and a method for producing the same can be provided.

さらに、本発明によれば、中和滓80重量部と高炉スラグ20重量部の混合物に対し石灰を3〜4重量部添加することにより、水浸膨張試験における路盤材料の体積膨張率が0.6%未満に抑えられた路盤材料及びその製造方法を提供することができる。 Furthermore, according to the present invention, 3-4 parts by weight of lime is added to a mixture of 80 parts by weight of the neutralized soot and 20 parts by weight of the blast furnace slag, so that the volume expansion coefficient of the roadbed material in the water immersion expansion test is 0. A roadbed material suppressed to less than 6% and a manufacturing method thereof can be provided.

なお、本発明による中和滓及び高炉スラグからなる路盤材料およびこれに石灰を添加した路盤材料は、溶出試験においても六価クロム等の有害物質は殆ど検出されないことから、本発明によれば、主としてリサイクル原料(産業廃棄物)を有効利用しながら環境に優しい路盤材料及びその製造方法を提供することができる。 In addition, according to the present invention, since the roadbed material made of neutralized soot and blast furnace slag according to the present invention and the roadbed material to which lime is added are hardly detected harmful substances such as hexavalent chromium even in the dissolution test, An environment-friendly roadbed material and a method for manufacturing the same can be provided while effectively using mainly recycled raw materials (industrial waste).

以下、本発明を実施例により説明する。なお、本発明は以下に示される実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で各種の変更が可能である。 Hereinafter, the present invention will be described with reference to examples. In addition, this invention is not limited to the Example shown below, A various change is possible within the range which does not deviate from the technical idea of this invention.

路盤材料原料
本実施例では、路盤材料の主原料として、テイカ株式会社岡山工場において発生する中和滓を使用した。この中和滓は硫酸法による酸化チタンの製造工程において発生する産業副産物である。なお、本実施例で用いられた中和滓に含まれる主な成分は、上記表1に示されている。また、前記中和滓に添加する高炉スラグには、表2に示される特性を有するJFEミネラル株式会社 福山製造所で発生する粉状の高炉スラグを使用した。
Roadbed material :
In this example, neutralized soot generated at Okayama Factory, Teika Co., Ltd. was used as the main raw material for roadbed materials. This neutralized soot is an industrial byproduct generated in the production process of titanium oxide by the sulfuric acid method. The main components contained in the neutralized soot used in this example are shown in Table 1 above. Moreover, the powdery blast furnace slag which generate | occur | produces in the JFE mineral Co., Ltd. Fukuyama factory which has the characteristic shown by Table 2 was used for the blast furnace slag added to the said neutralization slag.

Figure 2008069525
Figure 2008069525

[塑性限界指数による評価]
「JIS A 1205」に基づく液性限界試験及び塑性限界試験より、本発明による路盤材料の塑性指数等を求めた。
(1)試料の作製
中和滓及び高炉スラグは、「JIS Z 8801」に規定する標準ふるい425μmを通過したものを試料とした。なお、乾燥した後の中和滓はビー玉程度の大きさを形成しているので、試料の作製にはこれをハンマー等で細かく砕き、上記標準ふるいを通過させたものを使用した。また、試料の量は液性限界試験用には200g、塑性限界試験用には30gを用いた。
[Evaluation by plastic limit index]
From the liquid limit test and the plastic limit test based on “JIS A 1205”, the plasticity index and the like of the roadbed material according to the present invention were determined.
(1) Preparation of sample :
The neutralized soot and blast furnace slag were used as samples that passed through a standard sieve 425 μm defined in “JIS Z 8801”. In addition, since the neutralized soot after drying formed the size of a marble, the sample was crushed with a hammer or the like and passed through the standard sieve. The amount of the sample was 200 g for the liquid limit test and 30 g for the plastic limit test.

