JP2008069242A - Method for storing thermosetting resin - Google Patents

Method for storing thermosetting resin Download PDF

Info

Publication number
JP2008069242A
JP2008069242A JP2006248463A JP2006248463A JP2008069242A JP 2008069242 A JP2008069242 A JP 2008069242A JP 2006248463 A JP2006248463 A JP 2006248463A JP 2006248463 A JP2006248463 A JP 2006248463A JP 2008069242 A JP2008069242 A JP 2008069242A
Authority
JP
Japan
Prior art keywords
temperature
storage
curing rate
constant
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006248463A
Other languages
Japanese (ja)
Other versions
JP4805768B2 (en
Inventor
Naoto Nakatani
直人 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP2006248463A priority Critical patent/JP4805768B2/en
Publication of JP2008069242A publication Critical patent/JP2008069242A/en
Application granted granted Critical
Publication of JP4805768B2 publication Critical patent/JP4805768B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable the storage of a thermosetting resin in a more optimal state by setting the storage temperature of the thermosetting resin for meeting with a state for using, etc. <P>SOLUTION: This curing rate P of the thermosetting resin is obtained from the following formulae (1), (2), (3) by using K (K>0) curing rate constant and t storage period. P=1-expä-(K×t)<SP>1/N</SP>}-----(1). K=α<SB>0</SB>expä-Q<SB>K</SB>/(kT)}-----(2). N=β<SB>0</SB>expä-Q<SB>N</SB>/(kT)}-----(3). Wherein, Q<SB>K</SB>is a constant showing an activation energy for curing the thermosetting resin; Q<SB>N</SB>is a constant corresponding to the activation energy in the formula (3); T is absolute temperature of added heat; k is the Boltzmann constant: α<SB>0</SB>is a frequency factor showing the probability of collision of the thermosetting resin molecules with each other, effective for the curing of the thermosetting resin; and β<SB>0</SB>is a constant corresponding to the frequency factor in the formula (3). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、接着剤や塗料などに用いられる熱硬化性樹脂の保管方法に関するものである。   The present invention relates to a method for storing a thermosetting resin used for adhesives, paints, and the like.

半導体などの電子部品実装やプリント配線板製造などでは、エポキシ樹脂を代表とする熱硬化性樹脂が多く用いられている。例えば、フリップチップ実装では、配線基板とこれに実装される半導体チップとの間に、アンダーフィルと呼ばれる熱硬化性樹脂が用いられている。熱硬化性樹脂は、加熱により硬化するプラスチックであり、鎖のように細長い高分子から枝状に出ている側鎖が,別の高分子の側鎖と結合する架橋反応が加熱によって進行し、高分子同士が3次元的に結合して硬化する樹脂である。エポキシ樹脂などの熱硬化性樹脂は、3次元の架橋構造を持つことから,熱可塑性樹脂に比べると耐熱性や耐薬品性などの物性に優れている(非特許文献1,2参照)。   In mounting electronic parts such as semiconductors and manufacturing printed wiring boards, thermosetting resins represented by epoxy resins are often used. For example, in flip chip mounting, a thermosetting resin called underfill is used between a wiring board and a semiconductor chip mounted thereon. A thermosetting resin is a plastic that is cured by heating, and a cross-linking reaction in which a side chain that branches out from an elongated polymer like a chain binds to a side chain of another polymer proceeds by heating, This is a resin in which the polymers are three-dimensionally bonded and cured. Thermosetting resins such as epoxy resins have a three-dimensional cross-linked structure, and therefore have superior physical properties such as heat resistance and chemical resistance compared to thermoplastic resins (see Non-Patent Documents 1 and 2).

森 寛爾,「粘弾性測定による塗膜硬化解析」,豊田中央研究所R&Dレビュー,Vol.29,No.2,pp56−62,1994Hiroshi Mori, “Coating film analysis by measuring viscoelasticity”, Toyota Central R & D Review, Vol. 29, no. 2, pp 56-62, 1994 エポキシ樹脂技術協会編、「総説エポキシ樹脂」、応用編II、pp.6−9、2003Epoxy Resin Technology Association, “Review Epoxy Resin”, Applications II, pp. 6-9, 2003

ところで、熱硬化性樹脂は、熱により硬化する樹脂であるため、一般には10℃以下と低温の状態で保管している。しかしながら、低温の状態を維持するためにはコストがかかるため、例えば、長期に保管する場合はより低温で保管し、短期に保管する場合はある程度高温で保管するなど、使用の形態に合わせて保管温度を最適化することができれば、保管のためのコストを抑制することが可能である。   By the way, since the thermosetting resin is a resin that is cured by heat, it is generally stored at a low temperature of 10 ° C. or lower. However, it is costly to maintain a low temperature state. For example, when storing for a long time, store it at a lower temperature, and when storing it for a short time, store it at a certain high temperature. If the temperature can be optimized, the cost for storage can be reduced.

本発明は、以上のような問題点を解消するためになされたものであり、使用の状態に合わせて熱硬化性樹脂の保管温度を設定するなど、より最適な状態に熱硬化性樹脂が保管できるようにすることを目的とする。   The present invention was made to solve the above problems, and the thermosetting resin is stored in a more optimal state, such as setting the storage temperature of the thermosetting resin according to the state of use. The purpose is to be able to.

本発明に係る熱硬化性樹脂の保管方法は、所望とする熱硬化性樹脂を所定の保管温度で所定の期間保管したときの保管期間t後の硬化率Pを、P=1−exp{−(K・t)1/N}よりなる第1の式と、第1常数QK,第2常数α0,保管温度の絶対温度T,及びボルツマン常数kを用いて第1の式のKを規定するK=α0exp{−QK/(kT)}よりなる第2の式と、第3常数QN,第4常数β0,保管温度の絶対温度T,及びボルツマン常数kを用いて第1の式のNを規定するN=β0exp{−QN/(kT)}よりなる第3の式とにより予測することで、保管温度及び保管期間を含む保管条件を設定するようにしたものである。 The storage method of the thermosetting resin according to the present invention is such that the curing rate P after the storage period t when the desired thermosetting resin is stored at a predetermined storage temperature for a predetermined period is expressed as P = 1−exp {−. (K · t) 1 / N }, and the first constant Q K , the second constant α 0 , the absolute temperature T of the storage temperature, and the Boltzmann constant k Using the second formula consisting of K = α 0 exp {−Q K / (kT)} to be defined, the third constant Q N , the fourth constant β 0 , the absolute temperature T of the storage temperature, and the Boltzmann constant k The storage condition including the storage temperature and the storage period is set by predicting with the third expression of N = β 0 exp {−Q N / (kT)} that defines N of the first expression. It is a thing.

また、本発明に係る他の熱硬化性樹脂の保管方法は、所望とする熱硬化性樹脂を所定の保管温度で所定の期間保管したときの硬化率を予測することで、保管温度及び保管期間を含む保管条件を設定する熱硬化性樹脂の保管方法において、第1温度とした保管開始より第1保管期間t後の第1硬化率Pを、P=1−exp{−(K・t)1/N}よりなる第1の式と、第1常数QK,第2常数α0,保管温度の絶対温度T,及びボルツマン常数kを用いて第1の式のKを規定するK=α0exp{−QK/(kT)}よりなる第2の式と、第3常数QN,第4常数β0,保管温度の絶対温度T,及びボルツマン常数kを用いて第1の式のNを規定するN=β0exp{−QN/(kT)}よりなる第3の式とにより予測する第1ステップと、第2温度とした保管温度により第1硬化率Pとなる保管期間t’を、第1の式,第2の式,及び第3の式より求め、第2温度とした保管による保管期間t’から所定の単位期間Δtの間の硬化率の変化分ΔPを、第2の式,第3の式、及び、ΔP=1/N・K1/N・t1/N-1・exp[−(Kt)1/N]・Δtよりなる第4の式より求める第2ステップと、第1硬化率Pに硬化率の変化分ΔPを加えた第2硬化率P+ΔPを求める第3ステップとを少なくとも備え、第2硬化率により、第1温度で第1保管期間保管してから第2温度として単位保管期間保管した後の硬化率を予測するようにしたものである。 In addition, another thermosetting resin storage method according to the present invention predicts the curing rate when a desired thermosetting resin is stored for a predetermined period at a predetermined storage temperature. In the thermosetting resin storage method for setting the storage conditions including the first curing rate P after the first storage period t from the start of storage at the first temperature, P = 1−exp {− (K · t) 1 / N }, the first constant Q K , the second constant α 0 , the absolute temperature T of the storage temperature, and the Boltzmann constant k are used to define K of the first expression K = α 0 exp {−Q K / (kT)}, the third constant Q N , the fourth constant β 0 , the absolute temperature T of the storage temperature, and the Boltzmann constant k A first step for predicting with a third equation consisting of N = β 0 exp {−Q N / (kT)} defining N, and a second temperature The storage period t ′ at which the first curing rate P is obtained by the storage temperature is determined from the first, second, and third expressions, and is determined from the storage period t ′ by storage at the second temperature. The change ΔP in the curing rate during the unit period Δt is expressed by the second equation, the third equation, and ΔP = 1 / N · K 1 / N · t 1 / N−1 · exp [− (Kt) 1 / N ] · Δt, and a third step for obtaining a second curing rate P + ΔP obtained by adding a change ΔP in the curing rate to the first curing rate P. (2) The curing rate after storage at the first temperature for the first storage period and then at the second temperature for the unit storage period is predicted.

上記熱硬化性樹脂の保管方法において、第2温度の条件において、期間t’+Δtの時点からのΔtの間の硬化率の変化分ΔP’を第4の式より求める第4ステップと、第2硬化率P+ΔPに硬化率の変化分ΔP’を加えた第3硬化率P+ΔP+ΔP’を求める第5ステップとを新たに備え、第3硬化率により、第1温度で第1期間保管して、第2温度として単位期間Δt保管し、加えて第2温度として単位期間Δt保管した後の硬化率を予測するようにしてもよい。   In the thermosetting resin storage method, a fourth step for obtaining a change ΔP ′ in the curing rate during Δt from the time point t ′ + Δt under the condition of the second temperature from the fourth equation; And a fifth step of obtaining a third curing rate P + ΔP + ΔP ′ obtained by adding a change ΔP ′ of the curing rate to the curing rate P + ΔP, and storing the first period at the first temperature by the third curing rate, You may make it estimate the hardening rate after storing unit period (DELTA) t as temperature, and also storing unit period (DELTA) t as 2nd temperature.

また、上記熱硬化性樹脂の保管方法において、第3温度とした加熱により第2硬化率P+ΔPとなる期間t”を第1の式,第2の式,及び第3の式より求め、第3温度とした加熱による期間t”から所定の単位期間Δtの間の硬化率の変化分ΔP’を、第2の式,第3の式、及び第4の式より求める第4ステップと、第2硬化率P+ΔPに硬化率の変化分ΔP’を加えた第3硬化率P+ΔP+ΔP”を求める第5ステップとを新たに備え、第3硬化率により、第1温度で第1期間保管し、第2温度として単位期間Δt保管し、加えて第3温度として単位期間Δt保管した後の硬化率を予測するようにしてもよい。   Further, in the method for storing the thermosetting resin, a period t ″ during which the second curing rate P + ΔP is reached by heating at the third temperature is obtained from the first expression, the second expression, and the third expression, A fourth step for obtaining a change ΔP ′ in the curing rate between the period t ″ due to heating and the predetermined unit period Δt from the second expression, the third expression, and the fourth expression; And a fifth step of obtaining a third curing rate P + ΔP + ΔP ″ obtained by adding a change ΔP ′ in the curing rate to the curing rate P + ΔP, and storing the first temperature at the first temperature for the first period according to the third curing rate. As a unit period Δt, and in addition, the curing rate after storing the unit period Δt as the third temperature may be predicted.

以上説明したように、本発明によれば、P=1−exp{−(K・t)1/N}よりなる第1の式のNを、第3常数QN,第4常数β0,絶対温度T,及びボルツマン常数kを用いてN=β0exp{−QN/(kT)}より規定するようにしたので、適切な保管温度と保管期間の組み合わせによる熱硬化性樹脂の保管条件が設定可能となり、より最適な状態に熱硬化性樹脂が保管できるようになるという優れた効果が得られる。 As described above, according to the present invention, N in the first equation consisting of P = 1−exp {− (K · t) 1 / N } is expressed as the third constant Q N , the fourth constant β 0 , Since the absolute temperature T and the Boltzmann constant k are used to define from N = β 0 exp {−Q N / (kT)}, the storage conditions of the thermosetting resin by a combination of an appropriate storage temperature and storage period Can be set, and an excellent effect is obtained that the thermosetting resin can be stored in a more optimal state.

以下、本発明の実施の形態について図を参照して説明する。
[実施の形態1]
はじめに、本発明の実施の形態1について説明する。本実施の形態1では、熱硬化性樹脂を所定の保管温度で保管したときの所定の保管期間における硬化率Pの変化を、硬化速度常数K(K>0)と保管期間tを用いて以下の式(1),式(2),及び式(3)により求め、求めた硬化率Pの変化をもとに、上記保管温度で保管した場合の保管期限を設定するようにしたものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Embodiment 1]
First, Embodiment 1 of the present invention will be described. In the first embodiment, the change in the curing rate P during a predetermined storage period when the thermosetting resin is stored at a predetermined storage temperature is described below using the curing rate constant K (K> 0) and the storage period t. The storage deadline when stored at the above storage temperature is set on the basis of the change in the curing rate P obtained by the expressions (1), (2), and (3). .

P=1−exp{−(K・t)1/N}・・・(1)
K=α0exp{−QK/(kT)}・・・(2)
N=β0exp{−QN/(kT)}・・・(3)
P = 1−exp {− (K · t) 1 / N } (1)
K = α 0 exp {−Q K / (kT)} (2)
N = β 0 exp {−Q N / (kT)} (3)

ここで、常数N(N>0)はワイブル(Weibull)モデルにおける形状因子m(又はKJMAモデルにおけるアブラミ常数m)の逆数であり、近似的には反応次数に相当する値(概ね0.5≦N≦1.2の場合)を示す。また、式(1)における硬化速度常数K及び常数Nは,アレニウス(Arrhenius)型の温度依存性を持つと仮定して、式(2)及び式(3)で示すものとした。ここで、QKは、熱硬化性樹脂が硬化するための活性化エネルギーを示す常数であり(第1常数)、QNは式(3)における活性化エネルギーに相当する常数(第3常数)、Tは加えた熱の絶対温度、kはボルツマン常数である。また、α0は、熱硬化性樹脂の硬化のために有効な熱硬化性樹脂の分子同士の衝突の確率を示す頻度因子(第2常数)であり、β0は、式(3)における頻度因子に相当する常数(第4常数)である。なお、硬化速度常数K及び頻度因子α0は[時間-1]の次元を持ち、常数N及び常数β0は無次元である。また、一般にQK>0であるが、常数QNは主にゼロに近い正又は負の値を示す。 Here, the constant N (N> 0) is the reciprocal of the form factor m in the Weibull model (or the Abrami constant m in the KJMA model), and is approximately a value corresponding to the reaction order (approximately 0.5 ≦ N ≦ 1.2). Further, assuming that the curing rate constant K and the constant N in the formula (1) have Arrhenius type temperature dependence, the formula (2) and the formula (3) are used. Here, Q K is a constant indicating activation energy for curing the thermosetting resin (first constant), and Q N is a constant corresponding to the activation energy in the formula (3) (third constant). , T is the absolute temperature of the applied heat, and k is the Boltzmann constant. Α 0 is a frequency factor (second constant) indicating the probability of collision between thermosetting resin molecules effective for curing the thermosetting resin, and β 0 is the frequency in the equation (3). It is a constant (fourth constant) corresponding to a factor. The curing rate constant K and the frequency factor α 0 have a dimension of [time −1 ], and the constant N and the constant β 0 are dimensionless. In general, Q K > 0, but the constant Q N mainly indicates a positive or negative value close to zero.

例えば、150℃で30分間加熱することで99%硬化し、この硬化温度(150℃)における常数Nが0.80,活性化エネルギーQKが0.80eV,常数QNが0.30eVである熱硬化性樹脂について、加熱の時間と硬化率との関係を式(1)により求めると、図1に示すような硬化率曲線(硬化率Pの変化)が得られる。このように表すことで、化学的反応率と機械的硬化率の違いは、常数Nの違いで総括的に表現できる。本実施の形態における保管の場合、加熱温度を保管温度とし、加熱の時間を保管の期間とすればよい。またn乗モデルとの比較より常数Nが小さいほど分子内の架橋点(反応基)数が多いなどの反応次数に関する情報や、KJMAモデルとの比較より常数Nが小さいほど硬化物は3次元的成長を行うなど、硬化過程の固相成長に関する幾何学的情報が得られる。なお、化学的反応率,n乗モデル,及びKJMAモデルについては、以降に詳述する。 For example, 99% is cured by heating at 150 ° C. for 30 minutes, the constant N at this curing temperature (150 ° C.) is 0.80, the activation energy Q K is 0.80 eV, and the constant Q N is 0.30 eV. When the relationship between the heating time and the curing rate is obtained from the formula (1) for the thermosetting resin, a curing rate curve (change in the curing rate P) as shown in FIG. 1 is obtained. By expressing in this way, the difference between the chemical reaction rate and the mechanical curing rate can be collectively expressed by the difference of the constant N. In the case of storage in the present embodiment, the heating temperature may be the storage temperature, and the heating time may be the storage period. In addition, compared to the n-th power model, the smaller the constant N, the more information about the reaction order, such as the number of crosslinking points (reactive groups) in the molecule, and the smaller the constant N, the more the cured product is three-dimensional. Geometric information about solid phase growth in the curing process, such as growth, can be obtained. The chemical reaction rate, the nth power model, and the KJMA model will be described in detail later.

ここで、各常数の決定について説明する。上記式(1)の両辺の対数を2回とって整理すると、以下の式(4)で示されるようになる。   Here, the determination of each constant will be described. When the logarithm of both sides of the above equation (1) is taken twice and arranged, the following equation (4) is obtained.

Figure 2008069242
Figure 2008069242

式(4)は、縦軸にln[−ln(1−P)]、横軸にlntをとってグラフ化すると、傾き1/Nの直線になることを示している。従って、実験を行った種々の反応温度毎に各々の反応温度における経過時間t毎の硬化率Pの実験値Pを用い、式(4)から得られる値を上述した定義の縦軸と横軸を用いたグラフにプロットし、最小2乗法で近似直線を求め、求めた近似直線の傾きから、各反応温度における常数Nの値(実験値)を求めることができる。   Formula (4) indicates that a straight line having a slope of 1 / N is obtained by plotting ln [-ln (1-P)] on the vertical axis and lnt on the horizontal axis. Therefore, using the experimental value P of the curing rate P for each elapsed time t at each reaction temperature for each of the various reaction temperatures in which the experiment was performed, the values obtained from the equation (4) are the vertical axis and horizontal axis defined above. Is plotted in a graph using, an approximate straight line is obtained by the least square method, and the value of the constant N (experimental value) at each reaction temperature can be obtained from the slope of the obtained approximate straight line.

例えば、対象の熱硬化性樹脂を所定の温度で加熱して完全硬化状態とし、この状態における剪断強度を剪断強度試験器で測定し、測定された剪断強度S0を硬化率99%とする。次に、この熱硬化性樹脂に、例えば、反応温度100℃を時間t1加えたときの剪断強度S1を剪断強度S0で除することで、反応温度100℃を時間t1加えたときの実験値P1を求めることができる。同様にして、反応温度100℃を時間t2加えたときの実験値P2、反応温度100℃を時間t3加えたときの実験値P3・・・を求め、得られた実験値P1,P2,P3,・・・を用いて式(4)の左辺を時間tの対数に対してプロットして近似直線を求め、この傾きから反応温度100℃における指数Nの実験値を求めることができる。これらを、反応温度110℃、反応温度120℃、反応温度130℃・・・と、各反応温度毎に行う。 For example, the target thermosetting resin is heated at a predetermined temperature to be in a completely cured state, the shear strength in this state is measured with a shear strength tester, and the measured shear strength S 0 is set to a cure rate of 99%. Next, for example, an experiment when the reaction temperature of 100 ° C. is added for the time t1 by dividing the shear strength S 1 when the reaction temperature of 100 ° C. is added for the time t1 by the shear strength S 0 , for example. The value P 1 can be determined. Similarly, the experimental value P 2 when the reaction temperature of 100 ° C. is added for the time t2, the experimental value P 3 when the reaction temperature of 100 ° C. is added for the time t3, and the experimental values P 1 , P 2 , P 3 ,..., The left side of equation (4) is plotted against the logarithm of time t to obtain an approximate straight line, and the experimental value of index N at a reaction temperature of 100 ° C. is obtained from this slope. it can. These are performed for each reaction temperature, such as a reaction temperature of 110 ° C., a reaction temperature of 120 ° C., a reaction temperature of 130 ° C., and so on.

なお、上述では、剪断強度により硬化率の実測値を求めるようにしたが、引張り強度試験器により得られる引張り強度、粘弾性測定装置により得られる粘弾性、示差熱走査型熱量計により得られる熱量、フーリエ変換赤外分光光度計により測定される反応基のピークの状態(減小)により、硬化率の実測値を求めるようにしても良い。   In the above description, the measured value of the curing rate is obtained by the shear strength. However, the tensile strength obtained by the tensile strength tester, the viscoelasticity obtained by the viscoelasticity measuring device, the calorie obtained by the differential thermal scanning calorimeter. The measured value of the curing rate may be obtained from the peak state (reduction) of the reactive group measured by a Fourier transform infrared spectrophotometer.

次に、式(3)の両辺の対数をとり整理すると以下の式(5)で示されるようになる。   Next, taking the logarithm of both sides of Equation (3), the following Equation (5) is obtained.

Figure 2008069242
Figure 2008069242

式(5)は、縦軸に各温度毎に求めた常数Nの対数lnN,横軸に各反応温度の絶対温度の逆数1/Tをとってグラフ化すると、切片がlnβ0で傾き−QN/kの直線になることを示している。従って、各反応温度における常数Nの実験値を用い、式(5)から得られる値を上述した定義の縦軸と横軸を用いたグラフにプロットし、最小2乗法で近似直線を求め、求めた近似直線の傾きと切片より、常数QN及び常数β0を求めることができる。さらに、ここで求めた常数QN及び常数β0を用い、上記式(5)より各反応温度毎の常数Nの近似値を求めておく。 Formula (5) is a graph with the logarithm lnN of the constant N determined for each temperature on the vertical axis and the inverse 1 / T of the absolute temperature of each reaction temperature on the horizontal axis. The intercept is lnβ 0 and the slope −Q It shows that it becomes a straight line of N / k. Therefore, using the experimental value of the constant N at each reaction temperature, the value obtained from the equation (5) is plotted on the graph using the vertical axis and horizontal axis of the above definition, and an approximate straight line is obtained by the least square method. The constant Q N and the constant β 0 can be obtained from the slope and intercept of the approximate straight line. Further, using the constant Q N and the constant β 0 obtained here, an approximate value of the constant N for each reaction temperature is obtained from the above equation (5).

次に、再度式(1)を用い、この両辺の対数をとって整理すると、以下の式(6)で示されるようになる。   Next, using the formula (1) again and taking the logarithm of both sides, the following formula (6) is obtained.

Figure 2008069242
Figure 2008069242

式(6)は、縦軸に−ln(1−P)、横軸にt1/Nをとってグラフ化すると、傾きK1/Nの直線になることを示している。従って、実験を行った各反応温度毎に、各々の反応温度における経過時間t毎に硬化率Pの実験値を用い、式(6)から得られる値を上述した定義の縦軸と横軸を用いたグラフにプロットし、最小2乗法で近似直線を求め、求めた近似直線の傾きより硬化速度常数Kを求めることができる。なお、これらのことにより求めた硬化速度常数Kは、実験値Pと常数Nの近似値より求めた第1次的な近似値となる。なお、上記式(5)から常数Nを求めた段階で、同様に切片からも硬化速度常数Kを求めることができるが、この段階の常数Nは、近似値を求める前の値であるため、硬化速度常数Kの値に影響してバラツキの多い数値となる。このため、先ず、他の反応温度のデータを含めて温度依存性を考慮した常数Nの近似値を求め、この値を用いて硬化速度常数Kを算出する方が、より確からしい値を得ることができる。 Equation (6) indicates that a straight line having a slope K 1 / N is obtained by plotting the graph with −ln (1-P) on the vertical axis and t 1 / N on the horizontal axis. Therefore, for each reaction temperature at which the experiment was performed, the experimental value of the curing rate P was used for each elapsed time t at each reaction temperature, and the values obtained from the equation (6) were expressed on the vertical axis and the horizontal axis defined above. It plots on the used graph, calculates | requires an approximate line with the least squares method, and can obtain | require the hardening rate constant K from the inclination of the calculated approximate line. The curing rate constant K determined by these is a primary approximate value determined from the approximate value of the experimental value P and the constant N. In addition, in the stage which calculated | required the constant N from the said Formula (5), the hardening rate constant K can be similarly calculated | required also from an intercept, However, Since the constant N of this stage is a value before calculating | requiring an approximate value, It becomes a numerical value with many variations by affecting the value of the curing rate constant K. For this reason, first, an approximate value of the constant N in consideration of the temperature dependency including the data of other reaction temperatures is obtained, and a more probable value is obtained by calculating the curing rate constant K using this value. Can do.

次に、式(2)の両辺の対数をとり整理すると以下の式(7)のようになる。   Next, taking the logarithm of both sides of equation (2), the following equation (7) is obtained.

Figure 2008069242
Figure 2008069242

式(7)は、縦軸に各温度毎に求めた硬化速度常数Kの対数lnK、横軸に絶対温度の逆数1/Tをとってグラフ化すると、切片がlnα0で傾き−QK/kの直線になることを示している。従って、上記式(6)より求めた各反応温度における硬化速度常数Kを用いて上述した定義の縦軸と横軸を用いたグラフにプロットし、最小2乗法で近似直線を求め、求めた近似直線の傾きと切片より、活性化エネルギーQKと頻度因子α0とを求めることができる。なお、ここで求めた活性化エネルギーQKと頻度因子α0を用いて式(7)より求めた硬化速度常数Kが、各温度における最終的な近似値となる。 Formula (7) is a graph with the logarithm lnK of the curing rate constant K determined for each temperature on the vertical axis and the reciprocal 1 / T of the absolute temperature on the horizontal axis, and the intercept is lnα 0 and the slope −Q K / It shows that it becomes a straight line of k. Therefore, using the cure rate constant K at each reaction temperature obtained from the above equation (6), the graph is plotted on the graph using the vertical axis and horizontal axis defined above, an approximate straight line is obtained by the least square method, and the obtained approximation is obtained. The activation energy Q K and the frequency factor α 0 can be obtained from the slope and intercept of the straight line. The cure rate constant K obtained from the equation (7) using the activation energy Q K and the frequency factor α 0 obtained here is the final approximate value at each temperature.

上述した式(4)〜式(7)を用いた手順により各常数(QK,QN,α0,β0)の統計的な近似値を求め、これらにより任意の保管温度(反応温度)における硬化速度常数Kと常数N及び硬化率P(硬化率Pの変化)を求める(予測する)ことができる。また、求めた硬化率Pの変化により、任意の保管温度における保管期限を設定すればよい。例えば、所望とする保管温度において、予測された硬化率Pが5%を超えない範囲を保管期限とすればよい。また、得られた硬化率Pの変化の中で、所望とする保管期間に硬化率Pが5%を越えない温度を保管温度としてもよい。このように、この実施の形態1によれば、使用の状態に合わせて熱硬化性樹脂の保管温度や保管期間などを含む保管条件を設定できるので、より最適な状態に熱硬化性樹脂が保管できるようになる。 A statistical approximation of each constant (Q K , Q N , α 0 , β 0 ) is obtained by the procedure using the above-described formulas (4) to (7), and these are used for arbitrary storage temperature (reaction temperature). The curing rate constant K, constant N, and curing rate P (change in curing rate P) can be determined (predicted). Moreover, what is necessary is just to set the storage time limit in arbitrary storage temperature by the change of the calculated | required hardening rate P. FIG. For example, the storage time limit may be a range where the predicted curing rate P does not exceed 5% at a desired storage temperature. Further, among the obtained changes in the curing rate P, the storage temperature may be a temperature at which the curing rate P does not exceed 5% during a desired storage period. Thus, according to the first embodiment, since the storage conditions including the storage temperature and storage period of the thermosetting resin can be set according to the state of use, the thermosetting resin can be stored in a more optimal state. become able to.

[実施の形態2]
次に、本発明の実施の形態2について説明する。この実施の形態2では、
保管温度が変化する場合の所定の保管期間における熱硬化性樹脂の硬化率Pの変化を、上述した式(1),式(2),式(3),及び以下に示す式(9)により求め、求めた硬化率Pの変化をもとに、保管期限を設定するようにしたものである。

Figure 2008069242
式(9)は、式(1)を時間で微分して得られた式(8)をもとにしたものであり、式(9)により、式(1)で定義される硬化率PのΔt時間内の変化分を求めることができる。 [Embodiment 2]
Next, a second embodiment of the present invention will be described. In this second embodiment,
The change in the curing rate P of the thermosetting resin during a predetermined storage period when the storage temperature changes is expressed by the above-described formula (1), formula (2), formula (3), and formula (9) shown below. The storage deadline is set based on the obtained change in the curing rate P.
Figure 2008069242
Formula (9) is based on Formula (8) obtained by differentiating Formula (1) with respect to time. From Formula (9), the curing rate P defined by Formula (1) is calculated. The amount of change within the time Δt can be obtained.

以下、本実施の形態2に係る熱硬化性樹脂の保管方法について図2を用いて説明する。以下では、初期に保管温度を第1保管温度T1として第1保管期間t1の間保管し、次いで、第2保管温度T2としてこの第2保管期間t2の期間保管した後の硬化率を予測する場合について説明する。先ず、図2の(S1)に示すように、保管開始初期段階の第1保管温度T1における初期段階の第1保管期間t1後の時点の硬化率P0を、式(1),式(2),及び式(3)により求める。 Hereinafter, the storage method of the thermosetting resin according to the second embodiment will be described with reference to FIG. In the following, the storage temperature is initially stored as the first storage temperature T1 for the first storage period t1, and then the curing rate after storage for the second storage period t2 is predicted as the second storage temperature T2. Will be described. First, as shown in FIG. 2 (S1), the curing rate P 0 at the time after the first storage period t1 in the initial stage at the first storage temperature T1 in the initial stage of storage is expressed by the formulas (1) and (2). ) And equation (3).

次に、図2の(S2)に示すように、初期より第2保管温度T2とした条件で硬化率P0となる仮想保管期間t’を、式(1),(2),及び(3)より求める。
次に、図2の(S3)に示すように、仮想保管期間t’保管してからの単位期間Δtの間の設定された第2保管温度T2で保管された後の硬化率の変化分ΔP1を、式(2),式(3),及び式(9)により求める。なお、仮想保管期間t’を式(9)におけるtとして計算する。
次に、図2の(S4)に示すように、求めた変化分ΔP1を、第1保管温度T1による第1保管期間t1の硬化率P0に加算し、この加算して得られた硬化率P0+1を、第1保管期間t1+単位期間Δt時間後の硬化率とする。
Next, as shown in FIG. 2 (S2), the virtual storage period t ′ at which the curing rate P 0 is obtained under the condition of the second storage temperature T2 from the beginning is expressed by the equations (1), (2), and (3 )
Next, as shown in (S3) of FIG. 2, the change ΔP in the curing rate after being stored at the set second storage temperature T2 during the unit period Δt after the virtual storage period t ′ is stored. 1 is obtained from Equation (2), Equation (3), and Equation (9). The virtual storage period t ′ is calculated as t in the equation (9).
Next, as shown in FIG. 2 (S4), the obtained change ΔP 1 is added to the curing rate P 0 of the first storage period t1 at the first storage temperature T1, and the resulting curing is obtained. Let the rate P 0 + 1 be the curing rate after the first storage period t1 + unit period Δt hours.

この後、仮想保管期間t’+ΔtからのΔtの間の設定された第2保管温度T2で保管される場合の硬化率の変化分ΔP2を式(9)より求め、求めた変化分ΔP2を、既に加算して得られている硬化率P0+1に加算し、この加算して得られた硬化率P0+1+2を、第1保管期間t1+Δt時間+Δt時間後の硬化率とする。これを繰り返すことで、硬化率の変化を求めることができる。 Thereafter, the change ΔP 2 of the curing rate when stored at the second storage temperature T2 set between Δt from the virtual storage period t ′ + Δt is obtained from the equation (9), and the obtained change ΔP 2 is obtained. Is added to the curing rate P 0 + 1 already obtained by addition, and the curing rate P 0 + 1 + 2 obtained by this addition is calculated as the curing rate after the first storage period t1 + Δt time + Δt time. To do. By repeating this, a change in the curing rate can be obtained.

また、単位期間毎に保管の温度を変更し、変更した温度における硬化率の変化分の総和をとることで、温度を変化させた場合の累積的な硬化率の変化を求めることができる。なお、この場合、単位期間Δtを非常に短い期間とすることで、擬似的に連続的に保管温度を変化させる場合の硬化率の変化を求めることができる。   Further, by changing the storage temperature for each unit period and taking the sum of the change in the curing rate at the changed temperature, the cumulative change in the curing rate when the temperature is changed can be obtained. In this case, by setting the unit period Δt to a very short period, it is possible to obtain a change in the curing rate when the storage temperature is changed pseudo and continuously.

例えば、第1保管期間t1+Δtの時点からは第3保管温度とした場合、先ず、初期より第3保管温度とした条件で硬化率P0+1となる仮想保管期間t”を、式(1),(2),及び(3)より求める(追加ステップ1)。
次に、第3保管温度の条件において、仮想保管期間t”経過した時点からの単位期間Δtの間の硬化率の変化分ΔP2’を、(2),(3),及び式(9)により求める(追加ステップ2)。
次に、求めた変化分ΔP2’を、硬化率P0+1に加算し、この加算して得られた硬化率P0+1+2’を、第1保管期間t1+単位期間Δt+単位期間Δtの期間が経過した後の硬化率とする(追加ステップ3)。
For example, when the third storage temperature is set from the time point of the first storage period t1 + Δt, first, the virtual storage period t ″ at which the curing rate P 0 + 1 is obtained under the condition of the third storage temperature from the beginning is expressed by the equation (1). , (2) and (3) (additional step 1).
Next, under the condition of the third storage temperature, the change ΔP 2 ′ in the curing rate during the unit period Δt from the time when the virtual storage period t ″ has elapsed is expressed by (2), (3), and Equation (9). (Additional step 2).
Next, variation [Delta] P 2 obtained the 'a is added to the hardening rate P 0 + 1, the addition and hardening rate obtained by P 0 + 1 + 2', the first storage period t1 + unit period Delta] t + unit period The curing rate after the period of Δt has elapsed (additional step 3).

保管温度が変更される毎に、追加ステップ1,追加ステップ2,及び追加ステップ3を繰り返すことで、単位期間Δt毎に保管温度が変化する場合に適用させることができる。   By repeating the additional step 1, the additional step 2, and the additional step 3 every time the storage temperature is changed, it can be applied when the storage temperature changes for each unit period Δt.

上記式(9)では、熱硬化性樹脂の保管の過程で硬化することにより変化する機械的物性値を、完全硬化状態としたある一定の物性値との比率(硬化率)Pとし、単位期間Δt当たりの比率Pの増加分ΔPを、硬化速度常数Kと常数Nとを用いて表している。また、式(9)における硬化速度常数K及び常数Nを、式(2)及び式(3)で表される温度依存性を持つ硬化モデルで表している。これらの式(9),式(2),及び式(3)より求められた変化分の累積値により、保管温度が変化された場合の熱硬化性樹脂の保管による硬化率の変化を予測することで、保管期限を設定すればよい。例えば、設定された保管温度条件において、予測された硬化率Pが5%を超えない範囲を保管期限とすればよい。また、所望とする保管期間をもとに、保管温度の変化の範囲(許容範囲)を設定しても良い。このように、この実施の形態2によれば、使用の状態に合わせて熱硬化性樹脂の保管温度や保管期間などを含む保管条件を設定できるので、より最適な状態に熱硬化性樹脂が保管できるようになる。   In the above formula (9), the mechanical property value that is changed by curing in the process of storage of the thermosetting resin is defined as a ratio (curing rate) P to a certain property value in a completely cured state, and a unit period. The increment ΔP of the ratio P per Δt is expressed by using a curing rate constant K and a constant N. Further, the curing rate constant K and constant N in the equation (9) are represented by a curing model having temperature dependency represented by the equations (2) and (3). Predicting changes in the curing rate due to storage of the thermosetting resin when the storage temperature is changed, based on the cumulative value of the change obtained from these expressions (9), (2), and (3). Therefore, the storage deadline may be set. For example, the storage time limit may be a range where the predicted curing rate P does not exceed 5% under the set storage temperature condition. Further, a range (allowable range) of change in storage temperature may be set based on a desired storage period. As described above, according to the second embodiment, since the storage conditions including the storage temperature and storage period of the thermosetting resin can be set according to the state of use, the thermosetting resin is stored in a more optimal state. become able to.

なお、上述した本実施の形態に係る熱硬化性樹脂の保管方法における保管による硬化率の予測は、例えば、保管温度が変化する場合への対応では、図2を用いて説明した各ステップの手順をプログラムとしてコンピュータにより処理させることで実施できる。例えば、図3に示すように、演算処理部301と、主記憶部302と、外部記憶部303と、入力部304と、表示部305と、プリンター306とを備えたコンピュータを用いればよい。   In addition, the prediction of the curing rate by storage in the thermosetting resin storage method according to the present embodiment described above is, for example, the procedure of each step described with reference to FIG. 2 in the case where the storage temperature changes. Can be implemented as a program by a computer. For example, as illustrated in FIG. 3, a computer including an arithmetic processing unit 301, a main storage unit 302, an external storage unit 303, an input unit 304, a display unit 305, and a printer 306 may be used.

このコンピュータにおいて、例えば、磁気記録装置である外部記憶部303に、第1保管温度T1とした保管開始より第1保管期間t1後の第1硬化率P0を、式(1),式(2),及び式(3)から予測する第1ステップと、第2保管温度T2とした保管により第1硬化率P0となる仮想保管期間t’を、式(1),式(2),及び式(3)より求める第2ステップと、第2保管温度T2とした保管による仮想保管期間t’から所定の単位期間Δtの間の硬化率の変化分ΔP1を、式(2),式(3)、及び、仮想保管期間をtとした式(9)より求める第3ステップと、第1硬化率P0に硬化率の変化分ΔP1を加えた第2硬化率P0+1を求める第4ステップとを少なくとも備えたプログラムなどが記憶されている。 In this computer, for example, in the external storage unit 303 that is a magnetic recording device, the first curing rate P 0 after the first storage period t1 from the start of storage at the first storage temperature T1 is expressed by the equations (1) and (2). ), And the first step predicted from the equation (3), and the virtual storage period t ′ at which the first curing rate P 0 is obtained by the storage at the second storage temperature T2, the equations (1), (2), and The second step obtained from the equation (3) and the change ΔP 1 in the curing rate during the predetermined unit period Δt from the virtual storage period t ′ by the storage at the second storage temperature T2 are expressed by the equations (2) and ( 3), and obtains a third step of obtaining the equation (9) to the virtual storage period was t, the second cure rate P 0 + 1 plus the variation [Delta] P 1 of cure rate in the first cure rate P 0 A program including at least the fourth step is stored.

このように外部記憶部303に記憶されているプログラムが、演算処理部301により、主記憶部302に展開して実行され、この実行の結果が表示部305にリアルタイムに表示され、また、プリンター306により印刷出力される。また、処理結果は、外部記憶部303に記憶される。また、演算処理に必要な常数などの情報(データ)は、操作者の操作により入力部304より入力され、主記憶部302に一時記憶され、また、外部記憶部303に記憶される。これらの記憶された常数などのデータを用い、主記憶部302に展開されたプログラムを実行することで、演算処理部301は、硬化率P0,P0+1,P0+1+2,P0+1+2+3,・・・・を算出する。また、上記第1ステップのみを行うことで、保管温度を一定とした場合の硬化率Pの変化を求めることができる。 The program stored in the external storage unit 303 in this manner is expanded and executed in the main storage unit 302 by the arithmetic processing unit 301 and the execution result is displayed on the display unit 305 in real time. Is printed out. Further, the processing result is stored in the external storage unit 303. In addition, information (data) such as constants necessary for arithmetic processing is input from the input unit 304 by the operation of the operator, temporarily stored in the main storage unit 302, and stored in the external storage unit 303. The arithmetic processing unit 301 uses the data such as the stored constants and executes the program developed in the main storage unit 302, so that the curing rate P 0 , P 0 + 1 , P 0 + 1 + 2 , P 0 + 1 + 2 + 3 ,... Are calculated. Further, by performing only the first step, it is possible to obtain a change in the curing rate P when the storage temperature is constant.

なお、上述した実施の形態では、熱量分析などで得られる化学的な反応率や剪断強度測定などから得られる機械的な硬化率を指標として硬化率を予測することで熱硬化性樹脂の保管温度及び保管期間を含む保管条件を設定するようにしたが、これに限るものではない。対象となる保管材料が熱硬化性樹脂以外の、例えば、食品や薬品などの時間の経過とともに鮮度や効力が低下し、さらに温度変化によって鮮度や効力の低下の速度が変わるものに対しても、鮮度や効力の劣化状態が、式(1),式(2),式(3)によって表現できる場合には、硬化率を、劣化を指標とする劣化率に置き換えて予測することができる。   In the above-described embodiment, the storage temperature of the thermosetting resin is predicted by predicting the curing rate using the chemical curing rate obtained by calorimetric analysis or the like and the mechanical curing rate obtained from shear strength measurement as an index. The storage conditions including the storage period are set, but the present invention is not limited to this. For storage materials other than thermosetting resins, such as foods and medicines, the freshness and efficacy of the storage material decrease over time, and the rate of decrease in freshness and efficacy changes due to temperature changes. When the deterioration state of freshness and efficacy can be expressed by the equations (1), (2), and (3), the curing rate can be predicted by replacing the deterioration rate with deterioration as an index.

ところで、式(1),式(2),及び式(3)による硬化率の予測は、熱硬化性樹脂の硬化挙動を接着強度などの機械的硬化率を指標として把握するために、硬化率を温度と時間の関数として表現できる反応速度論的硬化モデルを検討の結果、得られたものである。この検討において、発明者は、ワイブル(Weibull)型累積分布関数と同様なKJMAモデルを基本とし、この形状因子と尺度因子の温度依存性を加味した新たなモデルによって熱硬化性樹脂の硬化率を近似的に予測できることを見出した。   By the way, the prediction of the curing rate by the formula (1), the formula (2), and the formula (3) is performed in order to grasp the curing behavior of the thermosetting resin by using the mechanical curing rate such as adhesive strength as an index. As a result of studying a kinetic cure model that can be expressed as a function of temperature and time. In this study, the inventor is based on the KJMA model similar to the Weibull cumulative distribution function, and determines the curing rate of the thermosetting resin by a new model that takes into account the temperature dependence of the shape factor and the scale factor. We found that it can be predicted approximately.

以下、より詳細に説明する。先ず、熱硬化性樹脂の反応機構について説明すると、エポキシ系樹脂などの熱硬化性樹脂は、エポキシ基を持つ分子の分子鎖生長だけが行われる反応率30%以下の第1段階(A Stage)、生長した直鎖状高分子のエーテル側鎖による架橋反応が起こり始める反応率50〜60%の第2段階(B Stage)を経て、3次元架橋反応が盛んに起こり網目状の強固な結合により硬化する第3段階(C Stage)にいたるとされている(非特許文献2参照)。   This will be described in more detail below. First, the reaction mechanism of the thermosetting resin will be described. The thermosetting resin such as an epoxy resin is a first stage (A Stage) in which only the molecular chain growth of molecules having an epoxy group is performed and the reaction rate is 30% or less. Through the second stage (B Stage) with a reaction rate of 50 to 60% where the crosslinking reaction by the ether side chain of the grown linear polymer begins to occur, the three-dimensional crosslinking reaction occurs actively due to the strong network binding. It is said that it will be in the 3rd stage (C Stage) which hardens | cures (refer nonpatent literature 2).

この場合、接着強度や弾性率は、第1段階ではほとんど上昇せず、第2段階以降で徐々に発現し、第3段階で所定の硬化物物性が得られる。従って、図4に示すように、示差熱走査型熱量計(Differential Scanning Caloriemeter、以降「DSC」と記す)などで測定した化学的な反応率と、ダイシェア試験などで得られる機械的な強度を指標とする硬化率とは、異なる上昇曲線を描くことになる。この曲線は、横軸に時間の対数、縦軸に反応率又は硬化率をとるとシグモイド(Sigmoid)曲線と呼ばれるS字曲線状となり、この曲線を数式化(関数の特定)することで、任意の温度と時間における反応率又は硬化率を求めることができるようになる。さらに、曲線を数式化した関数の係数(因子)を抽出することで、樹脂の硬化特性を数種類の数値データに置き換えて極めてシンプルに記述できることになる。   In this case, the adhesive strength and elastic modulus hardly increase at the first stage, gradually develop after the second stage, and predetermined cured physical properties are obtained at the third stage. Therefore, as shown in FIG. 4, the chemical reaction rate measured with a differential scanning calorie meter (hereinafter referred to as “DSC”) and the mechanical strength obtained by a die shear test are used as indicators. A curing curve different from the curing rate is drawn. This curve becomes an S-shaped curve called a sigmoid curve when the horizontal axis represents the logarithm of time and the vertical axis represents the reaction rate or the curing rate, and this curve can be arbitrarily expressed by formulating (specifying the function). It becomes possible to determine the reaction rate or curing rate at the temperature and time. Furthermore, by extracting the coefficient (factor) of the function obtained by formulating the curve, the curing characteristics of the resin can be replaced with several kinds of numerical data and can be described very simply.

以下、化学反応速度論と確率密度関数等の信頼性工学との類似性、幾何学的核成長を考慮した等温結晶化理論など踏まえ、上述した曲線の数式化について述べる。   In the following, formulating the above curve will be described based on the similarity between chemical reaction kinetics and reliability engineering such as probability density function, and isothermal crystallization theory considering geometric nucleus growth.

[1.0] 化学反応速度論からのアプローチ
[1.1] 1次反応モデルと指数分布
複雑な熱硬化性樹脂の反応モデルを論じる前に、先ず、単純な化学反応における反応速度の基本的な考え方について解説する。例えば、図5に示すように、ある瞬間において10個の未反応(丸)、3個の反応済み(四角)の状態から単位時間内に新たに2個が反応(六角)して、8個の未反応、5個の反応済み状態になる現象において、これまでもこの先も「新たに反応をする数(六角)」が「未反応数(丸)によって決まる」というルールに従ってっていると仮定する。
[1.0] Approach from chemical reaction kinetics [1.1] First order reaction model and exponential distribution Before discussing the reaction model of complex thermosetting resin, first of all, basic of reaction rate in simple chemical reaction Explain the basic idea. For example, as shown in FIG. 5, from a state of 10 unreacted (circle) and 3 reacted (square) at a certain moment, 2 newly reacted (hexagonal) within a unit time, and 8 Assuming that the number of new reactions (hexagons) follows the rule that “the number of new reactions (hexagons) is determined by the number of unreacted (circles)” To do.

次に、このルールが「未反応数の一定割合が反応する。(比例常数Kとの掛け算)」となることを仮定すると今回の反応は2個(=10個×K)なのでK=0.2となる。Kは常に一定なので、同様に次の単位時間では(10−2)個×K(=0.2)=1.6個、この次の単位時間では(10−2−1.6)個×0.2=1.28個・・となり単位時間に反応する数は減ってくる。しかし、反応済みの量は、勢いは衰えるものの3+2+1.6+1.28個・・・と増えていく。   Next, assuming that this rule is “a certain percentage of the number of unreacted reacts (multiply by proportional constant K)”, this reaction is two (= 10 × K), so K = 0. 2 Since K is always constant, similarly, in the next unit time, (10−2) × K (= 0.2) = 1.6, and in the next unit time, (10−2−1.6) × 0.2 = 1.28 ... The number of units that react per unit time decreases. However, the amount of reaction has increased to 3 + 2 + 1.6 + 1.28 ... although the momentum has declined.

以上のことをより一般的に表現すると次の通りとなる。
「物質Aから何らかの反応で物質Bが生成される場合、物質Aの初期濃度をa、t時間後までの累積反応量(Bの生成量)をxとすれば、単位時間当たりの反応量dx/dtは、このdtにおける未反応量CAに比例し、この比例常数(反応速度常数)をKとする。」
このモデルは、未反応量の1次関数で表されるので1次反応モデルと呼ばれ、数式で表現すると以下の式(10)に示す通りとなる。なお、反応速度常数Kは[時間-1]の次元を持つ。
The above can be expressed more generally as follows.
“When substance B is produced from substance A by some reaction, if the initial concentration of substance A is a and the cumulative reaction amount (the amount of B produced) after t time is x, the reaction amount dx per unit time / Dt is proportional to the unreacted amount C A at this dt, and this proportional constant (reaction rate constant) is K ”.
Since this model is expressed by a linear function of an unreacted amount, it is called a primary reaction model. The reaction rate constant K has a dimension of [time- 1 ].

dx/dt=K・CA・・・(10) dx / dt = K · C A (10)

さらに、未反応量CAは初期濃度aからt時間後までの累積反応量xを差し引いたものであるから「dx/dt=K・CA=K(a−x)」のようになる。よって、累積反応量xを時間tの関数として表現するためには、変数分離して微分方程式を解けばよい。 Furthermore, since the unreacted amount C A is obtained by subtracting the accumulated reaction amount x from the initial concentration a to the time t, it becomes “dx / dt = K · C A = K (ax)”. Therefore, in order to express the cumulative reaction amount x as a function of time t, it is only necessary to separate the variables and solve the differential equation.

dx/dt=K(a−x) ・・・(11)
dx/(a−x)=Kdt
∫dx/(a−x)=∫Kdt
−ln(a−x)=K・t+const.
dx / dt = K (ax) (11)
dx / (ax) = Kdt
∫dx / (ax) = ∫Kdt
−ln (ax) = K · t + const.

ここで、t=0でx=0であるから、const.=−lnaとなる。また、時間tの関数として表す反応率P(t)は累積反応量xと初期濃度aとの比(=x/a)であるから、t時間後の反応率P(t)は反応速度常数(硬化速度常数)Kを用いて次のように表される。   Here, since t = 0 and x = 0, const. = − Lna. Further, since the reaction rate P (t) expressed as a function of time t is a ratio (= x / a) between the cumulative reaction amount x and the initial concentration a, the reaction rate P (t) after t time is a reaction rate constant. (Curing rate constant) It is expressed as follows using K.

−ln(a−x)=K・t−lna
−ln{(a−x)/a}=K・t
−ln{1−P(t)}=K・t・・・(12)
P(t)=1−exp(−K・t)・・・(13)
−ln (a−x) = K · t−lna
−ln {(ax) / a} = K · t
−ln {1-P (t)} = K · t (12)
P (t) = 1−exp (−K · t) (13)

つまり、単位時間当たりの反応量が未反応量に比例する(1次関数として表される)と仮定すると式(13)が得られる。
この反応率曲線は、t=1000でP(t)=0.99に達する場合を例にすると、式(13),式(12)及び式(12)の両辺の対数をとった以下の式(14)より図6に示すようになる。
That is, assuming that the reaction amount per unit time is proportional to the unreacted amount (expressed as a linear function), the equation (13) is obtained.
This reaction rate curve is represented by the following equation which takes the logarithm of both sides of Equation (13), Equation (12), and Equation (12), taking as an example the case where P (t) = 0.99 is reached at t = 1000. From (14), it becomes as shown in FIG.

ln{−ln(1−P(t))}=lnt+lnK・・・(14) ln {-ln (1-P (t))} = lnt + lnK (14)

一方、AからBへの反応を「Aが故障してBとなる」と信頼性工学上の言葉で言い換えれば、単位時間当たりの反応量は単位時間当たりの故障数となり反応率は累積故障分布関数と等価の意味となる。これら反応速度論と信頼性工学の相関を説明すると、よく知られているように次の通りとなる。   On the other hand, in terms of reliability engineering, the reaction from A to B is “A fails and becomes B”. In other words, the amount of reaction per unit time is the number of failures per unit time, and the reaction rate is the cumulative failure distribution. It is equivalent to a function. The correlation between reaction kinetics and reliability engineering can be explained as follows.

母数aとしてt時間までの累積故障数xとして、単位時間当たりの故障数dx/dtは未故障数(=a−x)と比例常数λとの積と仮定すると以下のように示すことができる。   Assuming that the number of failures per unit time dx / dt is the product of the number of non-failures (= ax) and the proportional constant λ as the cumulative number of failures x up to time t as the parameter a, the following is shown. it can.

dx/dt=λ(a−x) ・・・(15)
dx/(a−x)=λdt
∫dx/(a−x)=∫λdt
−ln(a−x)=λ・t+const.
dx / dt = λ (ax) (15)
dx / (ax) = λdt
∫dx / (ax) = ∫λdt
−ln (ax) = λ · t + const.

ここで、t=0でx=0であるから、const.=−lnaとなり、累積故障分布関数(
cumulative distribution function)F(t)は、累積故障数xと母数aとの比(=x/a)であるから、次のような指数分布関数(exponential distribution function)が得られる。
Here, since t = 0 and x = 0, const. = − Lna, and the cumulative failure distribution function (
Since cumulative distribution function F (t) is the ratio (= x / a) of cumulative failure number x and parameter a, the following exponential distribution function (exponential distribution function) is obtained.

−ln(a−x)=λ・t−lna
−ln{(a−x)/a}=λ・t
−ln{1−F(t)}=λ・t・・・(16)
F(t)=1−exp(−λ・t)・・・(17)
−ln (ax) = λ · t−lna
−ln {(ax) / a} = λ · t
−ln {1-F (t)} = λ · t (16)
F (t) = 1−exp (−λ · t) (17)

なお、式(17)を微分して故障確率密度関数(Probability density function)f(t)として表すと次の通りとなる。   The equation (17) is differentiated and expressed as a failure probability density function (Probability density function) f (t) as follows.

dF(t)/dt=f(t)=λexp(−λ・t)・・・(18) dF (t) / dt = f (t) = λexp (−λ · t) (18)

故障率関数(failure rate function又は、hazard rate function)λ(t)は、t時間後の残存数n(t)のうち、次の単位時間当たりに故障する個数の比率である。   The failure rate function (hazard rate function) λ (t) is the ratio of the number of failures per unit time out of the remaining number n (t) after t hours.

λ(t)={−dn(t)/dt}/n(t)・・・(19) λ (t) = {− dn (t) / dt} / n (t) (19)

式(19)右辺の分母と分子を母数aで割ったもので言い換えると故障率λ(t)とはt時間後に母数aに対する残存量の割合n(t)/a(=信頼度R(t))の中で、次の単位時間に故障する確率−(dn(t)/a)/dt(=故障確率密度関数f(t))の割合を示すので、次の式で与えられる。   In other words, the failure rate λ (t) is the ratio n (t) / a (= reliability R) of the remaining amount with respect to the parameter a after t hours. (T)) shows the probability of failure in the next unit time-(dn (t) / a) / dt (= failure probability density function f (t)), and is given by the following equation: .

λ(t)=f(t)/R(t)={dF(t)/dt}/R(t)={−dR(t)/dt}/R(t)・・・(20) λ (t) = f (t) / R (t) = {dF (t) / dt} / R (t) = {− dR (t) / dt} / R (t) (20)

これを積分してt=0のときにR(t)=1とすると、次の通りとなる。   When this is integrated and R (t) = 1 when t = 0, the result is as follows.

λ(t)dt=−dR(t)/R(t)・・・(21) λ (t) dt = −dR (t) / R (t) (21)

Figure 2008069242
Figure 2008069242

また、故障率関数λ(t)の積分量である累積ハザードH(t)を用いると以下で表される。   Further, when the cumulative hazard H (t) that is an integral amount of the failure rate function λ (t) is used, it is expressed as follows.

Figure 2008069242
Figure 2008069242

従って、累積故障分布関数」F(t)の基本形態は指数型であり、細部はλ(t)の形により関数の形が変わる。   Therefore, the basic form of the cumulative failure distribution function “F (t) is exponential, and the form of the function varies depending on the form of λ (t).

Figure 2008069242
Figure 2008069242

すなわち、指数分布における式(18)の仮定とはλ(t)=λであることを示しており、式(24)の指数部内を以下の式に示すようにt=0からtまで積分することで式(20)が得られる。   That is, the assumption of equation (18) in the exponential distribution indicates that λ (t) = λ, and the exponent part of equation (24) is integrated from t = 0 to t as shown in the following equation. Thus, the equation (20) is obtained.

Figure 2008069242
Figure 2008069242

また、式(11)と式(19)とは本質的な意味は等しく、式(11)において両辺をaで割り、これを式(20)と比較すると次のような相互関係となり、この比が反応速度常数Kであり、また故障率関数λ(t)となる。   The expressions (11) and (19) have the same essential meaning. In Expression (11), both sides are divided by a and compared with Expression (20). Is the reaction rate constant K, and the failure rate function λ (t).

左辺:(dx/a)/dt 単位時間当たりの反応率変化→確率密度関数f(t)と等価
右辺:(a−x)/a 未反応量(残存量)の割合→信頼度関数R(t)と等価
Left side: (dx / a) / dt Change in reaction rate per unit time → probability density function f (t) and equivalent right side: (a−x) / a Ratio of unreacted amount (residual amount) → Reliability function R ( equivalent to t)

従って、ある関数がその微分型の関数との比で関係付けられいることが指数型となる所以となる。つまり、「単位時間当たりに変化する数量」が、「変化せず残存している数量」との比で表される場合は、この比の累積変化が指数型の増加関数となり、特に上記比が「時間に依らず常に一定の常数」で表される、いわゆる「構成要素一つ一つには何ら依存性が認められないランダムに生じる現象」は、指数分布を示すことになる。   Therefore, the fact that a certain function is related by a ratio with its differential function is the reason why it becomes exponential. In other words, when the “quantity that changes per unit time” is expressed as a ratio to the “quantity that remains unchanged”, the cumulative change of this ratio becomes an exponential increase function, and in particular the above ratio A so-called “random phenomenon in which no dependency is recognized for each component” expressed by “a constant constant regardless of time” indicates an exponential distribution.

以上に示した通り、化学反応における最も基本的な1次反応は、本質的に指数分布と全く同じ仮定に基づくモデルであり、1次反応率曲線は指数分布の累積分布関数で表される。   As described above, the most basic primary reaction in a chemical reaction is a model based on essentially the same assumption as the exponential distribution, and the primary reaction rate curve is expressed by a cumulative distribution function of the exponential distribution.

[1.2] n次反応におけるn乗モデルとワイブル分布
上述した図5を用いて説明した1次反応は、物質A単独の反応であり、この場合、未反応量CAのみを考え、反応速度常数Kとの積が瞬間の反応量となるものとしたが、これは図7のように「グランドに多くの人が目隠しをして自由に動き回っており、ある瞬間毎に出現しまた消滅する『水溜』に靴が入ったらグランドを出なければならない。」というゲームを行っていることに例えると、ある瞬間に「水溜」に靴が入りグランドから出ることが単位時間当たりに反応する量に相当すると考えれば良い。
The primary reactions described with reference to FIG. 5 described model and Weibull distributions described above n-th power of [1.2] n order reaction is a reaction between the substance A alone, in this case, considering only unreacted amount C A, reaction The product of the velocity constant K is the instantaneous reaction amount. As shown in Fig. 7, this means that "Many people are blindfolded in the ground and move freely, appearing and disappearing at every moment. If you are playing a game that says “You have to leave the ground when shoes enter the“ water pool ”,” the amount of reaction per unit time that shoes enter the “water pool” and exit the ground at a certain moment. It can be considered that it corresponds to.

グランド内に残された人は徐々に減っていくが、ある瞬間の時点で、グランドに残っている人が多ければ多いほど「水溜」に入る人は多く、グランドに残っている人が減れば「水溜」に入る人も減る。また、「水溜」ができること自体の数(確率)が多ければ、「水溜」に入る人も多い。このグランドにいる人が、反応系に存在する分子の量つまり濃度であり、「水溜」ができる確率が、反応速度常数を示す。これらのことを信頼性工学上の言葉でいえば、濃度は残存率(=信頼度)であり、反応速度常数は故障率にあたる。   The number of people left in the ground gradually decreases, but at a certain moment, the more people who remain in the ground, the more people enter the “water pool”, and the fewer people remain in the ground. The number of people entering the “water pool” will also decrease. In addition, if the number (probability) of the “water pool” itself is large, many people enter the “water pool”. The person who is in the ground is the amount or concentration of the molecule present in the reaction system, and the probability of “water pool” indicates the reaction rate constant. Speaking of these in terms of reliability engineering, the concentration is the residual rate (= reliability), and the reaction rate constant is the failure rate.

次に、A,Bの2物質が反応して物質Cが生成される場合には、同様の考えを当てはめれば、「グランドにいる人は男女からなり、男と女が同時に『水溜』に入ると2人揃ってグランドから出る。」というゲームのルールになっているものと考えると良い。2人が水溜に入る確率は各々の確率の積であり、2つの物質が反応する場合は、未反応Aの濃度CAと未反応Bの濃度CBの積になる。なお、この例えでは、厳密には反応速度常数Kが2乗となるが、1個の常数として扱えば、各々の未反応成分濃度の積と反応速度常数の積として表される。 Next, when substance A and B react to produce substance C, if the same idea is applied, “the person in the ground consists of men and women, and the man and the woman are in the“ water pool ”at the same time. Think of it as a game rule that when you enter, you both get out of the ground. The probability of two people to enter the water reservoir is the product of each of the probability, when the two substances are reacted are the product of the concentration C B of the concentration C A and unreacted B unreacted A. Strictly speaking, in this illustration, the reaction rate constant K is squared, but if treated as one constant, it is expressed as the product of the respective unreacted component concentrations and the reaction rate constant.

上述のことを数式で表現すれば、未反応Aの初期濃度をa,未反応Bの初期濃度をbとして次のように表される。   Expressing the above in terms of mathematical expressions, the initial concentration of unreacted A is a, and the initial concentration of unreacted B is b.

dx/dt=K・CA・CB=K(a−x)(b−x)
dx/{(a−x)(b−x)}=Kdt
∫dx/{(a−x)(b−x)}=∫Kdt・・・(25)
dx / dt = K · C A · C B = K (ax) (bx)
dx / {(ax) (bx)} = Kdt
∫dx / {(ax) (bx)} = ∫Kdt (25)

これをより一般化し、物質A,B,C,D.・・・という複数物質の反応において、単位時間当たりの反応量(生成量)が、各々の物質のべき乗の積に比例するとき、このべき乗の和を反応次数と呼ぶ。これを数式として表すと「dx/dt=K(CA a・CB b・CC c・CD d・・・) n次反応とは、n=a+b+c+d+・・・」となる。 This is generalized and substances A, B, C, D.I. When the reaction amount (generated amount) per unit time is proportional to the product of the power of each substance in the reaction of a plurality of substances, the sum of these powers is called the reaction order. When this is expressed as an equation, “dx / dt = K (C A a · C B b · C C c · C D d ...) N-order reaction is n = a + b + c + d +.

自然界における反応は、複数物質が複雑に反応するものであるが、反応速度として見ると律速(速度の遅い)となる反応のみを考えれば良く、エポキシ系樹脂の場合でも、よく知られているように、以下に示す、式(26)、式(27)、式(28)(カマールの式,αは反応率)など高々数種類の積で近似できる場合が多い。   Reactions in nature are those in which multiple substances react in a complex manner, but it is only necessary to consider reactions that are rate-limiting (slow) in terms of reaction rate, and are well known even in the case of epoxy resins. In many cases, it can be approximated by several types of products such as the following formulas (26), (27), and (28) (Kamar's formula, α is the reaction rate).

dx/dt=K(1−x)(1/r−x)(b+x)・・・(26)
dx/dt=K(a0−x)2(b0+x)・・・(27)
dα/dt=(K1+K2αm)(1−α)n・・・(28)
dx / dt = K (1−x) (1 / r−x) (b + x) (26)
dx / dt = K (a 0 −x) 2 (b 0 + x) (27)
dα / dt = (K 1 + K 2 α m ) (1−α) n (28)

これらの中で最も単純な近似として単位時間当たりの反応量が物質A濃度のn乗に比例する(n乗モデル)とすると、aを初期濃度として下式のようになる。なお、自明ながらa>0,x>0,t>0,n>0である。   If the reaction amount per unit time is proportional to the nth power of the substance A concentration (nth power model) as the simplest approximation among these, the following equation is obtained with a as the initial concentration. As is obvious, a> 0, x> 0, t> 0, n> 0.

Figure 2008069242
Figure 2008069242

これを[1.1]項の説明と同様に積分すると次のようになる。   This is integrated as described in [1.1] as follows.

Figure 2008069242
Figure 2008069242

この反応率曲線は、t=1000でP(t)=0.99に達する場合を例にすると、式(14)及び図6と同様に、以下の式(31)及び式(32)より図8に示すようになる。なお、図8は、n次反応率曲線の形(n=0.8)である。   This reaction rate curve is obtained from the following formulas (31) and (32) as in the case of formula (14) and FIG. 6, taking the case of reaching P (t) = 0.99 at t = 1000. As shown in FIG. FIG. 8 shows the shape of the nth-order reaction rate curve (n = 0.8).

Figure 2008069242
Figure 2008069242

ここまでは、図7に示したように、複数物質の反応によるn次反応を考えたが、熱硬化性有機分子のように1分子内に複数(i個)の官能基を持つ場合は、1分子内の官能基全てが反応してやっと1分子の反応が終わることになる。
この場合、官能基1個が反応する確率をpとし、i個の官能基で同時に起きる確率はpのi乗となる。よって分子1個の確率pとしてみると濃度が1/i乗になったということに等しい。つまり、反応速度式は下式の通りとなる。
Up to this point, as shown in FIG. 7, the n-th order reaction due to the reaction of a plurality of substances has been considered, but when there are a plurality of (i) functional groups in one molecule like a thermosetting organic molecule, The reaction of one molecule is finished only when all the functional groups in one molecule react.
In this case, the probability that one functional group reacts is p, and the probability of simultaneous occurrence of i functional groups is p to the power of i. Therefore, when the probability p of one molecule is taken, it is equivalent to the concentration becoming the 1 / i power. That is, the reaction rate equation is as follows.

dx/dt=K(a−x)1/i ・・・(33) dx / dt = K (ax) 1 / i (33)

なお、反応次数の定義は濃度の指数部の和であるから、このような場合には反応次数nは式(29)で表した場合に1以下となる。   In addition, since the definition of the reaction order is the sum of the exponent parts of the concentration, in such a case, the reaction order n is 1 or less when expressed by the equation (29).

一方、[1.1]項において1次反応における反応率が指数分布における累積分布関数に一致することを述べたが、指数分布に形状因子(shape parameter)m(m>0)を導入して拡張したワイブル分布(weibull distribution)がn次反応における反応率に対応していることが予想される。   On the other hand, in section [1.1], it was described that the reaction rate in the first order reaction corresponds to the cumulative distribution function in the exponential distribution, but by introducing a shape parameter m (m> 0) into the exponential distribution. It is expected that the expanded weibull distribution corresponds to the reaction rate in the nth order reaction.

Pw(t)=1−exp{−(Kt)m}・・・(34) Pw (t) = 1−exp {− (Kt) m } (34)

t=1000でP(t)=0.99に達するなどの反応終止点が判っている反応について反応率曲線を推定することを想定した場合、式(34)のワイブル型累積分布関数(以下、ワイブルモデル」と呼ぶ)と式(30)のn乗モデルの反応率曲線を比較すると、反応次数nと形状因子mの逆数は、お互いに大小関係が同じであり、特に反応次数nが0.5〜1.2及び反応率Pが40%以上の範囲において、n≒1/mの関係にある。   Assuming that a reaction rate curve is estimated for a reaction whose reaction end point is known, such as reaching P (t) = 0.99 at t = 1000, the Weibull cumulative distribution function (hereinafter, Comparing the reaction rate curves of the n-th power model of Equation (30) with the “Weibull model”), the reaction order n and the reciprocal number of the form factor m have the same magnitude relationship with each other. In a range of 5 to 1.2 and a reaction rate P of 40% or more, there is a relationship of n≈1 / m.

熱硬化性樹脂の反応率を求める場合には、反応量を未反応分子の濃度として測定するのではなく、DSC(示差熱走査型熱量計)では全体の化学反応における発熱量の割合、フーリエ変換赤外分光光度計(Fourier Transform Infarred Spectroscopy,以降「FT−IR」と記す)では、特定官能基に基づく吸収波長強度の割合を求めることになるので、反応に係わる分子数や官能基数を正確に反映した反応速度式となるわけではない。さらに、分子が近接してから架橋反応による3次元網目構造が発展して硬化するモデルを考えると、官能基が自由に動き回って反応すべき相手と出会うというよりも官能基同士が対となった状態を考え、この1対としての存在量(濃度)として反応速度を考えた方が良い。従って、架橋反応による熱硬化性樹脂の化学的な反応率は、官能基の種類によらず、指数分布である1次反応速度式に近い反応次数を示すことが多いと考えられる。   When calculating the reaction rate of a thermosetting resin, the reaction amount is not measured as the concentration of unreacted molecules, but the DSC (Differential Thermal Scanning Calorimeter) uses the ratio of the calorific value in the overall chemical reaction, Fourier transform. Infrared spectrophotometer (Fourier Transform Infarred Spectroscopy, hereinafter referred to as “FT-IR”) calculates the ratio of absorption wavelength intensity based on a specific functional group, so the number of molecules and functional groups involved in the reaction can be accurately determined. The reaction rate formula is not reflected. Furthermore, considering a model in which the three-dimensional network structure developed by the crosslinking reaction develops and cures after the molecules are in close proximity, the functional groups are paired with each other rather than moving around freely and meeting the partner to be reacted. Considering the state, it is better to consider the reaction rate as an abundance (concentration) as a pair. Therefore, it is considered that the chemical reaction rate of the thermosetting resin by the crosslinking reaction often shows a reaction order close to the first-order reaction rate equation that is an exponential distribution, regardless of the type of the functional group.

つまり、これらを考え合わせると、式(34)と式(30)は数式としては全く異なるが、反応次数nが1前後と予想される実際の硬化反応を実験的に調べる範囲においては、ワイブルモデルに基づいて実験データの解析が適用でき、その形状因子の逆数からおおよその反応次数を予測できることになる。   In other words, considering these, Equation (34) and Equation (30) are completely different from each other, but in the range where the actual curing reaction expected to have a reaction order n of around 1 is experimentally examined, the Weibull model Based on the above, the analysis of experimental data can be applied, and the approximate reaction order can be predicted from the reciprocal of the form factor.

また、式(28)で示したカマール(Kamal)モデルを用いた解析結果を、1次反応モデル(m=1.0)とワイブルモデル(m=1.2)の双方で比較すると、特に着目すべき高硬化率の領域においては、ワイブルモデルがよく一致した曲線になることが判る。   Further, when the analysis result using the Kamal model represented by the equation (28) is compared between both the primary reaction model (m = 1.0) and the Weibull model (m = 1.2), it is particularly noted. It can be seen that the Weibull model has a well-matched curve in the region of high cure rate to be achieved.

なお、信頼性工学におけるワイブルモデルは、尺度因子(scale parameter)ηを用いて式(35a)及び式(35b)のように表される。よって、式(34)におけるKは、ηの逆数に相当する。ちなみに、式(35a)においてt=ηとするとPw(η)=1−exp(−(1)m)=0.632となり、形状因子mの値に依らず累積故障率63.2%に達する時間がηに相当する。このため、ηは特性寿命(characteristic life)と呼ばれることもある。 Note that the Weibull model in reliability engineering is expressed as in Expression (35a) and Expression (35b) using a scale parameter η. Therefore, K in Equation (34) corresponds to the reciprocal of η. Incidentally, if t = η in the equation (35a), Pw (η) = 1−exp (− (1) m ) = 0.632, and the cumulative failure rate reaches 63.2% regardless of the value of the shape factor m. Time corresponds to η. For this reason, η is sometimes referred to as a characteristic life.

Figure 2008069242
Figure 2008069242

また、式(24)より累積ハザードH(t)は、以下の式(36)となるので、この微分である故障率λ(t)は式(37)となる。   Further, since the accumulated hazard H (t) is expressed by the following expression (36) from the expression (24), the failure rate λ (t) that is the differential is expressed by the expression (37).

Figure 2008069242
Figure 2008069242

1次反応である指数分布(m=1)の場合には、λ(t)が時間に依らず一定のλであり、時間軸上でランダムな反応を意味していたが、ワイブルモデルに従う反応は時間とともに反応する割合が変化し、ある反応率に同じ時間で到達する場合で比較すると、m>1(反応次数nが1よりも小さい)の場合には、反応が時間とともに増加して反応率が急激に立ち上がる曲線となる。つまり、1分子内に官能基数の多い分子が反応する反応次数が1以下の場合には、ワイブルモデルで表した場合の形状因子mが1以上の値をとることが予想される。   In the case of an exponential distribution (m = 1) which is a first order reaction, λ (t) is a constant λ regardless of time, meaning a random reaction on the time axis, but a reaction according to the Weibull model In the case where m> 1 (reaction order n is smaller than 1), the reaction increases with time, and the reaction rate increases with time. The curve rises rapidly. That is, when the reaction order at which a molecule having a large number of functional groups reacts in one molecule is 1 or less, it is expected that the shape factor m represented by the Weibull model takes a value of 1 or more.

[1.3] 反応速度常数の温度依存性
1次反応を含めたn次反応及びワイブル型累積故障率関数で表したモデルにおける反応速度常数K(すなわち、尺度因子ηの逆数)が、アレニウス型の温度依存性を持つと仮定すれば下式の通り表すことができる。ここでQは、活性化エネルギー、Tは絶対温度、kはボルツマン常数、α0は頻度因子である。
[1.3] Temperature dependence of reaction rate constant The reaction rate constant K (that is, the reciprocal of the scale factor η) in the model represented by the n-th order reaction including the first order reaction and the Weibull cumulative failure rate function is the Arrhenius type. Assuming that it has the temperature dependence, it can be expressed as Here, Q is the activation energy, T is the absolute temperature, k is the Boltzmann constant, and α 0 is the frequency factor.

Figure 2008069242
Figure 2008069242

さらに、式(38)の両辺の対数をとり整理すると以下の式(39)に示す通り、1/Tと1nKは線形関係となることが判る。よって、直線の傾きが−Q/k、切片がlnα0となることより、活性化エネルギーQと頻度因子α0を求めることができる。 Further, when taking the logarithm of both sides of the equation (38) and arranging it, it can be seen that 1 / T and 1 nK have a linear relationship as shown in the following equation (39). Therefore, the activation energy Q and the frequency factor α 0 can be obtained from the fact that the slope of the straight line is −Q / k and the intercept is lnα 0 .

Figure 2008069242
Figure 2008069242

なお、このことに関連し、はんだ材料の疲労寿命試験では、以下の式(40)に示す「Coffin−Mansonの修正式」と呼ばれる寿命予測式に基づく解析が行われる。これは、疲労寿命をある累積不良率に達する応力繰り返しサイクル数Nfとして定義し、これがアレニウス型の温度依存性を持つと仮定して活性化エネルギーや歪み量・温度などの環境条件の依存性から、実際の使用状態におけるNfを予測するものである。 In this regard, in the fatigue life test of the solder material, an analysis based on a life prediction formula called “Coffin-Manson correction formula” shown in the following formula (40) is performed. It defines the number of cycles N f repeated stress reaches the cumulative percent defective in the fatigue life, which is assumed to have a temperature dependence of the Arrhenius type dependence of the environmental conditions, such as the activation energy and the strain amount and temperature Thus, N f in the actual use state is predicted.

Figure 2008069242
Figure 2008069242

累積不良率Pが応力繰り返し数Ncを変数としたワイブルモデルに従う場合には、式(35a)の時間tをNcに置き換えると式(41)となり、Ncで整理すると式(42)となる。   When the cumulative defect rate P follows the Weibull model with the number of stress repetitions Nc as a variable, the time t in the equation (35a) is replaced with Nc to become the equation (41), and when arranged by Nc, the equation (42) is obtained.

Figure 2008069242
Figure 2008069242

よって、累積不良率Pの基準を設定すると、これに対応するNcが求められる。例えば、前述のとおりP=0.632とすれば,Nc=ηとなる。そこで、寿命として定義する不良率Pfと,そのときのNcをNfとすれば、式(38)より以下の式(43)が得られ、式(40)と同様な式となる。 Therefore, when the standard of the cumulative defect rate P is set, Nc corresponding to this is obtained. For example, if P = 0.632 as described above, Nc = η. Therefore, if the defect rate P f defined as the lifetime and Nc at that time are N f , the following expression (43) is obtained from the expression (38), which is the same expression as the expression (40).

Figure 2008069242
Figure 2008069242

すなわち、式(38)と式(40)の「Coffin−Mansonの修正式」は温度依存性を示す部分において全く等価な意味を成すものであることが判る。従って、他の常数部分に温度依存性がなく、温度サイクル試験などの寿命試験結果がワイブルモデルに従ってっていると仮定すれば、式(43)のみを用いて寿命予測が可能である。また、疲労寿命以外の場合でもワイブルモデルで表される現象に温度依存性が認められる場合には、尺度因子ηの逆数(=K)を式(38)に当てはめることで活性化エネルギーを求めることができ、さらに未知の温度帯における現象を予測することができる。   That is, it can be seen that the “Coffin-Manson correction formula” in the formulas (38) and (40) has a completely equivalent meaning in the portion showing the temperature dependence. Therefore, if it is assumed that the other constant part has no temperature dependency and the life test result such as the temperature cycle test follows the Weibull model, the life prediction can be performed using only the equation (43). Further, when temperature dependence is recognized in the phenomenon expressed by the Weibull model even in cases other than the fatigue life, the activation energy is obtained by applying the reciprocal (= K) of the scale factor η to the equation (38). In addition, phenomena in unknown temperature zones can be predicted.

[2.0] 幾何学的等温結晶化理論からのアプローチ
[1.0]項では個々の分子を中心に化学反応を考えたが、実際の熱硬化性樹脂の場合には、液相から固相に変化する結晶化又は相転移の現象に似ている。従って、幾何学的核成長を考慮した等温結晶化理論として知られ、またDSCなどの熱解析でよく用いられるKJMAモデルを適用すると次の通りとなる。
[2.0] Approach from geometric isothermal crystallization theory In section [1.0], chemical reactions were considered centering on individual molecules. However, in the case of actual thermosetting resins, solid reaction from the liquid phase is considered. It resembles the phenomenon of crystallization or phase transition that changes to a phase. Therefore, the KJMA model, which is known as an isothermal crystallization theory considering geometric nucleus growth and often used in thermal analysis such as DSC, is as follows.

このモデルは、先ず、図9(a)に示すように初期の核発生の後に、図9(b)に示すように発生した核(ドメイン)同士が接触及び重なり合わずに素直に成長することを仮定した場合、固相体積(結晶化度又は相変化度)の単位時間当たりの微小変化の割合は、液相体積の中で単位時間当たりに固相に微小変化する割合に等しいとするものである。   In this model, first, after the initial nucleation as shown in FIG. 9 (a), the nuclei (domains) generated as shown in FIG. 9 (b) grow straight without contact and overlap. Assuming that, the rate of minute change per unit time of the solid phase volume (crystallinity or degree of phase change) is equal to the rate of minute change to the solid phase per unit time in the liquid phase volume It is.

ここで全体積Vtotalに対する固相体積Vの割合fと、割合fの変化率df、液相の中で固相に変化する変化率dfexとすれば、よく知られているように、以下のように表される。 As is well known, the ratio f of the solid phase volume V to the total volume V total , the rate of change df of the rate f, and the rate of change df ex that changes to the solid phase in the liquid phase are as follows. It is expressed as

Figure 2008069242
Figure 2008069242

これは[1.0]項に説明した式(20)と比較して信頼性工学用語に書き直すと、fは累積分布関数F(t)、(1−f)は信頼度R(t)、dfは累積分布関数の微分である確率密度関数f(t)、dfexは故障率λ(t)、fexは累積ハザードH(t)に対応する。 This is rewritten in terms of reliability engineering terms as compared with the equation (20) described in the section [1.0]. F is a cumulative distribution function F (t), (1-f) is a reliability R (t), df is a probability density function f (t) which is a derivative of the cumulative distribution function, df ex corresponds to the failure rate λ (t), and f ex corresponds to the cumulative hazard H (t).

これより、式(44)は、以下に示す式(45)のように置き換えることができ、式(21)〜(23)と同様に下記のようになる。   Thus, the equation (44) can be replaced as the following equation (45), and is as follows similarly to the equations (21) to (23).

Figure 2008069242
Figure 2008069242

よって、式(44)を解くと以下に示す式(46)が得られる。   Therefore, when equation (44) is solved, equation (46) shown below is obtained.

f=1−exp(−fex)・・・(46) f = 1−exp (−f ex ) (46)

次に、核が発生した固相が3次元的に半径rの球として等方成長する場合、成長した球状の微粒子の体積vは、半径rの3乗に比例し、半径rが時間tに比例して成長すると仮定すれば、比例常数Dとして次のように表すことができる。   Next, when the solid phase in which the nucleus is generated is isotropically grown as a sphere having a radius r three-dimensionally, the volume v of the grown spherical fine particles is proportional to the cube of the radius r, and the radius r becomes the time t. Assuming that the growth is proportional, the proportional constant D can be expressed as follows.

Figure 2008069242
Figure 2008069242

また、fexは、液相中における累積固相増加量Vの割合であり、これは個々の核成長している粒子数N個分の総和となる。 Further, f ex is the ratio of the cumulative solid phase increase amount V in the liquid phase, and this is the sum total of the number N of individual nuclei growing particles.

Figure 2008069242
Figure 2008069242

よって式(48)を式(46)に代入すると以下の式(49)が得られる。   Therefore, substituting equation (48) into equation (46) yields the following equation (49).

Figure 2008069242
Figure 2008069242

また、式(49)の指数部の常数をまとめてZとおけば最終的に以下の式(50)が得られる。   Moreover, if the constants of the exponent part of Formula (49) are collectively expressed as Z, the following Formula (50) is finally obtained.

Figure 2008069242
Figure 2008069242

つまり、式(47)で体積が時間の3乗に比例して成長すると仮定することで式(50)においても指数部は時間の3乗に比例する。同様に、核成長が1次元的な樹枝状成長であれば、体積は時間の1乗に比例し、2次元的な薄片状成長であれば体積は時間の2乗に比例する。またさらに、液相から固相に変化する際、界面反応律速ならば核成長半径は時間の1乗に比例し、拡散による物質移動律速ならば1/2乗に比例することが予想される。   That is, by assuming that the volume grows in proportion to the cube of time in Equation (47), the exponent part in Equation (50) is also proportional to the cube of time. Similarly, if the nucleus growth is one-dimensional dendritic growth, the volume is proportional to the first power of time, and if it is two-dimensional flaky growth, the volume is proportional to the second power of time. Furthermore, when changing from the liquid phase to the solid phase, it is expected that the nucleus growth radius is proportional to the first power of time if the interface reaction is rate-controlled, and is proportional to 1/2 power if the mass transfer rate is determined by diffusion.

実際の現象においてはこれらが複雑に合わさったものである可能性があるため、KJMAモデルの一般式は、以下の式(51)のように表される。
f=1−exp(−Ztm)・・・(51)
In the actual phenomenon, there is a possibility that these are complicatedly combined. Therefore, the general formula of the KJMA model is expressed as the following formula (51).
f = 1−exp (−Zt m ) (51)

式(51)の指数m(m>0)は、特にアブラミ(Avrami)常数と呼ばれており、上記のような幾何学的成長に関連付けて、以下の表6に示すような値をとるとされている。これによると、アブラミ常数mが小さいほど1次元的で拡散律速の固相成長であり、逆にアブラミ常数mが大きいほど3次元的で界面反応律速の固相成長となるなどの情報が得られる。   The index m (m> 0) in the formula (51) is particularly called the Avrami constant, and is related to the geometric growth as described above and takes the values shown in Table 6 below. Has been. According to this, information such as one-dimensional and diffusion-controlled solid phase growth is obtained as the Abram constant m is smaller, and conversely, as the Abram constant m is larger, information is obtained such as three-dimensional and interface reaction-limited solid-phase growth. .

Figure 2008069242
Figure 2008069242

なお、このように表した常数Zは[時間-1/m]の次元を持つことになる。本来KJMAモデルは等温結晶化で良く用いられるものであり、指数(アブラミ常数)mが変化することを考慮していない。指数mが常に一定と仮定すればデータ解析上で特に支障が生じることはないが、温度によって変化し、これを含めて硬化率を記述しようとすると常数の次元が変化することは好ましくない。 The constant Z expressed in this way has a dimension of [time- 1 / m 2 ]. Originally, the KJMA model is often used in isothermal crystallization, and does not take into account that the index (Abramy constant) m changes. Assuming that the index m is always constant, there is no particular problem in data analysis. However, it varies depending on the temperature, and it is not preferable that the constant dimension changes when describing the curing rate including this.

よって、さらに式(51)を書き直し、K=Z1/mとなる常数Kを用いて以下の式(52)のように表現する場合もある。なお、この式(52)は式(34)及び式(35a),(35b)で示したワイブルモデルに一致する。
f=1−exp{−(Kt)m}・・・(52)
Therefore, the expression (51) may be rewritten and expressed as the following expression (52) using a constant K such that K = Z 1 / m . Note that this equation (52) matches the Weibull model expressed by equations (34) and (35a), (35b).
f = 1−exp {− (Kt) m } (52)

つまり、KJMAモデルから類推すれば、信頼性工学上でワイブルモデルに従う故障とは、式(36)に示す通り累積ハザードが時間のm乗となるが、これは時間の関数で表される素反応が引き金となり、この素反応のべき乗で現象が広がり、最終的な故障にいたるメカニズムに相当することが予想される。また、反応次数との相関を考えると、m>1となる反応とは、官能基数が多く、べき乗的に反応が進むn<1の低次反応に相当することを意味しており、化学反応的なイメージと一致する。   In other words, by analogy with the KJMA model, the failure according to the Weibull model in reliability engineering is that the cumulative hazard is the m-th power of time as shown in Equation (36), which is an elementary reaction expressed as a function of time. It is expected that the phenomenon spreads by the power of this elementary reaction and corresponds to the mechanism leading to the final failure. Considering the correlation with the reaction order, the reaction satisfying m> 1 means that it corresponds to a low-order reaction of n <1 in which the number of functional groups is large and the reaction proceeds exponentially. Matches the typical image.

また、式(38)で示した反応速度常数の温度依存性と同様に、KJMAモデルにおいて常数Kがアレニウス型の温度依存性を持つと仮定すれば、以下の式(53)の通りに表すことができる。ここで、Qkは活性化エネルギーに相当する常数、Tは絶対温度、kはボルツマン常数、α0は頻度因子である。 Similarly to the temperature dependence of the reaction rate constant shown in Expression (38), if the constant K is assumed to have Arrhenius type temperature dependence in the KJMA model, it can be expressed as Expression (53) below. Can do. Here, Q k is a constant corresponding to the activation energy, T is an absolute temperature, k is a Boltzmann constant, and α 0 is a frequency factor.

Figure 2008069242
Figure 2008069242

なお、式(51)で表したZと式(52)で表したKとの間には、K=Z1/mの関係にあるので、式(39)と同様に両辺の対数をとり整理すると、下記の式(54)に示す関係にあるため、式(51)で表した場合の活性化エネルギーQzをアブラミ常数(形状因子)mで割ったものが活性化エネルギーQKに相当する関係にある。 Since there is a relationship of K = Z 1 / m between Z represented by equation (51) and K represented by equation (52), the logarithm of both sides is taken and organized in the same manner as equation (39). Then, since it has the relationship shown in the following formula (54), the value obtained by dividing the activation energy Q z represented by the formula (51) by the Abram constant (form factor) m corresponds to the activation energy Q K. There is a relationship.

Figure 2008069242
Figure 2008069242

[3.0] 熱硬化性樹脂の硬化モデル構築(本発明による新たなモデルの導入)
図4に示した熱硬化性樹脂の硬化反応模式図において、化学反応としては[1.1]項に説明した式(11)に示す1次反応又は[1.2]項の式(26)〜(28)に示した反応種の濃度から求めた反応速度式が最も正しいものと考えられるが、これらの式を適用できるのは、反応系が予測できる場合に限られ、未知の樹脂材料に対しても幅広く応用できる保証がない。まして機械的な強度に基づいた硬化率を表現することができない。
[3.0] Construction of thermosetting resin curing model (introduction of a new model according to the present invention)
In the schematic diagram of the curing reaction of the thermosetting resin shown in FIG. 4, the chemical reaction is the primary reaction shown in the formula (11) described in the section [1.1] or the formula (26) in the section [1.2]. The reaction rate formula obtained from the concentration of the reactive species shown in (28) is considered to be the most correct, but these formulas can be applied only when the reaction system can be predicted and applied to unknown resin materials. There is no guarantee that it can be applied widely. Furthermore, the curing rate based on mechanical strength cannot be expressed.

そこで機械的強度の発現が、架橋反応による重合や液相から固相に変化した相変化の結果で生じるとみなし、[1.2]項で示したn乗モデルとワイブルモデルの相関及び結果的にはワイブルモデルと全く同様な関数として得られる[2.0]項で示したKJMAモデルを用い、前述した式(1),(2),及び(3)に示すように熱硬化性樹脂の硬化率を表すことにした。   Therefore, it is considered that the development of mechanical strength occurs as a result of polymerization due to a crosslinking reaction or a phase change from a liquid phase to a solid phase, and the correlation between the n-power model and the Weibull model shown in [1.2] and the result The KJMA model shown in the section [2.0] obtained as a function exactly the same as the Weibull model is used for the thermosetting resin as shown in the above formulas (1), (2), and (3). It was decided to represent the cure rate.

本発明の実施の形態における式(1),式(2),及び式(3)を用いて求めた硬化率曲線の例を示す説明図である。It is explanatory drawing which shows the example of the hardening rate curve calculated | required using Formula (1), Formula (2), and Formula (3) in embodiment of this invention. 本発明の実施の形態に係る熱硬化性樹脂の保管方法を説明するための説明図である。It is explanatory drawing for demonstrating the storage method of the thermosetting resin which concerns on embodiment of this invention. 本発明の実施の形態に係る熱硬化性樹脂の保管方法における保管による硬化率の予測を実施するコンピュータの構成例を示す構成図である。It is a block diagram which shows the structural example of the computer which implements prediction of the hardening rate by storage in the storage method of the thermosetting resin which concerns on embodiment of this invention. 示差熱走査型熱量計などで測定した化学的な反応率を示す上昇曲線と、ダイシェア試験などで得られる機械的な強度を指標とする硬化率を示す上昇曲線との比較を示す説明図である。It is explanatory drawing which shows a comparison with the ascending curve which shows the chemical reaction rate measured with the differential thermal scanning calorimeter etc., and the ascending curve which shows the hardening rate which uses as a parameter | index the mechanical strength obtained by a die shear test etc. . 単純な化学反応における反応速度の基本的な考え方について解説する説明図である。It is explanatory drawing explaining the basic view of the reaction rate in a simple chemical reaction. 単位時間当たりの反応量が未反応量に比例する(1次関数として表される)と仮定したときの反応率曲線を説明する説明図である。It is explanatory drawing explaining the reaction rate curve when it is assumed that the reaction amount per unit time is proportional to the unreacted amount (expressed as a linear function). 1次反応は、物質A単独の反応であるとし、未反応量CAのみを考え、反応速度常数Kとの積が瞬間の反応量となるものとした場合の反応を説明するための説明図である。Explanatory diagram for explaining the reaction when the primary reaction is a reaction of the substance A alone, considering only the unreacted amount C A and assuming that the product with the reaction rate constant K is an instantaneous reaction amount. It is. 単位時間当たりの反応量が物質A濃度のn乗に比例する(n乗モデル)としたときの反応率曲線の一例を示す説明図である。It is explanatory drawing which shows an example of a reaction rate curve when the reaction amount per unit time is proportional to the nth power of the substance A concentration (nth power model). KJMAモデルにおける反応を説明するための説明図である。It is explanatory drawing for demonstrating the reaction in a KJMA model.

符号の説明Explanation of symbols

301…演算処理部、302…主記憶部、303…外部記憶部、304…入力部、305…表示部、306…プリンター。   DESCRIPTION OF SYMBOLS 301 ... Arithmetic processing part 302 ... Main memory | storage part 303 ... External memory | storage part 304 ... Input part 305 ... Display part 306 ... Printer.

Claims (4)

所望とする熱硬化性樹脂を所定の保管温度で所定の期間保管したときの硬化率を予測することで、保管温度及び保管期間を含む保管条件を設定する熱硬化性樹脂の保管方法において、
保管期間t後の硬化率Pは、
P=1−exp{−(K・t)1/N}よりなる第1の式と、
第1常数QK,第2常数α0,保管温度の絶対温度T,及びボルツマン常数kを用いて前記第1の式のKを規定するK=α0exp{−QK/(kT)}よりなる第2の式と、
第3常数QN,第4常数β0,保管温度の絶対温度T,及びボルツマン常数kを用いて前記第1の式のNを規定するN=β0exp{−QN/(kT)}よりなる第3の式と
により予測する
ことを特徴とする熱硬化性樹脂の保管方法。
In the thermosetting resin storage method of setting storage conditions including storage temperature and storage period by predicting the curing rate when the desired thermosetting resin is stored for a predetermined period at a predetermined storage temperature,
The curing rate P after the storage period t is
A first expression consisting of P = 1−exp {− (K · t) 1 / N };
K = α 0 exp {−Q K / (kT)} that defines K in the first equation using the first constant Q K , the second constant α 0 , the absolute temperature T of the storage temperature, and the Boltzmann constant k. A second equation comprising:
N = β 0 exp {−Q N / (kT)} that defines N in the first equation using the third constant Q N , the fourth constant β 0 , the absolute temperature T of the storage temperature, and the Boltzmann constant k A method for storing a thermosetting resin, characterized in that the prediction is based on the third formula.
所望とする熱硬化性樹脂を所定の保管温度で所定の期間保管したときの硬化率を予測することで、保管温度及び保管期間を含む保管条件を設定する熱硬化性樹脂の保管方法において、
第1温度とした保管開始より第1保管期間t後の第1硬化率Pを、
P=1−exp{−(K・t)1/N}よりなる第1の式と、
第1常数QK,第2常数α0,保管温度の絶対温度T,及びボルツマン常数kを用いて前記第1の式のKを規定するK=α0exp{−QK/(kT)}よりなる第2の式と、
第3常数QN,第4常数β0,保管温度の絶対温度T,及びボルツマン常数kを用いて前記第1の式のNを規定するN=β0exp{−QN/(kT)}よりなる第3の式と
により予測する第1ステップと、
第2温度とした保管温度により前記第1硬化率Pとなる保管期間t’を、前記第1の式,前記第2の式,及び前記第3の式より求め、前記第2温度とした保管による前記保管期間t’から所定の単位期間Δtの間の硬化率の変化分ΔPを、前記第2の式,前記第3の式、及び、ΔP=1/N・K1/N・t1/N-1・exp[−(Kt)1/N]・Δtよりなる第4の式より求める第2ステップと、
前記第1硬化率Pに前記硬化率の変化分ΔPを加えた第2硬化率P+ΔPを求める第3ステップと
を少なくとも備え、
前記第2硬化率により、前記第1温度で前記第1保管期間保管してから前記第2温度として前記単位保管期間保管した後の硬化率を予測する
ことを特徴とする熱硬化性樹脂の保管方法。
In the thermosetting resin storage method of setting storage conditions including storage temperature and storage period by predicting the curing rate when the desired thermosetting resin is stored for a predetermined period at a predetermined storage temperature,
The first curing rate P after the first storage period t from the start of storage at the first temperature,
A first expression consisting of P = 1−exp {− (K · t) 1 / N };
K = α 0 exp {−Q K / (kT)} that defines K in the first equation using the first constant Q K , the second constant α 0 , the absolute temperature T of the storage temperature, and the Boltzmann constant k. A second equation comprising:
N = β 0 exp {−Q N / (kT)} that defines N in the first equation using the third constant Q N , the fourth constant β 0 , the absolute temperature T of the storage temperature, and the Boltzmann constant k A first step of predicting with a third equation comprising:
The storage period t ′ at which the first curing rate P is reached by the storage temperature set to the second temperature is obtained from the first formula, the second formula, and the third formula, and stored at the second temperature. The change ΔP in the curing rate between the storage period t ′ and the predetermined unit period Δt by the second expression, the third expression, and ΔP = 1 / N · K 1 / N · t 1 A second step obtained from the fourth expression consisting of / N−1 · exp [− (Kt) 1 / N ] · Δt;
And a third step of obtaining a second curing rate P + ΔP obtained by adding a change ΔP in the curing rate to the first curing rate P, and
Storage of the thermosetting resin characterized by predicting the curing rate after storing for the first storage period at the first temperature and then storing for the second storage temperature as the second temperature based on the second curing rate. Method.
請求項2記載の熱硬化性樹脂の保管方法において、
第2温度の条件において、期間t’+Δtの時点からのΔtの間の硬化率の変化分ΔP’を前記第4の式より求める第4ステップと、
前記第2硬化率P+ΔPに前記硬化率の変化分ΔP’を加えた第3硬化率P+ΔP+ΔP’を求める第5ステップと
を新たに備え、
前記第3硬化率により、前記第1温度で前記第1期間保管して、前記第2温度として前記単位期間Δt保管し、加えて前記第2温度として前記単位期間Δt保管した後の硬化率を予測する
ことを特徴とする熱硬化性樹脂の保管方法。
In the storage method of the thermosetting resin of Claim 2,
A fourth step of obtaining a change ΔP ′ in the curing rate during Δt from the time point of the period t ′ + Δt under the condition of the second temperature from the fourth equation;
And a fifth step of obtaining a third curing rate P + ΔP + ΔP ′ obtained by adding the change ΔP ′ of the curing rate to the second curing rate P + ΔP,
According to the third curing rate, the curing rate after storing the first period at the first temperature, storing the unit period Δt as the second temperature, and additionally storing the unit period Δt as the second temperature. A method of storing a thermosetting resin characterized by predicting.
請求項2記載の熱硬化性樹脂の保管方法において、
第3温度とした加熱により前記第2硬化率P+ΔPとなる期間t”を前記第1の式,前記第2の式,及び前記第3の式より求め、前記第3温度とした加熱による前記期間t”から所定の単位期間Δtの間の硬化率の変化分ΔP’を、前記第2の式,前記第3の式、及び前記第4の式より求める第4ステップと、
前記第2硬化率P+ΔPに前記硬化率の変化分ΔP’を加えた第3硬化率P+ΔP+ΔP”を求める第5ステップと
を新たに備え、
前記第3硬化率により、前記第1温度で前記第1期間保管し、前記第2温度として前記単位期間Δt保管し、加えて前記第3温度として前記単位期間Δt保管した後の硬化率を予測する
ことを特徴とする熱硬化性樹脂の保管方法。
In the storage method of the thermosetting resin of Claim 2,
The period t ″ when the second curing rate P + ΔP is reached by heating at the third temperature is obtained from the first expression, the second expression, and the third expression, and the period by heating at the third temperature is obtained. a fourth step of obtaining a change ΔP ′ in the curing rate between t ″ and a predetermined unit period Δt from the second equation, the third equation, and the fourth equation;
And a fifth step of obtaining a third curing rate P + ΔP + ΔP ″ obtained by adding the variation ΔP ′ of the curing rate to the second curing rate P + ΔP,
Based on the third curing rate, the curing rate after storing the first period at the first temperature, storing the unit period Δt as the second temperature, and additionally storing the unit period Δt as the third temperature is predicted. A method of storing a thermosetting resin, characterized by:
JP2006248463A 2006-09-13 2006-09-13 Storage method of thermosetting resin Expired - Fee Related JP4805768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248463A JP4805768B2 (en) 2006-09-13 2006-09-13 Storage method of thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248463A JP4805768B2 (en) 2006-09-13 2006-09-13 Storage method of thermosetting resin

Publications (2)

Publication Number Publication Date
JP2008069242A true JP2008069242A (en) 2008-03-27
JP4805768B2 JP4805768B2 (en) 2011-11-02

Family

ID=39291118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248463A Expired - Fee Related JP4805768B2 (en) 2006-09-13 2006-09-13 Storage method of thermosetting resin

Country Status (1)

Country Link
JP (1) JP4805768B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112022002841A2 (en) * 2019-10-30 2022-05-10 Basf Se Computer-implemented method, formulation management apparatus, system for providing management, computer program, computer-readable storage medium, and, use of a computer-implemented method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984921A (en) * 1982-11-04 1984-05-16 Shinko Electric Co Ltd Method for determining curing time of resin in drying oven
JPH03210370A (en) * 1990-01-16 1991-09-13 Toagosei Chem Ind Co Ltd Method for storing powder coating composition
JPH06325627A (en) * 1993-04-20 1994-11-25 Dow Corning Corp Dielectric strength reinforcement method for cable with high diffusion coefficient fluid used
JP2000074809A (en) * 1998-06-15 2000-03-14 Sumitomo Chem Co Ltd Prediction method for survival rate of chemical substance
JP2000219682A (en) * 1999-01-28 2000-08-08 Toagosei Co Ltd Storage of alkyletherified melamine
JP2001033504A (en) * 1999-07-15 2001-02-09 Matsushita Electric Works Ltd Moisture resistance life prediction method of metallized film capacitor
WO2001025353A1 (en) * 1999-10-04 2001-04-12 Daikin Industries, Ltd. Method of storing thermosetting fluororesin powder coating composition
JP2001146576A (en) * 1999-11-19 2001-05-29 Kansai Paint Co Ltd Method for storing powder coating material
JP2002141388A (en) * 2000-10-31 2002-05-17 Toshiba Corp Evaluation method for semiconductor device and evaluation device therefor
JP2004010788A (en) * 2002-06-07 2004-01-15 Mitsui Chemicals Inc Composition of granular glycidyl group-containing acrylic resin and its transportation and storage method
JP2004525242A (en) * 2001-04-30 2004-08-19 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド Polymer processing aid and polymer processing method
JP2006300855A (en) * 2005-04-25 2006-11-02 Kyocera Corp Method of estimating lifetime of structure having organic member
JP2008001878A (en) * 2006-05-26 2008-01-10 Nippon Avionics Co Ltd Method for predicting curing rate of thermosetting resin
JP2008069243A (en) * 2006-09-13 2008-03-27 Nippon Avionics Co Ltd Method for predicting bonded situation

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984921A (en) * 1982-11-04 1984-05-16 Shinko Electric Co Ltd Method for determining curing time of resin in drying oven
JPH03210370A (en) * 1990-01-16 1991-09-13 Toagosei Chem Ind Co Ltd Method for storing powder coating composition
JPH06325627A (en) * 1993-04-20 1994-11-25 Dow Corning Corp Dielectric strength reinforcement method for cable with high diffusion coefficient fluid used
JP2000074809A (en) * 1998-06-15 2000-03-14 Sumitomo Chem Co Ltd Prediction method for survival rate of chemical substance
JP2000219682A (en) * 1999-01-28 2000-08-08 Toagosei Co Ltd Storage of alkyletherified melamine
JP2001033504A (en) * 1999-07-15 2001-02-09 Matsushita Electric Works Ltd Moisture resistance life prediction method of metallized film capacitor
WO2001025353A1 (en) * 1999-10-04 2001-04-12 Daikin Industries, Ltd. Method of storing thermosetting fluororesin powder coating composition
JP2001146576A (en) * 1999-11-19 2001-05-29 Kansai Paint Co Ltd Method for storing powder coating material
JP2002141388A (en) * 2000-10-31 2002-05-17 Toshiba Corp Evaluation method for semiconductor device and evaluation device therefor
JP2004525242A (en) * 2001-04-30 2004-08-19 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド Polymer processing aid and polymer processing method
JP2004010788A (en) * 2002-06-07 2004-01-15 Mitsui Chemicals Inc Composition of granular glycidyl group-containing acrylic resin and its transportation and storage method
JP2006300855A (en) * 2005-04-25 2006-11-02 Kyocera Corp Method of estimating lifetime of structure having organic member
JP2008001878A (en) * 2006-05-26 2008-01-10 Nippon Avionics Co Ltd Method for predicting curing rate of thermosetting resin
JP2008069243A (en) * 2006-09-13 2008-03-27 Nippon Avionics Co Ltd Method for predicting bonded situation

Also Published As

Publication number Publication date
JP4805768B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP5048292B2 (en) Method for predicting cure rate of thermosetting resin
US6301970B1 (en) Cumulative damage model for structural analysis of filed polymeric materials
JP5053598B2 (en) Adhesion state prediction method
Zhao et al. Modeling and characterization of shape memory properties and decays for 4D printed parts using stereolithography
Wang et al. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures
Mirzaei et al. Simulation and measurement of the self-heating phenomenon of carbon/epoxy laminated composites under fatigue loading
JP4805768B2 (en) Storage method of thermosetting resin
Wen et al. Kinetic gelation modeling: structural inhomogeneity during cross-linking polymerization
Sælen et al. Mechanical behaviour and constitutive modelling of an additively manufactured stereolithography polymer
Bernard et al. Numerical implementation of an elastic-viscoplastic constitutive model to simulate the mechanical behaviour of amorphous polymers
Qu et al. A strain energy-based elastic parameter calibration method for lattice/bonded particle modelling of solid materials
Matsubara et al. Viscoelastic-viscoplastic combined constitutive model for glassy amorphous polymers under loading/unloading/no-load states
Patil et al. Molecular dynamics study to predict thermo-mechanical properties of dgebf/detda epoxy as a function of crosslinking density
Pozhil et al. An analytical model to predict the creep behaviour of linear low-density polyethylene (LLDPE) and polypropylene (PP) used in rotational moulding
Yeh et al. A novel integrated warpage prediction model based on characterization of viscoelasticity in time domain and chemical shrinkage for molded underfill
Springer Modeling and simulation of fatigue damage in power semiconductors
Simsiriwong et al. Master creep compliance curve for random viscoelastic material properties
Ikeshima et al. Nonlinear creep deformation of polycarbonate at high stress level: experimental investigation and finite element modeling
JP2006349495A (en) Deterioration analysis method of polymeric material, and deterioration analysis program for polymeric material
Rabhi et al. Influence of elastic-viscoplastic behaviour on the filling efficiency of amorphous thermoplastic polymer during the micro hot embossing process
Hirschberg et al. Nonlinear mechanical behavior of elastomers under tension/tension fatigue deformation as determined by Fourier transform
US20190311786A1 (en) Simulation method, simulation program, and simulation device
Ong et al. Molded Electronic Package Warpage Predictive Modelling Methodologies
Ghaderi et al. Constitutive behavior and failure prediction of crosslinked polymers exposed to concurrent fatigue and thermal aging: a reduced-order knowledge-driven machine-learned model
Tamura et al. Elasto‐Plasticity Behavior of Type 5000 and 6000 Aluminum Alloy Sheets and Its Constitutive Modeling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4805768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees