JP2008068591A - Manufacturing method for carbon fiber reinforced resin molded article, and carbon fiber reinforced resin molded article - Google Patents

Manufacturing method for carbon fiber reinforced resin molded article, and carbon fiber reinforced resin molded article Download PDF

Info

Publication number
JP2008068591A
JP2008068591A JP2006251350A JP2006251350A JP2008068591A JP 2008068591 A JP2008068591 A JP 2008068591A JP 2006251350 A JP2006251350 A JP 2006251350A JP 2006251350 A JP2006251350 A JP 2006251350A JP 2008068591 A JP2008068591 A JP 2008068591A
Authority
JP
Japan
Prior art keywords
carbon fiber
resin composition
curing agent
thermosetting resin
containing thermosetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006251350A
Other languages
Japanese (ja)
Inventor
Yoshitake Nishi
義武 西
Kazunori Tanaka
和徳 田中
Yasuto Harada
康人 原田
Tsuruyuki Kobayashi
弦幸 小林
Mitsuru Hirano
充 平野
Kazuma Kutaragi
一馬 久多良木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP2006251350A priority Critical patent/JP2008068591A/en
Publication of JP2008068591A publication Critical patent/JP2008068591A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber reinforced resin molded article which can be applied even to a molded article having a large thickness, and has a high mechanical strength, and to provide its manufacturing method. <P>SOLUTION: This manufacturing method for the carbon fiber reinforced resin molded article has three processes. In the first process (b process), a tension in the longitudinal direction of the carbon fiber is applied to the carbon fiber of which the surface is coated with a hardening agent-containing thermosetting resin composition (A), and the carbon fiber is immersed in a hardening agent-containing thermosetting resin composition (B). In the second process (c process) after the (b) process, under a state in which the carbon fiber of which the surface has been coated with the hardening agent-containing thermosetting resin composition (A), and to which the tension has been applied is immersed in the hardening agent-containing thermosetting resin composition (B), the hardening agent-containing thermosetting resin composition (B) is hardened. In the third process (d process) after the (c) process, the tension which has been applied to the carbon fiber is eliminated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は炭素繊維強化樹脂成形体の製造方法および炭素繊維強化樹脂成形体に関する。   The present invention relates to a method for producing a carbon fiber reinforced resin molded body and a carbon fiber reinforced resin molded body.

炭素繊維を混入した樹脂は機械的強度が高いことから炭素繊維強化樹脂と呼ばれ、航空機やスポーツ用具等の材料として広く使われている。
従来、炭素繊維をマット状にして、または引きそろえて、あるいは織物状に配置してから樹脂を含浸させ、硬化し、成形していた。しかし、その様な製造方法では未だ充分な機械強度を有する炭素繊維強化樹脂成形体を得ることはできていない。そこで原料となる樹脂を改質し、あるいは炭素繊維表面に化学反応を施して成形体の強化を図る試みがなされてきたが、それでもなお充分な機械強度を有する炭素繊維強化樹脂成形体を得ることはできなかった。
Resins mixed with carbon fibers are called carbon fiber reinforced resins because of their high mechanical strength, and are widely used as materials for aircraft and sports equipment.
Conventionally, carbon fibers have been matted, arranged, or arranged in a woven form, impregnated with resin, cured, and molded. However, such a production method has not yet obtained a carbon fiber reinforced resin molded article having sufficient mechanical strength. Therefore, attempts have been made to reinforce the molded body by modifying the resin used as a raw material or by subjecting the carbon fiber surface to a chemical reaction, but it is still possible to obtain a carbon fiber reinforced resin molded body having sufficient mechanical strength. I couldn't.

長繊維束に接着剤を全体的にもしくは部分的に塗布し、接着剤が硬化する前に長繊維束にその伸延方向に沿って一定の張力を加え、該接着剤が硬化した後に一定の張力を開放した長繊維強化プラスチック補強体が検討されている(例えば、特許文献1参照。)。ここで得られた補強体は、コンクリート板等を固定するためのロープないし線状物であって、長繊維束を接着固定して製造した繊維状物である。従って、樹脂成形体としての利用を図るものでないばかりか、樹脂成形体の強度を向上させるための繊維と樹脂との界面接着技術については何ら言及されていない。   Apply the adhesive to the long fiber bundle in whole or in part, apply a constant tension along the direction of elongation of the long fiber bundle before the adhesive cures, and then maintain a constant tension after the adhesive has cured A long-fiber reinforced plastic reinforcement body having an open end has been studied (for example, see Patent Document 1). The reinforcing body obtained here is a rope or a linear object for fixing a concrete plate or the like, and is a fibrous object manufactured by bonding and fixing a long fiber bundle. Therefore, not only is it not intended to be used as a resin molded body, but nothing is mentioned about the interfacial adhesion technique between the fiber and the resin for improving the strength of the resin molded body.

一方、炭素繊維強化樹脂成形体に電子線を照射して強度の向上を図ることが検討されている(例えば、特許文献2参照。)。その方法は表面から破壊が開始される場合の疲労強度や衝撃強度の改良には適しているが、電子線による効果は表面から200μm程度の厚さ迄であることから、より厚い成形体の強度改善にはさらに別の方法の開発が望まれていた。
特開2003-268983号公報 特開2002-371461号公報
On the other hand, it has been studied to improve the strength by irradiating a carbon fiber reinforced resin molded body with an electron beam (for example, see Patent Document 2). Although this method is suitable for improving fatigue strength and impact strength when fracture starts from the surface, the effect of the electron beam is from the surface to a thickness of about 200 μm, so the strength of the thicker molded body It was desired to develop another method for improvement.
JP 2003-268983 A JP 2002-371461 A

本発明は、厚みのある成形体へも適用可能な機械強度の高い炭素繊維強化樹脂成形体の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of a carbon fiber reinforced resin molding with high mechanical strength applicable also to a molded object with thickness.

本発明者らは上記課題を検討し、硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆された炭素繊維を用い、該炭素繊維に張力を負荷した状態で硬化剤含有熱硬化性樹脂組成物(B)を硬化させることにより、厚みのある成形体へも適用可能な機械強度の高い炭素繊維強化樹脂成形体を製造できることを見出し発明を完成させた。
すなわち本発明は、
(b工程)硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆された炭素繊維に、該炭素繊維の長手方向に張力を負荷すると共に、硬化剤含有熱硬化性樹脂組成物(B)中に浸漬する工程と、
(c工程)b工程の後に、硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆され、かつ張力を負荷された炭素繊維が浸漬された状態で、硬化剤含有熱硬化性樹脂組成物(B)を硬化させる工程と、
(d工程)c工程の後に、前記炭素繊維に負荷されていた張力を除去する工程と
を有することを特徴とする炭素繊維強化樹脂成形体の製造方法である。
本発明の炭素繊維強化樹脂成形体の製造方法はb工程の前工程としてさらにa工程を含むことが好ましい。すなわち、
(a工程)硬化剤含有熱硬化性樹脂組成物(A)で炭素繊維の表面を被覆する工程と、
(b工程)a工程の後に、硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆された炭素繊維に、該炭素繊維の長手方向に張力を負荷すると共に、硬化剤含有熱硬化性樹脂組成物(B)中に浸漬する工程と、
(c工程)b工程の後に、硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆され、かつ張力を負荷された炭素繊維が浸漬された状態で、硬化剤含有熱硬化性樹脂組成物(B)を硬化させる工程と、
(d工程)c工程の後に、前記炭素繊維に負荷されていた張力を除去する工程と
を有することを特徴とする炭素繊維強化樹脂成形体の製造方法が好ましい。
The present inventors have studied the above-mentioned problems, and used a carbon fiber whose surface is coated with a curing agent-containing thermosetting resin composition (A), and the curing agent-containing thermosetting property in a state where tension is applied to the carbon fiber. By curing the resin composition (B), it was found that a carbon fiber reinforced resin molded body having high mechanical strength applicable to a thick molded body could be produced, and the invention was completed.
That is, the present invention
(Step b) While applying a tension to the carbon fiber whose surface is coated with the curing agent-containing thermosetting resin composition (A) in the longitudinal direction of the carbon fiber, the curing agent-containing thermosetting resin composition (B ) Soaking in,
(Step c) After step b, the curing agent-containing thermosetting resin composition with the surface coated with the curing agent-containing thermosetting resin composition (A) and the carbon fiber loaded with tension is immersed. Curing the product (B);
(D step) A method for producing a carbon fiber reinforced resin molded product, comprising a step of removing tension applied to the carbon fiber after the step c.
The method for producing a carbon fiber reinforced resin molded article of the present invention preferably further includes an a step as a pre-step of the b step. That is,
(A step) a step of coating the surface of the carbon fiber with the curing agent-containing thermosetting resin composition (A);
(Step b) After the step a, the carbon fiber whose surface is coated with the curing agent-containing thermosetting resin composition (A) is loaded with a tension in the longitudinal direction of the carbon fiber, and the curing agent-containing thermosetting property. A step of immersing in the resin composition (B);
(Step c) After step b, the curing agent-containing thermosetting resin composition with the surface coated with the curing agent-containing thermosetting resin composition (A) and the carbon fiber loaded with tension is immersed. Curing the product (B);
(D process) The manufacturing method of the carbon fiber reinforced resin molding characterized by having the process of removing the tension | tensile_strength loaded on the said carbon fiber after c process is preferable.

本発明には上記炭素繊維強化樹脂成形体の製造方法により製造した炭素繊維強化樹脂成形体を含む。   The present invention includes a carbon fiber reinforced resin molded product produced by the method for producing a carbon fiber reinforced resin molded product.

本発明の炭素繊維強化樹脂成形体の製造方法は厚みのある成形体へも適用が可能であり、得られる炭素繊維強化樹脂成形体は破壊時の最大応力や破壊歪みが増加する。   The method for producing a carbon fiber reinforced resin molded body of the present invention can be applied to a molded body having a large thickness, and the obtained carbon fiber reinforced resin molded body increases the maximum stress and fracture strain at the time of fracture.

次に本発明について具体的に説明する。
本発明の炭素繊維強化樹脂成形体の製造方法は下記b〜d工程を有する;
b工程:硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆された炭素繊維に、該炭素繊維の長手方向に張力を負荷すると共に、硬化剤含有熱硬化性樹脂組成物(B)中に浸漬する工程、
c工程:b工程の後に、硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆され、かつ張力を負荷された炭素繊維が浸漬された状態で、硬化剤含有熱硬化性樹脂組成物(B)を硬化させる工程、
d工程:c工程の後に、前記炭素繊維に負荷されていた張力を除去する工程。
Next, the present invention will be specifically described.
The method for producing a carbon fiber reinforced resin molded article of the present invention includes the following steps b to d;
Step b: The carbon fiber whose surface is coated with the curing agent-containing thermosetting resin composition (A) is loaded with a tension in the longitudinal direction of the carbon fiber, and the curing agent-containing thermosetting resin composition (B). Dipping in,
Step c: After step b, the curing agent-containing thermosetting resin composition with the surface coated with the curing agent-containing thermosetting resin composition (A) and the carbon fiber loaded with tension is immersed. A step of curing (B),
Step d: Step of removing the tension applied to the carbon fiber after step c.

本発明の炭素繊維強化樹脂成形体の製造方法はb工程の前にa工程をさらに有することが好ましい;
a工程:硬化剤含有熱硬化性樹脂組成物(A)で炭素繊維の表面を被覆する工程。
The method for producing a carbon fiber reinforced resin molded article of the present invention preferably further includes a step before the b step;
a process: The process of coat | covering the surface of carbon fiber with a hardening | curing agent containing thermosetting resin composition (A).

なお、a工程が存在する場合にはb工程は必ずa工程の後に行われる。
本発明に用いる炭素繊維としては原料としてポリアクリロニトリル、石油ピッチ、フェノール樹脂、レーヨン等を紡糸して製造した繊維に熱処理を施して得た繊維が使用でき、特にアクリル系繊維から製造した炭素繊維が好ましい。
When the a process exists, the b process is always performed after the a process.
As carbon fibers used in the present invention, fibers obtained by subjecting fibers produced by spinning polyacrylonitrile, petroleum pitch, phenolic resin, rayon, etc. as raw materials to heat treatment can be used, and in particular, carbon fibers produced from acrylic fibers are used. preferable.

該炭素繊維としては、繊維径が5〜15μmの範囲であることが好ましい。
本発明に用いる炭素繊維としてはフィラメントを用いてもよいが、取扱容易性の観点からフィラメントを3,000〜20,000本程度に束ねたストランド状で用いることが好ましい。
The carbon fiber preferably has a fiber diameter in the range of 5 to 15 μm.
A filament may be used as the carbon fiber used in the present invention, but it is preferably used in the form of a strand in which filaments are bundled to about 3,000 to 20,000 from the viewpoint of easy handling.

また本発明において炭素繊維はその補強効果の観点から、各炭素繊維が成形体中に均一に配置されていることが好ましいが、各炭素繊維一本一本を成形体中に均一に配置することは作業効率や取扱容易性に劣る。よって本発明の成形体としては、ストランド状の炭素繊維を用い、該ストランド状の炭素繊維を成形体中に均一に配置することが取扱容易性および補強効果に優れ、特に好ましい態様である。   Further, in the present invention, from the viewpoint of the reinforcing effect of the carbon fibers, it is preferable that each carbon fiber is uniformly arranged in the molded body, but each carbon fiber is arranged uniformly in the molded body. Is inferior in work efficiency and ease of handling. Therefore, as the molded body of the present invention, using strand-like carbon fibers and arranging the strand-like carbon fibers uniformly in the molded body is excellent in ease of handling and reinforcing effect, and is a particularly preferable embodiment.

本発明において得られる炭素繊維強化樹脂成形体中に占める炭素繊維の含量は、通常は0.2〜70vol%、好ましくは0.5〜60vol%、より好ましくは0.7〜50vol%である。炭素繊維含有量が上記範囲内にある炭素繊維強化樹脂成形体は、高い樹脂補強効果を示す。   The carbon fiber content in the carbon fiber reinforced resin molded article obtained in the present invention is usually 0.2 to 70 vol%, preferably 0.5 to 60 vol%, more preferably 0.7 to 50 vol%. A carbon fiber reinforced resin molded product having a carbon fiber content within the above range exhibits a high resin reinforcing effect.

以下a〜d工程についてより詳細に説明する。
[a工程]
a工程とは、硬化剤含有熱硬化性樹脂組成物(A)で炭素繊維の表面を被覆する工程である。ここで硬化剤含有熱硬化性樹脂組成物(A)とは特に限定はないが、例えば熱硬化性樹脂としてエポキシ樹脂、硬化剤としてアミン類、具体的には変性脂肪族ポリアミンを用いた組成物、熱硬化性樹脂として不飽和ポリエステル樹脂、硬化剤としてメチルエチルケトンパーオキサイドのような過酸化物を用いた組成物、熱硬化性樹脂としてフェノール樹脂、硬化剤としてアミン類、具体的にはヘキサメチレンテトラミンを用いた組成物が挙げられる。
Hereinafter, the steps a to d will be described in more detail.
[Step a]
The step a is a step of coating the surface of the carbon fiber with the curing agent-containing thermosetting resin composition (A). Here, the curing agent-containing thermosetting resin composition (A) is not particularly limited, but, for example, a composition using an epoxy resin as a thermosetting resin, an amine as a curing agent, specifically a modified aliphatic polyamine. , Unsaturated polyester resin as thermosetting resin, composition using peroxide such as methyl ethyl ketone peroxide as curing agent, phenol resin as thermosetting resin, amines as curing agent, specifically hexamethylenetetramine The composition using this is mentioned.

炭素繊維の表面を被覆する方法としては特に限定はないが、例えば実施例で用いた図1に示す炭素繊維表面被覆装置を用いることが簡便である。図1に示した装置を用いてストランド状の炭素繊維の表面を被覆する際には、容器(26)中に硬化剤含有熱硬化性樹脂組成物(28)を入れ、第1のロール(20)と第3のロール(24)との間、および第2のロール(22)と第3のロール(24)との間で炭素繊維(30)を挟みこみ、第1〜3のロールによって炭素繊維(30)を移動させることにより、繊維間に存在する空気泡を除去し、かつ繊維表面への樹脂組成物の親和性を高め、その結果、炭素繊維表面を硬化剤含有樹脂組成物で均一に被覆することができる。ここで繊維表面に空気泡が残存していると、本発明で得られる炭素繊維強化樹脂成形体の強度が低下する傾向がある。   Although there is no limitation in particular as a method of coat | covering the surface of carbon fiber, For example, it is easy to use the carbon fiber surface coating apparatus shown in FIG. 1 used in the Example. When the surface of the strand-like carbon fiber is coated using the apparatus shown in FIG. 1, the curing agent-containing thermosetting resin composition (28) is placed in the container (26), and the first roll (20 ) And the third roll (24) and between the second roll (22) and the third roll (24), the carbon fiber (30) is sandwiched between the first and third rolls. By moving the fiber (30), air bubbles present between the fibers are removed, and the affinity of the resin composition to the fiber surface is increased. As a result, the carbon fiber surface is uniformly formed of the curing agent-containing resin composition. Can be coated. Here, when air bubbles remain on the fiber surface, the strength of the carbon fiber reinforced resin molded product obtained in the present invention tends to be reduced.

[b工程]
b工程とは、硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆された炭素繊維に、該炭素繊維の長手方向に張力を負荷すると共に、該炭素繊維を硬化剤含有熱硬化性樹脂組成物(B)中に浸漬する工程である。張力を負荷する方法としては特に限定されないが、例えば実施例で用いた図2に示す成形体製造装置を用いることが好ましい。図2に示した装置を用いて張力を付加する際には、硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆された炭素繊維(ストランド)(10)の位置を固定具(6、7)で固定し、ボルト(4)で張力を負荷することおよび張力を調節することができる。
[Step b]
The step b is to apply tension to the carbon fiber whose surface is coated with the curing agent-containing thermosetting resin composition (A) in the longitudinal direction of the carbon fiber and to cure the carbon fiber with a curing agent-containing thermosetting property. It is a step of immersing in the resin composition (B). The method for applying the tension is not particularly limited, but it is preferable to use, for example, the molded body manufacturing apparatus shown in FIG. When applying tension using the apparatus shown in FIG. 2, the position of the carbon fiber (strand) (10) whose surface is coated with the curing agent-containing thermosetting resin composition (A) is fixed to the fixture (6 7) and tension can be applied with bolt (4) and the tension can be adjusted.

炭素繊維に負荷する張力は炭素繊維の種類および樹脂の種類によって異なり、一概には決まらないが、後述する実施例では、使用した炭素繊維のストランドに対して、5〜15kgfの範囲で張力を負荷したときに、炭素繊維による樹脂への高い補強効果が認められた。   The tension applied to the carbon fiber varies depending on the type of carbon fiber and the type of resin and is not generally determined. However, in the examples described later, the tension is applied in the range of 5 to 15 kgf to the carbon fiber strand used. When it was done, the high reinforcement effect to the resin by carbon fiber was recognized.

硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆され、かつ張力を負荷された炭素繊維を硬化剤含有熱硬化性樹脂組成物(B)中に浸漬する方法としては、図2に示す成形体製造装置のようにあらかじめ硬化剤含有熱硬化性樹脂組成物(B)を流し込むための成形型を設けておき、硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆された炭素繊維に張力を付加した後に硬化剤含有熱硬化性樹脂組成物(B)を流し込む方法が簡便であり好ましい。硬化剤含有熱硬化性樹脂組成物(B)としては特に限定はないが、硬化剤含有熱硬化性樹脂組成物(A)と同じ種類が好ましい。   As a method of immersing the carbon fiber, the surface of which is coated with the curing agent-containing thermosetting resin composition (A) and being loaded with tension, in the curing agent-containing thermosetting resin composition (B), FIG. A mold for pouring the curing agent-containing thermosetting resin composition (B) was provided in advance as in the molded body production apparatus shown, and the surface was coated with the curing agent-containing thermosetting resin composition (A). A method of pouring the curing agent-containing thermosetting resin composition (B) after applying tension to the carbon fiber is simple and preferable. Although it does not specifically limit as a hardening | curing agent containing thermosetting resin composition (B), The same kind as a hardening | curing agent containing thermosetting resin composition (A) is preferable.

また前記硬化剤含有熱硬化性樹脂組成物(A)は、b工程の時点では部分硬化した状態であることが好ましく、完全硬化した状態ではないことが好ましい。ここで部分硬化とは
、硬化剤含有熱硬化性樹脂組成物(A)の一部が硬化した状態であり、完全硬化とは熱を加えてもこれ以上硬化が進まない状態である。
The curing agent-containing thermosetting resin composition (A) is preferably in a partially cured state at the time of step b, and preferably not in a completely cured state. Here, partial curing is a state in which a part of the curing agent-containing thermosetting resin composition (A) is cured, and complete curing is a state in which curing does not proceed any further even when heat is applied.

通常a工程からb工程へ移行する間に樹脂の硬化反応は進行し、未硬化状態から部分硬化状態へと変わっていくので、この間の時間および温度を調整することによって硬化剤含有熱硬化性樹脂組成物(A)の硬化状態を次のc工程に適切な部分硬化状態へと制御することができる。   Usually, during the transition from step a to step b, the curing reaction of the resin proceeds and changes from an uncured state to a partially cured state. By adjusting the time and temperature during this period, a curing agent-containing thermosetting resin is obtained. The cured state of the composition (A) can be controlled to a partially cured state suitable for the next step c.

[c工程]
c工程とは、硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆され、かつ張力を負荷された炭素繊維が浸漬された状態で、硬化剤含有熱硬化性樹脂組成物(B)を硬化させる工程である。
[Step c]
Step c is a curing agent-containing thermosetting resin composition (B) in a state where the surface is coated with the curing agent-containing thermosetting resin composition (A) and carbon fibers loaded with tension are immersed. Is a step of curing.

またc工程においては、硬化剤含有熱硬化性樹脂組成物(A)も同様に硬化させる必要がある。硬化剤含有熱硬化性樹脂組成物(A)と、硬化剤含有熱硬化性樹脂組成物(B)とが同様の樹脂組成物である場合には、硬化剤含有熱硬化性樹脂組成物(B)が硬化する条件で硬化剤含有熱硬化性樹脂組成物(A)も硬化することができる。硬化剤含有熱硬化性樹脂組成物(A)と、硬化剤含有熱硬化性樹脂組成物(B)とは基本的には同様の樹脂組成物であることが好ましい。   In the step c, the curing agent-containing thermosetting resin composition (A) needs to be similarly cured. When the curing agent-containing thermosetting resin composition (A) and the curing agent-containing thermosetting resin composition (B) are the same resin composition, the curing agent-containing thermosetting resin composition (B The curing agent-containing thermosetting resin composition (A) can also be cured under the conditions for curing. The curing agent-containing thermosetting resin composition (A) and the curing agent-containing thermosetting resin composition (B) are preferably basically the same resin composition.

具体的な、硬化剤含有熱硬化性樹脂組成物(B)の硬化は、熱硬化性樹脂および硬化剤の種類、また硬化剤の配合量によって硬化速度が変わり、また、雰囲気温度を変えることによっても硬化速度を調整することができる。   Specifically, curing of the curing agent-containing thermosetting resin composition (B) is performed by changing the curing speed depending on the types of the thermosetting resin and the curing agent and the blending amount of the curing agent, and by changing the ambient temperature. Also the curing rate can be adjusted.

[d工程]
d工程とは、炭素繊維に負荷されていた張力を除去する工程である。張力の除去は例えば図2の装置を用いた場合にはボルト4を調整することにより行うことができる。
[Step d]
The d process is a process of removing the tension applied to the carbon fiber. For example, when the apparatus of FIG. 2 is used, the tension can be removed by adjusting the bolt 4.

上記b〜d工程、またはa〜d工程を有する本発明の炭素繊維強化樹脂成形体の製造方法によって得られた炭素繊維強化樹脂成形体は機械強度に優れる。
また上記a〜d工程以外に、その他の工程を設けてもよい。その他の工程としては例えば、d工程の後に切削などの二次成形を行って適宜の形状にすることが挙げられる。
The carbon fiber reinforced resin molded article obtained by the method for producing a carbon fiber reinforced resin molded article of the present invention having the b to d steps or the ad processes is excellent in mechanical strength.
In addition to the above steps a to d, other steps may be provided. Examples of other processes include performing secondary molding such as cutting after the d process to obtain an appropriate shape.

上記b〜d工程または上記a〜d工程を有する本発明の製造方法により製造された炭素繊維強化樹脂成形体は、従来の炭素繊維強化樹脂成形体と比べて破壊時の最大応力や破壊歪みが増加する。また炭素繊維強化樹脂成形体に電子線を照射して強度の向上を図る従来の方法では厚さが200μm程度を超える場合には適用することができないのに対し、本発明の炭素繊維強化樹脂成形体の製造方法によれば厚さにとらわれず炭素繊維強化樹脂成形体を製造することができる。また本発明の炭素繊維強化樹脂成形体の製造方法は電子線照射装置等の大掛かりな装置を必要としないため、簡便な装置で炭素繊維強化樹脂成形体を製造することができ、低コストで炭素繊維強化樹脂成形体を製造することができる。   The carbon fiber reinforced resin molded product produced by the production method of the present invention having the above b to d steps or the above a to d steps has a maximum stress and a fracture strain at the time of destruction as compared with a conventional carbon fiber reinforced resin molded product. To increase. The conventional method for improving the strength by irradiating the carbon fiber reinforced resin molding with an electron beam cannot be applied when the thickness exceeds about 200 μm, whereas the carbon fiber reinforced resin molding of the present invention is not applicable. According to the manufacturing method of a body, a carbon fiber reinforced resin molded body can be manufactured regardless of the thickness. In addition, since the method for producing a carbon fiber reinforced resin molded article of the present invention does not require a large-scale apparatus such as an electron beam irradiation apparatus, the carbon fiber reinforced resin molded article can be produced with a simple apparatus, and carbon can be produced at low cost. A fiber reinforced resin molding can be manufactured.

本発明の製造方法によって製造された炭素繊維強化樹脂成形体が従来の炭素繊維強化樹脂成形体と比べて最大応力や破壊歪みが増加する理由は明らかではないが、本発明者らは炭素繊維と硬化剤含有熱硬化性樹脂組成物との界面での適度の応力緩和現象に伴う破壊歪の増加や、炭素繊維と硬化剤含有熱硬化性樹脂組成物との界面の広い比表面積と、樹脂の圧縮応力負荷に伴う動摩擦力の増加が強靭性を高める独特のプレストレス効果により最大応力や破壊歪みが増加すると推定した。   The reason why the carbon fiber reinforced resin molded product produced by the production method of the present invention increases the maximum stress and fracture strain compared to the conventional carbon fiber reinforced resin molded product is not clear, but the present inventors Increase in fracture strain accompanying moderate stress relaxation phenomenon at the interface with the curing agent-containing thermosetting resin composition, a wide specific surface area at the interface between the carbon fiber and the curing agent-containing thermosetting resin composition, It is estimated that the increase of dynamic friction force with compressive stress loading increases the maximum stress and fracture strain due to the unique pre-stress effect that enhances toughness.

〔実施例〕
次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
〔Example〕
EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited by these.

なお、本発明に用いた装置の構成を以下に示す。
<炭素繊維表面被覆装置>
炭素繊維表面被覆装置を図1に示す。
In addition, the structure of the apparatus used for this invention is shown below.
<Carbon fiber surface coating device>
A carbon fiber surface coating apparatus is shown in FIG.

該装置はアルミニウム製のロール[第1のロール(20)、第2のロール(22)、および第3のロール(24)]を有しており、第1のロール(20)および第2のロール(22)はアルミニウム製の容器(26)中に設置されており、第3のロール(24)は上下方向の位置を変えることによって、炭素繊維が硬化剤含有熱硬化性樹脂組成物(28)中に浸漬するようにした。   The apparatus has aluminum rolls [first roll (20), second roll (22), and third roll (24)], the first roll (20) and the second roll. The roll (22) is installed in an aluminum container (26), and the third roll (24) changes the position in the vertical direction to change the carbon fiber into a curing agent-containing thermosetting resin composition (28). ) Soaked in.

<成形体製造装置>
成形体製造装置を図2に示す。
該装置は長さ400mm、深さ10mmおよび幅2mmのチューブ状鋳型(2)中に、シリコンゴム製で中央に隙間のある厚さ1mmの仕切り板(3)5個を等間隔に設置し、各仕切り板間に4個の成形空間を設けた成形型を有しており、その仕切り板の中央部に前記炭素繊維表面被覆装置を用いて、炭素繊維の表面が硬化剤含有熱硬化性樹脂組成物で被覆された、表面被覆炭素繊維(10)が中心に配置されるように調整する。そしてその両端を固定具(6)、(7)を用いて固定し、ボルト(4)を用いて張力を付与することができる。
<Molded product manufacturing device>
A molded body manufacturing apparatus is shown in FIG.
The apparatus is provided with 5 partition plates (3) made of silicon rubber and having a gap in the center at equal intervals in a tubular mold (2) having a length of 400 mm, a depth of 10 mm and a width of 2 mm, It has a molding die provided with four molding spaces between each partition plate, and the surface of the carbon fiber is a thermosetting resin containing a curing agent by using the carbon fiber surface coating device at the center of the partition plate. Adjust so that the surface-coated carbon fiber (10) coated with the composition is centered. And the both ends can be fixed using fixtures (6) and (7), and tension can be applied using bolts (4).

この際の実際に負荷した張力はデジタルフォースゲージ(12)で測定することができる。
なお、以下の実施例および比較例においては、実験データの処理に際して、後記した図3〜8においては横軸に張力を試験片の測定部の断面積で除した値をプレストレス値として求め用いた。
In this case, the actually loaded tension can be measured with a digital force gauge (12).
In the following examples and comparative examples, when processing the experimental data, in FIGS. 3 to 8 described later, the value obtained by dividing the tension on the horizontal axis by the cross-sectional area of the measurement part of the test piece is used as the prestress value. It was.

例えば、15kgfの張力を炭素繊維にかけた際には試験片の測定部の断面積は10mm2であるので、14.70MPaとなる。
なお、以下の実施例および比較例ではストランド状の炭素繊維による補強効果を調べることが目的であるので、試験片の破断部分中央に炭素繊維が配置されるように成形した。[実施例1]
炭素繊維として、東レ株式会社製品(製品名トレカT800HB−12000;1本の直径6μm、これを12000本束ねたストランド)を、長さ580mmに切断して用いた。
For example, when a tension of 15 kgf is applied to the carbon fiber, the cross-sectional area of the measurement part of the test piece is 10 mm 2 , so that it is 14.70 MPa.
In the following examples and comparative examples, the purpose is to examine the reinforcing effect of the strand-like carbon fiber, so that the carbon fiber was placed at the center of the fracture portion of the test piece. [Example 1]
As the carbon fiber, Toray Co., Ltd. product (product name TORAYCA T800HB-12000; one 6 μm diameter, 12,000 strands bundled) was cut into a length of 580 mm and used.

炭素繊維表面被覆装置(図1)の容器(26)中に無水マレイン酸とエチレングリコールとのプレポリマーを主成分とする不飽和ポリエステル樹脂(カンキ加工剤株式会社製品
Lot.No.KE805PT63)に、メチルエチルケトンパーオキサイドおよびジメチールフタレートを主成分とする硬化剤(エポック株式会社 製品名P−01−005)を樹脂100重量部に対して1重量部の割合で配合した硬化剤含有熱硬化性樹脂組成物(28)(標準硬化時間は6時間)を供給し、貯めた。次に第1のロール(20)および第2のロール(22)の上部に前記炭素繊維(30)をセットした。その後、第3のロール(24)を図1のように、第1のロール(20)と第2のロール(22)との間に上方からセットし、炭素繊維(30)を第1のロール(20)と第3のロール(24)との間、および第2のロール(22)と第3のロール(24)との間に挟み込んだ。
In the container (26) of the carbon fiber surface coating apparatus (FIG. 1), an unsaturated polyester resin (manufactured by Kanki Processing Agent Co., Ltd., Lot. No. KE805PT63) having a prepolymer of maleic anhydride and ethylene glycol as main components, A curing agent-containing thermosetting resin composition in which a curing agent mainly composed of methyl ethyl ketone peroxide and dimethyl phthalate (Epoch Co., Ltd., product name P-01-005) is blended at a ratio of 1 part by weight to 100 parts by weight of the resin. Product (28) (standard cure time 6 hours) was fed and stored. Next, the carbon fiber (30) was set on top of the first roll (20) and the second roll (22). Thereafter, as shown in FIG. 1, the third roll (24) is set between the first roll (20) and the second roll (22) from above, and the carbon fiber (30) is placed in the first roll. (20) was sandwiched between the third roll (24) and between the second roll (22) and the third roll (24).

前記炭素繊維を前記第1〜3のロールにより、繊維の長手方向に移動させ、炭素繊維表
面の空気泡を除きつつ、炭素繊維の表面に硬化剤含有熱硬化性樹脂組成物を被覆した。この間の作業に約5分を要した。
The carbon fiber was moved in the longitudinal direction of the fiber by the first to third rolls, and the surface of the carbon fiber was coated with the curing agent-containing thermosetting resin composition while removing air bubbles on the surface of the carbon fiber. The work during this time took about 5 minutes.

次に、成形体製造装置(図2)のチューブ状鋳型(2)中に、仕切り板(3)5個を等間隔に設置し、各仕切り板間に4個の成形空間を設けた成形型に硬化剤含有熱硬化性樹脂組成物で表面が被覆された表面被覆炭素繊維を挿入し、該炭素繊維が仕切板の中央を通るようにし、その両端を固定した。   Next, a molding die in which five partition plates (3) are installed at equal intervals in the tubular mold (2) of the molded body manufacturing apparatus (FIG. 2), and four molding spaces are provided between the partition plates. A surface-coated carbon fiber whose surface was coated with a curing agent-containing thermosetting resin composition was inserted into the carbon fiber so that the carbon fiber passed through the center of the partition plate, and both ends thereof were fixed.

ボルト(4)を用いて張力5kgf(プレストレス値:4.9MPa)を付与した。この間の作業に約5分を要した。
その後チューブ状鋳型(2)中に前記したものと同じ硬化剤含有熱硬化性樹脂組成物を供給し、室温で24時間静置して完全に硬化させた。その後、張力を除去し、成形型を開き、4個の樹脂成形体を得た。
A tension of 5 kgf (prestress value: 4.9 MPa) was applied using a bolt (4). The work during this time took about 5 minutes.
Then, the same curing agent-containing thermosetting resin composition as described above was supplied into the tubular mold (2), and allowed to stand at room temperature for 24 hours to be completely cured. Thereafter, the tension was removed, the mold was opened, and four resin molded bodies were obtained.

得られた板状の各樹脂成形体から、切削加工によってJIS K7161に準じた引張り試験用の試験片(長さ95mm、幅10mm、厚さ2mm、中央部に長さ25mmで幅5mmのくびれ部を有する)を作成した。この試験片のくびれ部の中心には、炭素繊維が配置されており、該くびれ部において炭素繊維の占める断面積比は3.39%であった。   From the obtained plate-shaped resin moldings, a test piece for a tensile test according to JIS K7161 by cutting (length 95 mm, width 10 mm, thickness 2 mm, central portion 25 mm long and width 5 mm constricted portion Created). Carbon fibers are arranged in the center of the constricted portion of the test piece, and the cross-sectional area ratio occupied by the carbon fibers in the constricted portion was 3.39%.

インストロン引張り試験機を用いて、この試験片の破壊応力、破壊歪み、および弾性率を測定し、その結果を図3〜5に示した。
なお、図3〜5は上記プレストレス値と試験片の破壊応力、破壊歪み、および弾性率との関係を示す。
[実施例2〜4]
ボルト(4)を用いて付与する張力を10kgf、15kgf、20kgf(プレストレス値:9.8MPa、14.7MPa、19.6MPa)としたこと以外は実施例1と同様に行い、試験片を作成した。
Using an Instron tensile tester, the fracture stress, fracture strain, and elastic modulus of this test piece were measured, and the results are shown in FIGS.
3 to 5 show the relationship between the prestress value and the fracture stress, fracture strain, and elastic modulus of the test piece.
[Examples 2 to 4]
A test piece was prepared in the same manner as in Example 1 except that the tension applied using the bolt (4) was 10 kgf, 15 kgf, and 20 kgf (prestress values: 9.8 MPa, 14.7 MPa, 19.6 MPa). did.

インストロン引張り試験機を用いて、この試験片の破壊応力、破壊歪み、および弾性率を測定し、その結果を図3〜5に示した。
[比較例1]
張力を負荷しないこと以外は実施例1と同様に行い、試験片を作成した。
Using an Instron tensile tester, the fracture stress, fracture strain, and elastic modulus of this test piece were measured, and the results are shown in FIGS.
[Comparative Example 1]
A test piece was prepared in the same manner as in Example 1 except that no tension was applied.

インストロン引張り試験機を用いて、この試験片の破壊応力、破壊歪み、および弾性率を測定し、その結果を図3〜5に示した。
なお、図3〜5では張力をかけていない比較例1における破壊応力、破壊歪み、および弾性率を元にし、各張力を負荷した実施例1〜4における破壊応力、破壊歪み、および弾性率の差を図の縦軸に表示した。
[実施例5]
炭素繊維として、東レ株式会社製品(製品名トレカM30SC−18000−50C;1本の直径6μm、これを18000本束ねたストランド)を、長さ580mmに切断して用いた。
Using an Instron tensile tester, the fracture stress, fracture strain, and elastic modulus of this test piece were measured, and the results are shown in FIGS.
In addition, in FIGS. 3-5, based on the fracture stress, fracture strain, and elastic modulus in Comparative Example 1 where no tension is applied, the fracture stress, fracture strain, and modulus of elasticity in Examples 1 to 4 loaded with each tension are shown. The difference is shown on the vertical axis of the figure.
[Example 5]
As the carbon fiber, a product of Toray Industries, Inc. (product name Torayca M30SC-18000-50C; one strand having a diameter of 6 μm and 18,000 bundles thereof) was cut into a length of 580 mm and used.

炭素繊維表面被覆装置(図1)の容器26中にエポキシ樹脂(日新レジン株式会社製品)と硬化剤として変性脂肪族ポリアミン(日新レジン株式会社製品)とを100:20(重量)の割合で配合した硬化剤含有熱硬化性樹脂組成物(28)を供給し、貯めた。次に第1のロール(20)および第2のロール(22)の上部に前記炭素繊維(30)をセットした。その後、第3のロール(24)を図1のように、第1のロール(20)と第2のロール(22)との間に上方からセットし、炭素繊維(30)を第1のロール(20)と第3のロール(24)との間、および第2のロール(22)と第3のロール(24)との
間に挟み込んだ。
100: 20 (weight) ratio of epoxy resin (Nissin Resin Co., Ltd.) and modified aliphatic polyamine (Nisshin Resin Co., Ltd.) as a curing agent in the container 26 of the carbon fiber surface coating apparatus (FIG. 1). The curing agent-containing thermosetting resin composition (28) formulated in (1) was supplied and stored. Next, the carbon fiber (30) was set on top of the first roll (20) and the second roll (22). Thereafter, as shown in FIG. 1, the third roll (24) is set between the first roll (20) and the second roll (22) from above, and the carbon fiber (30) is placed in the first roll. (20) was sandwiched between the third roll (24) and between the second roll (22) and the third roll (24).

前記炭素繊維を前記第1〜3のロールにより、繊維の長手方向に移動させ、炭素繊維の表面に硬化剤含有熱硬化性樹脂組成物を被覆した。この間の作業に5分を要した。
次に、成形体製造装置(図2)のチューブ状鋳型(2)中に、仕切り板(3)5個を等間隔に設置し、各仕切り板間に4個の成形空間を設けた成形型に硬化剤含有熱硬化性樹脂組成物で表面が被覆された表面被覆炭素繊維を挿入し、その両端を固定した。
The carbon fiber was moved in the longitudinal direction of the fiber by the first to third rolls, and the surface of the carbon fiber was coated with the curing agent-containing thermosetting resin composition. The work during this time took 5 minutes.
Next, a molding die in which five partition plates (3) are installed at equal intervals in the tubular mold (2) of the molded body manufacturing apparatus (FIG. 2), and four molding spaces are provided between the partition plates. A surface-coated carbon fiber whose surface was coated with a curing agent-containing thermosetting resin composition was inserted into the two, and both ends thereof were fixed.

ボルト(4)を用いて張力5kgf(プレストレス値:4.9MPa)を付与した。この間の作業に約5分を要した。
その後チューブ状鋳型(2)中に前記したものと同じ硬化剤含有熱硬化性樹脂組成物を供給し、室温で24時間静置して完全に硬化させた。その後、張力を除去し、成形型を開き、4個の樹脂成形体を得た。
A tension of 5 kgf (prestress value: 4.9 MPa) was applied using a bolt (4). The work during this time took about 5 minutes.
Then, the same curing agent-containing thermosetting resin composition as described above was supplied into the tubular mold (2), and allowed to stand at room temperature for 24 hours to be completely cured. Thereafter, the tension was removed, the mold was opened, and four resin molded bodies were obtained.

得られた板状の各樹脂成形体から、切削加工によってJIS K7161に準じた引張り試験用の試験片(長さ95mm、幅10mm、厚さ2mm、中央部に長さ25mmで幅5mmのくびれ部を有する)を作成した。この試験片のくびれ部の中心には、炭素繊維が配置されており、該くびれ部において炭素繊維の占める断面積比は5.09%であった。   From the obtained plate-shaped resin moldings, a test piece for a tensile test according to JIS K7161 by cutting (length 95 mm, width 10 mm, thickness 2 mm, central portion 25 mm long and width 5 mm constricted portion Created). Carbon fibers are arranged in the center of the constricted portion of the test piece, and the cross-sectional area ratio occupied by the carbon fibers in the constricted portion was 5.09%.

インストロン引張り試験機を用いて、この試験片の破壊応力、破壊歪み、および弾性率を測定し、その結果を図6〜8に示した。
なお、図6〜8は上記プレストレス値と試験片の破壊応力、破壊歪み、および弾性率との関係を示す。
[実施例6、7]
ボルト(4)を用いて付与する張力を10kgf、20kgf(張力:9.8MPa、19.6MPa)としたこと以外は実施例5と同様に行い、試験片を作成した。
Using an Instron tensile tester, the fracture stress, fracture strain, and elastic modulus of this test piece were measured, and the results are shown in FIGS.
6 to 8 show the relationship between the prestress value and the fracture stress, fracture strain, and elastic modulus of the test piece.
[Examples 6 and 7]
A test piece was prepared in the same manner as in Example 5 except that the tension applied using the bolt (4) was 10 kgf and 20 kgf (tension: 9.8 MPa, 19.6 MPa).

インストロン引張り試験機を用いて、この試験片の破壊応力、破壊歪み、弾性率を測定し、その結果を図6〜8に示した。
[比較例2]
張力を負荷しないこと以外は実施例5と同様に行い、試験片を作成した。
Using an Instron tensile tester, the fracture stress, fracture strain, and elastic modulus of this test piece were measured, and the results are shown in FIGS.
[Comparative Example 2]
A test piece was prepared in the same manner as in Example 5 except that no tension was applied.

インストロン引張り試験機を用いて、この試験片の破壊応力、破壊歪み、および弾性率を測定し、その結果を図6〜8に示した。
[比較例3]
炭素繊維として、東レ株式会社製品(製品名トレカT800HB−12000;1本の直径6μm、これを12000本束ねたストランド)を、長さ580mmに切断して用いた。この炭素繊維は、炭素繊維の表面に硬化剤含有熱硬化性樹脂組成物を被覆することなく用いた。
Using an Instron tensile tester, the fracture stress, fracture strain, and elastic modulus of this test piece were measured, and the results are shown in FIGS.
[Comparative Example 3]
As the carbon fiber, Toray Co., Ltd. product (product name TORAYCA T800HB-12000; one 6 μm diameter, 12,000 strands bundled) was cut into a length of 580 mm and used. This carbon fiber was used without coating the surface of the carbon fiber with a curing agent-containing thermosetting resin composition.

成形体製造装置(図2)のチューブ状鋳型(2)中に、仕切り板(3)5個を等間隔に設置し、各仕切り板間に4個の成形空間を設けた成形型に前記炭素繊維を挿入し、その両端を固定した。   In the tube-shaped mold (2) of the molded body manufacturing apparatus (FIG. 2), five partition plates (3) are installed at equal intervals, and the carbon is placed in a molding die provided with four molding spaces between the partition plates. The fiber was inserted and both ends were fixed.

ボルト(4)を用いて張力18kgfを付与した。この間の作業に約5分を要した。
その後チューブ状鋳型(2)中に、無水マレイン酸とエチレングリコールとのプレポリマーを主成分とする不飽和ポリエステル樹脂(カンキ加工剤株式会社製品 Lot.No.KE805PT63)に、メチルエチルケトンパーオキサイドおよびジメチールフタレートを主成分とする硬化剤(エポック株式会社 製品名P−01−005)を樹脂100重量部に対して1重量部の割合で配合した硬化剤含有熱硬化性樹脂組成物(標準硬化時間
は6時間)を供給し、室温で24時間静置して完全に硬化させた。その後、張力を除去し、樹脂成形体を得た。
A tension of 18 kgf was applied using a bolt (4). The work during this time took about 5 minutes.
Thereafter, in the tubular mold (2), unsaturated polyester resin (manufactured by Kanki Processing Co., Ltd., Lot. A curing agent-containing thermosetting resin composition in which a curing agent mainly composed of phthalate (Epoch Co., Ltd., product name P-01-005) is blended at a ratio of 1 part by weight with respect to 100 parts by weight of the resin (standard curing time is 6 hours) and allowed to stand at room temperature for 24 hours to be completely cured. Thereafter, the tension was removed to obtain a resin molded body.

得られた板状の各樹脂成形体から、切削加工によってJIS K7161に準じた引張り試験用の試験片(長さ95mm、幅10mm、厚さ2mm、中央部に長さ25mmで幅5mmのくびれ部を有する)を作成した。この試験片のくびれ部の中心には、炭素繊維が配置されており、該くびれ部において炭素繊維の占める断面積比は3.39%であった。   From the obtained plate-shaped resin moldings, a test piece for a tensile test according to JIS K7161 by cutting (length 95 mm, width 10 mm, thickness 2 mm, central portion 25 mm long and width 5 mm constricted portion Created). Carbon fibers are arranged in the center of the constricted portion of the test piece, and the cross-sectional area ratio occupied by the carbon fibers in the constricted portion was 3.39%.

インストロン引張り試験機を用いて、各試験片の破壊応力、破壊歪み、弾性率を測定し、その結果を図9に示した。
[比較例4]
張力を負荷しないこと以外は比較例3と同様に行い、試験片を作成した。
Using an Instron tensile tester, the fracture stress, fracture strain, and elastic modulus of each test piece were measured, and the results are shown in FIG.
[Comparative Example 4]
A test piece was prepared in the same manner as in Comparative Example 3 except that no tension was applied.

インストロン引張り試験機を用いて、各試験片の破壊応力、破壊歪み、弾性率を測定し、その結果を図9に示した。
樹脂部分からの炭素繊維の引き抜きが起き、機械強度の小さな成形体であった。
Using an Instron tensile tester, the fracture stress, fracture strain, and elastic modulus of each test piece were measured, and the results are shown in FIG.
The carbon fiber was pulled out from the resin portion, and the molded product had a low mechanical strength.

本発明の実施例に用いた炭素繊維被覆装置を示す概略図である。It is the schematic which shows the carbon fiber coating | coated apparatus used for the Example of this invention. 本発明の実施例に用いた成形体製造装置を示す概略図である。It is the schematic which shows the molded object manufacturing apparatus used for the Example of this invention. 実施例1〜4および比較例1における破断応力とプレストレス値との関係を示す図である。It is a figure which shows the relationship between the fracture stress in Examples 1-4 and the comparative example 1, and a prestress value. 実施例1〜4および比較例1における破断歪みとプレストレス値との関係を示す図である。It is a figure which shows the relationship between the fracture | rupture distortion in Examples 1-4 and the comparative example 1, and a prestress value. 実施例1〜4および比較例1における弾性率とプレストレス値との関係を示す図である。It is a figure which shows the relationship between the elasticity modulus in Examples 1-4 and the comparative example 1, and a prestress value. 実施例5〜7および比較例2における破断応力とプレストレス値との関係を示す図である。It is a figure which shows the relationship between the breaking stress in Examples 5-7 and the comparative example 2, and a prestress value. 実施例5〜7および比較例2における破断歪みとプレストレス値との関係を示す図である。It is a figure which shows the relationship between the fracture | rupture distortion in Examples 5-7 and the comparative example 2, and a prestress value. 実施例5〜7および比較例2における弾性率とプレストレス値との関係を示す図である。It is a figure which shows the relationship between the elasticity modulus in Examples 5-7 and the comparative example 2, and a prestress value. 比較例3、4における破断応力と破断歪みとの関係を示す図である。It is a figure which shows the relationship between the breaking stress and the breaking strain in the comparative examples 3 and 4. FIG.

符号の説明Explanation of symbols

2・・・チューブ状鋳型
3・・・仕切り板
4・・・ボルト
6・・・固定具
7・・・固定具
8・・・炭素繊維強化樹脂成形体用の型
10・・・表面被覆炭素繊維
12・・・デジタルフォースゲージ
20・・・第1のロール
22・・・第2のロール
24・・・第3のロール
26・・・容器
28・・・硬化剤含有熱硬化性樹脂組成物
30・・・炭素繊維
2 ... Tubular mold 3 ... Partition plate 4 ... Bolt 6 ... Fixing tool 7 ... Fixing tool 8 ... Mold 10 for carbon fiber reinforced resin moldings ... Surface coated carbon Fiber 12 ... Digital force gauge 20 ... First roll 22 ... Second roll 24 ... Third roll 26 ... Container 28 ... Curing agent-containing thermosetting resin composition 30 ... carbon fiber

Claims (3)

(b工程)硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆された炭素繊維に、該炭素繊維の長手方向に張力を負荷すると共に、該炭素繊維を硬化剤含有熱硬化性樹脂組成物(B)中に浸漬する工程と、
(c工程)b工程の後に、硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆され、かつ張力を負荷された炭素繊維が浸漬された状態で、硬化剤含有熱硬化性樹脂組成物(B)を硬化させる工程と、
(d工程)c工程の後に、前記炭素繊維に負荷されていた張力を除去する工程と
を有することを特徴とする炭素繊維強化樹脂成形体の製造方法。
(Step b) The carbon fiber whose surface is coated with the curing agent-containing thermosetting resin composition (A) is loaded with tension in the longitudinal direction of the carbon fiber, and the carbon fiber is cured with the curing agent-containing thermosetting resin. Dipping in the composition (B);
(Step c) After step b, the curing agent-containing thermosetting resin composition with the surface coated with the curing agent-containing thermosetting resin composition (A) and the carbon fiber loaded with tension is immersed. Curing the product (B);
(D process) The process of removing the tension | tensile_strength loaded on the said carbon fiber after the c process, The manufacturing method of the carbon fiber reinforced resin molding characterized by the above-mentioned.
(a工程)硬化剤含有熱硬化性樹脂組成物(A)で炭素繊維の表面を被覆する工程と、
(b工程)a工程の後に、硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆された炭素繊維に、該炭素繊維の長手方向に張力を負荷すると共に、硬化剤含有熱硬化性樹脂組成物(B)中に浸漬する工程と、
(c工程)b工程の後に、硬化剤含有熱硬化性樹脂組成物(A)で表面が被覆され、かつ張力を負荷された炭素繊維が浸漬された状態で、硬化剤含有熱硬化性樹脂組成物(B)を硬化させる工程と、
(d工程)c工程の後に、前記炭素繊維に負荷されていた張力を除去する工程と
を有することを特徴とする炭素繊維強化樹脂成形体の製造方法。
(A step) a step of coating the surface of the carbon fiber with the curing agent-containing thermosetting resin composition (A);
(Step b) After the step a, the carbon fiber whose surface is coated with the curing agent-containing thermosetting resin composition (A) is loaded with a tension in the longitudinal direction of the carbon fiber and the curing agent-containing thermosetting property. A step of immersing in the resin composition (B);
(Step c) After step b, the curing agent-containing thermosetting resin composition with the surface coated with the curing agent-containing thermosetting resin composition (A) and the carbon fiber loaded with tension is immersed. Curing the product (B);
(D process) The process of removing the tension | tensile_strength loaded on the said carbon fiber after the c process, The manufacturing method of the carbon fiber reinforced resin molding characterized by the above-mentioned.
請求項1または2に記載の炭素繊維強化樹脂成形体の製造方法により製造した炭素繊維強化樹脂成形体。   The carbon fiber reinforced resin molded object manufactured by the manufacturing method of the carbon fiber reinforced resin molded object of Claim 1 or 2.
JP2006251350A 2006-09-15 2006-09-15 Manufacturing method for carbon fiber reinforced resin molded article, and carbon fiber reinforced resin molded article Pending JP2008068591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251350A JP2008068591A (en) 2006-09-15 2006-09-15 Manufacturing method for carbon fiber reinforced resin molded article, and carbon fiber reinforced resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006251350A JP2008068591A (en) 2006-09-15 2006-09-15 Manufacturing method for carbon fiber reinforced resin molded article, and carbon fiber reinforced resin molded article

Publications (1)

Publication Number Publication Date
JP2008068591A true JP2008068591A (en) 2008-03-27

Family

ID=39290602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251350A Pending JP2008068591A (en) 2006-09-15 2006-09-15 Manufacturing method for carbon fiber reinforced resin molded article, and carbon fiber reinforced resin molded article

Country Status (1)

Country Link
JP (1) JP2008068591A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222069A (en) * 1975-08-13 1977-02-19 Nippon Kobunshi Kagaku Kk Method of manufacture of reinforced plastic plates
JPS52124071A (en) * 1976-04-12 1977-10-18 Fujii Toshitaka Method of manufacture of synthetic resin formed product reinforced with fiber
JPH02216270A (en) * 1988-10-14 1990-08-29 Osaka Gas Co Ltd Structural material and production thereof
JPH05269873A (en) * 1992-01-30 1993-10-19 Nikkiso Co Ltd Production of lattice like structure
JPH09328702A (en) * 1996-06-12 1997-12-22 Sekisui Chem Co Ltd Joint member for track and manufacture thereof
JPH11342543A (en) * 1998-06-02 1999-12-14 Mitsubishi Rayon Co Ltd Production of connecting material
JP2003225950A (en) * 2001-11-30 2003-08-12 Toshiaki Ota Fiber-reinforced plastics and device/method for manufacturing fiber-reinforced plastics
JP2004066829A (en) * 2003-08-11 2004-03-04 Mitsubishi Rayon Co Ltd Manufacturing method for fiber arrangement
JP2004225472A (en) * 2003-01-27 2004-08-12 Sangaku Renkei Kiko Kyushu:Kk Reinforcing method of concrete structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222069A (en) * 1975-08-13 1977-02-19 Nippon Kobunshi Kagaku Kk Method of manufacture of reinforced plastic plates
JPS52124071A (en) * 1976-04-12 1977-10-18 Fujii Toshitaka Method of manufacture of synthetic resin formed product reinforced with fiber
JPH02216270A (en) * 1988-10-14 1990-08-29 Osaka Gas Co Ltd Structural material and production thereof
JPH05269873A (en) * 1992-01-30 1993-10-19 Nikkiso Co Ltd Production of lattice like structure
JPH09328702A (en) * 1996-06-12 1997-12-22 Sekisui Chem Co Ltd Joint member for track and manufacture thereof
JPH11342543A (en) * 1998-06-02 1999-12-14 Mitsubishi Rayon Co Ltd Production of connecting material
JP2003225950A (en) * 2001-11-30 2003-08-12 Toshiaki Ota Fiber-reinforced plastics and device/method for manufacturing fiber-reinforced plastics
JP2004225472A (en) * 2003-01-27 2004-08-12 Sangaku Renkei Kiko Kyushu:Kk Reinforcing method of concrete structure
JP2004066829A (en) * 2003-08-11 2004-03-04 Mitsubishi Rayon Co Ltd Manufacturing method for fiber arrangement

Similar Documents

Publication Publication Date Title
Hensher Fiber-reinforced-plastic (FRP) reinforcement for concrete structures: properties and applications
EP0380591B1 (en) Fiber/resin composites, and method of making the same
Piggott et al. Compression strength of carbon, glass and Kevlar-49 fibre reinforced polyester resins
JP5416341B2 (en) Method for producing round fiber reinforced plastic wire
KR100857475B1 (en) Fiber reinforcement making method and cement composite including this that dispersibility and adhesion performance improve
US20040195744A1 (en) Fiber-reinforced composite springs
DK3019330T3 (en) PROCEDURE FOR MANUFACTURING A REINFORCEMENT BAR
WO1997031052A1 (en) Epoxy resin composition for fiber-reinforced composite material, yarn prepreg, and process and apparatus for preparing the same
KR20070009570A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
Amijima et al. Static and fatigue tests of a woven glass fabric composite under biaxial tension-torsion loading
Mahendrakumar et al. Mechanical and dynamic properties of nettle-polyester composite
TW201945442A (en) FRP rebar and method of making same
Mohammadi et al. Mode-II fatigue response of AS4/8552 carbon/epoxy composite laminates interleaved by electrospun nanofibers
CN111391421A (en) Carbon fiber and metal composite structure and preparation method thereof
Kalamkarov et al. Experimental and analytical studies of smart composite reinforcement
JP2009191116A (en) Process of making fiber-reinforced composite material and fiber-reinforced composite material
JP4671890B2 (en) Prepreg
JP2008068591A (en) Manufacturing method for carbon fiber reinforced resin molded article, and carbon fiber reinforced resin molded article
JP6980563B2 (en) Laminated material for reinforcement of structure, reinforcement method and reinforcement structure
JPH02216270A (en) Structural material and production thereof
Jones et al. The effect of thermal strains on the microcracking and stress corrosion behaviour of grp
JPS6249171B2 (en)
JP2004074427A (en) Continuous production method for molded object and molded object
Zou et al. Characteristics of compressive failure behavior of polyacrylonitrile‐based carbon fiber multifilament
US20020122909A1 (en) Method of increasing the strength and fatigue resistance of fiber reinforced composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113