また、液性限界試験及び塑性限界試験においては、中和滓及び高炉スラグの混合比率を表3のように変化させた路盤材料の試料を作製して実験を行った。

Figure 2008069525
Moreover, in the liquid limit test and the plastic limit test, a sample of a roadbed material in which the mixing ratio of the neutralized soot and the blast furnace slag was changed as shown in Table 3 was tested.
Figure 2008069525

(2)液性限界試験及び塑性限界試験方法
液性限界試験及び塑性限界試験は、上記試料について「JIS A 1205」に基づく液性限界試験及び塑性限界試験を行うことにより、それぞれの液性限界及び塑性限界を求めた。
(2) Liquid limit test and plastic limit test method :
In the liquid limit test and the plastic limit test, the liquid limit and the plastic limit were obtained by performing the liquid limit test and the plastic limit test based on “JIS A 1205” for the sample.

(3)試験結果
上記液性限界及び塑性限界より、各路盤材料の塑性指数を求めた。高炉スラグ添加率と塑性指数との関係を図2に示す。
(3) Test results :
From the liquid limit and plastic limit, the plastic index of each roadbed material was determined. The relationship between the blast furnace slag addition rate and the plasticity index is shown in FIG.

路盤材料の塑性指数が下層路盤では6以上、上層路盤では4以上であると水の影響を受け易く、セメントや石灰などの安定処理を施さなければそのままの状態では使用することができない。図2によれば、中和滓単体である比較例の場合、塑性指数は中和滓(乾燥品)で25、中和滓(未乾燥品)で24の高い値となるため、塑性指数の低下を図らなければならないことが判る。 If the plasticity index of the roadbed material is 6 or higher for the lower roadbed and 4 or higher for the upper roadbed, it is easily affected by water and cannot be used as it is unless it is subjected to a stabilizing treatment such as cement or lime. According to FIG. 2, in the case of the comparative example that is a neutralized cocoon alone, the plasticity index is a high value of 25 for the neutralized cocoon (dried product) and 24 for the neutralized cocoon (undried product). It turns out that we must try to reduce it.

一方、実施例1〜3のように高炉スラグを内数で10重量%から20重量%中和滓へ添加した場合は、高炉スラグの添加量の増加にほぼ反比例する形で路盤材料の塑性指数が低下することが判った。これは、高炉スラグを添加することにより、水硬性を有し長期的にも高い支持力を発揮するという高炉スラグの特性が寄与したものと考えられる。 On the other hand, when the blast furnace slag was added from 10% by weight to 20% by weight neutralized soot as in Examples 1 to 3, the plasticity index of the roadbed material in a form almost inversely proportional to the increase in the amount of blast furnace slag added. Was found to be reduced. This is thought to be due to the addition of blast furnace slag, which contributes to the characteristics of blast furnace slag, which is hydraulic and exhibits a high bearing capacity over the long term.

また、安定化処理材として本発明による路盤材料を利用するためには塑性指数が18以下としなければならないので、図2より、中和滓へ高炉スラグを内数で少なくとも15重量%より多く添加する必要があり、好ましくは20重量%以上高炉スラグを添加する必要がある。 Further, in order to use the roadbed material according to the present invention as the stabilizing treatment material, the plasticity index must be 18 or less. Therefore, from FIG. 2, at least 15% by weight of blast furnace slag is added to the neutralization pad. It is necessary to add blast furnace slag, preferably 20% by weight or more.

一方、高炉スラグを内数で50重量%以上添加すると、本発明による路盤材料は粒状路盤材料又は粒度調整路盤材料として利用できることも期待されるが、高炉スラグの添加量を中和滓より多くしてしまうと中和滓を有効利用するという本発明の目的に反することになるので、この値を上限値と定めた。したがって、中和滓を有効利用するという目的に拘らなければ、中和滓に混合する高炉スラグの混合割合を内数で50重量%より高くして路盤材料の塑性指数をさらに低下させることも可能である。ただし、本発明に使用する中和滓が硫酸法による酸化チタンの製造工程において大量に発生する産業副産物であることを考慮すると、中和滓に添加される高炉スラグの割合は40重量%以下に抑えることが望ましい。 On the other hand, when 50% by weight or more of blast furnace slag is added, it is expected that the roadbed material according to the present invention can be used as a granular roadbed material or a particle size-adjusted roadbed material, but the amount of blast furnace slag added is larger than that of neutralized soot. If this happens, it would be contrary to the object of the present invention to effectively use the neutralized soot, so this value was set as the upper limit value. Therefore, if the purpose of effectively using the neutralized slag is not concerned, the mixing ratio of the blast furnace slag mixed with the neutralized slag can be made higher than 50% by weight to further reduce the plastic index of the roadbed material. It is. However, considering that the neutralized soot used in the present invention is an industrial byproduct generated in a large amount in the production process of titanium oxide by the sulfuric acid method, the proportion of blast furnace slag added to the neutralized soot is 40% by weight or less. It is desirable to suppress.

[修正CBRによる評価]
次に「JIS A 1211」に規定されるCBR試験を行い、高炉スラグの添加率の違いによる各路盤材料のCBR及び修正CBRを求めた。ここで、CBR(California bearing ratio)とは、路盤材料や盛土材料の品質基準を表す指標であり、現場締固め条件に合わせて求めた砕石、砂利、スラグなどの粒状・粉状路盤材料の強度を相対的に示す指標である。
[Evaluation by modified CBR]
Next, the CBR test specified in “JIS A 1211” was performed, and the CBR and the modified CBR of each base material due to the difference in the addition rate of blast furnace slag were obtained. Here, CBR (California bearing ratio) is an index that represents the quality standards of roadbed materials and embankment materials, and the strength of granular and powdery roadbed materials such as crushed stone, gravel, and slag determined according to the compaction conditions at the site. Is a relative indicator.

(1)修正CBR試験方法
CBR試験では、はじめに舗装試験法便覧「1−3−8 突固め試験方法」の呼び名2.5に従って3層92回の突固め試験を行い最適含水比を求めた。次に、前記突固め試験により求められた最適含水比を用いて3層17、42及び92回の3通りの突固め回数で締固めた供試体を作製し、この供試体を水浸後の貫入試験を行うことによりCBR及び修正CBRを求めた。なお、CBRは所定貫入量における標準荷重強さに対する百分率をいい、また、修正CBR(modified California bearing ratio)とは、通常3層92回突固めた時の締固め度95%のCBRをいう。
(1) Modified CBR test method :
In the CBR test, first, the optimum moisture content was determined by performing a three-layer 92 times tamping test according to the name 2.5 of the pavement test method manual “1-3-8 tamping test method”. Next, using the optimum water content ratio determined by the tamping test, a specimen was compacted with three tamping times of three layers 17, 42, and 92, and this specimen was immersed in water. CBR and modified CBR were determined by performing an intrusion test. CBR refers to a percentage with respect to the standard load strength at a predetermined penetration amount, and a modified CBR (modified California bearing ratio) refers to a CBR with a degree of compaction of 95% when the three layers are usually tamped 92 times.

(2)試験結果
「JIS A 1211」に基づくCBR試験により、比較例及び実施例1〜3における修正CBRを求めた。各路盤材料における高炉スラグの添加率と修正CBR等との関係を表4に示す。

Figure 2008069525
(2) Test results :
The modified CBR in Comparative Examples and Examples 1 to 3 was determined by a CBR test based on “JIS A 1211”. Table 4 shows the relationship between the blast furnace slag addition rate and the modified CBR and the like in each base material.
Figure 2008069525

各路盤材料の支持力特性は、表4からも明らかなように中和滓単体(比較例)においても規格値を十分に満たしている。しかしながら、実施例1〜3のように中和滓に高炉スラグを添加することにより、本発明による路盤材料の修正CBRは最大で未乾燥品で62%、乾燥品で121%まで増加することが判った。 As can be seen from Table 4, the bearing capacity characteristics of the respective roadbed materials sufficiently satisfy the standard value even in the neutralized kite alone (comparative example). However, by adding blast furnace slag to the neutralization jar as in Examples 1 to 3, the modified CBR of the roadbed material according to the present invention may increase up to 62% for undried products and 121% for dry products. understood.

この結果、本発明による路盤材料は、例えば、その基本組成として中和滓85重量%に対して高炉スラグを15重量%添加することにより、石灰安定処理路盤材料として利用可能であることが判明した。 As a result, it has been found that the roadbed material according to the present invention can be used as a lime-stabilized roadbed material, for example, by adding 15% by weight of blast furnace slag to 85% by weight of neutralized soot as its basic composition. .

[一軸圧縮強さによる評価]
石灰安定処理路盤材料として最適な石灰添加量を求めるため、中和滓と高炉スラグからなる混合物に対しさらに石灰を外数で1重量%、2重量%、3重量%、4重量%、5重量%添加した供試体を作製し、側圧を受けない状態で一軸圧縮強さを求めた。
[Evaluation by uniaxial compressive strength]
In order to obtain the optimum amount of lime added as a lime-stabilized roadbed material, 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight of lime is added to the mixture of neutralized soot and blast furnace slag. Specimens with a% addition were prepared, and the uniaxial compressive strength was determined in a state where no side pressure was applied.

(1)供試体の作製
中和滓80重量%と高炉スラグ20重量%を添加した混合物に対し、さらに石灰を外数で1重量%、2重量%、3重量%、4重量%、5重量%添加した5種類の試料を準備した。この試料を用いて舗装試験法便覧「2−4−1 安定処理混合物の突固め試験方法」の呼び名1.4に従って直径5cm、高さ10cmの供試体を作製することは困難であったため、代わりに下記の式1を用いて、呼び名1.4の締固めエネルギーEc:約550kJ/mと同等のエネルギーとなるようにランマー質量W:1.5kg、ランマー落下高さH:20cm、モールド直径:5cm、モールド高さ:10cm、突固め層数N:3層、一層当たりの突固め回数N:13回の条件でそれぞれに石灰の添加量が異なる供試体を作製した。

Ec=〔W(kN)×H(m)×N×N〕/V(m)・・・(式1)

供試体は、作製後、ポリエチレンシートで密封し温度20±3℃に調節された室内で9日間室内養生をした後、ポリエチレンシートを外して温度20±3℃に調節された水中で24時間水浸養生を行った。
(1) Preparation of specimen :
Five types of samples with 1%, 2%, 3%, 4% and 5% by weight of lime added to the mixture with 80% by weight of neutralized soot and 20% by weight of blast furnace slag. Prepared. Since it was difficult to prepare a specimen having a diameter of 5 cm and a height of 10 cm in accordance with the name 1.4 of the pavement test method manual “2-4-1 tamping test method for stable treatment mixture” using this sample, using equation 1 below, the the nickname 1.4 compaction energy Ec: about 550kJ / m 3 equivalent energy so as to rammer mass W R: 1.5 kg, rammer drop height H: 20 cm, mold Specimens with different lime addition amounts were prepared under the conditions of diameter: 5 cm, mold height: 10 cm, number of tamped layers N L : 3 layers, number of tamped times per layer N B : 13 times.

Ec = [W R (kN) × H (m) × N L × N B ] / V (m 3 ) (Formula 1)

After the preparation, the specimen was sealed with a polyethylene sheet and cured indoors in a room adjusted to a temperature of 20 ± 3 ° C. for 9 days, and then removed from the polyethylene sheet for 24 hours in water adjusted to a temperature of 20 ± 3 ° C. Carried out.

(2)一軸圧縮試験方法
一軸圧縮試験は、24時間水浸養生が終了した供試体表面の水滴を拭き取りその質量及び寸法を計測した後、圧縮試験機で毎分1%の圧縮ひずみを与えながら供試体が破壊するまで圧縮し、その時の最大値を記録することにより行った。
(2) Uniaxial compression test method :
In the uniaxial compression test, water droplets on the surface of the specimen after 24 hours of water curing are wiped off, the mass and dimensions are measured, and then compression is performed until the specimen breaks while applying a compression strain of 1% per minute with a compression tester. The maximum value at that time was recorded.

(3)試験結果
図3に、一軸圧縮試験により求められた石灰添加率と一軸強さとの関係を示す。
(3) Test results :
In FIG. 3, the relationship between the lime addition rate calculated | required by the uniaxial compression test and uniaxial strength is shown.

図3より明らかなように、中和滓と高炉スラグからなる混合物へ石灰の添加率を増加させてゆくと供試体の一軸圧縮強さも増加していくことが判った。なお、未乾燥品に関しては、混合を十分に行わないと高炉スラグおよび石灰が十分反応しないため一軸圧縮強さが上がらず、基準値の一軸圧縮強度を満足しない値が出ることがある。したがって、混合を慎重に行う必要がある。また、参考として石灰を添加しない中和滓と高炉スラグのみからなる供試体を水浸させたところ、24時間後には一軸圧縮試験を行うことができないほど供試体は原形を留めることなく崩壊していた。 As is clear from FIG. 3, it was found that the uniaxial compressive strength of the specimen increased as the lime addition rate increased to the mixture of neutralized soot and blast furnace slag. In addition, about an undried product, since blast furnace slag and lime do not fully react if mixing is not fully performed, a uniaxial compressive strength does not go up, and the value which does not satisfy the uniaxial compressive strength of a reference value may come out. Therefore, careful mixing is required. Also, as a reference, when a specimen consisting only of neutralized soot without lime and blast furnace slag was submerged, the specimen collapsed without retaining its original shape so that a uniaxial compression test could not be performed after 24 hours. It was.

また、石灰安定処理路盤材料として要求される一軸圧縮強さの基準値は、下層路盤で7kgf/cm以上、上層路盤で10kgf/cm以上であるため、中和滓と高炉スラグからなる路盤材料の場合、少なくとも外数で3重量%以上の石灰の添加が必要であることが判明した。 The reference value of the uniaxial compressive strength required as lime Stabilized base course material is at lower roadbed 7 kgf / cm 2 or more, because it is in base course 10 kgf / cm 2 or more, roadbed consisting neutralizing slag and blast furnace slag In the case of materials, it has been found that it is necessary to add at least 3% by weight or more of lime.

[水浸膨張試験]
中和滓、高炉スラグ及び石灰の成分には酸化カルシウム(CaO)が含まれており、これが水と反応すると体積が約2倍となるため、特に石灰が添加された本発明による路盤材料の体積膨張が懸念される。そこで、石灰が添加された石灰安定処理路盤向けの路盤材料について水浸膨張試験を行った。
[Water immersion expansion test]
The components of neutralized soot, blast furnace slag, and lime contain calcium oxide (CaO), and when this reacts with water, the volume is about doubled, so the volume of the roadbed material according to the present invention to which lime is added is particularly high. There is concern about expansion. Then, the water immersion expansion test was done about the roadbed material for the lime stabilization processing roadbed to which the lime was added.

(1)供試体の作製
中和滓80重量%と高炉スラグ20重量%を添加した混合物に対し、さらに石灰を外数で3重量%、4重量%添加した2種類の試料を準備した。この試料を用いて舗装試験法便覧「2−4−1 安定処理混合物の突固め試験方法」の呼び名2.5に従って突固め試験を行い、石灰が3重量%、4重量%添加された試料の最適含水比を求めた。この結果、石灰が3重量%添加された試料の最適含水比を44%とし、石灰が4重量%添加された試料の最適含水比を47%として舗装試験法便覧「2−4−1 安定処理混合物の突固め試験方法」の呼び名2.5に従って直径15cm、高さ12.5cmの供試体を作製した。
(1) Preparation of specimen :
Two types of samples were prepared by adding 3% by weight and 4% by weight of lime to the mixture to which 80% by weight of neutralized soot and 20% by weight of blast furnace slag were added. Using this sample, a tamping test was conducted in accordance with the name 2.5 of the pavement test method manual “2-4-1 tamping test method of a stable treatment mixture”, and a sample of 3% by weight and 4% by weight of lime was added. The optimum water content was determined. As a result, the optimal water content ratio of the sample to which 3% by weight of lime was added was 44%, and the optimal water content ratio of the sample to which 4% by weight of lime was added was 47%. A specimen having a diameter of 15 cm and a height of 12.5 cm was prepared in accordance with the name 2.5 of “Mixture tamping test method”.

(2)水浸膨張試験方法
水浸膨張試験は、舗装やその他の荷重を考慮するための軸付き有孔板5kgを供試体に載せ、供試体を水槽内に水浸させ変位計をセットした後、1h、2h、4h、8h、24h、48h、72h、96h経過時の変位計を読み取ることにより行った。ただし、96h経過時においても供試体の膨張が進行していた場合は、膨張が一定に落ち着くまで供試体の水浸を続けた。
(2) Water immersion expansion test method :
In the water immersion expansion test, a perforated plate with a shaft for considering pavement and other loads is placed on a specimen, the specimen is immersed in a water tank, a displacement meter is set, 1h, 2h, 4h, This was done by reading the displacement meter after 8h, 24h, 48h, 72h, 96h. However, in the case where expansion of the specimen continued even after 96 hours had passed, the specimen was immersed in water until the expansion settled down to a certain level.

(3)試験結果
図4に、水浸膨張試験により求められた石灰を3重量%、4重量%添加した場合の水浸時間と膨張率との関係を示す。
(3) Test results :
FIG. 4 shows the relationship between the water immersion time and the expansion rate when 3% by weight and 4% by weight of lime obtained by the water immersion expansion test are added.

図4より明らかなように、中和滓と高炉スラグからなる混合物へ石灰を外数で好ましくは3〜6重量%、さらに好ましくは3〜4重量%添加しても供試体の膨張率はいずれも0.6%未満に収まり、石灰安定処理路盤材料として要求される膨張率である1.5%を大幅に下回ることが判った。 As is clear from FIG. 4, even when lime is added to the mixture composed of neutralized soot and blast furnace slag, preferably 3 to 6% by weight, more preferably 3 to 4% by weight, the expansion rate of the specimen does not increase. It was also found to be less than 0.6%, which is significantly lower than 1.5%, which is an expansion coefficient required as a lime-stabilized roadbed material.

この結果、中和滓と高炉スラグからなる混合物に石灰を添加した路盤材料の場合、中和滓80重量%と高炉スラグ20重量%を添加した混合物に対し、石灰を外数で3〜4重量%添加することにより路盤材料の体積膨張を十分に抑制できることが判った。 As a result, in the case of a roadbed material in which lime is added to a mixture of neutralized dredging and blast furnace slag, 3 to 4 wt. It was found that the volume expansion of the roadbed material can be sufficiently suppressed by adding%.

本発明によれば、硫酸法による酸化チタンの製造工程で発生する中和滓に適量の高炉スラグを添加することにより、路盤材料として有効利用することができる。また、中和滓と高炉スラグからなる混合物に適量の石灰を添加することにより、石灰安定処理路盤材料としても有効利用することができる。 According to the present invention, an appropriate amount of blast furnace slag can be effectively used as a roadbed material by adding an appropriate amount of blast furnace slag to the neutralized soot generated in the production process of titanium oxide by the sulfuric acid method. Further, by adding an appropriate amount of lime to a mixture of neutralized soot and blast furnace slag, it can be effectively used as a lime-stabilized roadbed material.

中和滓の典型的な製造プロセスを示すフローチャートである。It is a flowchart which shows the typical manufacturing process of the neutralization soot. 中和滓と高炉スラグからなる路盤材料の高炉スラグ添加率と塑性指数との関係を表した図である。It is the figure showing the relationship between the blast furnace slag addition rate and the plasticity index of the roadbed material which consists of neutralization dredging and blast furnace slag. 石灰を添加した中和滓と高炉スラグからなる路盤材料の石灰添加率と一軸圧縮強さとの関係を表した図である。It is the figure showing the relationship between the lime addition rate and uniaxial compressive strength of the roadbed material which consists of the neutralization soot which added lime, and blast furnace slag. 石灰を添加した中和滓と高炉スラグからなる路盤材料の水浸時間と膨張率との関係を表した図である。It is the figure showing the relationship between the water immersion time and expansion coefficient of the roadbed material which consists of neutralized soot which added lime, and blast furnace slag.

Claims (3)

硫酸法による酸化チタンの製造時に発生する中和滓と、前記中和滓へ内数でさらに15〜50重量%の割合で混合されている高炉スラグとからなる路盤材料。 A roadbed material comprising neutralized soot generated during the production of titanium oxide by the sulfuric acid method and blast furnace slag mixed with the neutralized soot at a ratio of 15 to 50% by weight. 前記路盤材料100重量部に対し、石灰がさらに3重量部以上添加されている請求項1に記載の路盤材料。 The roadbed material according to claim 1, wherein 3 parts by weight or more of lime is further added to 100 parts by weight of the roadbed material. 前記中和滓80重量部と前記高炉スラグ20重量部の混合物に対し、前記石灰が3〜4重量部添加されている請求項2に記載の路盤材料。 The roadbed material according to claim 2, wherein 3 to 4 parts by weight of the lime is added to a mixture of 80 parts by weight of the neutralized dredging and 20 parts by weight of the blast furnace slag.
JP2006247429A 2006-09-13 2006-09-13 Roadbed material using neutralization ridge and method for producing the same Expired - Fee Related JP4942433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006247429A JP4942433B2 (en) 2006-09-13 2006-09-13 Roadbed material using neutralization ridge and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247429A JP4942433B2 (en) 2006-09-13 2006-09-13 Roadbed material using neutralization ridge and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008069525A true JP2008069525A (en) 2008-03-27
JP4942433B2 JP4942433B2 (en) 2012-05-30

Family

ID=39291350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247429A Expired - Fee Related JP4942433B2 (en) 2006-09-13 2006-09-13 Roadbed material using neutralization ridge and method for producing the same

Country Status (1)

Country Link
JP (1) JP4942433B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2941489A1 (en) * 2013-01-07 2015-11-11 Sachtleben Chemie GmbH Titanium-containing aggregate, method for the production thereof and use thereof
CN109456027A (en) * 2018-12-07 2019-03-12 西南科技大学 One kind mentioning titanium slag lime stabilization crushed stone material and preparation method thereof
CN110482966A (en) * 2019-09-26 2019-11-22 北京矿冶科技集团有限公司 Compound cemented filling material and its preparation method and application

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939756A (en) * 1982-08-24 1984-03-05 堺化学工業株式会社 Manufacture of hardenable composition from waste sulfuric acid
JPH05117001A (en) * 1991-10-24 1993-05-14 Ishihara Sangyo Kaisha Ltd Hardened material of cement
JPH08311446A (en) * 1995-05-16 1996-11-26 Mitsubishi Materials Corp Solidifier for soil conditioning
JPH11310441A (en) * 1998-04-28 1999-11-09 Kyoei Steel Ltd Modification of steelmaking reduced slag
JP2002146709A (en) * 2000-11-14 2002-05-22 Taihei Kogyo Co Ltd Water permeable base material utilizing reclaimed aggregate
JP2003012363A (en) * 2001-06-26 2003-01-15 Nippon Steel Corp Water sealing and high strength roadbed material and ground covering material using granulated blast furnace slag
JP2005042497A (en) * 2003-07-25 2005-02-17 Nisshin Steel Co Ltd Roadbed material and its manufacturing method
JP2005139829A (en) * 2003-11-10 2005-06-02 Sumitomo Metal Ind Ltd Permeable subbase course, its manufacturing method and permeable pavement
JP2006000721A (en) * 2004-06-16 2006-01-05 Jfe Steel Kk Method of manufacturing material for civil engineering and construction

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939756A (en) * 1982-08-24 1984-03-05 堺化学工業株式会社 Manufacture of hardenable composition from waste sulfuric acid
JPH05117001A (en) * 1991-10-24 1993-05-14 Ishihara Sangyo Kaisha Ltd Hardened material of cement
JPH08311446A (en) * 1995-05-16 1996-11-26 Mitsubishi Materials Corp Solidifier for soil conditioning
JPH11310441A (en) * 1998-04-28 1999-11-09 Kyoei Steel Ltd Modification of steelmaking reduced slag
JP2002146709A (en) * 2000-11-14 2002-05-22 Taihei Kogyo Co Ltd Water permeable base material utilizing reclaimed aggregate
JP2003012363A (en) * 2001-06-26 2003-01-15 Nippon Steel Corp Water sealing and high strength roadbed material and ground covering material using granulated blast furnace slag
JP2005042497A (en) * 2003-07-25 2005-02-17 Nisshin Steel Co Ltd Roadbed material and its manufacturing method
JP2005139829A (en) * 2003-11-10 2005-06-02 Sumitomo Metal Ind Ltd Permeable subbase course, its manufacturing method and permeable pavement
JP2006000721A (en) * 2004-06-16 2006-01-05 Jfe Steel Kk Method of manufacturing material for civil engineering and construction

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2941489A1 (en) * 2013-01-07 2015-11-11 Sachtleben Chemie GmbH Titanium-containing aggregate, method for the production thereof and use thereof
US20150344363A1 (en) * 2013-01-07 2015-12-03 Sachtleben Chemie Gmbh Titanium-Containing Aggregate, Method for its Manufacture, and Use Thereof
JP2016510255A (en) * 2013-01-07 2016-04-07 サハトレーベン・ヒェミー・ゲーエムベーハー Titanium-containing aggregate, production method thereof and use thereof
JP2018090486A (en) * 2013-01-07 2018-06-14 サハトレーベン・ヒェミー・ゲーエムベーハー Titanium-containing aggregate, method for its manufacture, and use thereof
CN109456027A (en) * 2018-12-07 2019-03-12 西南科技大学 One kind mentioning titanium slag lime stabilization crushed stone material and preparation method thereof
CN110482966A (en) * 2019-09-26 2019-11-22 北京矿冶科技集团有限公司 Compound cemented filling material and its preparation method and application
CN110482966B (en) * 2019-09-26 2021-10-22 北京矿冶科技集团有限公司 Composite cemented filling material and preparation method and application thereof

Also Published As

Publication number Publication date
JP4942433B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
Zhang Production of bricks from waste materials–A review
Raheem et al. A comparative study of cement and lime stabilized lateritic interlocking blocks
KR100852393B1 (en) Method for solidifying soils and industrial wastes, and materials solidified by the method
JP2011038104A (en) Chemical agent for improving engineering properties of soil
KR101438060B1 (en) Concrete mixture for base course of the road using the reclaimed coal ash and recycled aggregate and manufacturing method thereof
CN106746814B (en) A kind of slag aggregate processing method
JP6184149B2 (en) Fired product
KR100852391B1 (en) Composition for solidifying soils and industrial wastes
Abdalqadir et al. Using steel slag for stabilizing clayey soil in Sulaimani City-Iraq
JP4942433B2 (en) Roadbed material using neutralization ridge and method for producing the same
KR101717689B1 (en) Waterproof-structure for waste landfill and construction method thereof
EP2113494A1 (en) Cement additive, cement composition, cement composition comprising waste material, and processes for making and using the same
Wang et al. A new civil engineering material: normal temperature modified phosphogypsum embedded filler
Moayed et al. Effect of wetting-drying cycles on CBR values of silty subgrade soil of Karaj railway
JP5186610B1 (en) Fired product
KR100619939B1 (en) Composition for solidifying soil and industrial wastes
KR101185428B1 (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
Kolo et al. Sawdust ash stabilization of weak lateritic soil
Wang et al. Incineration Bottom Ash as Aggregate for Controlled Low Strength Materials: Implications and Coping Strategies
Othman et al. Utilization oil based industrial sludge as potential construction components
KR100877589B1 (en) Composition for solidifying soils and industrial wastes
Ranjitham et al. Effect of silica fumes on properties of concrete
JP2013220948A (en) Banking method using coal ash and method for manufacturing tamping material
Alam et al. An Experimental Study On Partial Replacement Of Cement By Ggbs And Dredged Sand In Sand Cement Hollow Block
Mitikie et al. Effect of enzyme stabilization on hardening of clay-rock brick

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R150 Certificate of patent or registration of utility model

Ref document number: 4942433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees