JP2008067582A - Motor controller, motor control method and actuator - Google Patents

Motor controller, motor control method and actuator Download PDF

Info

Publication number
JP2008067582A
JP2008067582A JP2006245986A JP2006245986A JP2008067582A JP 2008067582 A JP2008067582 A JP 2008067582A JP 2006245986 A JP2006245986 A JP 2006245986A JP 2006245986 A JP2006245986 A JP 2006245986A JP 2008067582 A JP2008067582 A JP 2008067582A
Authority
JP
Japan
Prior art keywords
value
phase
vector angle
vector
voltage command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006245986A
Other languages
Japanese (ja)
Other versions
JP5220293B2 (en
Inventor
Tomoo Kubota
友夫 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP2006245986A priority Critical patent/JP5220293B2/en
Publication of JP2008067582A publication Critical patent/JP2008067582A/en
Application granted granted Critical
Publication of JP5220293B2 publication Critical patent/JP5220293B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor controller which can control a motor to generate a larger torque even during saturation, and to provide a motor control method. <P>SOLUTION: The motor controller 20 for controlling the drive current of a motor by determining the current values id and iq of d and q phases through dq conversion for converting into the dq rectangular coordinates and performing current loop processing of d and q phases is provided with a means 25 for controlling the vector angle θv of the composition vector of voltage command values Vd and Vq of d and q phases for the q axis. Consequently, a larger torque can be generated from the motor even during saturation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、モータ制御装置、モータ制御方法およびアクチュエータに関する。   The present invention relates to a motor control device, a motor control method, and an actuator.

この種、モータの制御装置としては、三相の巻線に流れる電流のうち任意の二相の電流値とロータの電気角から磁界の作る磁束方向のd軸とd軸に直交するq軸のdq座標に変換してd相とq相の電流値を演算し、d相電流目標値を0として、q相電流目標値を演算し、各相毎に電流ループ処理を行って、d相電圧指令値およびq相電圧指令を演算し、さらに、d相電圧指令値およびq相電圧指令値を三相の電圧指令値に変換し、この三相の電圧指令値に基づいてモータをPWM(Pulse Width Modulation)制御するものが知られている(たとえば、特許文献1参照)。   As this type of motor control device, the d-axis in the direction of magnetic flux created by the magnetic field from the current value of any two-phase current flowing in the three-phase winding and the electrical angle of the rotor and the q-axis orthogonal to the d-axis Convert to dq coordinates, calculate d-phase and q-phase current values, set d-phase current target value to 0, calculate q-phase current target value, perform current loop processing for each phase, and perform d-phase voltage The command value and the q-phase voltage command are calculated, the d-phase voltage command value and the q-phase voltage command value are converted into a three-phase voltage command value, and the motor is PWM (Pulse) based on the three-phase voltage command value. What controls (Width Modulation) is known (for example, refer patent document 1).

そして、上記電流ループにおける処理は、d相とq相の電流値とd相電流目標値とq相電流目標値との偏差を取り、この偏差に基づいて比例積分制御則に基づいてd相電圧指令値およびq相電圧指令値を演算するようにしており、d相電圧指令値とq相電圧指令値の合成ベクトルが飽和電圧に達する場合、すなわち、d相電圧指令値とq相電圧指令値の合成ベクトルが飽和する場合には、各巻線の端子間へは電源電圧以上の電圧を印加することができないため、電流ループにおける積分値の絶対値が増大するようになって、モータを正常に制御できない状態となる。   The process in the current loop takes a deviation between the d-phase and q-phase current values, the d-phase current target value, and the q-phase current target value, and based on this deviation, the d-phase voltage based on the proportional-integral control law. When the command value and the q-phase voltage command value are calculated and the combined vector of the d-phase voltage command value and the q-phase voltage command value reaches the saturation voltage, that is, the d-phase voltage command value and the q-phase voltage command value When the combined vector is saturated, a voltage higher than the power supply voltage cannot be applied between the terminals of each winding, so that the absolute value of the integral value in the current loop increases, and the motor is operated normally. It becomes a state that cannot be controlled.

そこで、上記従来のモータ制御装置にあっては、d相電圧指令値とq相電圧指令値の合成ベクトルが飽和電圧に達すると、電流ループにおける積分値の飽和処理を行うようにして、モータに安定したトルクを発生させるようにしている。
特開平6−153569号公報
Therefore, in the conventional motor control device, when the combined vector of the d-phase voltage command value and the q-phase voltage command value reaches the saturation voltage, the integral value is saturated in the current loop, and the motor is controlled. A stable torque is generated.
Japanese Patent Application Laid-Open No. 6-1553569

しかしながら、従来のモータ制御装置では、d相電圧指令値とq相電圧指令値の合成ベクトルが飽和電圧に達すると、強制的にd相電圧とq相電圧の合成ベクトルのq軸に対する角度を一定に維持するようにしているので、飽和時においてモータにより大きなトルクを発生させることができない。   However, in the conventional motor control device, when the combined vector of the d-phase voltage command value and the q-phase voltage command value reaches the saturation voltage, the angle of the combined vector of the d-phase voltage and the q-phase voltage with respect to the q axis is forcibly fixed. Therefore, a large torque cannot be generated by the motor at the time of saturation.

すなわち、モータを正回転させるときにq相が正の値をとるものとすると、飽和突入時に、q相電流が最大値をとる場合にはよいが、q相電流が最大値を取らない状態では、d相電圧とq相電圧の合成ベクトルのq軸に対する角度を一定に維持するので、q相電流を最大値に制御することができない。   In other words, assuming that the q-phase takes a positive value when the motor is rotated forward, the q-phase current may take the maximum value at the time of saturation, but in the state where the q-phase current does not take the maximum value. Since the angle of the combined vector of the d-phase voltage and the q-phase voltage with respect to the q-axis is kept constant, the q-phase current cannot be controlled to the maximum value.

また、飽和時におけるq相電流は、d相電圧指令値とq相電圧指令値の合成ベクトルのq軸に対する角度に依存して変化し、さらに、電気角速度に依存して変化する。   Further, the q-phase current during saturation changes depending on the angle of the combined vector of the d-phase voltage command value and the q-phase voltage command value with respect to the q-axis, and further changes depending on the electrical angular velocity.

そこで、本発明は、上記不具合を改善するために創案されたものであって、その目的とするところは、飽和時においてもモータにより大きなトルクを発生させることが可能なモータ制御装置およびモータ制御方法を提供することであり、さらに、飽和時においてもモータにより大きなトルクを発生させてより大きな推力を出力することが可能なアクチュエータを提供することである。   Therefore, the present invention was devised to improve the above-described problems, and the object of the present invention is to provide a motor control device and a motor control method capable of generating a large torque with a motor even when saturated. Furthermore, the present invention also provides an actuator capable of generating a larger torque by a motor and outputting a larger thrust even when saturated.

上記した目的を達成するため、本発明の課題解決手段におけるモータ制御装置は、dq直交座標に変換するdq変換によってd相およびq相の電流値を求めdq各相毎に電流ループ処理を行ってモータの駆動電流を制御するモータ制御装置において、dq各相の電圧指令値の合成ベクトルのベクトル角度を制御するベクトル角度制御手段を備える。   In order to achieve the above-described object, the motor control device in the problem solving means of the present invention obtains current values of the d-phase and the q-phase by dq conversion for converting to dq orthogonal coordinates, and performs a current loop process for each dq phase. A motor control apparatus for controlling a motor drive current includes a vector angle control means for controlling a vector angle of a combined vector of voltage command values for each phase of dq.

また、本発明の課題解決手段におけるアクチュエータは、回転部材と回転部材の回転運動によって直線運動を呈する直動部材とを備えた運動変換機構と、回転部材に連結されて回転部材にトルクを与えるモータと、上記モータ制御装置を備える。   The actuator in the problem solving means of the present invention includes a motion conversion mechanism including a rotating member and a linear motion member that exhibits linear motion by the rotating motion of the rotating member, and a motor that is connected to the rotating member and applies torque to the rotating member. And the motor control device.

さらに、本発明の課題解決手段におけるモータ制御方法は、dq直交座標に変換するdq変換によってd相およびq相の電流値を求めdq各相毎に電流ループ処理を行ってモータの駆動電流を制御するモータ制御方法において、dq各相の電圧指令値の合成ベクトルのベクトル角度を制御するベクトル角度制御ステップを含む。   Further, in the motor control method in the problem solving means of the present invention, the d-phase and q-phase current values are obtained by dq conversion to be converted into dq orthogonal coordinates, and a current loop process is performed for each dq phase to control the motor drive current. And a vector angle control step of controlling a vector angle of a combined vector of the voltage command values for each phase of dq.

本発明のモータ制御装置によれば、dq各相の電圧指令値の合成ベクトルのq軸に対する角度を制御することが可能となり、dq各相の電圧指令値の合成ベクトルが飽和する場合にあっても、モータが発生するトルクを適切に制御することが可能であるとともに、また、従来のモータ制御装置に比較してモータにより一層大きなトルクを発生させることが可能である。   According to the motor control device of the present invention, it is possible to control the angle of the combined vector of the voltage command value of each phase of dq with respect to the q axis, and when the combined vector of the voltage command value of each phase of dq is saturated. However, it is possible to appropriately control the torque generated by the motor, and it is possible to generate a larger torque by the motor as compared with the conventional motor control device.

また、モータにより一層大きなトルクを発生させることが可能であるので、トルク制御範囲が大きくなるとともに、種々の機器に搭載されるモータを小型化することができる。   In addition, since a larger torque can be generated by the motor, the torque control range is increased, and the motor mounted on various devices can be reduced in size.

以下、図に示した実施の形態に基づき、本発明を説明する。図1は、一実施の形態におけるモータ制御装置を適用したアクチュエータの概念図である。図2は、電気角速度に対するq軸電流を最大とするdq各相の電圧指令値の合成ベクトルのベクトル角度の変化を示す図である。図3(A)は、d相電流をゼロにし、飽和時に積分中止するようにモータを制御した場合のアクチュエータのストローク変位に対するdq各相の電圧指令値の合成ベクトルのベクトル角度の変化を示すグラフである。図3(B)は、弱め界磁制御を行いつつ飽和時に積分中止してモータを制御した場合のアクチュエータのストローク変位に対するdq各相の電圧指令値の合成ベクトルのベクトル角度の変化を示すグラフである。図4は、一実施の形態におけるモータ制御装置のシステム図である。図5は、PWM回路を示す図である。図6(A)は、モータに逆回転方向のトルクを発生させる場合に使用される電気角速度をパラメータとして作成したベクトル角度最終値のマップを示す図である。図6(B)は、モータに正回転方向のトルクを発生させる場合に使用される電気角速度をパラメータとして作成したベクトル角度最終値のマップを示す図である。図7は、dq各相の電圧指令値の合成ベクトルのq軸に対する回転方向を決定するための表である。図8は、q相電流目標値がプラスの場合の合成ベクトルの回転方向を説明する図である。図9は、q相電流目標値がプラスの場合のdq直交座標における合成ベクトルの回転方向を説明する図である。図10は、q相電流目標値がマイナスの場合の合成ベクトルの回転方向を説明する図である。図11は、q相電流目標値がマイナスの場合のdq直交座標における合成ベクトルの回転方向を説明する図である。図12は、電気角速度をパラメータとして作成したq相電流目標値を制限するリミット値のマップを示す図である。図13は、一実施の形態のモータ制御装置における処理手順を示すフローチャートである。図14は、他の実施の形態におけるモータ制御装置のシステム図である。図15は、選択手段におけるスイッチコントローラのシステム図である。図16は、他の実施の形態のモータ制御装置における処理手順を示すフローチャートである。   The present invention will be described below based on the embodiments shown in the drawings. FIG. 1 is a conceptual diagram of an actuator to which a motor control device according to an embodiment is applied. FIG. 2 is a diagram showing a change in the vector angle of the combined vector of the voltage command values of each phase of dq that maximizes the q-axis current with respect to the electrical angular velocity. FIG. 3A is a graph showing a change in the vector angle of the combined vector of the voltage command values for each phase of dq with respect to the stroke displacement of the actuator when the motor is controlled so that the d-phase current is zero and the integration is stopped when saturated. It is. FIG. 3B is a graph showing the change in the vector angle of the combined vector of the voltage command values of dq each phase with respect to the stroke displacement of the actuator when the motor is controlled by performing the field weakening control and the integration is stopped at the time of saturation. FIG. 4 is a system diagram of the motor control device according to the embodiment. FIG. 5 is a diagram showing a PWM circuit. FIG. 6A is a diagram showing a vector angle final value map created using the electrical angular velocity used as a parameter when the motor generates torque in the reverse rotation direction. FIG. 6B is a diagram showing a vector angle final value map created by using the electrical angular velocity used as a parameter when the motor generates torque in the forward rotation direction. FIG. 7 is a table for determining the rotation direction with respect to the q-axis of the combined vector of the voltage command values for each phase of dq. FIG. 8 is a diagram for explaining the rotation direction of the combined vector when the q-phase current target value is positive. FIG. 9 is a diagram illustrating the rotation direction of the combined vector in the dq orthogonal coordinates when the q-phase current target value is positive. FIG. 10 is a diagram illustrating the rotation direction of the combined vector when the q-phase current target value is negative. FIG. 11 is a diagram for explaining the rotation direction of the combined vector in the dq orthogonal coordinates when the q-phase current target value is negative. FIG. 12 is a diagram showing a map of limit values for limiting the q-phase current target value created using the electrical angular velocity as a parameter. FIG. 13 is a flowchart illustrating a processing procedure in the motor control device according to the embodiment. FIG. 14 is a system diagram of a motor control device according to another embodiment. FIG. 15 is a system diagram of the switch controller in the selection means. FIG. 16 is a flowchart illustrating a processing procedure in a motor control device according to another embodiment.

一実施の形態におけるモータ制御装置が適用されるアクチュエータは、図1に示すように、回転部材たるピニオンギア1と直動部材たるラック軸2とを有してピニオンギア1の回転運動をラック軸2の直線運動に変換する運動変換機構Hと、ピニオンギア1に連結されるロータRを有するモータMとを備えて構成されている。   As shown in FIG. 1, the actuator to which the motor control device in one embodiment is applied has a pinion gear 1 that is a rotating member and a rack shaft 2 that is a linear motion member, and the rotational movement of the pinion gear 1 is a rack shaft. The motion conversion mechanism H which converts into 2 linear motions, and the motor M which has the rotor R connected with the pinion gear 1 are comprised.

詳しくは、ピニオンギア1は、ラック軸2のラック歯2aに歯合されており、モータMを駆動してピニオンギア1を回転駆動すると、ラック軸2を直線運動させることが可能とされている。   Specifically, the pinion gear 1 is meshed with the rack teeth 2a of the rack shaft 2, and when the motor M is driven to rotationally drive the pinion gear 1, the rack shaft 2 can be linearly moved. .

なお、運動変換機構Hは、上記したところでは、ピニオンギアとラック軸2とで構成されたラックピニオン機構とされているが、これ以外にも、回転部材と摩擦車とし直動部材を軸としてもよいし、ボール螺子ナットおよび螺子軸の一方を回転部材として他方を直動部材とする送り螺子機構とされてもよい。また、ピニオンギア1とロータRとの間に歯車機構等で構成される減速機を介装し、ロータRの回転運動を減速して上記ピニオンギア1に伝達するようにしてもよい。   In the above description, the motion conversion mechanism H is a rack and pinion mechanism composed of a pinion gear and a rack shaft 2. However, in addition to this, a rotary member and a friction wheel are used as a shaft and a linear motion member is used as a shaft. Alternatively, a feed screw mechanism in which one of the ball screw nut and the screw shaft is a rotating member and the other is a linear motion member may be used. Further, a reduction gear constituted by a gear mechanism or the like may be interposed between the pinion gear 1 and the rotor R, and the rotational motion of the rotor R may be reduced and transmitted to the pinion gear 1.

そして、当該アクチュエータは、上述のようにモータMによってピニオンギア1を回転駆動し、さらに、ピニオンギア1の回転によってラック軸2を直動させるようになっており、直動アクチュエータとして機能するとともに、ピニオンギア1とラック軸2が軸方向の直線相対運動を呈すると、回転部材であるピニオンギア1が回転運動を呈することになり、このピニオンギア1の回転運動がモータMのロータRに伝達されることになるので、モータMの発生トルクでピニオンギア1の回転運動を抑制してラック軸2の制動を行うことが可能となる。   The actuator rotates the pinion gear 1 by the motor M as described above, and further moves the rack shaft 2 directly by the rotation of the pinion gear 1, and functions as a linear actuator. When the pinion gear 1 and the rack shaft 2 exhibit a linear relative motion in the axial direction, the pinion gear 1 that is a rotating member exhibits a rotational motion, and the rotational motion of the pinion gear 1 is transmitted to the rotor R of the motor M. Therefore, the rack shaft 2 can be braked by suppressing the rotational movement of the pinion gear 1 with the torque generated by the motor M.

つづき、モータMは、この場合、筒状のフレーム10と、フレーム10の内周側に設けた電機子であるステータSと、フレーム10に回転自在に軸支されるロータRとを備え三相ブラシレスモータとして構成され、詳しくは、ステータSは、複数のティースを備えた環状のステータコア11と、各ティースに巻回されたU,V,W相の各相における巻線12とを備えており、他方のロータRは、螺子軸1の一端に連結されるシャフト13と、シャフト13の中間部外周に装着された駆動用磁石14とを備えている。   Subsequently, the motor M includes a cylindrical frame 10, a stator S that is an armature provided on the inner peripheral side of the frame 10, and a rotor R that is rotatably supported by the frame 10. Specifically, the stator S includes a ring-shaped stator core 11 having a plurality of teeth, and windings 12 in U, V, and W phases wound around the teeth. The other rotor R includes a shaft 13 connected to one end of the screw shaft 1 and a driving magnet 14 attached to the outer periphery of the intermediate portion of the shaft 13.

なお、駆動用磁石14は、駆動用磁石14を所定数の極数を実現できるようにブロック化してシャフト13の外周に接着されるか、環状に形成して分割着磁されてシャフト13の外周に嵌着される。   The drive magnet 14 is formed into a block so that a predetermined number of poles can be realized and bonded to the outer periphery of the shaft 13 or formed in an annular shape and divided and magnetized so as to have an outer periphery of the shaft 13. To be fitted.

また、このモータMには、ロータRの回転角(電気角)θを検出するために、回転角センサ15が搭載されており、具体的にはたとえば、回転角センサ15は、シャフト13に設けたレゾルバコアとフレーム10に設けられるレゾルバコアに対向するレゾルバステータとを備え、さらに、電気角θから電気角速度ωを得られるようになっている。なお、電気角θから電気角速度ωを演算する演算部を別途設けるのであれば、他にも、光学式のエンコーダを採用してもよいし、ロータRにセンシング用磁石を設ける場合にはホール素子やMR素子等の磁気センサをフレーム10に設けるとした構成としてもよい。   The motor M is equipped with a rotation angle sensor 15 for detecting the rotation angle (electrical angle) θ of the rotor R. Specifically, for example, the rotation angle sensor 15 is provided on the shaft 13. The resolver core and the resolver stator provided on the frame 10 are opposed to the resolver core, and the electrical angular velocity ω can be obtained from the electrical angle θ. In addition, as long as a calculation unit for calculating the electrical angular velocity ω from the electrical angle θ is separately provided, an optical encoder may be employed, or in the case where a sensing magnet is provided in the rotor R, a Hall element is used. A magnetic sensor such as an MR element or the like may be provided on the frame 10.

他方、モータ制御装置20は、基本的には、モータMを比例積分制御する。具体的には、モータ制御装置20は、比例積分制御に当たり、モータMのU,V,Wの三相の巻線12に流れる電流をdq座標におけるdq各相の電流に変換する二相変換を行い、このdq各相の電流値id,iqとdq各相の電流目標値id,iqとの偏差εd,εqを求め、dq各相毎に偏差εd,εqに比例ゲインKPを乗じた値と、偏差εd,εqを積分して積分ゲインKIを乗じた値とを加算してdq各相の電圧指令値Vd,Vqを演算し、電圧指令値Vd,Vqを実際の三相の電圧指令値Vu,Vv,Vwに変換し、電圧指令値Vu,Vv,Vwに応じたPWM開度(デューティ比)で三相の巻線12に電圧を印加してモータMの駆動電流を制御する。 On the other hand, the motor control device 20 basically performs proportional-integral control of the motor M. Specifically, the motor control device 20 performs two-phase conversion for converting the current flowing through the three-phase windings U, V, and W of the motor M into the current of each of the dq coordinates in the dq coordinates in the proportional-integral control. The deviations εd and εq between the current values id and iq of each phase of dq and the current target values id * and iq * of each phase of dq are obtained, and the proportional gain KP is multiplied by the deviations εd and εq for each phase of dq. The value and the value obtained by integrating the deviations εd and εq and multiplied by the integral gain KI are added to calculate the voltage command values Vd and Vq for each phase of dq, and the voltage command values Vd and Vq are calculated as the actual three-phase voltages. It converts into command value Vu, Vv, Vw, applies a voltage to the three-phase winding 12 with PWM opening degree (duty ratio) according to voltage command value Vu, Vv, Vw, and controls the drive current of the motor M .

ここで、dq各相の電圧指令値Vd,Vqの合成ベクトルが飽和する、すなわち、dq各相の電圧指令値Vd,Vqの合成ベクトルの長さが飽和電圧Vsに達すると、d相電流idおよびq相電流iqが互いに他相に干渉することと、電気角速度ωに比例する誘導起電力の影響によって各相の電流値id,iqを各相の電流目標値id*,iq*通りに制御することができなくなり、モータMに狙い通りのトルクを発生させることができなくなる。   Here, when the combined vector of the voltage command values Vd and Vq for each phase of dq is saturated, that is, when the length of the combined vector of the voltage command values Vd and Vq for each phase of dq reaches the saturation voltage Vs, the d-phase current id. And the q-phase current iq interfere with each other and the influence of the induced electromotive force proportional to the electrical angular velocity ω, the current values id and iq of each phase are controlled in accordance with the current target values id * and iq * of each phase. And the motor M cannot generate the torque as intended.

詳しくは、dq変換によるd相およびq相は、実際のモータMにおけるU,V,Wの三相巻線12と等価な直交二相巻線に変換されたものであるので、実際のd相電圧とq相の電圧の合成ベクトル長さの値は、飽和電圧Vsを超える値をとることができないが、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルの長さ(Vd+Vq1/2は、上記制限とは無関係に各電流目標値id*,iq*と上記d相およびq相の電流値id,iqの偏差εd,εqに基づいて演算されるので、上記制限を超える場合がある。ここで、飽和電圧Vsは、dq座標における電源Eの電圧に相当する値である。 Specifically, the d-phase and the q-phase by the dq conversion are converted into orthogonal two-phase windings equivalent to the three-phase windings 12 of U, V, and W in the actual motor M. The value of the combined vector length of the voltage and the q-phase voltage cannot take a value exceeding the saturation voltage Vs, but the length of the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq (Vd 2 + Vq 2 ) 1/2 is calculated based on the respective current target values id *, iq * and the deviations εd, εq of the d-phase and q-phase current values id, iq regardless of the above limitation. The limit may be exceeded. Here, the saturation voltage Vs is a value corresponding to the voltage of the power source E in the dq coordinates.

したがって、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さが飽和電圧Vsを超える場合、すなわち、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和している場合には、これらd相電圧指令値Vdおよびq相電圧指令値Vqを三相の巻線12にそれぞれ印加すべき電圧指令値Vu,Vv,Vwに変換しても、実際には電圧指令値Vu,Vv,Vw通りには、三相各相の巻線12を印加できないため、各電流値id,iqが各電流目標値id*,iq*に追随できず、各電流目標値id*,iq*と各電流値id,iqとの偏差εd,εqの絶対値が大きくなってしまう。   Therefore, when the combined vector length of the d-phase voltage command value Vd and the q-phase voltage command value Vq exceeds the saturation voltage Vs, that is, the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq is saturated. If the d-phase voltage command value Vd and the q-phase voltage command value Vq are converted to the voltage command values Vu, Vv, Vw to be applied to the three-phase windings 12, respectively, Since the three-phase windings 12 cannot be applied to the values Vu, Vv, and Vw, the current values id and iq cannot follow the current target values id * and iq *, and the current target values id *. , Iq * and the current values id, iq, the absolute values of deviations εd, εq become large.

すると、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和しているにもかかわらず、d相電圧指令値Vdおよびq相電圧指令値Vqの絶対値は増大するので、飽和の影響でモータMのトルクにリップルを生じて制御性が悪化することになる。   Then, the absolute values of the d-phase voltage command value Vd and the q-phase voltage command value Vq increase even though the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq is saturated. As a result, ripples are generated in the torque of the motor M and the controllability is deteriorated.

他方、ロータRをマイナスの速度方向に回転させるトルクをモータMに発生させる場合にq軸の電流値iqがプラスの値を持つという符号の採りかたをして、d軸を縦軸としq軸を横軸に採るdq直交座標では、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和している状態において、q相の電流値iqが最大値を採るときのd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルのq軸に対する角度(ベクトル角度)は、図2に示すように、電気角速度ωの変化によって変化する。なお、説明の都合上と理解の容易のため、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルのベクトル角度は、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルがdq直交座標におけるq軸に対してなす角度として説明するが、本発明の意図するところは、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルのベクトル角度を制御することによってq相電流を適切に制御するところにあり、dq直交座標の原点から伸びる任意の直線を基準として、この直線に対してd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルのなす角度をベクトル角度としてもよく、たとえば、当該直線をdq直交座標におけるd軸とするとしてもよい。   On the other hand, when the motor M generates torque that rotates the rotor R in the negative speed direction, the sign that the q-axis current value iq has a positive value is used, and the d-axis is the vertical axis and q In the dq orthogonal coordinate with the axis as the horizontal axis, the d-phase when the q-phase current value iq takes the maximum value when the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq is saturated. The angle (vector angle) of the combined vector of the voltage command value Vd and the q-phase voltage command value Vq with respect to the q axis changes as the electrical angular velocity ω changes as shown in FIG. For convenience of explanation and easy understanding, the vector angle of the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq is the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq. Will be described as the angle formed with respect to the q axis in the dq orthogonal coordinates, but the intent of the present invention is to control the vector angle of the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq. The phase current is appropriately controlled, and an angle formed by a combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq with respect to an arbitrary straight line extending from the origin of the dq orthogonal coordinates is used as a reference. It may be a vector angle, for example, the straight line may be the d-axis in dq orthogonal coordinates.

図2中実線で示すように、ロータRがマイナスの速度を持って逆回転しており、このロータRの逆回転を助勢するトルクをモータMが発生している場合(力行状態)には、q相の電流値iqが最大値となる合成ベクトルの角度は、電気角速度ωの減少(マイナス側に増大)によって0度から時計回りに−90度へ近付き、最終的には、−90度となり、対して、ロータRがプラスの速度を持って正回転しており、このロータRの正回転を抑制するトルクをモータMが発生している場合(制動状態)には、q相の電流値iqが最大値となる合成ベクトルの角度は、電気角速度ωの上昇によって0度から反時計回りに90度へ近付き、最終的には、90度となる。   As shown by the solid line in FIG. 2, when the rotor R is reversely rotated at a negative speed and the motor M generates torque that assists the reverse rotation of the rotor R (power running state), The angle of the combined vector at which the q-phase current value iq becomes the maximum value approaches 0 to 90 degrees clockwise from 0 degrees as the electrical angular velocity ω decreases (increases to the minus side), and finally becomes -90 degrees. On the other hand, when the rotor R is rotating forward at a positive speed and the motor M is generating torque that suppresses the forward rotation of the rotor R (braking state), the current value of the q phase The angle of the combined vector at which iq becomes the maximum value approaches 90 degrees counterclockwise from 0 degrees as the electrical angular velocity ω increases, and finally becomes 90 degrees.

なお、図2中破線で示すように、ロータRがプラスの速度を持って正回転しており、このロータRの正回転を助勢するトルクをモータMが発生している場合(力行状態)には、q相の電流値iqが最小値(マイナス側の最大値)となる合成ベクトルの角度は、電気角速度ωの上昇によって−180度から反時計回りに−90度へ近付き、最終的には、−90度となり、対し、ロータRがマイナスの速度を持って逆回転しており、このロータRの逆回転を抑制するトルクをモータMが発生している場合(制動状態)には、q相の電流値iqが最小値(マイナス側の最大値)となる合成ベクトルの角度は、電気角速度ωの減少(マイナス側に増大)によって180度から時計回りに90度へ近付き、最終的には、90度となる。   In addition, as shown by the broken line in FIG. 2, when the rotor R is rotating forward with a positive speed and the motor M is generating torque that assists in the forward rotation of the rotor R (power running state). Is that the angle of the combined vector at which the q-phase current value iq becomes the minimum value (maximum value on the minus side) approaches −90 degrees counterclockwise from −180 degrees as the electrical angular velocity ω increases. In contrast, when the rotor R is reversely rotated at a negative speed and the motor M generates a torque that suppresses the reverse rotation of the rotor R (braking state), q The angle of the combined vector at which the phase current value iq becomes the minimum value (maximum value on the minus side) approaches 180 degrees from 90 degrees clockwise due to the decrease (increase on the minus side) of the electrical angular velocity ω, and finally 90 degrees.

そして、q相電流は、モータMが出力するトルクに寄与する電流であるので、q相の電流値iqの絶対値が大きければ大きいほど、モータMの発生トルクも大きくなる。   Since the q-phase current is a current that contributes to the torque output by the motor M, the greater the absolute value of the q-phase current value iq, the greater the generated torque of the motor M.

このことから、dq各相の電圧指令値Vd,Vqの合成ベクトルが飽和する場合、合成ベクトルのq軸に対する角度を制御してやれば、飽和状態にあっても、モータMの発生トルクに寄与するq相電流を制御することができ、モータMにより大きなトルクを発生させることができる。   From this, when the combined vector of the voltage command values Vd and Vq of each phase of dq is saturated, if the angle of the combined vector with respect to the q axis is controlled, the q that contributes to the torque generated by the motor M even in the saturated state. The phase current can be controlled, and a large torque can be generated by the motor M.

これに対し、モータMをdqの二相変換を行ってd相電流idをゼロに制御するとともにd相およびq相の電圧指令値Vd,Vqの合成ベクトルが飽和すると偏差εd,εqの積分演算を中止するようにした場合、d相およびq相の電圧指令値Vd,Vqの合成ベクトルが飽和すると、図3(A)に示すように、力行状態では、d相電圧指令値Vdとq相電圧指令値Vqの合成ベクトルのq軸に対する角度は、0度から−50度程度との間で推移し、制動状態においては、80度から120度程度の間で推移する。   On the other hand, when the motor M performs two-phase conversion of dq to control the d-phase current id to zero and the combined vector of the d-phase and q-phase voltage command values Vd and Vq is saturated, the integral calculation of the deviations εd and εq If the combined vector of the d-phase and q-phase voltage command values Vd and Vq is saturated, as shown in FIG. 3A, in the powering state, the d-phase voltage command value Vd and the q-phase The angle of the combined vector of the voltage command value Vq with respect to the q-axis changes between about 0 degrees and −50 degrees, and changes between about 80 degrees and about 120 degrees in the braking state.

さらに、弱め界磁制御を行い、かつ、d相およびq相の電圧指令値Vd,Vqの合成ベクトルが飽和すると偏差εd,εqの積分演算を中止してモータMを制御する場合、図3(B)に示すように、力行状態では、d相電圧指令値Vdとq相電圧指令値Vqの合成ベクトルのq軸に対する角度は、−20度から−50度程度との間で推移し、制動状態においては、30度から70度程度の間で推移する。   Further, when field weakening control is performed and the motor M is controlled by stopping the integral calculation of the deviations εd and εq when the combined vector of the d-phase and q-phase voltage command values Vd and Vq is saturated, FIG. As shown in FIG. 4, in the power running state, the angle of the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq with respect to the q axis changes between about −20 degrees and −50 degrees, and in the braking state Changes between 30 degrees and 70 degrees.

なお、図3(A),(B)の各グラフは、モータMを従来からある制御手法によって制御した場合の結果であり、具体的には、各グラフは、ラック軸2に正弦波振動を与えてストロークさせて、ストロークの途中でd相およびq相の電圧指令値Vd,Vqの合成ベクトルが飽和するようにラック軸2を往復動させた場合におけるd相電圧指令値Vdとq相電圧指令値Vqの合成ベクトルのq軸に対する角度を示しており、モータMにロータRを逆回転させるトルクを与えるようにしている。また、ラック軸2に正弦波振動を与えてストロークさせているため、各グラフの両端および中央付近ではストローク速度は低くなるのでd相およびq相の電圧指令値Vd,Vqの合成ベクトルが飽和していないため、d相電圧指令値Vdとq相電圧指令値Vqの合成ベクトルのq軸に対しなす角度に変化が現れている。さらに、電気角速度ωの絶対値が一番大きくなるのは、横軸の1/4および3/4の部分である。   3A and 3B are results when the motor M is controlled by a conventional control method. Specifically, each graph shows sinusoidal vibration on the rack shaft 2. The d-phase voltage command value Vd and the q-phase voltage when the rack shaft 2 is reciprocated so that the combined vector of the d-phase and q-phase voltage command values Vd and Vq is saturated during the stroke. The angle with respect to the q-axis of the combined vector of the command value Vq is shown, and a torque that reversely rotates the rotor R is applied to the motor M. Further, since the rack shaft 2 is stroked by applying sinusoidal vibration, the stroke speed becomes low near both ends and the center of each graph, so that the combined vector of the d-phase and q-phase voltage command values Vd and Vq is saturated. Therefore, there is a change in the angle formed with respect to the q axis of the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq. Furthermore, the absolute value of the electrical angular velocity ω is greatest at the 1/4 and 3/4 portions of the horizontal axis.

上記したところから、理解できるように、モータMを従来と同様に制御したのでは、d相およびq相の電圧指令値Vd,Vqの合成ベクトルが飽和しても、本発明のようにベクトル角度制御が行われないため、電気角速度ωの絶対値の上昇に対して合成ベクトルのq軸に対する角度の絶対値が減少してしまい、q相の電流値iqの絶対値が最大となるように制御されていない。   As can be understood from the above description, if the motor M is controlled in the same manner as in the past, even if the resultant vector of the d-phase and q-phase voltage command values Vd and Vq is saturated, the vector angle is as in the present invention. Since the control is not performed, the absolute value of the angle of the combined vector with respect to the q axis decreases with the increase of the absolute value of the electrical angular velocity ω, and the absolute value of the q-phase current value iq is maximized. It has not been.

そこで、本発明の一実施の形態におけるモータ制御装置20にあっては、dq各相の電圧指令値Vd,Vqの合成ベクトルのq軸に対する角度を制御することが可能なベクトル角度制御手段を備えている。   Therefore, the motor control device 20 according to the embodiment of the present invention includes vector angle control means capable of controlling the angle of the combined vector of the voltage command values Vd and Vq of each phase of dq with respect to the q axis. ing.

そして、このベクトル角度制御手段によって、dq各相の電圧指令値Vd,Vqの合成ベクトルのq軸に対する角度を制御することによって、dq各相の電圧指令値Vd,Vqの合成ベクトルが飽和する場合にあっても、モータMが発生するトルクを適切に制御することが可能であるとともに、また、モータMに従来のモータ制御装置に比較してより一層大きなトルクを発生させることが可能である。   When the vector angle control unit controls the angle of the combined vector of the voltage command values Vd and Vq for each phase of dq with respect to the q axis, the combined vector of the voltage command values Vd and Vq for each phase of dq is saturated. Even in this case, it is possible to appropriately control the torque generated by the motor M, and it is possible to cause the motor M to generate a larger torque than that of the conventional motor control device.

また、このモータ制御装置20にあっては、モータMにより一層大きなトルクを発生させることが可能であるので、トルク制御範囲が大きくなるとともに、より小型のモータを使用してもアクチュエータの必要推力を確保することができる。換言すれば、より小さなモータを使用することができ、アクチュエータのコストを低減することが可能となり、アクチュエータを使用する装置へのアクチュエータの搭載性をも向上させることが可能となる。   Further, in this motor control device 20, since a larger torque can be generated by the motor M, the torque control range is increased, and the necessary thrust of the actuator can be obtained even if a smaller motor is used. Can be secured. In other words, a smaller motor can be used, the cost of the actuator can be reduced, and the mountability of the actuator in a device using the actuator can be improved.

つづいて、より具体的にモータ制御装置20を説明する。このモータ制御装置20は、具体的には、図4に示すように、各電流目標値id*,iq*を演算する電流目標値演算部21と、q相電流目標値iq*がリミット値を超える場合にこれをリミット値Ilimに制限するq相電流制限手段たる電流制限部22と、上記巻線12の三相のうち二相に流れる電流をdq変換してd相電流値idおよびq相電流値iqを演算する二相電流演算部23と、各電流目標値id*,iq*と上記d相およびq相の電流値id,iqに基づいてd相電圧指令値Vdおよびq相電圧指令値Vqを演算する比例積分制御部24と、d相およびq相の各電圧指令値Vd,Vqの合成ベクトルのq軸に対する角度を制御するベクトル角度制御手段たるベクトル角度制御部25と、d相およびq相の各電圧指令値Vd,Vqの合成ベクトルが飽和しているか否かを判断して比例積分制御とベクトル角度制御のいずれかを選択する選択手段である飽和判断部26と、d相電圧指令値Vdおよびq相電圧指令値VqをU,V,Wの三相各相の電圧指令値Vu,Vv,Vwに変換する三相変換演算部27と、三相変換演算部27が出力する上記各電圧指令値Vu,Vv,Vwのうち、PWM開度が全開、すなわち、PWMデューティ比が最大値以上となる場合に、PWMデューティ比を最大値とする値に電圧指令値Vu,Vv,Vwを制限するリミッタ28と、モータMのU,V,Wのうち二相iu,ivに流れる電流値を検出する電流検出器29と、電圧指令値Vu,Vv,Vwに応じて所定のPWM開度でU,V,Wの各巻線12を印加するPWM回路30とを備えて構成されている。   Next, the motor control device 20 will be described more specifically. Specifically, as shown in FIG. 4, the motor control device 20 includes a current target value calculation unit 21 that calculates each current target value id *, iq *, and a q-phase current target value iq * that has a limit value. A current limiter 22 serving as a q-phase current limiter that limits this to a limit value Ilim, and a current flowing in two phases of the three phases of the winding 12 by dq conversion to obtain a d-phase current value id and a q-phase A two-phase current calculation unit 23 for calculating a current value iq, and a d-phase voltage command value Vd and a q-phase voltage command based on each current target value id *, iq * and the d-phase and q-phase current values id, iq A proportional-integral control unit 24 that calculates a value Vq, a vector angle control unit 25 that is a vector angle control unit that controls the angle of the combined vector of the d-phase and q-phase voltage command values Vd and Vq with respect to the q-axis, and d-phase And q-phase voltage command values Vd, Vq Saturation determination unit 26, which is a selection unit that determines whether the vector is saturated and selects either proportional integral control or vector angle control, and d-phase voltage command value Vd and q-phase voltage command value Vq are set to U , V, W of the three-phase voltage command values Vu, Vv, Vw, and the voltage command values Vu, Vv, Vw output from the three-phase conversion calculator 27 When the PWM opening is fully open, that is, when the PWM duty ratio is greater than or equal to the maximum value, the limiter 28 that limits the voltage command values Vu, Vv, and Vw to values that maximize the PWM duty ratio, and the U of the motor M , V, and W, a current detector 29 that detects a current value flowing in two phases iu and iv, and each winding 12 of U, V, and W with a predetermined PWM opening according to the voltage command values Vu, Vv, and Vw And a PWM circuit 30 for applying voltage It has been.

そして、このモータ制御装置20は、基本的には、電流目標値演算部21によって決定されるd相およびq相の各電流目標値id*,iq*と、二相電流演算部23の演算結果として得られるd相およびq相の電流値id,iqとのそれぞれの偏差εd,εqに基づいてモータMを比例積分制御する。なお、偏差εd,εqを微分して得られる要素を追加して比例微分積分制御を行うようにしてもよい。   The motor control device 20 basically includes the d-phase and q-phase current target values id * and iq * determined by the current target value calculation unit 21 and the calculation result of the two-phase current calculation unit 23. The motor M is subjected to proportional-integral control based on the deviations εd and εq from the d-phase and q-phase current values id and iq obtained as follows. Note that proportional differential integration control may be performed by adding an element obtained by differentiating the deviations εd and εq.

ここで、電流目標値演算部21は、d相およびq相の電流目標値id*,iq*を所定の制御則に則って上記比例積分制御部24に出力するものであるが、所定の制御側は、アクチュエータが使用される機器に適するものが採用される。   Here, the current target value calculation unit 21 outputs the d-phase and q-phase current target values id * and iq * to the proportional-plus-integral control unit 24 according to a predetermined control law. For the side, one suitable for the device in which the actuator is used is adopted.

また、この電流目標値演算部21は、基本的には、d相電流目標値id*を0としてq相電流目標値iq*を演算するようになっているが、ロータの電気角速度ωが大きい場合に、d相電流目標値id*をマイナスの値に誘導して弱め界磁制御をするようにしてもよいことは無論である。   Further, the current target value calculation unit 21 basically calculates the q-phase current target value iq * by setting the d-phase current target value id * to 0, but the electrical angular velocity ω of the rotor is large. In this case, of course, the field weakening control may be performed by inducing the d-phase current target value id * to a negative value.

そして、電流検出器29としては、ホール素子や巻線等を用いた非接触型や、三相の巻線12のいずれか二つに直列介装した抵抗の電圧降下から電流値を得る電流センサを用いればよい。   The current detector 29 may be a non-contact type using a Hall element, a winding, or the like, or a current sensor that obtains a current value from a voltage drop of a resistor connected in series with any two of the three-phase windings 12. May be used.

また、上記電流検出器29は、U,V,W相のうち二相に流れる電流値を検出すればよく、これは、二相の電流値が分かればロータRの電気角θから後述する下記式(1)を用いてd相およびq相の電流値に変換可能であるからである。   The current detector 29 only needs to detect a current value flowing in two phases of the U, V, and W phases. If the current values of the two phases are known, this will be described later from the electrical angle θ of the rotor R. This is because it can be converted into d-phase and q-phase current values using Equation (1).

さらに、PWM回路30は、図5に示すように、電源Eと、モータMにおける三相各相の巻線12に電流供給を行う6つのスイッチング素子30aと、各スイッチング素子30aにPWMパルス信号を与えるマルチバイブレータ等の図示しないパルス発生器とを備えて構成されており、このPWM回路31は、比例積分制御部21が出力する各電圧指令値に基づいて所定のPWM開度で上記各相に電流供給を行う。   Further, as shown in FIG. 5, the PWM circuit 30 includes a power source E, six switching elements 30a for supplying current to the windings 12 of the three phases of the motor M, and a PWM pulse signal to each switching element 30a. The PWM circuit 31 includes a pulse generator (not shown) such as a multivibrator to be applied. The PWM circuit 31 is configured to change the phase to a predetermined PWM opening based on each voltage command value output from the proportional integration control unit 21. Supply current.

そして、二相電流演算部23は、電気角θを用いて、以下の式(1)に示したように、上記各電流値iv,iuをd相およびq相の電流値id,iqへ変換する演算を行い、この変換されたd相およびq相の電流値id,iqを比例積分制御部24へ出力する。

Figure 2008067582
比例積分制御部24は、各電流目標値id*,iq*とd相およびq相の電流値id,iqの各偏差εd,εqを求め、上記各偏差εd,εqをそれぞれ積分した値に積分ゲインKIを乗じるとともに、各偏差εd,εqに比例ゲインKPを乗じることで得られる二つの値を加算して、d相電圧指令値Vdおよびq相電圧指令値Vqを演算する。 Then, using the electrical angle θ, the two-phase current calculation unit 23 converts the current values iv and iu into d-phase and q-phase current values id and iq, as shown in the following formula (1). The converted d-phase and q-phase current values id and iq are output to the proportional-plus-integral control unit 24.
Figure 2008067582
The proportional-integral control unit 24 calculates each current target value id *, iq * and each of the d-phase and q-phase current values id, iq, and εd, εq, and integrates the values obtained by integrating the deviations εd, εq. The gain KI is multiplied, and two values obtained by multiplying the deviations εd and εq by the proportional gain KP are added to calculate the d-phase voltage command value Vd and the q-phase voltage command value Vq.

具体的には、各相毎の偏差εd,εqは、それぞれ、εd=id*−id、εq=iq*−iqの計算式によって演算され、各偏差εd,εqの積分については、各相毎に積分値fd,fqは、それぞれ前回制御時に演算されたd相およびq相の積分値fdpre,fqpreに対応する相の偏差εd,εqを加算演算することによりd相およびq相の積分値を演算される。つまり、d相の積分値fdはfd=fdpre+εdで,q相の積分値fqはfq=fqpre+εqでそれぞれを演算される。   Specifically, the deviations εd and εq for each phase are calculated by the calculation formulas of εd = id * -id and εq = iq * -iq, and the integration of the deviations εd and εq is calculated for each phase. The integral values fd and fq are calculated by adding the phase deviations εd and εq corresponding to the d-phase and q-phase integral values fdpre and fqpre that were calculated at the previous control, respectively. Calculated. That is, the d-phase integration value fd is calculated by fd = fdpre + εd, and the q-phase integration value fq is calculated by fq = fqpre + εq.

したがって、d相の電圧指令値Vdは、Vd=KI・fd+KP・εdで演算され、q相の電圧指令値Vqは、Vq=KI・fq+KP・εqで演算され、上記した比例積分制御部24は、上記のようにして演算した各電圧指令値Vd,Vqを出力する。   Therefore, the d-phase voltage command value Vd is calculated by Vd = KI · fd + KP · εd, the q-phase voltage command value Vq is calculated by Vq = KI · fq + KP · εq, and the proportional-integral control unit 24 described above is The voltage command values Vd and Vq calculated as described above are output.

すなわち、モータ制御装置20の場合、電流ループは、二相電流演算部23、比例積分制御部24および制御対象であるモータMとで作られる電流フィードバックループとなる。   That is, in the case of the motor control device 20, the current loop is a current feedback loop formed by the two-phase current calculation unit 23, the proportional integration control unit 24, and the motor M to be controlled.

そして、さらに、d相電圧指令値Vdおよびq相電圧指令値Vqは、上記したようにU,V,Wの各相の電圧指令値に変換する三相変換演算部27に入力され、この三相変換演算部27は、下記式(2)の演算によって、上記d相電圧指令値Vdおよびq相電圧指令値Vqを実際のU,V,W各相の電圧指令値Vu,Vv,Vwへ変換し、この変換された電圧指令値Vu,Vv,VwをPWM回路30に出力する。なお、リミッタ28は、PWM回路30におけるPWM開度が最大から最小となる値の範囲内になるように、電圧指令値Vu,Vv,Vwを制限するために設けられているものである。

Figure 2008067582
以上によって、モータ制御装置20は、基本的には、電流ループ処理を行って比例積分制御によってモータMを駆動するようになっている。 Further, the d-phase voltage command value Vd and the q-phase voltage command value Vq are input to the three-phase conversion calculation unit 27 that converts the voltage command values of the U, V, and W phases as described above. The phase conversion calculation unit 27 converts the d-phase voltage command value Vd and the q-phase voltage command value Vq to the actual voltage command values Vu, Vv, Vw of the U, V, and W phases by the calculation of the following equation (2). The converted voltage command values Vu, Vv, and Vw are output to the PWM circuit 30. The limiter 28 is provided to limit the voltage command values Vu, Vv, and Vw so that the PWM opening in the PWM circuit 30 is within a range of values from the maximum to the minimum.
Figure 2008067582
As described above, the motor control device 20 basically performs current loop processing and drives the motor M by proportional-integral control.

つづき、本実施の形態における発明のモータ制御装置20にあっては、dq各相の電圧指令値Vd,Vqの合成ベクトルのq軸に対する角度を制御することができるようにベクトル角度制御部25を備えており、ベクトル角度を制御することで、dq各相の電圧指令値Vd,Vqの合成ベクトルが飽和する場合にあっても、モータMが発生するトルクを適切に制御することができるようになっている。   Subsequently, in the motor control device 20 of the present invention in the present embodiment, the vector angle control unit 25 is controlled so that the angle of the combined vector of the voltage command values Vd and Vq of each phase of dq with respect to the q axis can be controlled. In addition, by controlling the vector angle, the torque generated by the motor M can be appropriately controlled even when the combined vector of the voltage command values Vd and Vq of each phase of dq is saturated. It has become.

このベクトル角度制御部25は、ベクトル角度目標値θdqを求めて、このベクトル角度目標値θdqと合成ベクトル長さ(Vd+Vq1/2から、d相の電圧指令値VdをVd=(Vd+Vq1/2・sinθdqで演算し、q相の電圧指令値VqをVq=(Vd+Vq1/2・cosθdqで演算して、これらdq各相の電圧指令値Vd,Vqを三相変換演算部27に出力するようになっている。 The vector angle control unit 25 obtains a vector angle target value theta dq, from this vector angle target value theta dq synthetic vector length (Vd 2 + Vq 2) 1/2 , Vd voltage command value Vd of the d-phase = (Vd 2 + Vq 2 ) 1/2 · sin θ dq , the q-phase voltage command value Vq is calculated by Vq = (Vd 2 + Vq 2 ) 1/2 · cos θ dq , and the voltage of each phase of these dq The command values Vd and Vq are output to the three-phase conversion calculation unit 27.

なお、sinθdq、cosθdqの演算にあたっては、実際には、ベクトル角度制御部25は、sin関数マップを用いるようにしている。このsin関数マップは、もともと、三相変換演算部27がdq−UVW変換の際に使用するため、sin関数マップをベクトル角度制御部25でも使用することによって、モータ制御装置20にsin関数マップを重複して保持させる必要はない。 In calculating sin θ dq and cos θ dq , the vector angle control unit 25 actually uses a sin function map. This sin function map is originally used when the three-phase conversion calculation unit 27 performs the dq-UVW conversion. Therefore, by using the sin function map also in the vector angle control unit 25, the sin function map is provided to the motor control device 20. There is no need to keep duplicates.

もどって、詳細に説明すると、ベクトル角度制御部25は、まず、ロータRの電気角速度ωに基づいて、q相電流目標値iq*がプラスである場合には、q相電流iqが最大値をとるベクトル角度を、q相電流目標値iq*がマイナスである場合にはq相電流iqが最小値をとるベクトル角度をそれぞれベクトル角度最終値θdq*とする。 Returning in detail, the vector angle control unit 25 first determines that the q-phase current iq has the maximum value based on the electrical angular velocity ω of the rotor R when the q-phase current target value iq * is positive. When the q-phase current target value iq * is negative, the vector angle at which the q-phase current iq takes the minimum value is set as the vector angle final value θ dq *.

具体的には、上記ベクトル角度最終値θdq*は電気角速度ωに依存して変化するので、予め、図6(A),(B)に示すように、電気角速度ωをパラメータとして変動するベクトル角度最終値θdq*をマップ化しておき、ベクトル角度制御部25で電気角速度ωをモニタし、当該マップを参照してベクトル角度最終値θdq*をマップ演算するようにしてある。 Specifically, since the vector angle final value θ dq * varies depending on the electrical angular velocity ω, as shown in FIGS. 6A and 6B, a vector that varies in advance using the electrical angular velocity ω as a parameter in advance. The final angle value θ dq * is mapped, the electric angle velocity ω is monitored by the vector angle control unit 25, and the final vector angle value θ dq * is calculated by referring to the map.

このようにマップ演算を行うことによって、ベクトル角度を制御するのに必要なベクトル角度最終値θdq*を簡単に得ることができ、これによって、演算時間の短縮を図って制御応答性を向上することができ、さらには、コスト高となる高性能なCPUを用いなければならない事態も回避することができる。 By performing the map calculation in this way, the final vector angle value θ dq * necessary for controlling the vector angle can be easily obtained, thereby reducing the calculation time and improving the control response. In addition, it is possible to avoid a situation where a high-performance CPU, which is expensive, must be used.

そして、上記マップは、図6(A)に示したモータMにロータRを逆回転させるトルクを発生させる場合におけるマップと、図6(B)に示したモータMにロータRを正回転させるトルクを発生させる場合におけるマップの二種類が用意される。   The map shown in FIG. 6A includes a map in the case where the motor M shown in FIG. 6A generates a torque that reversely rotates the rotor R, and a torque that causes the motor M shown in FIG. There are two types of maps for generating

なお、実際には、ベクトル角度最終値θdq*は、電気角速度ωの変化に対して連続して変化するが、マップ作成に当たっては、電気角速度ωの任意の値ずつ変化させた時の不連続なベクトル角度最終値θdq*として、実際にモニタされた電気角速度ωに対応するベクトル角度最終値θdq*がマップ上に存在しない場合には、線形補間によってベクトル角度最終値θdq*を演算するようにしておけばよい。 Actually, the final vector angle value θ dq * continuously changes with respect to the change in the electrical angular velocity ω. However, when creating the map, the discontinuity is obtained when the electrical angular velocity ω is changed by an arbitrary value. such as a vector angle final value theta dq *, if not actually present in the vector angle final value theta dq * is on a map corresponding to the monitored electrical angular velocity ω, the operation vector angle final value theta dq * by linear interpolation Just do it.

さらに、マップ演算を行う代わりに、θdq*を式(3)によって近似的に求め、モータMにロータRを逆回転させるトルクを発生させる場合には、−90度から90度の範囲でθdq を求め、モータMにロータRを正回転させるトルクを発生させる場合には、−180度から−90度および90度から180度の範囲でθdq を求めるようにしてもよい。なお、式(3)中、ωは電気角速度を示し、aは、任意の正の小さな定数である。

Figure 2008067582
つづいて、ベクトル角度制御部25は、前回制御時の電圧指令値Vd,Vqの合成ベクトルを取り込み、前回制御時の電圧指令値Vd,Vqの合成ベクトルのベクトル角度θvを今回制御に当たっての現在のベクトル角度として、ベクトル角度最終値θdq*とベクトル角度θvの角度制御偏差たるベクトル角度制御偏差εθdqと、q相電流目標値iq*の符号、および、q相電流目標値iq*とq相電流値iqの偏差である電流制御偏差ε(ε=iq*−iq)とから、図7に示すような判断を行って、合成ベクトルのq軸に対する回転方向を決定し、この回転方向からベクトル角度目標値θdqを設定するようにする。 Further, instead of performing the map calculation, θ dq * is approximately obtained by the equation (3), and when the motor M is caused to generate a torque for rotating the rotor R in the reverse direction, θ d is in a range of −90 degrees to 90 degrees. When dq * is obtained and torque for causing the motor M to rotate the rotor R forward is generated, θ dq * may be obtained in the range of −180 degrees to −90 degrees and 90 degrees to 180 degrees. In equation (3), ω represents an electrical angular velocity, and a is an arbitrary positive small constant.
Figure 2008067582
Subsequently, the vector angle control unit 25 takes in the combined vector of the voltage command values Vd and Vq at the previous control, and obtains the vector angle θv of the combined vector of the voltage command values Vd and Vq at the previous control as the current control. As the vector angle, the vector angle final value θ dq * and the vector angle control deviation εθ dq which is the angle control deviation of the vector angle θv, the sign of the q-phase current target value iq *, and the q-phase current target value iq * and the q-phase Based on the current control deviation ε qq = iq * −iq), which is a deviation of the current value iq, the determination as shown in FIG. 7 is performed to determine the rotation direction of the combined vector with respect to the q axis. From this, the vector angle target value θ dq is set.

なお、ベクトル角度θvは、電圧指令値Vd,Vqの合成ベクトルのq軸に対する角度であるが、q軸に対して合成ベクトルが反時計回りには0度から180度の間で変化し、q軸に対して合成ベクトルが時計回りには0度から−180度の間で変化するものとしてあり、また、ベクトル角度目標値θdqも同様である。 The vector angle θv is an angle of the combined vector of the voltage command values Vd and Vq with respect to the q axis, and the combined vector changes from 0 degrees to 180 degrees counterclockwise with respect to the q axis. The composite vector is assumed to change clockwise from 0 degrees to −180 degrees with respect to the axis, and the vector angle target value θ dq is the same.

また、上記ベクトル角度制御偏差εθdqは、ベクトル角度最終値θdq*とベクトル角度θvの単純偏差eθ(eθ=θdq*−θv、単位は角度)に基づいて求められる量であって、単純偏差eθが−180以上180度未満の範囲内にある場合、単純偏差eθがそのままベクトル角度制御偏差εθdqとなり、単純偏差eθが180度以上の場合、ベクトル角度制御偏差εθdqは、εθdq=eθ−360で演算され、単純偏差eθが−180度未満の場合、ベクトル角度制御偏差εθdqは、εθdq=eθ+360で演算される。したがって、ベクトル角度制御偏差εθdqは、必ず−180度以上180度未満の範囲内の値を採るように調整されていることになる。 The vector angle control deviation εθ dq is an amount obtained based on the final vector angle value θ dq * and the simple deviation eθ of the vector angle θv (eθ = θ dq * −θv, the unit is an angle). When the deviation eθ is in the range of −180 or more and less than 180 degrees, the simple deviation eθ is directly used as the vector angle control deviation εθ dq . When the deviation eθ is 180 degrees or more, the vector angle control deviation εθ dq is εθ dq = When calculated by eθ-360 and the simple deviation eθ is less than −180 degrees, the vector angle control deviation εθ dq is calculated by εθ dq = eθ + 360. Therefore, the vector angle control deviation εθ dq is always adjusted to take a value within the range of −180 degrees or more and less than 180 degrees.

上記判断では、q相電流目標値iq*の符号がプラスの場合、すなわち、モータMにロータRを逆回転させるトルクを発生させる場合であって、電流制御偏差εがプラスの値を採る状況で、ベクトル角度制御偏差εθdqが−180度以上0度未満の時には、ベクトル角度θvを時計回りに回転させ、逆に、ベクトル角度制御偏差εθdqが0度以上180度未満の時には、ベクトル角度θvを反時計回りに回転させる。 In the above determination, when the sign of the q-phase current target value iq * is positive, that is, when the motor M generates a torque that reversely rotates the rotor R, the current control deviation ε q takes a positive value. When the vector angle control deviation εθ dq is not less than −180 degrees and less than 0 degrees, the vector angle θv is rotated clockwise. Conversely, when the vector angle control deviation εθ dq is not less than 0 degrees and less than 180 degrees, the vector angle Rotate θv counterclockwise.

他方、q相電流目標値iq*の符号がプラスの場合であっても、電流制御偏差εがマイナスの値を採る状況では、ベクトル角度制御偏差εθdqが−180度以上0度未満の時には、ベクトル角度θvを反時計回りに回転させ、逆に、ベクトル角度制御偏差εθdqが0度以上180度未満の時には、ベクトル角度θvを時計回りに回転させる。 On the other hand, even when the sign of the q-phase current target value iq * is positive, when the current control deviation ε q takes a negative value, the vector angle control deviation εθ dq is −180 degrees or more and less than 0 degrees. The vector angle θv is rotated counterclockwise. Conversely, when the vector angle control deviation εθ dq is not less than 0 degrees and less than 180 degrees, the vector angle θv is rotated clockwise.

すなわち、q相電流目標値iq*の符号がプラスであることを前提にして、q相電流目標値iq*よりq相電流値iqが小さい場合、つまり、電流制御偏差εがプラスの値の場合であってベクトル角度制御偏差εθdqが−180度以上0度未満の場合には、図8に示すように、前回制御時のベクトル角度θvは、q相電流iqを最大にするベクトル角度最終値θdq*のラインL1と、このラインL1に対して180度位相の異なるラインL2との間の領域(a)内に存在していることになる。また、q相電流目標値iq*よりq相電流値iqが小さいので、この場合、前回制御時のベクトル角度θvをq相電流iqを最大にするベクトル角度最終値θdq*のラインL1に近づけることでq相電流iqをq相電流目標値iq*に近づけることができることから、ラインL1に対して図8中下方へ合成ベクトルを移動させる、つまり、dq軸の直交座標で考えると合成ベクトルを時計回りに回転させると、合成ベクトルの回転角度が最大でも180度以下にすることができ、より早くq相電流iqをq相電流目標値iq*に追随させることができる。 That is, on the assumption that the sign of the q-phase current target value iq * is positive, if the q-phase current value iq is smaller than the q-phase current target value iq *, that is, the current control deviation ε q is a positive value. If the vector angle control deviation εθ dq is not less than −180 degrees and less than 0 degrees, as shown in FIG. 8, the vector angle θv during the previous control is the final vector angle that maximizes the q-phase current iq. It exists in the area | region (a) between the line L1 of value (theta) dq *, and the line L2 from which this phase L1 differs in phase by 180 degrees. Further, since the q-phase current value iq is smaller than the q-phase current target value iq *, in this case, the vector angle θv at the previous control is brought closer to the line L1 of the vector angle final value θ dq * that maximizes the q-phase current iq. Thus, the q-phase current iq can be approximated to the q-phase current target value iq *, so that the combined vector is moved downward in FIG. 8 with respect to the line L1, that is, the combined vector is considered in terms of the dq axis orthogonal coordinates. When rotated clockwise, the rotation angle of the combined vector can be made 180 degrees or less at the maximum, and the q-phase current iq can follow the q-phase current target value iq * more quickly.

上記したところをもう少し詳しく説明すると、たとえば、ベクトル角度最終値θdq*が−90度である場合、dq軸の直交座標で考えると、図9に示すように、前回制御時の合成ベクトルのベクトル角度θvが−90度より大きく90度以下の範囲内にある状態となり、このような範囲内に合成ベクトルがある場合、合成ベクトルがq軸に対して成す角度であるベクトル角度θvをベクトル角度最終値θdq*にするには、合成ベクトルを図9中時計回りに回転させるほうが回転角度が少なくて済むことが理解できるであろう。 Explaining the above in more detail, for example, when the vector angle final value θ dq * is −90 degrees, when considering the orthogonal coordinates of the dq axis, as shown in FIG. When the angle θv is in a range greater than −90 degrees and less than or equal to 90 degrees, and there is a combined vector in such a range, the vector angle θv that is an angle formed by the combined vector with respect to the q axis is determined as the vector angle final. It will be understood that the rotation angle is smaller when the synthesized vector is rotated clockwise in FIG. 9 in order to obtain the value θ dq *.

このように、上記判断を行うことによって、より速くq相電流iqをq相電流目標値iq*に追随させるには、ベクトル角度最終値θdq*に対して、合成ベクトルを時計回りと反時計回りのいずれに回転させるべきかを見極めることができるのである。 In this way, by making the above determination, in order to cause the q-phase current iq to follow the q-phase current target value iq * more quickly, the resultant vector is counterclockwise and counterclockwise with respect to the vector angle final value θ dq *. It is possible to determine which direction should be rotated.

同様に、q相電流目標値iq*の符号がプラスであることを前提にして、q相電流目標値iq*よりq相電流値iqが小さい場合、つまり、電流制御偏差εがプラスの値の場合であってベクトル角度制御偏差εθdqが0度以上180度未満の場合には、図8に示すように、前回制御時のベクトル角度θvは、q相電流iqを最大にするベクトル角度最終値θdq*のラインL1と、このラインL1に対して180度位相の異なるラインL2との間の領域(b)内に存在していることになる。また、q相電流目標値iq*よりq相電流値iqが小さいので、この場合、前回制御時のベクトル角度θvをq相電流iqを最大にするベクトル角度最終値θdq*のラインL1に近づけることでq相電流iqをq相電流目標値iq*に近づけることができることから、ラインL1に対して図8中上方へ合成ベクトルを移動させる、つまり、dq軸の直交座標で考えると合成ベクトルを反時計回りに回転させると、合成ベクトルの回転角度が最大でも180度以下にすることができることになる。 Similarly, on the assumption that the sign of the q-phase current target value iq * is positive, when the q-phase current value iq is smaller than the q-phase current target value iq *, that is, the current control deviation ε q is a positive value. When the vector angle control deviation εθ dq is not less than 0 degrees and less than 180 degrees, as shown in FIG. 8, the vector angle θv in the previous control is the vector angle final value that maximizes the q-phase current iq. It exists in the area | region (b) between the line L1 of value (theta) dq *, and the line L2 from which this phase L180 differs in phase. Further, since the q-phase current value iq is smaller than the q-phase current target value iq *, in this case, the vector angle θv at the previous control is brought closer to the line L1 of the vector angle final value θ dq * that maximizes the q-phase current iq. Thus, the q-phase current iq can be approximated to the q-phase current target value iq *, so that the combined vector is moved upward in FIG. 8 relative to the line L1, that is, the combined vector is considered in terms of the orthogonal coordinates of the dq axis. When rotated counterclockwise, the rotation angle of the combined vector can be made 180 degrees or less at maximum.

さらに、q相電流目標値iq*の符号がプラスであることを前提にして、q相電流目標値iq*よりq相電流値iqが大きい場合、つまり、電流制御偏差εがマイナスの値の場合であってベクトル角度制御偏差εθdqが−180度以上0度未満の場合には、図8に示すように、前回制御時のベクトル角度θvは、q相電流iqを最大にするベクトル角度最終値θdq*のラインL1と、このラインL1に対して180度位相の異なるラインL2との間の領域(a)内に存在していることになるが、今度は、q相電流目標値iq*よりq相電流値iqが大きいので、この場合、前回制御時のベクトル角度θvをq相電流iqを最大にするベクトル角度最終値θdq*のラインL1から遠ざける必要がある。 Furthermore, on the assumption that the sign of q-phase current target value iq * is positive, when q-phase current value iq is larger than q-phase current target value iq *, that is, current control deviation ε q is a negative value. If the vector angle control deviation εθ dq is not less than −180 degrees and less than 0 degrees, as shown in FIG. 8, the vector angle θv during the previous control is the final vector angle that maximizes the q-phase current iq. It exists in the region (a) between the line L1 of the value θ dq * and the line L2 that is 180 degrees out of phase with the line L1, but this time the q-phase current target value iq Since the q-phase current value iq is larger than *, in this case, it is necessary to keep the vector angle θv at the previous control away from the line L1 of the final vector angle value θ dq * that maximizes the q-phase current iq.

したがって、ラインL1に対して図8中上方へ合成ベクトルを移動させる、つまり、dq軸の直交座標で考えると合成ベクトルを反時計回りに回転させると、合成ベクトルをベクトル角度最終値θdq*のラインL1から確実に遠ざけてより早くq相電流iqをq相電流目標値iq*に追随させることができる。ここで、仮に、合成ベクトルを時計回りに回転させると、一端、q相電流iqは最大値まで増加してからq相電流目標値iq*に追随することになるので、制御性が悪化することになるので、上述の判断によって回転方向を定めることで、制御性の悪化を防止することが可能となるのである。 Therefore, when the composite vector is moved upward in FIG. 8 with respect to the line L1, that is, when the composite vector is rotated counterclockwise in terms of the orthogonal coordinates of the dq axis, the composite vector is set to the vector angle final value θ dq *. The q-phase current iq can be made to follow the q-phase current target value iq * more quickly by reliably moving away from the line L1. Here, if the synthesized vector is rotated clockwise, the q-phase current iq increases to the maximum value and then follows the q-phase current target value iq *, so that the controllability deteriorates. Therefore, it becomes possible to prevent deterioration of controllability by determining the rotation direction based on the above-described determination.

また、すなわち、q相電流目標値iq*の符号がプラスであることを前提にして、q相電流目標値iq*よりq相電流値iqが大きい場合、つまり、電流制御偏差εがマイナスの値の場合であってベクトル角度制御偏差εθdqが0度以上180度未満の場合には、図8に示すように、前回制御時のベクトル角度θvは、q相電流iqを最大にするベクトル角度最終値θdq*のラインL1と、このラインL1に対して180度位相の異なるラインL2との間の領域(b)内に存在していることになるが、上記と同様にq相電流目標値iq*よりq相電流値iqが大きいので、この場合、前回制御時のベクトル角度θvをq相電流iqを最大にするベクトル角度最終値θdq*のラインL1から遠ざける必要がある。 That is, on the assumption that the sign of the q-phase current target value iq * is positive, when the q-phase current value iq is larger than the q-phase current target value iq *, that is, the current control deviation ε q is negative. If the vector angle control deviation εθ dq is not less than 0 degrees and less than 180 degrees, the vector angle θv in the previous control is the vector angle that maximizes the q-phase current iq, as shown in FIG. Although it exists in the area | region (b) between the line L1 of final value (theta) dq *, and the line L2 which differs in phase 180 degree | times with respect to this line L1, it is q phase current target similarly to the above. Since the q-phase current value iq is larger than the value iq *, in this case, it is necessary to keep the vector angle θv at the previous control away from the line L1 of the vector angle final value θ dq * that maximizes the q-phase current iq.

したがって、ラインL1に対して図8中下方へ合成ベクトルを移動させる、つまり、dq軸の直交座標で考えると合成ベクトルを時計回りに回転させると、合成ベクトルをベクトル角度最終値θdq*のラインL1から確実に遠ざけてより早くq相電流iqをq相電流目標値iq*に追随させることができる。 Therefore, when the composite vector is moved downward in FIG. 8 with respect to the line L1, that is, when the composite vector is rotated clockwise in view of the orthogonal coordinates of the dq axis, the composite vector is the line of the vector angle final value θ dq *. The q-phase current iq can be made to follow the q-phase current target value iq * more quickly by reliably moving away from L1.

つづき、q相電流目標値iq*の符号がマイナスの場合、すなわち、モータMにロータRを正回転させるトルクを発生させる場合であって、電流制御偏差εがプラスの値を採る状況で、ベクトル角度制御偏差εθdqが−180度以上0度未満の時には、ベクトル角度θvを反時計回りに回転させ、逆に、ベクトル角度制御偏差εθdqが0度以上180度未満の時には、ベクトル角度θvを時計回りに回転させる。 Subsequently, when the sign of the q-phase current target value iq * is negative, that is, when the motor M is caused to generate torque that causes the rotor R to rotate in the forward direction, the current control deviation ε q takes a positive value. When the vector angle control deviation εθ dq is not less than −180 degrees and less than 0 degrees, the vector angle θv is rotated counterclockwise. Conversely, when the vector angle control deviation εθ dq is not less than 0 degrees and less than 180 degrees, the vector angle θv Rotate clockwise.

他方、q相電流目標値iq*の符号がマイナスの場合であっても、電流制御偏差εがマイナスの値を採る状況では、ベクトル角度制御偏差εθdqが−180度以上0度未満の時には、ベクトル角度θvを時計回りに回転させ、逆に、ベクトル角度制御偏差εθdqが0度以上180度未満の時には、ベクトル角度θvを反時計回りに回転させる。 On the other hand, even when the sign of the q-phase current target value iq * is negative, in the situation where the current control deviation ε q takes a negative value, the vector angle control deviation εθ dq is −180 degrees or more and less than 0 degrees. The vector angle θv is rotated clockwise. Conversely, when the vector angle control deviation εθ dq is not less than 0 degrees and less than 180 degrees, the vector angle θv is rotated counterclockwise.

すなわち、q相電流目標値iq*の符号がマイナスであることを前提にして、q相電流目標値iq*よりq相電流値iqが小さい場合、つまり、電流制御偏差εがプラスの値の場合であってベクトル角度制御偏差εθdqが−180度以上0度未満の場合には、図10に示すように、前回制御時のベクトル角度θvは、q相電流iqを最小にするベクトル角度最終値θdq*のラインL3と、このラインL3に対して180度位相の異なるラインL4との間の領域(c)内に存在していることになる。 That is, on the assumption that the sign of the q-phase current target value iq * is negative, if the q-phase current value iq is smaller than the q-phase current target value iq *, that is, the current control deviation ε q is a positive value. If the vector angle control deviation εθ dq is not less than −180 degrees and less than 0 degrees, as shown in FIG. 10, the vector angle θv at the previous control is the vector angle final value that minimizes the q-phase current iq. It exists in the area | region (c) between the line L3 of value (theta) dq *, and the line L4 from which a phase differs 180 degree | times with respect to this line L3.

また、q相電流目標値iq*よりq相電流値iqが小さいので、この場合、前回制御時のベクトル角度θvをq相電流iqを最小にするベクトル角度最終値θdq*のラインL3から遠ざけることでq相電流iqをq相電流目標値iq*に近づけることができることから、ラインL3に対して図10中上方へ合成ベクトルを移動させる、つまり、dq軸の直交座標で考えると合成ベクトルを反時計回りに回転させると、合成ベクトルをベクトル角度最終値θdq*のラインL3から確実に遠ざけてより早くq相電流iqをq相電流目標値iq*に追随させることができる。ここで、仮に、合成ベクトルを時計回りに回転させると、一端、q相電流iqはマイナスの最大の値である最小値まで減少してからq相電流目標値iq*に追随することになるので、制御性が悪化することになるので、上述の判断によって回転方向を定めることで、制御性の悪化を防止することが可能となるのである。 Further, since the q-phase current value iq is smaller than the q-phase current target value iq *, in this case, the vector angle θv at the previous control is moved away from the line L3 of the vector angle final value θ dq * that minimizes the q-phase current iq. As a result, the q-phase current iq can be made closer to the q-phase current target value iq *. Therefore, the combined vector is moved upward in FIG. 10 with respect to the line L3. When rotated counterclockwise, the combined vector can be surely moved away from the line L3 of the vector angle final value θ dq *, and the q-phase current iq can follow the q-phase current target value iq * more quickly. Here, if the combined vector is rotated clockwise, the q-phase current iq once decreases to the minimum value that is the negative maximum value and then follows the q-phase current target value iq *. Since the controllability is deteriorated, it is possible to prevent the deterioration of the controllability by determining the rotation direction based on the above-described determination.

上記したところをもう少し詳しく説明すると、たとえば、ベクトル角度最終値θdq*が90度である場合、dq軸の直交座標で考えると、図11に示すように、前回制御時の合成ベクトルのベクトル角度θvが90度より大きく180度以下の範囲内および−90度より小さく−180度より大きい範囲内にある状態となり、このような範囲内に合成ベクトルがある場合、合成ベクトルがq軸に対して成す角度であるベクトル角度θvをベクトル角度最終値θdq*から遠ざけるには、合成ベクトルを図11中反時計回りに回転させることが合理的であることが理解できるであろう。 To explain the above in more detail, for example, when the vector angle final value θ dq * is 90 degrees, considering the orthogonal coordinates of the dq axis, as shown in FIG. 11, the vector angle of the combined vector at the previous control time When θv is in the range of greater than 90 degrees and less than 180 degrees and in the range of less than −90 degrees and greater than −180 degrees, and there is a composite vector in such a range, the composite vector is in relation to the q axis. It will be understood that it is reasonable to rotate the resultant vector counterclockwise in FIG. 11 in order to keep the vector angle θv, which is the angle formed, away from the final vector angle value θ dq *.

同様に、q相電流目標値iq*の符号がマイナスであることを前提にして、q相電流目標値iq*よりq相電流値iqが小さい場合、つまり、電流制御偏差εがプラスの値の場合であってベクトル角度制御偏差εθdqが0度以上180度未満の場合には、図10に示すように、前回制御時のベクトル角度θvは、q相電流iqを最小にするベクトル角度最終値θdq*のラインL3と、このラインL3に対して180度位相の異なるラインL4との間の領域(d)内に存在していることになる。 Similarly, on the assumption that the sign of the q-phase current target value iq * is negative, when the q-phase current value iq is smaller than the q-phase current target value iq *, that is, the current control deviation ε q is a positive value. When the vector angle control deviation εθ dq is not less than 0 degrees and less than 180 degrees, as shown in FIG. 10, the vector angle θv at the previous control is the vector angle final value that minimizes the q-phase current iq. It exists in the area | region (d) between the line L3 of value (theta) dq *, and the line L4 from which a phase differs 180 degrees with respect to this line L3.

また、q相電流目標値iq*よりq相電流値iqが小さいので、この場合、前回制御時のベクトル角度θvをq相電流iqを最小にするベクトル角度最終値θdq*のラインL3から遠ざけることでq相電流iqをq相電流目標値iq*に近づけることができることから、ラインL3に対して図10中下方へ合成ベクトルを移動させる、つまり、dq軸の直交座標で考えると合成ベクトルを時計回りに回転させると、合成ベクトルの回転角度が最大でも180度以下にすることができることになる。 Further, since the q-phase current value iq is smaller than the q-phase current target value iq *, in this case, the vector angle θv at the previous control is moved away from the line L3 of the vector angle final value θ dq * that minimizes the q-phase current iq. As a result, the q-phase current iq can be brought close to the q-phase current target value iq *. Therefore, the combined vector is moved downward in FIG. 10 with respect to the line L3. When rotated clockwise, the rotation angle of the combined vector can be made 180 degrees or less at maximum.

さらに、q相電流目標値iq*の符号がマイナスであることを前提にして、q相電流目標値iq*よりq相電流値iqが大きい場合、つまり、電流制御偏差εがマイナスの値の場合であってベクトル角度制御偏差εθdqが−180度以上0度未満の場合には、図10に示すように、前回制御時のベクトル角度θvは、q相電流iqを最小にするベクトル角度最終値θdq*のラインL3と、このラインL3に対して180度位相の異なるラインL4との間の領域(c)内に存在していることになるが、今度は、q相電流目標値iq*よりq相電流値iqが大きいので、この場合、前回制御時のベクトル角度θvをq相電流iqを最小にするベクトル角度最終値θdq*のラインL3に近づける必要がある。 Furthermore, on the assumption that the sign of q-phase current target value iq * is negative, if q-phase current value iq is larger than q-phase current target value iq *, that is, current control deviation ε q is a negative value. If the vector angle control deviation εθ dq is not less than −180 degrees and less than 0 degrees, as shown in FIG. 10, the vector angle θv at the previous control is the vector angle final value that minimizes the q-phase current iq. It exists in the region (c) between the line L3 of the value θ dq * and the line L4 that is 180 degrees out of phase with the line L3, but this time the q-phase current target value iq Since the q-phase current value iq is larger than *, in this case, it is necessary to bring the vector angle θv at the previous control closer to the line L3 of the vector angle final value θ dq * that minimizes the q-phase current iq.

したがって、ラインL3に対して図10中下方へ合成ベクトルを移動させる、つまり、dq軸の直交座標で考えると合成ベクトルを時計回りに回転させると、合成ベクトルをベクトル角度最終値θdq*のラインL3にいち早く近づけることができ、より早くq相電流iqをq相電流目標値iq*に追随させることができる。 Therefore, when the composite vector is moved downward in FIG. 10 with respect to the line L3, that is, when the composite vector is rotated clockwise in view of the orthogonal coordinates of the dq axis, the composite vector is the line of the vector angle final value θ dq *. The Q phase current iq can be made to follow the q phase current target value iq * more quickly.

すなわち、dq軸の直交座標で考えると合成ベクトルを時計回りに回転させると、合成ベクトルの回転角度が最大でも180度以下にすることができ、より早くq相電流iqをq相電流目標値iq*に追随させることができるのである。   That is, considering the orthogonal coordinates of the dq axes, if the resultant vector is rotated clockwise, the rotation angle of the resultant vector can be reduced to 180 degrees or less at the maximum, and the q-phase current iq can be converted to the q-phase current target value iq earlier. * Can be followed.

また、q相電流目標値iq*の符号がマイナスであることを前提にして、q相電流目標値iq*よりq相電流値iqが大きい場合、つまり、電流制御偏差εがマイナスの値の場合であってベクトル角度制御偏差εθdqが0度以上180度未満の場合には、図10に示すように、前回制御時のベクトル角度θvは、q相電流iqを最小にするベクトル角度最終値θdq*のラインL3と、このラインL3に対して180度位相の異なるラインL4との間の領域(d)内に存在していることになるが、上記と同様にq相電流目標値iq*よりq相電流値iqが大きいので、この場合、前回制御時のベクトル角度θvをq相電流iqを最大にするベクトル角度最終値θdq*のラインL3に近づける必要がある。 Further, on the assumption that the sign of the q-phase current target value iq * is negative, if the q-phase current value iq is larger than the q-phase current target value iq *, that is, the current control deviation ε q is a negative value. If the vector angle control deviation εθ dq is not less than 0 degrees and less than 180 degrees, as shown in FIG. 10, the vector angle θv at the previous control is the final vector angle value that minimizes the q-phase current iq. It exists in the region (d) between the line L3 of θ dq * and the line L4 having a phase difference of 180 degrees with respect to the line L3, but the q-phase current target value iq is similar to the above. Since the q-phase current value iq is larger than *, in this case, it is necessary to bring the vector angle θv at the previous control closer to the line L3 of the vector angle final value θ dq * that maximizes the q-phase current iq.

したがって、ラインL3に対して図10中上方へ合成ベクトルを移動させる、つまり、dq軸の直交座標で考えると合成ベクトルを反時計回りに回転させると、合成ベクトルをベクトル角度最終値θdq*のラインL3に近づけてより早くq相電流iqをq相電流目標値iq*に追随させることができる。 Therefore, when the composite vector is moved upward in FIG. 10 with respect to the line L3, that is, when the composite vector is rotated counterclockwise in terms of the orthogonal coordinates of the dq axis, the composite vector is set to the vector angle final value θ dq *. The q-phase current iq can be made to follow the q-phase current target value iq * sooner by approaching the line L3.

つまり、上記判断によって、ベクトル角度θvの回転方向を決定することによって、ベクトル角度θvをベクトル角度最終値θdq*を基準として、遠近させることによって、q相電流をq相電流目標値iq*に追随させることが可能となるのである。 That is, by determining the rotation direction of the vector angle θv by the above determination, the q-phase current is changed to the q-phase current target value iq * by making the vector angle θv a perspective with reference to the vector angle final value θ dq *. It is possible to follow.

そして、上記判断から合成ベクトルのq軸に対する回転方向が決定されると、回転方向からベクトル角度目標値θdqを設定するのであるが、このベクトル角度目標値θdqは、たとえば、現在のベクトル角度θvに対し回転方向に所定のα度を加算した角度に設定される。したがって、ベクトル角度目標値θdqは、θdq=θv±αで演算されることになる。なお、αの前の符号は合成ベクトルの回転方向によって上記のように決定される。 When the rotation direction of the combined vector with respect to the q-axis is determined from the above determination, the vector angle target value θ dq is set from the rotation direction. This vector angle target value θ dq is, for example, the current vector angle The angle is set to θv by adding a predetermined α degree in the rotational direction. Therefore, the vector angle target value θ dq is calculated as θ dq = θv ± α. Note that the sign before α is determined as described above according to the rotation direction of the combined vector.

ベクトル角度θvに加算される角度αは、q相電流偏差εqに制御ゲインを乗じて演算される。この場合、αを演算するための制御ゲインは、q相電流はベクトル角度θvに対してsin関数で増減するので、制御ゲインもこれに準じてsin関数で表せる非線形なものとしておけば、どのような状態においても同じ応答性を確保することが可能となる。   The angle α added to the vector angle θv is calculated by multiplying the q-phase current deviation εq by the control gain. In this case, since the q-phase current is increased or decreased by the sin function with respect to the vector angle θv, the control gain for calculating α can be expressed in a non-linear manner that can be expressed by the sin function according to this. It is possible to ensure the same responsiveness even in a difficult state.

このようにして、ベクトル角度制御部25は、ベクトル角度目標値θdqから、上述のようにd相電圧指令値Vdおよびq相電圧指令値Vqを演算し、これら電圧指令値Vd,Vqは、U,V,Wの各相の電圧指令値Vv,Vu,Vwに変換する三相変換演算部27に入力され、PWM回路30によってモータMが駆動されることになる。 Thus, the vector angle control unit 25 calculates the d-phase voltage command value Vd and the q-phase voltage command value Vq from the vector angle target value θ dq as described above, and these voltage command values Vd and Vq are The motor M is driven by the PWM circuit 30 after being input to the three-phase conversion calculation unit 27 that converts the voltage command values Vv, Vu, Vw of each phase of U, V, W.

このように、ベクトル角度制御部25によって、dq各相の電圧指令値Vd,Vqの合成ベクトルのベクトル角度θvを制御するので、飽和状態でもモータMのトルクを極限にまで大きくしてトルク指令の要求になるべく近いトルクを出力させることが可能である。   In this way, the vector angle control unit 25 controls the vector angle θv of the combined vector of the voltage command values Vd and Vq for each phase of the dq, so that the torque of the motor M can be increased to the limit even in the saturated state. It is possible to output torque as close as possible to demand.

なお、ロータRの電気角速度ωからq相電流目標値iq*を実現可能なベクトル角度を求めて、このベクトル角度を直接にベクトル角度目標値θdqとして制御するようにしてもよいが、上述のように、回転方向を求めて、ベクトル角度目標値θdqを設定することによって、dq各相の電圧指令値Vd,Vqの急激に変動してしまうことを防止でき、トルク変動が大きくなってしまうことを防止できる。また、ベクトル角度目標値θdqをq相電流目標値iq*を実現可能なベクトル角度に定めるとベクトル角度の回転方向は一義的には決められないが、上記判断によってベクトル角度の回転方向を決定するので、ベクトル角度の操作量を小さくすることができる。 A vector angle capable of realizing the q-phase current target value iq * is obtained from the electrical angular velocity ω of the rotor R, and this vector angle may be directly controlled as the vector angle target value θ dq . Thus, by obtaining the rotation direction and setting the vector angle target value θ dq , it is possible to prevent the voltage command values Vd and Vq of each phase of dq from fluctuating rapidly, and the torque fluctuation increases. Can be prevented. Further, if the vector angle target value θ dq is set to a vector angle that can realize the q-phase current target value iq *, the rotation direction of the vector angle cannot be uniquely determined, but the rotation direction of the vector angle is determined by the above determination. Therefore, the operation amount of the vector angle can be reduced.

上記したように、ベクトル角度目標値θdqを求めることができ、これによって、トルクの制御範囲を拡大することができるが、上記判断よって回転方向を決定する場合、ベクトル角度最終値θdq*を基準として回転方向が反転することになるので、ベクトル角度θvがベクトル角度最終値θdq*付近で振動的になってしまったり、急激に変化してしまったりする場合があるため、これを防止するため、q相電流目標値iq*の絶対値を採りうる最大値に制限する電流制限部22を設けている。 As described above, the vector angle target value θ dq can be obtained, and thereby the torque control range can be expanded. However, when the rotation direction is determined by the above determination, the vector angle final value θ dq * is set to Since the rotation direction is reversed as a reference, the vector angle θv may be vibrated near the final value of the vector angle θ dq * or may change abruptly. Therefore, a current limiting unit 22 is provided that limits the absolute value of the q-phase current target value iq * to the maximum value that can be taken.

電流制限部22は、モータMがロータRを逆回転させるようにトルクを発生している場合には、q相電流目標値iq*をq相電流が採りうる最大値となるリミット値Ilimに制限し、反対に、モータMがロータRを正回転させるようにトルクを発生している場合には、q相電流目標値iq*をq相電流が採りうる最小値となるリミット値Ilimに制限する。   The current limiting unit 22 limits the q-phase current target value iq * to the limit value Ilim that is the maximum value that the q-phase current can take when the motor M generates torque so as to reversely rotate the rotor R. On the other hand, when the motor M is generating torque so as to rotate the rotor R forward, the q-phase current target value iq * is limited to the limit value Ilim that is the minimum value that the q-phase current can take. .

具体的には、このリミット値Ilimは、モータMがロータRを逆回転させるトルクを発生している場合、dq各相の電圧指令値Vd,Vqの合成ベクトルが飽和電圧Vsに達している状態で、この合成ベクトルをdq座標において原点回りに360度一周させたときのq相電流値iqが取りうる最大値とされ、他方、モータMがロータRを正回転させるトルクを発生している場合、dq各相の電圧指令値Vd,Vqの合成ベクトルが飽和電圧Vsに達している状態で、この合成ベクトルをdq座標において原点回りに360度一周させたときのq相電流値iqが取りうる最小値とされる。   Specifically, the limit value Ilim is a state in which the combined vector of the voltage command values Vd and Vq of each phase of dq has reached the saturation voltage Vs when the motor M generates a torque that reversely rotates the rotor R. In this case, the maximum value that can be taken by the q-phase current value iq when the resultant vector is rotated 360 degrees around the origin in the dq coordinate, while the motor M generates a torque for rotating the rotor R forward. The q-phase current value iq can be taken when the combined vector of the voltage command values Vd and Vq for each phase reaches the saturation voltage Vs and the combined vector is rotated 360 degrees around the origin in the dq coordinates. It is the minimum value.

したがって、ロータRを逆回転させるトルクをモータMが発生している場合、q相電流目標値iq*の上限が、d相およびq相の電圧指令値Vd,Vqの合成ベクトルの飽和時において、q相電流値iqが取り得る最大値に制限され、ロータRを正回転させるトルクをモータMが発生している場合、q相電流目標値iq*の下限が、d相およびq相の電圧指令値Vd,Vqの合成ベクトルの飽和時において、q相電流値iqが取り得る最小値に制限されるため、合成ベクトルが飽和しても、q相電流目標値iq*とq相電流iqとの偏差εqの絶対値が大きくなることが無く、上記したベクトル角度制御時に、ベクトル角度θvがベクトル角度最終値θdq*付近ではαも小さい値となり、ベクトル角度θvがベクトル角度最終値θdq*となると偏差εqが0となるので、ベクトル角度θvがベクトル角度最終値θdq*付近で振動的になるような不具合が解消されることになる。 Therefore, when the motor M generates torque for rotating the rotor R in the reverse direction, when the upper limit of the q-phase current target value iq * is saturated in the combined vector of the d-phase and q-phase voltage command values Vd and Vq, When the q-phase current value iq is limited to the maximum value that can be taken and the motor M generates a torque that causes the rotor R to rotate forward, the lower limit of the q-phase current target value iq * is the d-phase and q-phase voltage command. When the combined vector of the values Vd and Vq is saturated, the q-phase current value iq is limited to the minimum value that can be taken. Therefore, even if the combined vector is saturated, the q-phase current target value iq * and the q-phase current iq The absolute value of the deviation εq does not increase, and during the vector angle control described above, the vector angle θv becomes a small value near the vector angle final value θ dq *, and the vector angle θv becomes the vector angle final value θ dq *. Become biased Since εq is zero, so that a trouble such as vector angle θv is oscillatory around * vector angle final value theta dq is eliminated.

なお、q相電流値iqの絶対値の最大値は、ロータRの電気角速度ωの絶対値が大きくなればなるほど、d相およびq相の相互干渉と誘導起電力の影響により0に近付くように小さくなり、電気角速度ωに依存した値となる。   The maximum absolute value of the q-phase current value iq approaches zero due to the influence of the mutual interference between the d-phase and the q-phase and the induced electromotive force as the absolute value of the electrical angular velocity ω of the rotor R increases. It becomes smaller and becomes a value depending on the electrical angular velocity ω.

したがって、上記リミット値Ilimも電気角速度ωに依存して変更する必要があるが、予め、図12に示すように、電気角速度ωをパラメータとして変動するリミット値Ilimをマップ化しておき、電流制限部22で電気角速度ωをモニタし、当該マップを参照してリミット値Ilimを選択するようにしておくとよい。なお、電気角速度ωが0近傍の値をとる場合のリミット値Ilimが電気角速度ωの変化に対して一定値をとるのは、モータ制御装置20の最大通電能力によって制限されるからであり、同方向にトルクを発生する場合の力行時と制動時でリミット値Ilimが異なっているのは、誘導起電力の発生方向等の影響によるものである。   Therefore, the limit value Ilim also needs to be changed depending on the electrical angular velocity ω. However, as shown in FIG. 12, the limit value Ilim that varies with the electrical angular velocity ω as a parameter is mapped in advance, and the current limiter The electrical angular velocity ω may be monitored at 22 and the limit value Ilim may be selected with reference to the map. The reason why the limit value Ilim when the electrical angular velocity ω takes a value close to 0 is constant with respect to the change in the electrical angular velocity ω is that it is limited by the maximum energization capability of the motor control device 20. The difference in limit value Ilim between powering and braking when generating torque in the direction is due to the influence of the direction of generation of induced electromotive force.

このようにマップ演算を行うことによって、q相電流目標値iq*の制限に必要なリミット値Ilimを簡単に得ることができ、これによって、演算時間の短縮を図って制御応答性を向上することができ、さらには、コスト高となる高性能なCPUを用いなければならない事態も回避することができる。   By performing the map calculation in this way, it is possible to easily obtain the limit value Ilim necessary for limiting the q-phase current target value iq *, thereby reducing the calculation time and improving the control response. Furthermore, it is possible to avoid a situation in which a high-performance CPU, which is expensive, must be used.

そして、上記マップは、電気角速度ωがプラスの実用最大値からマイナスの実用最小値まで変化した場合のリミット値Ilimとしてプロットすることにより作成すればよく、実際には、リミット値Ilimは、電気角速度ωの変化に対して連続して変化するが、マップ作成に当たっては、電気角速度ωの任意の値ずつ変化させた時の不連続なリミット値Ilimとして、実際にモニタされた電気角度ωに対応するリミット値Ilimがマップ上に存在しない場合には、線形補間によってリミット値Ilimを演算するようにしておけばよい。   The map may be created by plotting the limit value Ilim when the electrical angular velocity ω changes from a positive practical maximum value to a negative practical minimum value. In practice, the limit value Ilim is the electrical angular velocity. Although it changes continuously with respect to the change of ω, when creating a map, it corresponds to the actually monitored electrical angle ω as the discontinuous limit value Ilim when the electrical angular velocity ω is changed by an arbitrary value. If the limit value Ilim does not exist on the map, the limit value Ilim may be calculated by linear interpolation.

このようにq相電流目標値iq*をリミット値Ilimに制限するが、上記リミット値Ilimをd相およびq相の電圧指令値Vd,Vqの合成ベクトルの飽和時におけるq相電流iqの最大値および最小値とする場合、q相電流値iqの最大値および最小値は、電源Eの電圧に左右されるので、電源Eの電圧変化に応じてリミット値Ilimを補正するようにしてもよい。   In this way, the q-phase current target value iq * is limited to the limit value Ilim, but the limit value Ilim is the maximum value of the q-phase current iq when the combined vector of the d-phase and q-phase voltage command values Vd and Vq is saturated. In the case of the minimum value, the maximum value and the minimum value of the q-phase current value iq depend on the voltage of the power supply E. Therefore, the limit value Ilim may be corrected according to the voltage change of the power supply E.

なお、d相およびq相の電圧指令値Vd,Vqの合成ベクトルが飽和したときのq相電流iqの最大値および最小値は、ほぼ電源電圧に比例して変化することから、電源Eの電圧変化に対しリミット値Ilimを比例的に補正するようにしてもよく、この場合には、電気角速度ωをパラメータとして作成したリミット値Ilimのマップにおけるリミット値Ilimの値を、予めマップ作成時の電源Eの電圧で割って補正用のマップを作成しておき、このマップを参照して得たリミット値Ilimに実際の電源電圧を乗算することでリミット値Ilimを補正すればよい。   Note that the maximum value and the minimum value of the q-phase current iq when the combined vector of the d-phase and q-phase voltage command values Vd and Vq is saturated change substantially in proportion to the power supply voltage. The limit value Ilim may be proportionally corrected with respect to the change. In this case, the limit value Ilim in the map of the limit value Ilim created using the electrical angular velocity ω as a parameter is set in advance as the power source at the time of map creation. A correction map is created by dividing by the voltage of E, and the limit value Ilim may be corrected by multiplying the limit value Ilim obtained by referring to this map by the actual power supply voltage.

つづき、このモータ制御装置20にあっては、d相およびq相の各電圧指令値Vd,Vqの合成ベクトルが飽和しているか否か、すなわち、dq各相の電圧指令値Vd,Vqの合成ベクトルの長さが閾値より大きいか否かを判断し、上記した比例積分制御とベクトル角度制御のいずれかを選択する選択手段である飽和判断部26を備えている。   Subsequently, in the motor control device 20, whether or not the combined vector of the voltage command values Vd and Vq for the d phase and the q phase is saturated, that is, the combined voltage command values Vd and Vq for each phase of the dq. A saturation judgment unit 26 is provided as a selection means for judging whether or not the length of the vector is larger than the threshold value and selecting either the above-described proportional-integral control or vector angle control.

この飽和判断部26は、比例積分制御を行う比例積分制御部24が出力するdq各相の電圧指令値Vd,Vqを取り込んで、この電圧指令値Vd,Vqの合成ベクトルの長さが閾値より大きいか否かを判断し、電圧指令値Vd,Vqの合成ベクトルの長さが閾値より大きい場合には、ベクトル角度制御を選択すべくスイッチ26aをベクトル角度制御部25が出力するdq各相の電圧指令値Vd,Vqが三相変換演算部27に入力されるように動作させ、他方、電圧指令値Vd,Vqの合成ベクトルが閾値以下である場合には、スイッチ26aを比例積分制御部24が出力するdq各相の電圧指令値Vd,Vqが三相変換演算部27に入力されるように動作させる。   The saturation determination unit 26 takes in the voltage command values Vd and Vq of each phase of dq output from the proportional integration control unit 24 that performs proportional integration control, and the length of the combined vector of the voltage command values Vd and Vq is greater than the threshold value. When the combined vector length of the voltage command values Vd and Vq is larger than the threshold value, the vector angle control unit 25 outputs the switch 26a to select the vector angle control. When the voltage command values Vd and Vq are operated so as to be input to the three-phase conversion calculation unit 27, and when the combined vector of the voltage command values Vd and Vq is equal to or less than the threshold value, the switch 26a is connected to the proportional integration control unit 24. Is operated so that the voltage command values Vd and Vq of each phase dq output from the input are input to the three-phase conversion calculation unit 27.

なお、いずれの制御が選択される場合にも、比例積分制御部24は、dq各相の電流目標値id,iqが入力される上記電流ループにおける処理を継続し続け、dq各相の電圧指令値Vd,Vqを飽和判断部26に出力する。 Note that, regardless of which control is selected, the proportional-integral control unit 24 continues the processing in the current loop in which the current target values id * and iq * of the dq phases are input, The voltage command values Vd and Vq are output to the saturation judgment unit 26.

また、飽和判断部26は、電圧指令値Vd,Vqの合成ベクトルが飽和すると、電流目標値id,iqにdq各相の電流値id,iqが追随できないにも拘わらず、比例積分制御部24の積分パスの積分値fd,fqの値の絶対値が増大してしまうことになるので、積分パスにおける積分演算を中止させる。 Further, when the combined vector of the voltage command values Vd and Vq is saturated, the saturation judgment unit 26 performs proportional-integral control even though the current values id and iq of each phase of dq cannot follow the current target values id * and iq *. Since the absolute values of the integration values fd and fq of the integration path of the unit 24 will increase, the integration calculation in the integration path is stopped.

そして、上記したように、電圧指令値Vd,Vqの合成ベクトルが飽和すると、ベクトル角度制御が選択されてベクトル角度制御部25が出力するdq各相の電圧指令値Vd,Vqが有効となるが、その後、比例積分制御部24が出力するdq各相の電圧指令値Vd,Vqの合成ベクトルが飽和しない状態となると、スイッチ26aを切換動作させて比例積分制御部24が出力するdq各相の電圧指令値Vd,Vqを有効とする。   As described above, when the combined vector of the voltage command values Vd and Vq is saturated, the vector angle control is selected and the voltage command values Vd and Vq for each phase dq output from the vector angle control unit 25 become valid. Thereafter, when the combined vector of the voltage command values Vd and Vq of the respective dq phases output from the proportional-integral control unit 24 is not saturated, the switch 26a is switched and the dq-phases output from the proportional-integral control unit 24 are switched. The voltage command values Vd and Vq are made valid.

このような切換時には、すなわち、比例積分制御を選択し比例積分制御へ移行するときには、飽和判断部26は、比例積分制御部24へ積分値fd,fqを書き換える積分値書換指令を出力する。他方、比例積分制御部24は、ベクトル角度制御部25が出力するdq各相の電圧指令値Vd,Vqをモニタしており、飽和判断部26からスイッチ26aの切換によって上記積分値書換指令を受け取ると、ベクトル角度制御部25が出力した電圧指令値Vd,Vqを同じ値の電圧指令値Vd,Vqを出力するように、積分パスにおける積分値fd,fqの値を書き換える。この書換に当たっては、比例積分制御部24に入力されるdq各相の電流目標値id*,iq*とdq各相の電流値id,iqの偏差εd,εqを考慮し、ベクトル角度制御部25が出力した電圧指令値Vd,Vqから偏差εd,εqに基づいて演算される比例パスにおける値εd・KP,εq・KPをそれぞれ引いて、各相の積分パスの値を求め、積分ゲインKIから逆算して積分値fd,fqを演算し、積分値fd,fqを書き換える。   At the time of such switching, that is, when proportional integral control is selected and transition is made to proportional integral control, the saturation determination unit 26 outputs an integral value rewriting command for rewriting the integral values fd and fq to the proportional integral control unit 24. On the other hand, the proportional integral control unit 24 monitors the voltage command values Vd and Vq of each phase of dq output from the vector angle control unit 25, and receives the above integral value rewrite command from the saturation judgment unit 26 by switching the switch 26a. Then, the values of the integrated values fd and fq in the integration path are rewritten so that the voltage command values Vd and Vq output from the vector angle control unit 25 are the same. In this rewriting, the vector angle control unit 25 takes into account the current target values id * and iq * of the respective dq phases input to the proportional-integral control unit 24 and the deviations εd and εq of the current values id and iq of the respective dq phases. Is obtained by subtracting the values εd · KP and εq · KP in the proportional path calculated based on the deviations εd and εq from the voltage command values Vd and Vq output from The integration values fd and fq are calculated by reverse calculation and the integration values fd and fq are rewritten.

つまり、比例積分制御部24は、スイッチ26aの切換直後には、スイッチ26aの切換前にベクトル角度制御部25が出力していたdq各相の電圧指令値Vd,Vqの値と同じ値の電圧指令値Vd,Vqを出力することになる。   That is, immediately after the switch 26a is switched, the proportional-integral control unit 24 has a voltage having the same value as the voltage command values Vd and Vq of the dq phases output from the vector angle control unit 25 before the switch 26a is switched. The command values Vd and Vq are output.

すると、このように、飽和判断部26がベクトル角度制御から比例積分制御へ移行した時に、dq各相の電圧指令値Vd,Vqの値が急激に変化してしまうような事態が防止され、モータMの出力トルクにリップルが生じてしまう事態が回避されることになる。   Then, as described above, when the saturation determination unit 26 shifts from vector angle control to proportional integral control, a situation in which the value of the voltage command values Vd and Vq of each phase of dq changes suddenly is prevented. A situation in which a ripple occurs in the output torque of M is avoided.

またさらに、ベクトル角度制御においても上述のように、dq各相の電圧指令値Vd,Vqが急激に変化しないように、ベクトル角度目標値θdqを設定しており、スイッチ26aの切換時に、電圧指令値Vd,Vqに急激に変化を生じさせることがないので、スイッチ26aをいずれに切換えても、出力トルクに急激な変化を生じさせることがなく、比例積分制御およびベクトル角度制御のいずれもフェードイン・フェードアウトさせる必要が無く、制御アルゴリズムが複雑となってしまう不具合もない。 Furthermore, also in the vector angle control, as described above, the vector angle target value θ dq is set so that the voltage command values Vd and Vq of each phase of dq do not change abruptly. Since the command values Vd and Vq are not suddenly changed, the output torque is not suddenly changed even if the switch 26a is switched to any one of the proportional integral control and the vector angle control. There is no need for in-fade out, and there is no problem that the control algorithm becomes complicated.

また、飽和判断部26の判断において閾値を飽和電圧Vsとしておくと、dq各相の電圧指令値Vd,Vqの合成ベクトルが飽和するまでは、すなわち、通常時(非飽和時)には、比例積分制御部24における比例積分制御が行われることになり、演算負荷の高いベクトル角度制御を飽和時のみに行えばよいことになることから、制御応答性の点で有利となる。   Further, when the threshold value is set to the saturation voltage Vs in the determination of the saturation determination unit 26, it is proportional until the combined vector of the voltage command values Vd and Vq of each phase of dq is saturated, that is, normal (non-saturated). Proportional integral control is performed in the integral control unit 24, and vector angle control with a high calculation load needs to be performed only during saturation, which is advantageous in terms of control responsiveness.

なお、飽和判断部26における判断において、閾値を飽和電圧Vsとする場合、閾値は、U,V,Wの各相巻線12の端子間電圧を電源Eの電圧まで向上させることができうるような制御を実施する場合には1/√2を電源Eの初期設定電圧に乗じた値とすればよく、また、U,V,Wの各相巻線12に正弦波電圧を印加するように制御する場合には、√6/4を電源Eの設定電圧に乗じた値とすればよい。   In the determination by the saturation determination unit 26, when the threshold value is the saturation voltage Vs, the threshold value can improve the voltage between the terminals of the U, V, and W phase windings 12 to the voltage of the power source E. In the case where the control is carried out, it is sufficient to set 1 / √2 to a value obtained by multiplying the initial setting voltage of the power source E, and a sine wave voltage is applied to the U, V, W phase windings 12. In the case of control, a value obtained by multiplying √6 / 4 by the set voltage of the power source E may be used.

転じて、上述のように構成されるモータ制御装置20の電流検出器29、回転角センサ15およびPWM回路30以外の各部におけるハードウェア資源としては、具体的にはたとえば、電流検出器32および回転角センサ15が出力する各信号を増幅するためのアンプと、アナログ信号をデジタル信号に変換する変換器と、CPU(Central Prossesing Unit)と、ROM(Read Only Memory)等の記憶装置と、CPUに記憶領域を提供するRAM(Random Access Memory)と、水晶発振子及びこれらを連絡するバスラインとを備えた図示しない周知のコンピュータシステムとして構成され、また、PWM回路30に電圧指令値Vu,Vv,Vwを出力することができるようになっている。なお、このハードウェアとしてモータ制御装置20の電流検出器32、回転角センサ15およびPWM回路30以外の各部は、モータMが適用される機器に搭載されるコントローラ等に統合されてもよい。   In turn, as hardware resources in each part other than the current detector 29, the rotation angle sensor 15 and the PWM circuit 30 of the motor control device 20 configured as described above, specifically, for example, the current detector 32 and the rotation An amplifier for amplifying each signal output from the angle sensor 15, a converter for converting an analog signal into a digital signal, a storage device such as a CPU (Central Processing Unit), a ROM (Read Only Memory), and the CPU It is configured as a well-known computer system (not shown) having a RAM (Random Access Memory) that provides a storage area, a crystal oscillator, and a bus line that connects these, and the voltage command values Vu, Vv, Vw can be output There. In addition, as hardware, each part other than the current detector 32, the rotation angle sensor 15, and the PWM circuit 30 of the motor control device 20 may be integrated into a controller or the like mounted on a device to which the motor M is applied.

そして、この場合、上記電流目標値演算部21、電流制限部22、二相電流演算部23、比例積分制御部24、ベクトル角度制御部25、飽和判断部26、三相変換演算部27およびリミッタ28における処理手順は、プログラムとしてROMや他の記憶装置に予め格納され、上記これら各部は、CPUが上記プログラムを読み込んで、上記した各演算処理を実行することによって実現される。   In this case, the current target value calculation unit 21, current limiting unit 22, two-phase current calculation unit 23, proportional integral control unit 24, vector angle control unit 25, saturation determination unit 26, three-phase conversion calculation unit 27, and limiter The processing procedure in 28 is stored in advance in a ROM or other storage device as a program, and each of the above units is realized by the CPU reading the program and executing the above-described arithmetic processing.

ここで、上記したモータ制御装置20における処理手順について、図13に示すフローチャートに基づいて説明する。   Here, the processing procedure in the motor control apparatus 20 will be described based on the flowchart shown in FIG.

まず、ステップS1でモータ制御装置20は、三相の巻線12のうちの任意の二相、たとえば、U相とV相の電流値iu,ivと、モータMの電気角θと、電気角速度ωを読み込む。   First, in step S1, the motor control device 20 determines the current values iu and iv of any two phases of the three-phase windings 12, for example, the U phase and the V phase, the electrical angle θ of the motor M, and the electrical angular velocity. Read ω.

つづき、ステップS2に移行して、モータ制御装置20は、各電流目標値id*,iq*を演算する。   Subsequently, the process proceeds to step S2, and the motor control device 20 calculates each current target value id *, iq *.

さらに、ステップS3では、電流目標値iq*からリミット値Ilimを演算するためのマップを選択し、電気角速度ωに基づいて電流目標値iq*を制限する処理を行う。   Furthermore, in step S3, a map for calculating the limit value Ilim from the current target value iq * is selected, and a process for limiting the current target value iq * based on the electrical angular velocity ω is performed.

つづいて、ステップS4では、モータ制御装置20は、電流値iu,ivと電気角θを用いて、上記各電流値iv,iuをd相およびq相の電流値id,iqへ変換する演算を行って、ステップS5に移行する。   Subsequently, in step S4, the motor control device 20 uses the current values iu and iv and the electrical angle θ to perform an operation for converting the current values iv and iu into d-phase and q-phase current values id and iq. Go to step S5.

ステップS5では、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルの長さが閾値以上であったか、すなわち、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さ(Vd+Vq1/2が閾値以上であったかを、選択フラグを参照して判断し、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルの長さが閾値以上でない場合、ステップS6へ移行し、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルの長さが閾値以上である場合、ステップS10へ移行する。なお、選択フラグは、後述するステップS14、ステップS17によってセットされ、たとえば、選択フラグが0である場合には、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルの長さが閾値未満であり、選択フラグが1である場合には、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルの長さが閾値以上であったことを示す。 In step S5, the length of the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq was greater than or equal to the threshold during the previous control, that is, the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq. Whether the length (Vd 2 + Vq 2 ) 1/2 is equal to or greater than the threshold is determined by referring to the selection flag, and the length of the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq at the previous control is If it is not equal to or greater than the threshold, the process proceeds to step S6. If the combined vector length of the d-phase voltage command value Vd and the q-phase voltage command value Vq is equal to or greater than the threshold during the previous control, the process proceeds to step S10. The selection flag is set in steps S14 and S17 described later. For example, when the selection flag is 0, the length of the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq at the previous control time. Is less than the threshold and the selection flag is 1, it indicates that the combined vector length of the d-phase voltage command value Vd and the q-phase voltage command value Vq was equal to or greater than the threshold during the previous control.

つづき、ステップS6に移行して、モータ制御装置20は、前回制御時に比例積分制御が行われていたか否かを、制御移行フラグを参照して判断し、前回制御時に比例積分制御が行われている場合には、ステップS7へ移行し、そうでない場合にはステップS16に移行する。なお、制御移行フラグは、後述するステップS9、ステップS15によってセットされ、たとえば、制御移行フラグが0である場合には、前回制御時に比例積分制御が行われており、制御移行フラグが1である場合には、前回制御時にベクトル角度制御が行われていたことを示す。   Subsequently, the process proceeds to step S6, where the motor control device 20 determines whether or not the proportional integral control was performed at the previous control with reference to the control transition flag, and the proportional integral control is performed at the previous control. If yes, the process proceeds to step S7. If not, the process proceeds to step S16. The control transition flag is set in steps S9 and S15 described later. For example, when the control transition flag is 0, proportional-integral control is performed during the previous control, and the control transition flag is 1. In this case, it indicates that the vector angle control was performed during the previous control.

ステップS7では、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが閾値以上となっておらず、前回も通常の比例積分制御が行われていたため、通常制御を行うため、モータ制御装置20は、各電流目標値id*,iq*とd相およびq相の電流値id,iqとの偏差εd,εqを演算するとともに積分値fd,fqを演算して、ステップS8へ移行する。なお、ステップS7においては、通常の比例積分制御を行うため、積分値fd,fqは、それぞれ、fd=fdpre+εd、fq=fqpre+εqを演算することによって算出される。   In step S7, since the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq is not equal to or greater than the threshold value during the previous control and the normal proportional-integral control was performed in the previous time, the normal control is performed. The motor control device 20 calculates the deviations εd and εq between the current target values id * and iq * and the d-phase and q-phase current values id and iq, and calculates the integrated values fd and fq, and step S8. Migrate to In step S7, since normal proportional integral control is performed, the integral values fd and fq are calculated by calculating fd = fdpre + εd and fq = fqpre + εq, respectively.

ステップS8では、Vd=KI・fd+KP・εdを演算してd相の電圧指令値Vdを算出し、Vq=KI・fq+KP・εqを演算してq相の電圧指令値Vqを算出してステップS9へ移行する。   In step S8, Vd = KI · fd + KP · εd is calculated to calculate the d-phase voltage command value Vd, and Vq = KI · fq + KP · εq is calculated to calculate the q-phase voltage command value Vq. Migrate to

ステップS9では、今回制御では比例積分制御を行うので、制御移行フラグを0にセットして、ステップS17へ移行する。   In step S9, proportional integral control is performed in this control, so the control transition flag is set to 0 and the routine proceeds to step S17.

他方、ステップS10では、モータ制御装置20は、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが閾値以上となっているので、ベクトル角度制御を行うため、前回制御時に出力されたdq各相の電圧指令値Vq,Vdからベクトル角度θvを求める。このベクトル角度θvの算出に当たっては、tan−1(Vd/Vq)を演算して求めればよい。 On the other hand, in step S10, the motor control device 20 performs vector angle control because the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq is greater than or equal to the threshold value during the previous control. A vector angle θv is obtained from the output voltage command values Vq and Vd of each phase of dq. In calculating the vector angle θv, tan −1 (Vd / Vq) may be calculated.

そして、ステップS11では、q相電流目標値iq*の符合からベクトル角度最終値θdq*を求めるためのマップを選択し、電気角速度ωに基づいてベクトル角度最終値θdq*を求める。 Then, in step S11, select the map for obtaining the vector angle final value theta dq * from the sign of the q-phase current target value iq *, obtains the vector angle final value theta dq * based on the electrical angular velocity omega.

つづき、ステップS12では、q相電流目標値iq*の符号と、ベクトル角度制御偏差εθdqと、q相電流目標値iq*とq相電流値iqの偏差である電流制御偏差εを求めて、合成ベクトルの回転方向を決定し、さらに、ベクトル角度目標値θdqを、ベクトル角度θvと前述のαと合成ベクトルの回転方向からθdq=θv+αあるいはθdq=θv−αによって求める。 Subsequently, in step S12, the sign of the q-phase current target value iq *, the vector angle control deviation εθ dq, and the current control deviation ε q which is the deviation between the q-phase current target value iq * and the q-phase current value iq are obtained. Then, the rotation direction of the combined vector is determined, and the vector angle target value θ dq is obtained from the vector angle θv, the aforementioned α and the rotation direction of the combined vector by θ dq = θv + α or θ dq = θv−α.

そして、ステップS13に移行して、ベクトル角度目標値θdqからdq各相の電圧指令値Vd,Vqを求める。すなわち、d相の電圧指令値VdをVd=(Vd+Vq1/2・sinθdqで演算し、q相の電圧指令値VqをVq=(Vd+Vq1/2・cosθdqで演算する。 Then, the process proceeds to step S13, and the voltage command values Vd and Vq of each phase of dq are obtained from the vector angle target value θdq. That is, the d-phase voltage command value Vd is calculated by Vd = (Vd 2 + Vq 2 ) 1/2 · sin θ dq , and the q-phase voltage command value Vq is calculated as Vq = (Vd 2 + Vq 2 ) 1/2 · cos θ dq. Calculate with.

さらに、ステップS14に移行して、比例積分制御における積分パスの積分演算のみを中止してdq各相の電圧指令値Vd,Vqを演算し、積分を中止して演算したdq相の電圧指令値Vd,Vqの合成ベクトルの長さが閾値以上となる場合には、選択フラグを1に、そうでない場合には選択フラグを0にセットする。なお、この判断において、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さ(Vd+Vq1/2と閾値とを比較する演算を行うとルート演算が必要であり演算時間が長くなるので、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さの自乗の値(Vd+Vq)と閾値の自乗の値とを比較するようにしておくとよい。 Further, the process proceeds to step S14, where only the integration calculation of the integration path in the proportional integration control is stopped to calculate the voltage command values Vd and Vq for each phase of dq, and the dq phase voltage command value calculated by stopping the integration. If the length of the combined vector of Vd and Vq is greater than or equal to the threshold value, the selection flag is set to 1, otherwise the selection flag is set to 0. In this determination, if an operation for comparing the combined vector length (Vd 2 + Vq 2 ) 1/2 of the d-phase voltage command value Vd and the q-phase voltage command value Vq with a threshold value is necessary, a route operation is required and the operation is performed. Since the time becomes longer, it is preferable to compare the square value (Vd 2 + Vq 2 ) of the combined vector length of the d-phase voltage command value Vd and the q-phase voltage command value Vq with the square value of the threshold value. .

つづき、ステップS15では、今回制御ではベクトル角度制御を行うので、制御移行フラグを1にセットして、ステップS18へ移行する。   Subsequently, in step S15, since vector angle control is performed in the current control, the control shift flag is set to 1 and the process proceeds to step S18.

また、ステップS16では、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが閾値以上となってはいないが、前回制御時にベクトル角度制御が行われており、今回制御では通常制御に移行するため、モータ制御装置20は、ベクトル角度制御が行われた前回制御時のdq各相の電圧指令値Vd,Vqと偏差εd,εqとから、dq各相の積分パスにおける積分値fd,fqを書換えて、dq各相の電圧指令値Vd,Vqを演算し、ステップS9へ移行する。   In step S16, the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq is not greater than or equal to the threshold during the previous control, but the vector angle control is performed during the previous control. In order to shift to the normal control, the motor control device 20 integrates the integration in the integration path of each phase of dq from the voltage command values Vd, Vq of each phase of dq and the deviations εd, εq at the previous control when vector angle control was performed. The values fd and fq are rewritten to calculate the voltage command values Vd and Vq for each phase of dq, and the process proceeds to step S9.

戻って、ステップS17では、上記したステップS8およびステップS16の処理後に移行するステップであり、このステップS17では、モータ制御装置20は、ステップS8あるいはステップS16で演算されたdq相の電圧指令値Vd,Vqの合成ベクトルの長さが閾値以上となる場合には、選択フラグを1に、そうでない場合には選択フラグを0にセットする。   Returning, step S17 is a step that moves after the processing of step S8 and step S16 described above. In step S17, the motor control device 20 performs the dq phase voltage command value Vd calculated in step S8 or step S16. , Vq, the selection flag is set to 1 when the length of the combined vector is greater than or equal to the threshold, and the selection flag is set to 0 otherwise.

そして、ステップS18では、モータ制御装置20は、上記d相電圧指令値Vdおよびq相電圧指令値Vqを三相の電圧指令値Vu,Vv,Vwに変換する演算を行って、ステップS19に移行する。   In step S18, the motor control device 20 performs an operation for converting the d-phase voltage command value Vd and the q-phase voltage command value Vq into three-phase voltage command values Vu, Vv, and Vw, and proceeds to step S19. To do.

そして、ステップS19では、モータ制御装置20は、電圧指令値Vu,Vv,Vwを採り得る値に制限する処理が必要な場合には、この制限処理を行い、必要が無い場合には、制限処理を施さずにステップS20に移行する。   In step S19, the motor control device 20 performs the limiting process when the process of limiting the voltage command values Vu, Vv, and Vw to a value that can be taken is necessary, and performs the limiting process when the process is not necessary. Without moving to step S20.

ステップS20では、モータ制御装置20は、電圧指令値Vu,Vv,VwをPWM回路30へ出力して、これらの一連の処理を終了する。   In step S20, the motor control device 20 outputs the voltage command values Vu, Vv, Vw to the PWM circuit 30, and ends these series of processes.

そして、このモータ制御装置20は、以上のステップS1からS20までを繰り返し処理してモータMを制御する。   The motor control device 20 controls the motor M by repeatedly performing the above steps S1 to S20.

したがって、制御装置20が上記した一連の処理を実行することで、上述した電流目標値演算部21、電流制限部22、二相電流演算部23、比例積分制御部24、ベクトル角度制御部25、飽和判断部26、三相変換演算部27およびリミッタ28の各部の処理が実現され、これによって、dq各相の電圧指令値Vd,Vqの合成ベクトルのq軸に対する角度を制御することが可能となり、dq各相の電圧指令値Vd,Vqの合成ベクトルが飽和する場合にあっても、モータMが発生するトルクを適切に制御することが可能であるとともに、また、モータMに従来のモータ制御装置に比較してより一層大きなトルクを発生させることが可能である。   Therefore, when the control device 20 executes the above-described series of processing, the current target value calculation unit 21, the current limiting unit 22, the two-phase current calculation unit 23, the proportional integration control unit 24, the vector angle control unit 25, Processing of each part of the saturation determination unit 26, the three-phase conversion calculation unit 27, and the limiter 28 is realized, and thereby the angle of the combined vector of the voltage command values Vd and Vq of each phase of dq with respect to the q axis can be controlled. , Dq Even when the combined vector of the voltage command values Vd and Vq of each phase is saturated, the torque generated by the motor M can be appropriately controlled, and the motor M can be controlled by conventional motor control. It is possible to generate a larger torque compared to the device.

また、このモータ制御装置20にあっては、モータMにより一層大きなトルクを発生させることが可能であるので、トルク制御範囲が大きくなるとともに、種々の機器に搭載されるモータを小型化でき、たとえば、より小型のモータを使用してもアクチュエータの必要推力を確保することができる。換言すれば、より小さなモータを使用することができ、アクチュエータのコストを低減することが可能となり、アクチュエータを使用する装置へのアクチュエータの搭載性をも向上させることが可能となる。   Further, in the motor control device 20, since a larger torque can be generated by the motor M, the torque control range can be increased, and the motors mounted on various devices can be reduced in size. Even if a smaller motor is used, the necessary thrust of the actuator can be ensured. In other words, a smaller motor can be used, the cost of the actuator can be reduced, and the mountability of the actuator in a device using the actuator can be improved.

つづいて、他の実施の形態におけるモータ制御装置50について説明する。この他の実施の形態におけるモータ制御装置50が一実施の形態におけるモータ制御装置20と異なるのは、dq各相の電圧指令値Vd,Vqの合成ベクトルのベクトル角度を直接制御するのではなく、d相の電圧指令値Vdとq相の電圧指令値Vqを独立に調節して、ベクトル角度を制御する点である。   Next, a motor control device 50 according to another embodiment will be described. The motor control device 50 in the other embodiment is different from the motor control device 20 in the one embodiment in that it does not directly control the vector angle of the combined vector of the voltage command values Vd and Vq of each phase of dq. The vector angle is controlled by independently adjusting the d-phase voltage command value Vd and the q-phase voltage command value Vq.

以下、この異なる点について詳しく説明する。この他の実施の形態におけるモータ制御装置50は、具体的には、図14に示すように、各電流目標値id*,iq*を演算する電流目標値演算部21と、一実施の形態における電流制限部22と同様にq相電流目標値iq*がリミット値を超える場合にこれをリミット値Ilimに制限することに加えて、d相電流目標値idの下限を−Φ/Ldの値に制限する電流制限部22aと、上記巻線12の三相のうち二相に流れる電流をdq変換してd相電流値idおよびq相電流値iqを演算する二相電流演算部23と、各電流目標値id*,iq*と上記d相およびq相の電流値id,iqに基づいてd相電圧指令値Vdおよびq相電圧指令値Vqを演算する比例積分制御部51と、d相およびq相の各電圧指令値Vd,Vqの合成ベクトルのq軸に対する角度を制御するベクトル角度制御手段たるベクトル角度制御部52と、d相およびq相の各電圧指令値Vd,Vqの合成ベクトルが飽和しているか否かを判断して比例積分制御とベクトル角度制御のいずれかを選択する選択手段である飽和判断部53と、d相電圧指令値Vdおよびq相電圧指令値VqをU,V,Wの三相各相の電圧指令値Vu,Vv,Vwに変換する三相変換演算部27と、三相変換演算部27が出力する上記各電圧指令値Vu,Vv,Vwのうち、PWM開度が全開、すなわち、PWMデューティ比が最大値以上となる場合に、PWMデューティ比を最大および最小とする値に電圧指令値Vu,Vv,Vwを制限するリミッタ28と、モータMのU,V,Wのうち二相iu,ivに流れる電流値を検出する電流検出器29と、電圧指令値Vu,Vv,Vwに応じて所定のPWM開度でU,V,Wの各巻線12を印加するPWM回路30とを備えて構成されている。 Hereinafter, this different point will be described in detail. Specifically, as shown in FIG. 14, the motor control device 50 according to the other embodiment includes a current target value calculation unit 21 that calculates each current target value id *, iq *, and one embodiment. As with the current limiting unit 22, in addition to limiting the limit to the limit value Ilim when the q-phase current target value iq * exceeds the limit value, the lower limit of the d-phase current target value id * is the value of −Φ / Ld A current limiter 22a that limits the current flowing in two phases of the three phases of the winding 12, and a two-phase current calculator 23 that calculates a d-phase current value id and a q-phase current value iq; A proportional-integral control unit 51 for calculating a d-phase voltage command value Vd and a q-phase voltage command value Vq based on each current target value id *, iq * and the d-phase and q-phase current values id, iq; Q axis of the combined vector of the voltage command values Vd and Vq of the q and q phases A vector angle control unit 52 serving as a vector angle control means for controlling the angle with respect to the signal, and determining whether or not the resultant vector of the d-phase and q-phase voltage command values Vd and Vq is saturated, proportional integral control and vector angle Saturation determination unit 53, which is a selection means for selecting one of the controls, and d-phase voltage command value Vd and q-phase voltage command value Vq as voltage command values Vu, Vv, Vw for each of the three phases U, V, and W. Among the three-phase conversion calculation unit 27 for conversion to the above and the voltage command values Vu, Vv, Vw output from the three-phase conversion calculation unit 27, the PWM opening is fully opened, that is, the PWM duty ratio is greater than or equal to the maximum value. In this case, the limiter 28 that limits the voltage command values Vu, Vv, and Vw to values that maximize and minimize the PWM duty ratio, and the current value that flows through the two phases iu and iv of the motors U, V, and W are detected. Current detection 29, is constituted by a PWM circuit 30 for applying U, V, each winding 12 of the W at a predetermined PWM opening in accordance with the voltage command values Vu, Vv, Vw.

比例積分制御部51は、上述の一実施の形態におけるモータ制御装置20の比例積分制御部24と同様に、各電流目標値id*,iq*とd相およびq相の電流値id,iqの各偏差εd,εqを求め、上記各偏差εd,εqをそれぞれ積分した値に積分ゲインKIを乗じるとともに、各偏差εd,εqに比例ゲインKPを乗じることで得られる二つの値を加算して、d相電圧指令値Vdおよびq相電圧指令値Vqを演算する。   The proportional-plus-integral control unit 51, like the proportional-plus-integral control unit 24 of the motor control device 20 in the above-described embodiment, sets the current target values id *, iq * and the d-phase and q-phase current values id, iq. Each deviation εd, εq is obtained, and the values obtained by integrating the deviations εd, εq are multiplied by an integral gain KI, and two values obtained by multiplying the deviations εd, εq by a proportional gain KP are added, d-phase voltage command value Vd and q-phase voltage command value Vq are calculated.

具体的には、比例積分制御部51は、各相の偏差εd,εqを演算する加減算部61,62と、各偏差εd,εqに比例ゲインKPを乗じる乗算部63,64と、各偏差εd,εqをそれぞれ積分する積分部65,66と、積分部65,66の演算結果である各積分値fd,fqに積分ゲインKIを乗じる乗算部67,68と、乗算部63が演算した比例ゲインKPを乗算後の偏差εdと乗算部67が演算した積分ゲインKIを乗算後の積分値fdとを加算する加算部69と、乗算部64が演算した比例ゲインKPを乗算後の偏差εqと乗算部68が演算した積分ゲインKIを乗算後の積分値fqとを加算する加算部70とを備えて構成されている。   Specifically, the proportional-plus-integral control unit 51 includes addition / subtraction units 61 and 62 for calculating the deviations εd and εq of the phases, multiplication units 63 and 64 for multiplying the deviations εd and εq by the proportional gain KP, and the deviations εd. , Εq integrating units 65, 66, multipliers 67, 68 for multiplying the integral values fd, fq, which are the calculation results of the integrators 65, 66, and the integral gain KI, and the proportional gain calculated by the multiplier 63, respectively. An addition unit 69 for adding the deviation εd after multiplication by KP and the integral gain fd after multiplication by the integral gain KI calculated by the multiplication unit 67; and multiplying the deviation εq by multiplication by the proportional gain KP calculated by the multiplication unit 64 And an adding unit 70 that adds the integrated value fq after multiplication by the integral gain KI calculated by the unit 68.

すなわち、モータ制御装置50の場合、電流ループは、二相電流演算部23、比例積分制御部51および制御対象であるモータMとで作られる電流フィードバックループとなる。   That is, in the case of the motor control device 50, the current loop is a current feedback loop formed by the two-phase current calculation unit 23, the proportional-integral control unit 51, and the motor M to be controlled.

つづき、この他の実施の形態における発明のモータ制御装置50にあっては、ベクトル角度制御部52は、q相電流ループにおける積分値fq、すなわち、上記比例積分制御部51の積分部66において演算される積分値fqを、当該積分値fqをフィードバックして補正して、q相電圧指令値Vqを調節してdq各相の電圧指令値Vd,Vqの合成ベクトルのベクトル角度を制御する。   Subsequently, in the motor control device 50 of the invention in this other embodiment, the vector angle control unit 52 calculates the integration value fq in the q-phase current loop, that is, the integration unit 66 of the proportional integration control unit 51. The integrated value fq is corrected by feeding back the integrated value fq, and the q-phase voltage command value Vq is adjusted to control the vector angle of the combined vector of the voltage command values Vd and Vq for each phase of dq.

以下、この他の実施の形態におけるベクトル角度制御について、詳しく説明すると、ベクトル角度制御部52は、積分部66が演算した積分値fqと、q相積分値目標値fqとの偏差である積分値偏差εfqを演算する加減算部71と、上記積分値偏差εfqにゲインGを乗じる乗算部72と、この乗算部72の出力であるG・εfqと上記した比例積分制御部51の加減算部62によって演算される偏差εqとのいずれかを選択的に積分部66への入力とするスイッチ73と、スイッチ73の切換を制御するスイッチコントローラ75と、を備えて構成されている。 Hereinafter, the vector angle control in the other embodiment will be described in detail. The vector angle control unit 52 is an integration that is a deviation between the integration value fq calculated by the integration unit 66 and the q-phase integration value target value fq *. Addition / subtraction unit 71 for calculating the value deviation ε fq , multiplication unit 72 for multiplying the integral value deviation ε fq by the gain G, output G · ε fq of the multiplication unit 72 and addition / subtraction of the proportional integration control unit 51 described above The switch 73 includes a switch 73 that selectively inputs one of the deviations εq calculated by the unit 62 to the integrating unit 66 and a switch controller 75 that controls switching of the switch 73.

ここで、スイッチ73が加減算部62によって演算される偏差εqを積分部66へ入力する場合には、ベクトル角度制御部52によるベクトル角度制御は行われずに通常の比例積分制御が行われ、反対に、スイッチ73が乗算部72の出力であるG・εfqを積分部66へ入力する場合には、比例積分制御からベクトル角度制御部52によるベクトル角度制御に切換り、ベクトル角度制御部52は、積分値fqをフィードバックするループによって積分部66の演算結果である積分値fqを徐々に積分値目標値fqに誘導してdq各相の電圧指令値Vd,Vqの合成ベクトルのq軸に対する角度を制御する。 Here, when the switch 73 inputs the deviation εq calculated by the addition / subtraction unit 62 to the integration unit 66, the vector angle control by the vector angle control unit 52 is not performed, but the normal proportional integration control is performed. When the switch 73 inputs G · ε fq that is the output of the multiplication unit 72 to the integration unit 66, the proportional integration control is switched to the vector angle control by the vector angle control unit 52, and the vector angle control unit 52 The integral value fq, which is the calculation result of the integrator 66, is gradually guided to the integral value target value fq * by a loop that feeds back the integral value fq, and the angle of the combined vector of the voltage command values Vd and Vq of each phase of dq with respect to the q axis. To control.

そして、図6に示したマップを利用して電気角速度ωから得られるベクトル角度最終値θdq*を求めて、dq各相の電圧指令値Vd,Vqの合成ベクトルの長さ(Vd+Vq1/2とcosθdq*の乗算結果を積分値目標値fqに設定することで、合成ベクトルのベクトル角度を一実施の形態と同様に制御することが可能となる。 Then, the vector angle final value θ dq * obtained from the electrical angular velocity ω is obtained using the map shown in FIG. 6, and the length (Vd 2 + Vq 2) of the combined vector of the voltage command values Vd and Vq of each phase of dq is obtained. ) By setting the multiplication result of 1/2 and cos θ dq * to the integral value target value fq * , the vector angle of the combined vector can be controlled in the same manner as in the embodiment.

つまり、q相電流目標値iq*は、電流制限部22によって制限されているので、比例積分制御部51における比例パスはq相電流値iqがq相電流目標値iq*に追随することで小さな値を出力するようになって、ベクトル角度制御が行われている積分パスの値がq相電圧指令値Vqを支配するようになるので、最終的には、q相電圧指令値Vqは、積分値目標値fqに誘導されることになり、q相電圧指令値Vqを狙った値に制御することができる。 That is, since the q-phase current target value iq * is limited by the current limiting unit 22, the proportional path in the proportional-integral control unit 51 is small because the q-phase current value iq follows the q-phase current target value iq *. Since the value of the integration path in which the vector angle control is performed now dominates the q-phase voltage command value Vq, the q-phase voltage command value Vq is finally integrated. will be induced to a value desired value fq *, it can be controlled to a value targeting q-phase voltage command value Vq.

なお、実際には、(Vd+Vq1/2・cosθdq*を乗算するには、時間がかかるので、電気角速度ωをパラメータとした(Vd+Vq1/2・cosθdq*のマップを用いて、マップ演算すればよい。しがたって、たとえば、上記の力行状態では、電気角速度ωがマイナスの大きな値である場合、ベクトル角度を−90度に設定することになるので、積分値目標値fqを0に設定すればよい。 Actually, since it takes time to multiply (Vd 2 + Vq 2 ) 1/2 · cos θ dq *, the electrical angular velocity ω is used as a parameter (Vd 2 + Vq 2 ) 1/2 · cos θ dq *. Map calculation may be performed using the map. Therefore, for example, in the above power running state, if the electrical angular velocity ω is a large negative value, the vector angle is set to −90 degrees, so if the integral value target value fq * is set to 0, Good.

また、ロータRの回転を助勢するトルクをモータMが発生している場合(力行状態)では、電流目標値演算部21が出力するd相電流目標値id*をマイナスの値とする弱め界磁制御を実施する。   Further, when the motor M generates torque that assists the rotation of the rotor R (powering state), field weakening control is performed in which the d-phase current target value id * output from the current target value calculation unit 21 is a negative value. carry out.

上記の力行状態において、ベクトル角度制御を実施する場合、合成ベクトルのベクトル角度θvをマイナスの角度に誘導する必要があるが、d相電流目標値id*を0とする制御を実施すると、実際にはマイナスの値を採るd相電流idの影響により、偏差εdがプラスとなって、d相電圧指令値Vdがプラス方向に誘導され、ベクトル角度を狙い通りに制御できなくなる虞がある。そこで、上述したように、特に、力行状態では、電流目標値演算部21が出力するd相電流目標値id*をマイナスの値とする弱め界磁制御を実施することで、d相電圧指令値Vdをマイナスの値にすることができ、合成ベクトルのベクトル角度θvを狙い通りに制御できるようになる。   When performing vector angle control in the above power running state, it is necessary to guide the vector angle θv of the combined vector to a negative angle. However, when control is performed to set the d-phase current target value id * to 0, actually There is a possibility that the deviation εd becomes positive due to the influence of the d-phase current id taking a negative value, the d-phase voltage command value Vd is induced in the positive direction, and the vector angle cannot be controlled as intended. Therefore, as described above, particularly in the powering state, the d-phase voltage command value Vd is obtained by performing field-weakening control in which the d-phase current target value id * output from the current target value calculation unit 21 is a negative value. A negative value can be set, and the vector angle θv of the combined vector can be controlled as intended.

なお、弱め界磁制御を実施して、d相電圧指令値Vdをマイナスに誘導する場合において、電流目標値演算部21は、d相電流目標値id*をマイナスの値に設定することになるが、この値がマイナスであって過剰に大きい場合には、q相電流iqの絶対値を最大とすることができない。そこで、q相電流iqを最大にするd相電流idは、モータMの鎖交磁束最大数Φをd相インダクタンスLdで除した値−Φ/Ldであるため、この電流目標値演算部21が出力するd相電流目標値id*を電流制限部22aによって−Φ/Ldに制限するようにしている。したがって、上記の力行状態にあっては、d相電流目標値id*が−Φ/Ldに制限され、これによって、q相電流iqの絶対値が最大値を取れないような事態が防止される。ここで、電流制限部22aは、q相電流目標値iqに関しては上述の一実施の形態と同様に制限する。 Note that when the field weakening control is performed to induce the d-phase voltage command value Vd to be negative, the current target value calculation unit 21 sets the d-phase current target value id * to a negative value. If this value is negative and excessively large, the absolute value of the q-phase current iq cannot be maximized. Therefore, the d-phase current id that maximizes the q-phase current iq is a value −Φ / Ld obtained by dividing the maximum number of flux linkages Φ of the motor M by the d-phase inductance Ld. The output d-phase current target value id * is limited to -Φ / Ld by the current limiting unit 22a. Therefore, in the above power running state, the d-phase current target value id * is limited to -Φ / Ld, and this prevents a situation in which the absolute value of the q-phase current iq cannot take the maximum value. . Here, current limiting unit 22a limits q-phase current target value iq * in the same manner as in the above-described embodiment.

なお、制動状態において、もともと、電流目標値演算部21がd相電流目標値id*を0として制御しているような場合には、dq各相の合成ベクトルが飽和する状態においてd相電流値idがマイナスの値をとるため、d相の偏差εdがプラスの値を持ち、d相電圧指令値Vdがプラスの値となることから、特に、このような制動状態においては、電流目標値演算部21がd相電流目標値id*をマイナスの値に設定する弱め界磁制御を実施しなくともよい。   In the braking state, when the current target value calculation unit 21 originally controls the d-phase current target value id * to be 0, the d-phase current value in a state where the combined vector of each dq phase is saturated. Since id takes a negative value, the d-phase deviation εd has a positive value, and the d-phase voltage command value Vd becomes a positive value. Therefore, particularly in such a braking state, the current target value calculation is performed. The unit 21 may not perform the field weakening control for setting the d-phase current target value id * to a negative value.

また、ベクトル角度制御を行う際、実際には、電気角速度ωの絶対値が小さく、すなわち、ロータRの回転速度が小さい場合には、dq各相の電圧指令値Vd,Vqの合成ベクトルが飽和するケースはあまりないことから、積分値目標値fqを上記のごとく可変とするのではなく0に設定しておくようにしても、実用上は差し支えなく、制御に必要な演算も簡単となり、演算周期も短縮することが可能となる。 In addition, when the vector angle control is actually performed, when the absolute value of the electrical angular velocity ω is small, that is, when the rotational speed of the rotor R is small, the combined vector of the voltage command values Vd and Vq for each phase of dq is saturated. Since there are not many cases to do so, setting the integral target value fq * to 0 instead of making it variable as described above has no problem in practical use, and the calculation required for control becomes simple. The calculation cycle can be shortened.

ちなみに、積分値目標値fqを0に設定しておく場合には、d相電圧指令値Vdとq相電圧指令値Vqの合成ベクトルがq軸に対しなす角度が90度および−90度になるように誘導することができ、モータ制御装置20の処理手順を実現するプログラム上にq相の積分値目標値fqを演算する記述をする必要が無くなりプログラムが簡素化することが可能となる。 Incidentally, when the integral value target value fq * is set to 0, the angle formed by the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq with respect to the q axis is 90 degrees and −90 degrees. Therefore, it is not necessary to describe the q-phase integral value target value fq * on the program for realizing the processing procedure of the motor control device 20, and the program can be simplified. .

なお、上記したところでは、積分値fqをフィードバックしているが、積分ゲインKI乗算後の値fq・KIをフィードバックするループによって、最終的に積分パスが出力する値、すなわち、乗算部68が出力する値fq・KIを積分値目標値fqに積分ゲインKIを乗じた値に誘導するようにしてもよいことは勿論であり、積分値をフィードバックすることにはq相積分パスにおける乗算部68が出力する値をフィードバックすることも含まれる。 In the above description, the integrated value fq is fed back, but the value finally output by the integration path, that is, the multiplication unit 68 outputs by the loop that feeds back the value fq · KI multiplied by the integral gain KI. Of course, the value fq · KI to be derived may be derived by multiplying the integral value target value fq * by the integral gain KI, and the multiplier 68 in the q-phase integral path is used to feed back the integral value. It also includes feeding back the value output by.

また、このように、このモータ制御装置50にあっては、ベクトル角度制御部52は、積分値fqをフィードバックして当該積分値fqを補正するので、積分値fqは、一次遅れ系のフィードバックループの時定数に依存して徐々に積分値目標値fqに変化することになるとともに、比例パスに対しては補正処理を行わずに積分値fqのみを補正するので、スイッチ73の切換時に、電流ループにおける積分部66のフィルタ特性を利用して、q相電圧指令値Vqに急激に変化を生じさせることもなく、モータMの発生トルクに急激な変化を生じさせることがなく、アクチュエータのストローク速度に急激な変化を生じさせることがない。 As described above, in the motor control device 50, the vector angle control unit 52 corrects the integral value fq by feeding back the integral value fq. Therefore, the integral value fq is a feedback loop of a first-order lag system. The integral value fq * is gradually changed depending on the time constant, and only the integral value fq is corrected without performing the correction process for the proportional path. Using the filter characteristics of the integration unit 66 in the current loop, the q-phase voltage command value Vq is not changed suddenly, the generated torque of the motor M is not changed suddenly, and the stroke of the actuator is There is no sudden change in speed.

さらに、スイッチ73の切換時に、q相電圧指令値Vqに急激に変化を生じさせることがないので、積分値fqの補正に当たり、補正制御をフェードイン・フェードアウトさせる必要が無く、制御アルゴリズムが複雑となってしまう不具合もない。   Further, since the q-phase voltage command value Vq does not change suddenly when the switch 73 is switched, there is no need to fade in and fade out the correction control when correcting the integral value fq, and the control algorithm is complicated. There is no problem that becomes.

換言すれば、直接的に、q相の電圧指令値Vqを補正したり、比例パスの値をも補正したりすることも可能ではあるが、すると、その制御に当たってフェードイン・フェードアウトさせなくてはq相電圧指令値Vqの変化が急激となることから、制御が煩雑となるが、本実施の形態のモータ制御装置50にあっては、このような不具合がないのである。   In other words, although it is possible to directly correct the q-phase voltage command value Vq and the value of the proportional path, it is necessary to fade in and fade out in the control. Since the change of the q-phase voltage command value Vq becomes abrupt, the control becomes complicated, but the motor control device 50 of the present embodiment does not have such a problem.

つづき、スイッチ73の切換について説明する。上記スイッチ73の切換、すなわち、比例積分制御とベクトル角度制御の切換は、本実施の形態においては、dq各相の電圧指令値Vd,Vqの合成ベクトルが飽和することを条件としている。   Subsequently, switching of the switch 73 will be described. In the present embodiment, switching of the switch 73, that is, switching between proportional integral control and vector angle control is performed under the condition that the combined vector of the voltage command values Vd and Vq for each phase of dq is saturated.

すなわち、dq各相の電圧指令値Vd,Vqの合成ベクトルが飽和するまでは、比例積分制御を行えば足りるので、dq各相の電圧指令値Vd,Vqの合成ベクトルが飽和状態であってもモータMに大きなトルクを発生させるべくベクトル角度制御を行えばよいことから、dq各相の電圧指令値Vd,Vqの合成ベクトルが飽和することを条件として比例積分制御からベクトル角度制御へ切換る。   That is, until the combined vector of the voltage command values Vd and Vq for each phase of dq saturates, it is sufficient to perform proportional integral control. Therefore, even if the combined vector of the voltage command values Vd and Vq for each phase of dq is saturated. Since vector angle control may be performed to generate a large torque in the motor M, switching from proportional integral control to vector angle control is performed on condition that the combined vector of the voltage command values Vd and Vq of each phase of dq is saturated.

上記したところから、通常の比例積分制御が可能である時、スイッチ73を加減算部62によって演算される偏差εqが積分部66へ入力するようにしておき、d相およびq相の電圧指令値Vd,Vqの合成ベクトルが飽和することの条件を満たす場合に、上記スイッチ73を乗算部72の出力であるG・εfqが積分部66へ入力されるように切換えてやればよいことになる。 From the above, when normal proportional-integral control is possible, the switch 73 is set so that the deviation εq calculated by the adder / subtractor 62 is input to the integrator 66, and the voltage command value Vd for the d-phase and q-phase is supplied. , Vq satisfying the condition that the combined vector is saturated, the switch 73 may be switched so that G · ε fq, which is the output of the multiplier 72, is input to the integrator 66.

このため、本実施の形態におけるモータ制御装置50は、dq各相の各電圧指令値Vd,Vqの合成ベクトルが飽和しているか否かを判断する飽和判断部53を備え、飽和判断部53の判断の結果、上記条件を満たす場合に、スイッチコントローラ75がベクトル角度制御を選択して比例積分制御からベクトル角度制御へと切換えるように、スイッチ73を切換えるようにしている。   For this reason, the motor control device 50 according to the present embodiment includes a saturation determination unit 53 that determines whether or not the combined vector of the voltage command values Vd and Vq of each phase of dq is saturated. If the condition is satisfied as a result of the determination, the switch 73 is switched so that the switch controller 75 selects the vector angle control and switches from the proportional integral control to the vector angle control.

詳しく説明すると、飽和判断部53は、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さの自乗の値(Vd+Vq)と上述の閾値の自乗の値とを比較して、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さが閾値を超えているかを判断する。なお、この場合、上述のように、閾値を飽和電圧Vsとしておくことによって、上記判断により、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和している状態であるかを判断することができる。 More specifically, the saturation determination unit 53 compares the square value of the combined vector length of the d-phase voltage command value Vd and the q-phase voltage command value Vq (Vd 2 + Vq 2 ) with the square value of the threshold value described above. Thus, it is determined whether the combined vector length of the d-phase voltage command value Vd and the q-phase voltage command value Vq exceeds a threshold value. In this case, as described above, by setting the threshold value to the saturation voltage Vs, it is determined whether the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq is saturated based on the above determination. Judgment can be made.

このように、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さの自乗の値、すなわち、d相電圧指令値Vdの二乗の値とq相電圧指令値Vqの二乗の値とを足し合わせた加算値(Vd+Vq)と閾値の自乗とを比較して、d相電圧指令値Vdとq相電圧指令値Vqの合成ベクトル長さ(Vd+Vq1/2が閾値を超えているかを判断するようにしているので、この判断に必要な演算にルート演算を行わずに済み、演算時間の短縮に寄与することができる。 Thus, the square value of the combined vector length of the d-phase voltage command value Vd and the q-phase voltage command value Vq, that is, the square value of the d-phase voltage command value Vd and the square value of the q-phase voltage command value Vq. Is added to the sum (Vd 2 + Vq 2 ) and the square of the threshold, and the resultant vector length (Vd 2 + Vq 2 ) 1/2 of the d-phase voltage command value Vd and the q-phase voltage command value Vq Therefore, it is not necessary to perform the root calculation for the calculation necessary for this determination, which can contribute to shortening the calculation time.

なお、飽和の判断は、上記したところに代えて、q相電流目標値iq*がリミット値Ilimを超える場合には、q相電流目標値iq*はq相電流iqが採りえない値となっていることから、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和することになるので、このように、q相電流目標値iq*がリミット値Ilimを超えることをもってして飽和判断部53が合成ベクトルが飽和状態であることを判断してもよい。   In addition, instead of the above-described determination of saturation, when the q-phase current target value iq * exceeds the limit value Ilim, the q-phase current target value iq * is a value that cannot be taken by the q-phase current iq. Therefore, since the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq is saturated, the q-phase current target value iq * exceeds the limit value Ilim in this way. The saturation determination unit 53 may determine that the combined vector is saturated.

そして、飽和判断部53は、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和している場合、0をスイッチコントローラ75に出力し、飽和していない場合には、1をスイッチコントローラ75に出力するようにする。   The saturation determination unit 53 outputs 0 to the switch controller 75 when the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq is saturated, and 1 when it is not saturated. Output to the switch controller 75.

他方、スイッチコントローラ75は、図15に示すように、飽和判断部53が出力する値を否定する否定演算部76を備え、また、スイッチコントローラ75は、飽和判断部53が出力した値をそのままq相電流目標値iq*とq相電流iqとの偏差εqを演算する加減算部62とスイッチ73との間に設けた乗算部77およびd相の積分ループ中の積分部65の手前に設けた乗算部80へ出力するとともに、否定演算部76が出力する値を積分値fqの補正用のフィードバックループの途中であってスイッチ73と乗算部72との間に設けた乗算部78へ出力し、さらには、飽和判断部53が出力する値をそのままスイッチ73へ出力するようになっている。   On the other hand, as shown in FIG. 15, the switch controller 75 includes a negative operation unit 76 that negates the value output from the saturation determination unit 53, and the switch controller 75 directly uses the value output from the saturation determination unit 53 as q Multiplication unit 77 provided between addition / subtraction unit 62 for calculating deviation εq between phase current target value iq * and q phase current iq and switch 73 and multiplication provided before integration unit 65 in the d-phase integration loop. And outputs the value output from the negative operation unit 76 to the multiplication unit 78 provided between the switch 73 and the multiplication unit 72 in the middle of the feedback loop for correcting the integral value fq. The value output from the saturation determination unit 53 is output to the switch 73 as it is.

また、スイッチ73は、この場合、スイッチコントローラ75から1未満の値を受け取ると、ベクトル角度制御を有効とするべく、乗算部72の出力であるG・εfqが積分部39へ入力されるように切換り、スイッチコントローラ75から1以上の値を受け取ると、加減算部62によって演算される偏差εqが積分部66へ入力されるように切換るようになっている。 In this case, when the switch 73 receives a value less than 1 from the switch controller 75, G · ε fq that is the output of the multiplication unit 72 is input to the integration unit 39 in order to validate the vector angle control. When a value of 1 or more is received from the switch controller 75, the deviation εq calculated by the adder / subtractor 62 is switched so as to be input to the integrator 66.

ここで、飽和判断部53がd相電圧指令値Vdとq相電圧指令値Vqの合成ベクトルが飽和していると判断して0を出力すると、スイッチコントローラ75は、スイッチ73に対しては0を、乗算部77,80に対しては0を、乗算部78に対しては1をそれぞれ出力する。   When the saturation determination unit 53 determines that the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq is saturated and outputs 0, the switch controller 75 outputs 0 to the switch 73. Is output to the multipliers 77 and 80 and 1 is output to the multiplier 78.

すると、スイッチ73は、ベクトル角度制御を選択するべく、乗算部72の出力であるG・εfqが積分部66へ入力されるように切換り、乗算部72の出力であるG・εfqとスイッチコントローラ75が出力する1とが乗算部78へ入力されるので、積分部66へは、G・εfqがそのまま入力されるようになる。また、乗算部80へはスイッチコントローラ75が出力する0と偏差εdが入力されるので、積分部65へは0が入力されるようになる。 Then, in order to select vector angle control, the switch 73 switches so that G · ε fq that is the output of the multiplication unit 72 is input to the integration unit 66, and G · ε fq that is the output of the multiplication unit 72 and Since 1 output from the switch controller 75 is input to the multiplication unit 78, G · ε fq is input to the integration unit 66 as it is. In addition, since 0 and the deviation εd output from the switch controller 75 are input to the multiplication unit 80, 0 is input to the integration unit 65.

つまり、この場合には、ベクトル角度制御が行われるので、積分値fqを補正する制御が実施されるとともに、乗算部80には0が出力されることから、d相電流ループにおける積分演算は中止されることになる。なお、電流目標値演算部21は、飽和判断部53がd相電圧指令値Vdとq相電圧指令値Vqの合成ベクトルが飽和しているか否かに関わらず、d相電流目標値idをマイナスの値にする弱め界磁制御を実施するようになっている。 That is, in this case, since the vector angle control is performed, control for correcting the integral value fq is performed, and 0 is output to the multiplication unit 80. Therefore, the integral calculation in the d-phase current loop is stopped. Will be. The current target value calculation unit 21 calculates the d-phase current target value id * regardless of whether or not the saturation determination unit 53 saturates the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq. The field weakening control is performed to a negative value.

対し、飽和判断部53がd相電圧指令値Vdとq相電圧指令値Vqの合成ベクトルが飽和していないと判断して1を出力すると、スイッチコントローラ75は、スイッチ73に対しては1を、乗算部77,80に対しては1を、乗算部78に対しては0をそれぞれ出力する。   On the other hand, when the saturation determination unit 53 determines that the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq is not saturated, the switch controller 75 outputs 1 to the switch 73. 1 is output to the multipliers 77 and 80, and 0 is output to the multiplier 78.

すると、スイッチ73は、比例積分制御を選択するべく、加減算部62によって演算される偏差εqが積分部66へ入力されるように切換り、乗算部77へはスイッチコントローラ75が出力する1と偏差εqが入力されるので、積分部66へは、偏差εqがそのまま入力されるようになる。さらに、乗算部80へはスイッチコントローラ75が出力する1と偏差εdが入力されるので、積分部65へは偏差εdがそのまま入力されるようになる。   Then, the switch 73 switches so that the deviation εq calculated by the addition / subtraction unit 62 is input to the integration unit 66 in order to select the proportional integration control, and the multiplication unit 77 outputs the deviation 1 from the switch controller 75. Since εq is input, the deviation εq is input to the integrating unit 66 as it is. Furthermore, since 1 and the deviation εd output from the switch controller 75 are input to the multiplication unit 80, the deviation εd is input to the integration unit 65 as it is.

つまり、この場合には、積分値fqを補正してベクトル角度制御を行う必要が無いので、通常の比例積分制御が行われることになる。   That is, in this case, there is no need to perform vector angle control by correcting the integral value fq, so that normal proportional-integral control is performed.

また、ベクトル角度制御では、d相電流ループにおける積分演算が中止され、さらに、q相積分値fqは、小さい値の積分値目標値fqに誘導されることになるので、dq各相の積分値fd,fqの絶対値が大きな値を持つようなことがなく、比例積分制御を再開するときに、制御応答性が悪化してしまうことが無い。さらに、本実施の形態におけるベクトル角度制御では、d相電流ループにおける積分演算が中止するとともにq相の積分値fqを補正するようにしているので、比例積分制御に切換るときにベクトル角度制御をフェードアウトさせたり、dq各相の積分値fd,fqの書換えを行わずとも、dq各相の電圧指令値Vd,Vqに大きな段差が生じることがなく、モータMの発生トルクに大きな変動が生じてしまう事態が防止される。 Further, in the vector angle control, the integration calculation in the d-phase current loop is stopped, and the q-phase integration value fq is induced to a small integration value target value fq *. The absolute values of the values fd and fq do not have large values, and the control response is not deteriorated when the proportional-integral control is restarted. Further, in the vector angle control in the present embodiment, the integral calculation in the d-phase current loop is stopped and the q-phase integral value fq is corrected. Therefore, the vector angle control is performed when switching to the proportional integral control. Without fading out or rewriting the integrated values fd and fq of each phase of dq, a large step does not occur in the voltage command values Vd and Vq of each phase of dq, and a large fluctuation occurs in the torque generated by the motor M. Is prevented.

かくして、飽和判断部53は、上記のように、モータ制御装置50が通常の比例積分制御をするべきか、ベクトル角度制御をするべきかを判断し、比例積分制御とベクトル角度制御のうち、いずれかの制御を選択するので、モータMを適切に制御することが可能となる。   Thus, as described above, the saturation determination unit 53 determines whether the motor control device 50 should perform normal proportional-integral control or vector-angle control, and either the proportional-integral control or the vector-angle control. Since such control is selected, the motor M can be appropriately controlled.

さらに、スイッチコントローラ75を上記のごとく構成することで、高度な演算処理を要せずして、飽和判断部53が出力する値を論理演算のみによってスイッチ73を制御して、比例積分制御とベクトル角度制御のいずれかを選択することが可能となる。   Further, by configuring the switch controller 75 as described above, it is possible to control the switch 73 by using only the logical operation of the value output from the saturation determination unit 53 without requiring high-level arithmetic processing, and to perform proportional integral control and vector processing. One of the angle controls can be selected.

そして、この他の実施の形態におけるモータ制御装置50も、上記した一実施の形態におけるモータ制御装置20と同様に、dq各相の電圧指令値Vd,Vqの合成ベクトルのq軸に対する角度を制御することが可能となり、dq各相の電圧指令値Vd,Vqの合成ベクトルが飽和する場合にあっても、モータMが発生するトルクを適切に制御することが可能であるとともに、また、モータMに従来のモータ制御装置に比較してより一層大きなトルクを発生させることが可能である。   The motor control device 50 in the other embodiment also controls the angle of the combined vector of the voltage command values Vd and Vq for each phase of dq with respect to the q axis, similarly to the motor control device 20 in the one embodiment described above. Even when the combined vector of the voltage command values Vd and Vq of each phase of dq is saturated, the torque generated by the motor M can be appropriately controlled, and the motor M In addition, it is possible to generate a larger torque compared to the conventional motor control device.

また、このモータ制御装置50にあっても、モータMにより一層大きなトルクを発生させることが可能であるので、トルク制御範囲が大きくなるとともに、より小型のモータを使用してもアクチュエータの必要推力を確保することができる。換言すれば、より小さなモータを使用することができ、アクチュエータのコストを低減することが可能となり、アクチュエータを使用する装置へのアクチュエータの搭載性をも向上させることが可能となる。   Further, even in this motor control device 50, since a larger torque can be generated by the motor M, the torque control range is increased, and the necessary thrust of the actuator can be obtained even if a smaller motor is used. Can be secured. In other words, a smaller motor can be used, the cost of the actuator can be reduced, and the mountability of the actuator in a device using the actuator can be improved.

さらに、この他の実施の形態のモータ制御装置においては、ベクトル角度制御では、演算に時間を要するベクトル角度計算を用いずにd相およびq相の電圧指令値Vd,Vqを独立して調節することによってdq各相の電圧指令値Vd,Vqの合成ベクトルのベクトル角度を制御することが可能であるから、演算周期が短縮されるとともに、演算負担も軽減され、モータ制御装置50の実用性が向上することになる。   Further, in the motor control apparatus of this other embodiment, in the vector angle control, the d-phase and q-phase voltage command values Vd and Vq are independently adjusted without using the vector angle calculation which requires time for calculation. This makes it possible to control the vector angle of the combined vector of the voltage command values Vd and Vq for each phase of dq, so that the calculation cycle is shortened, the calculation load is reduced, and the practicality of the motor control device 50 is improved. Will improve.

つづいて、上述のように構成されるモータ制御装置50の電流検出器29、回転角センサ15およびPWM回路30以外の各部におけるハードウェア資源は、上述のモータ制御装置20と同様であり、電流目標値演算部21、電流制限部22、二相電流演算部23、比例積分制御部51、ベクトル角度制御部52、飽和判断部53、三相変換演算部27、リミッタ28、スイッチ73およびスイッチコントローラ75における処理手順は、プログラムとしてROMや他の記憶装置に予め格納され、上記これら各部は、CPUが上記プログラムを読み込んで、上記した各演算処理を実行することによって実現される。   Subsequently, the hardware resources in each part other than the current detector 29, the rotation angle sensor 15, and the PWM circuit 30 of the motor control device 50 configured as described above are the same as those of the motor control device 20 described above, and the current target. Value calculation unit 21, current limiting unit 22, two-phase current calculation unit 23, proportional integral control unit 51, vector angle control unit 52, saturation determination unit 53, three-phase conversion calculation unit 27, limiter 28, switch 73 and switch controller 75 The processing procedure is stored in advance in a ROM or other storage device as a program, and these units are realized by the CPU reading the program and executing the above-described arithmetic processing.

ここで、上記したモータ制御装置50における処理手順について、図16に示すフローチャートに基づいて説明する。   Here, a processing procedure in the motor control device 50 described above will be described based on a flowchart shown in FIG.

まず、ステップS31でモータ制御装置50は、三相の巻線12のうちの任意の二相、たとえば、U相とV相の電流値iu,ivと、モータMの電気角θと電気角速度ωを読み込む。   First, in step S31, the motor control device 50 determines the current values iu and iv of any two phases of the three-phase windings 12, for example, the U phase and the V phase, the electrical angle θ and the electrical angular velocity ω of the motor M. Is read.

つづき、ステップS32に移行して、モータ制御装置50は、各電流目標値id*,iq*を演算する。なお、必要がある場合、電気角速度ωに基づいて電流目標値iq*を制限する処理を行う。また、d相電流目標値id*については、弱め界磁制御が適用されて演算される。   Subsequently, the process proceeds to step S32, and the motor control device 50 calculates each current target value id *, iq *. If necessary, the current target value iq * is limited based on the electrical angular velocity ω. Further, the d-phase current target value id * is calculated by applying field-weakening control.

さらに、ステップS33では、モータ制御装置50は、電流値iu,ivと電気角θを用いて、上記各電流値iv,iuをd相およびq相の電流値id,iqへ変換する演算を行って、ステップS34に移行する。   Furthermore, in step S33, the motor control device 50 performs an operation for converting the current values iv and iu into d-phase and q-phase current values id and iq using the current values iu and iv and the electrical angle θ. Then, the process proceeds to step S34.

ステップS34では、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルの長さが閾値以上であったか、すなわち、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さ(Vd+Vq1/2が閾値以上であったかを、選択フラグを参照して判断する。なお、この閾値は上述の一実施の形態と同様のものである。そして、選択フラグが1の場合、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルの長さが閾値以上であり、選択フラグが0である時は、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルの長さが閾値未満と判断する。そして、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルの長さが閾値以上でない場合、ステップS35へ移行し、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルの長さが閾値以上である場合、ステップS37へ移行する。 In step S34, the length of the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq was greater than or equal to the threshold value during the previous control, that is, the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq. It is determined with reference to the selection flag whether the length (Vd 2 + Vq 2 ) 1/2 is equal to or greater than the threshold value. This threshold value is the same as that in the above-described embodiment. When the selection flag is 1, the combined vector length of the d-phase voltage command value Vd and the q-phase voltage command value Vq is equal to or greater than the threshold value, and when the selection flag is 0, the d-phase voltage command value Vd and It is determined that the combined vector length of q-phase voltage command value Vq is less than the threshold value. If the combined vector length of the d-phase voltage command value Vd and the q-phase voltage command value Vq is not greater than or equal to the threshold during the previous control, the process proceeds to step S35, and the d-phase voltage command value Vd and the q-phase voltage command are performed during the previous control. If the length of the combined vector of the value Vq is greater than or equal to the threshold value, the process proceeds to step S37.

つづき、ステップS35に移行して、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが閾値以上となっておらず、今回も通常の比例積分制御を行うため、モータ制御装置50は、各電流目標値id*,iq*とd相およびq相の電流値id,iqとの偏差εd,εqを演算するとともに積分値fd,fqを演算して、ステップS36へ移行する。なお、ステップS35においては、通常の比例積分制御を行うため、積分値fd,fqは、それぞれ、fd=fdpre+εd、fq=fqpre+εqを演算することによって算出される。ここで、上述したように、fdpre,fqpreは、それぞれ、前回制御時に演算されたd相およびq相の積分値である。   Subsequently, the process proceeds to step S35, and the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq is not equal to or greater than the threshold value during the previous control. The device 50 calculates the deviations εd and εq between the current target values id * and iq * and the d-phase and q-phase current values id and iq, calculates the integral values fd and fq, and proceeds to step S36. . In step S35, since normal proportional integration control is performed, the integral values fd and fq are calculated by calculating fd = fdpre + εd and fq = fqpre + εq, respectively. Here, as described above, fdpre and fqpre are respectively integrated values of the d-phase and the q-phase calculated during the previous control.

ステップS36では、Vd=KI・fd+KP・εdを演算してd相の電圧指令値Vdを算出し、Vq=KI・fq+KP・εqを演算してq相の電圧指令値Vqを算出してステップS40へ移行する。   In step S36, Vd = KI · fd + KP · εd is calculated to calculate the d-phase voltage command value Vd, and Vq = KI · fq + KP · εq is calculated to calculate the q-phase voltage command value Vq. Migrate to

他方、ステップS37では、モータ制御装置50は、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが閾値以上となっているので、今回制御においてはベクトル角度制御を行うため、積分値目標値fqを演算する。 On the other hand, in step S37, the motor control device 50 performs vector angle control in the current control because the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq is greater than or equal to the threshold value during the previous control. The integral value target value fq * is calculated.

そして、ステップS38へ移行して、q相積分ループの積分値fqを補正する処理を行い、さらに、d相積分ループにおける積分演算が中止される。具体的には、今回制御時の積分値fqをfq=fqpre+G・εfqの演算を行うことによって求め、d相の積分値fdをfd=fdpreの演算によって求める。 Then, the process proceeds to step S38 to perform a process of correcting the integral value fq of the q-phase integration loop, and the integration calculation in the d-phase integration loop is stopped. Specifically, the integral value fq at the time of the current control is obtained by calculating fq = fqpre + G · εfq , and the d-phase integrated value fd is obtained by calculating fd = fdpre.

そして、ステップS39に移行して、dq相の電圧指令値Vd,Vqを算出し、ステップS40へ移行する。具体的には、Vd=KI・fd+KP・εdを演算してd相の電圧指令値Vdを算出し、Vq=KI・fq+KP・εqを演算してq相の電圧指令値Vqを算出する。   Then, the process proceeds to step S39, where dq phase voltage command values Vd and Vq are calculated, and the process proceeds to step S40. Specifically, Vd = KI · fd + KP · εd is calculated to calculate the d-phase voltage command value Vd, and Vq = KI · fq + KP · εq is calculated to calculate the q-phase voltage command value Vq.

ステップS40では、dq相の電圧指令値Vd,Vqの合成ベクトルの長さが閾値以上となる場合には、選択フラグを1に、そうでない場合には選択フラグを0にセットする。なお、閾値を飽和電圧Vsとする場合には、q相電流目標値iq*がリミット値Ilimを超えるか否かをもってして、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和しているか否かを判断することが可能であり、選択フラグをセットする当該ステップS40を、上記ステップS32とステップS33との間に設け、前回制御時におけるdq各相の電圧指令値Vd,Vqの合成ベクトルが飽和しているか否かで比例積分制御とベクトル角度制御のいずれかを選択するのではなく、今回の制御のルーチンで比例積分制御とベクトル角度制御のいずれかを選択するようにしてもよい。   In step S40, the selection flag is set to 1 if the length of the combined vector of the voltage command values Vd and Vq for the dq phase is equal to or greater than the threshold value, and the selection flag is set to 0 otherwise. When the threshold value is the saturation voltage Vs, the combined vector of the d-phase voltage command value Vd and the q-phase voltage command value Vq is determined depending on whether or not the q-phase current target value iq * exceeds the limit value Ilim. It is possible to determine whether or not it is saturated, and the step S40 for setting the selection flag is provided between the step S32 and the step S33, and the voltage command value Vd for each phase of the dq at the previous control time. Instead of selecting either proportional-integral control or vector-angle control depending on whether the combined vector of Vq is saturated, one of proportional-integral control and vector-angle control is selected in this control routine. May be.

そして、ステップS41では、モータ制御装置50は、上記d相電圧指令値Vdおよびq相電圧指令値Vqを三相の電圧指令値Vu,Vv,Vwに変換する演算を行って、ステップS43に移行する。   In step S41, the motor control device 50 performs an operation of converting the d-phase voltage command value Vd and the q-phase voltage command value Vq into three-phase voltage command values Vu, Vv, and Vw, and proceeds to step S43. To do.

そして、ステップS42では、モータ制御装置50は、電圧指令値Vu,Vv,Vwを採り得る値に制限する処理が必要な場合には、この制限処理を行い、必要が無い場合には、制限処理を施さずにステップS43に移行する。   In step S42, the motor control device 50 performs the restriction process when a process for restricting the voltage command values Vu, Vv, and Vw to a value that can be taken is necessary, and performs the restriction process when the process is not necessary. Without moving to step S43.

ステップS43では、モータ制御装置50は、電圧指令値Vu,Vv,VwをPWM回路30へ出力して、これらの一連の処理を終了する。   In step S43, the motor control device 50 outputs the voltage command values Vu, Vv, Vw to the PWM circuit 30 and ends these series of processes.

そして、このモータ制御装置50は、以上のステップS31からS43までを繰り返し処理してモータMを制御する。   The motor controller 50 controls the motor M by repeatedly performing the above steps S31 to S43.

したがって、モータ制御装置50が上記した一連の処理を実行することで、上述した電流目標値演算部21、電流制限部22、二相電流演算部23、比例積分制御部51、ベクトル角度制御部52、飽和判断部53、三相変換演算部27、リミッタ28、スイッチ73およびスイッチコントローラ75の各部の処理が実現され、これによって、dq各相の電圧指令値Vd,Vqの合成ベクトルのq軸に対する角度を制御することが可能となり、dq各相の電圧指令値Vd,Vqの合成ベクトルが飽和する場合にあっても、モータMが発生するトルクを適切に制御することが可能であるとともに、また、モータMに従来のモータ制御装置に比較してより一層大きなトルクを発生させることが可能である。   Therefore, when the motor control device 50 executes the above-described series of processes, the current target value calculation unit 21, the current limiting unit 22, the two-phase current calculation unit 23, the proportional integration control unit 51, and the vector angle control unit 52 described above. , The saturation determination unit 53, the three-phase conversion calculation unit 27, the limiter 28, the switch 73, and the switch controller 75 are processed, whereby the dq respective phase voltage command values Vd and Vq are combined with respect to the q-axis. The angle can be controlled, and even when the combined vector of the voltage command values Vd and Vq of each phase of dq is saturated, the torque generated by the motor M can be controlled appropriately, and Further, it is possible to generate a larger torque in the motor M than in the conventional motor control device.

また、この他の実施の形態におけるモータ制御装置50のベクトル角度制御にあっては、比例積分制御部51のdq各相の電流ループにおける入力数値を変更するようにしているので、通常の比例積分制御とベクトル角度制御との切換え時には、dq各相の電圧指令値Vd,Vqが特別な処理を施すことなく急激に変化することがなく、制御が煩雑となるような不具合もない。   Further, in the vector angle control of the motor control device 50 in this other embodiment, the input numerical value in the current loop of each phase of dq of the proportional integration control unit 51 is changed. At the time of switching between control and vector angle control, the voltage command values Vd and Vq of each phase of dq do not change abruptly without performing special processing, and there is no problem that the control becomes complicated.

以上で、本発明の実施の形態についての説明を終えるが、本発明の範囲は図示されまたは説明された詳細そのものには限定されないことは勿論である。   This is the end of the description of the embodiment of the present invention, but the scope of the present invention is of course not limited to the details shown or described.

一実施の形態におけるモータ制御装置を適用したアクチュエータの概念図である。It is a key map of an actuator to which a motor control device in one embodiment is applied. 電気角速度に対するq軸電流を最大とするdq各相の電圧指令値の合成ベクトルのベクトル角度の変化を示す図である。It is a figure which shows the change of the vector angle of the synthetic | combination vector of the voltage command value of dq each phase which makes q-axis current the largest with respect to electrical angular velocity. (A)は、d相電流をゼロにし、飽和時に積分中止するようにモータを制御した場合のアクチュエータのストローク変位に対するdq各相の電圧指令値の合成ベクトルのベクトル角度の変化を示すグラフである。(B)は、弱め界磁制御を行いつつ飽和時に積分中止してモータを制御した場合のアクチュエータのストローク変位に対するdq各相の電圧指令値の合成ベクトルのベクトル角度の変化を示すグラフである。(A) is a graph which shows the change of the vector angle of the synthetic | combination vector of the voltage command value of dq each phase with respect to the stroke displacement of an actuator at the time of setting a d-phase electric current to zero and controlling a motor so that integration is stopped at the time of saturation. . (B) is a graph showing a change in the vector angle of the combined vector of the voltage command values of each phase of dq with respect to the stroke displacement of the actuator when the motor is controlled by performing the field weakening control and the integration is stopped at the time of saturation. 一実施の形態におけるモータ制御装置のシステム図である。It is a system diagram of a motor control device in one embodiment. PWM回路を示す図である。It is a figure which shows a PWM circuit. (A)は、モータに逆回転方向のトルクを発生させる場合に使用される電気角速度をパラメータとして作成したベクトル角度最終値のマップを示す図である。(B)は、モータに正回転方向のトルクを発生させる場合に使用される電気角速度をパラメータとして作成したベクトル角度最終値のマップを示す図である。(A) is a figure which shows the map of the vector angle final value created using the electrical angular velocity used as a parameter when generating the torque of a reverse rotation direction in a motor. (B) is a figure which shows the map of the vector angle final value produced using the electrical angular velocity used as a parameter when generating the torque of a normal rotation direction in a motor. dq各相の電圧指令値の合成ベクトルのq軸に対する回転方向を決定するための表である。It is a table | surface for determining the rotation direction with respect to the q-axis of the synthetic | combination vector of the voltage command value of dq each phase. q相電流目標値がプラスの場合の合成ベクトルの回転方向を説明する図である。It is a figure explaining the rotation direction of the synthetic | combination vector in case q phase current target value is positive. q相電流目標値がプラスの場合のdq直交座標における合成ベクトルの回転方向を説明する図である。It is a figure explaining the rotation direction of the synthetic | combination vector in dq orthogonal coordinate when q phase current target value is positive. q相電流目標値がマイナスの場合の合成ベクトルの回転方向を説明する図である。It is a figure explaining the rotation direction of the synthetic | combination vector in case q phase current target value is negative. q相電流目標値がマイナスの場合のdq直交座標における合成ベクトルの回転方向を説明する図である。It is a figure explaining the rotation direction of the synthetic | combination vector in dq orthogonal coordinates when q phase current target value is negative. 電気角速度をパラメータとして作成したq相電流目標値を制限するリミット値のマップを示す図である。It is a figure which shows the map of the limit value which restrict | limits the q phase current target value produced using electrical angular velocity as a parameter. 一実施の形態のモータ制御装置における処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in the motor control apparatus of one Embodiment. 他の実施の形態におけるモータ制御装置のシステム図である。It is a system diagram of the motor control device in other embodiments. 選択手段におけるスイッチコントローラのシステム図である。It is a system diagram of the switch controller in the selection means. 他の実施の形態のモータ制御装置における処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in the motor control apparatus of other embodiment.

符号の説明Explanation of symbols

1 回転部材たるピニオンギア
2 直動部材たるラック軸
10 フレーム
11 ステータコア
12 巻線
13 シャフト
14 駆動用磁石
15 回転角センサ
20,50 モータ制御装置
21 電流目標値演算部
22,22a 電流制限部
23 二相電流演算部
24,51 比例積分制御部
25,52 ベクトル角度制御部
26,53 飽和判断部
27 三相変換演算部
28 リミッタ
29 電流検出器
30 PWM回路
30a スイッチング素子
61,62,71 加減算部
63,64,67,68,72,77,78 乗算部
65,66 積分部
69,70 加算部
73 スイッチ
75 スイッチコントローラ
76 否定演算部
80 乗算部
E 電源
H 運動変換機構
M モータ
R ロータ
S ステータ
DESCRIPTION OF SYMBOLS 1 Pinion gear which is a rotating member 2 Rack shaft 10 which is a linear motion member Frame 11 Stator core 12 Winding 13 Shaft 14 Driving magnet 15 Rotation angle sensor 20, 50 Motor control device 21 Current target value calculating unit 22, 22a Current limiting unit 23 Phase current calculation unit 24, 51 Proportional integral control unit 25, 52 Vector angle control unit 26, 53 Saturation determination unit 27 Three-phase conversion calculation unit 28 Limiter 29 Current detector 30 PWM circuit 30a Switching element 61, 62, 71 Addition / subtraction unit 63 , 64, 67, 68, 72, 77, 78 Multiplying unit 65, 66 Integration unit 69, 70 Addition unit 73 Switch 75 Switch controller 76 Negative operation unit 80 Multiplying unit E Power supply H Motion conversion mechanism M Motor R Rotor S Stator

Claims (41)

dq直交座標に変換するdq変換によってd相およびq相の電流値を求めdq各相毎に電流ループ処理を行ってモータの駆動電流を制御するモータ制御装置において、dq各相の電圧指令値の合成ベクトルのベクトル角度を制御するベクトル角度制御手段を備えたことを特徴とするモータ制御装置。 In a motor control device that obtains d-phase and q-phase current values by dq conversion to be converted into dq orthogonal coordinates and performs current loop processing for each dq phase to control the drive current of the motor, A motor control device comprising vector angle control means for controlling a vector angle of a combined vector. dq各相の電流制御偏差に基づく比例積分制御とベクトル角度制御のいずれか選択する選択手段を備え、選択手段によって選択された制御を行うことを特徴とする請求項1に記載のモータ制御装置。 2. The motor control device according to claim 1, further comprising a selection unit that selects either proportional-integral control based on a current control deviation of each phase of dq or vector angle control, and performs control selected by the selection unit. 選択手段は、dq各相の電圧指令値の合成ベクトルの長さが閾値より大きい場合にベクトル角度制御に切換えることを特徴とする請求項2に記載のモータ制御装置。 3. The motor control apparatus according to claim 2, wherein the selection means switches to vector angle control when the combined vector length of the voltage command value of each of the dq phases is larger than a threshold value. ベクトル角度制御手段は、ベクトル角度目標値と合成ベクトル長さからdq各相の電圧指令値を求めることを特徴とする請求項1から3のいずれかに記載のモータ制御装置。 4. The motor control device according to claim 1, wherein the vector angle control means obtains a voltage command value for each phase of dq from the vector angle target value and the combined vector length. ベクトル角度制御手段は、q相の電流制御偏差と、ベクトル角度の角度制御偏差から、合成ベクトルの回転方向を決定し、回転方向からベクトル角度目標値を設定することを特徴とする請求項1から4のいずれかに記載のモータ制御装置。 The vector angle control means determines the rotation direction of the combined vector from the q-phase current control deviation and the angle control deviation of the vector angle, and sets the vector angle target value from the rotation direction. 4. The motor control device according to any one of 4. 角度制御偏差は、q相電流の絶対値を最大にするベクトル角度最終値とベクトル角度の偏差に基づいて決定されることを特徴とする請求項1から5のいずれかに記載のモータ制御装置。 6. The motor control device according to claim 1, wherein the angle control deviation is determined based on a vector angle final value that maximizes an absolute value of the q-phase current and a deviation of the vector angle. ベクトル角度制御手段は、予め電気角速度をパラメータとして作成したベクトル角度のマップを参照してベクトル角度最終値を求めることを特徴とする請求項6に記載のモータ制御装置。 7. The motor control device according to claim 6, wherein the vector angle control means obtains a final vector angle value with reference to a vector angle map created in advance using the electrical angular velocity as a parameter. ベクトル角度制御手段は、q相電流ループにおける積分値を補正して合成ベクトルのベクトル角度を制御することを特徴とする請求項1から3 のいずれかに記載のモータ制御装置。 4. The motor control device according to claim 1, wherein the vector angle control unit corrects an integral value in the q-phase current loop to control a vector angle of the combined vector. 5. ベクトル角度制御手段は、q相電流ループにおける積分値をフィードバックして当該積分値を補正することを特徴とする請求項8に記載のモータ制御装置。 9. The motor control device according to claim 8, wherein the vector angle control means feeds back an integral value in the q-phase current loop to correct the integral value. ベクトル角度制御手段は、電気角速度からq相積分値目標値を求め、q相の積分値をq相積分値目標値になるように補正することを特徴とする請求項8または9に記載のモータ制御装置。 10. The motor according to claim 8, wherein the vector angle control means obtains a q-phase integral value target value from the electrical angular velocity, and corrects the q-phase integral value to become the q-phase integral value target value. Control device. ベクトル角度制御手段は、電気角速度からq相積分値目標値を求め、q相積分値目標値とq相の積分値の積分値偏差に補正ゲインを乗じた値をq相電流ループにおける積分器の入力へ帰還してq相の積分値を補正することを特徴とする請求項8から10のいずれかに記載のモータ制御装置。 The vector angle control means obtains the q-phase integral value target value from the electrical angular velocity, and obtains a value obtained by multiplying the integral difference between the q-phase integral value target value and the q-phase integral value by the correction gain. 11. The motor control device according to claim 8, wherein the motor control device corrects the q-phase integral value by feedback to the input. ベクトル角度制御手段は、ロータが正回転しモータがロータの正回転を助勢するトルクを発生している場合にはd相電流目標値を負の値に設定することを特徴とする請求項8から11のいずれかに記載のモータ制御装置。 The vector angle control means sets the d-phase current target value to a negative value when the rotor is rotating forward and the motor is generating torque that assists the rotor in rotating forward. The motor control device according to any one of 11. q相電流目標値を電気角速度に依存したリミット値に制限するq相電流制限手段を備えたことを特徴とする請求項1から12のいずれかに記載のモータ制御装置。 The motor control device according to any one of claims 1 to 12, further comprising q-phase current limiting means for limiting the q-phase current target value to a limit value depending on an electrical angular velocity. リミット値は、q相電流の絶対値が取りうる最大値に設定されることを特徴とする請求項13に記載のモータ制御装置。 The motor control device according to claim 13, wherein the limit value is set to a maximum value that can be taken by an absolute value of the q-phase current. d相電流目標値の絶対値を、鎖交磁束最大数をd相インダクタンスで除した値に制限するd相電流制限手段を備えたことを特徴とする請求項8から14のいずれかに記載のモータ制御装置。 15. The d-phase current limiting means for limiting the absolute value of the d-phase current target value to a value obtained by dividing the maximum number of interlinkage magnetic fluxes by the d-phase inductance is provided. Motor control device. 閾値は、電源電圧に1/√2を乗じた値に設定されることを特徴とする請求項3から14のいずれかに記載のモータ制御装置。 The motor control device according to claim 3, wherein the threshold value is set to a value obtained by multiplying the power supply voltage by 1 / √2. 閾値は、電源電圧に√6/4を乗じた値に設定されることを特徴とする請求項3から14のいずれかに記載のモータ制御装置。 The motor control device according to claim 3, wherein the threshold value is set to a value obtained by multiplying the power supply voltage by √6 / 4. 閾値は、PWM開度が飽和しない値に設定されることを特徴とする請求項3から17のいずれかに記載のモータ制御装置。 The motor control device according to claim 3, wherein the threshold value is set to a value that does not saturate the PWM opening degree. ベクトル角度制御手段による制御から比例積分制御手段による制御へ切換後、比例積分制御手段が初めて出力するdq各相の電圧指令値が、ベクトル角度制御手段が切換前に出力したdq各相の電圧指令値と同じ値となるようにしたことを特徴とする請求項1から18のいずれかに記載のモータ制御装置。 After switching from the control by the vector angle control means to the control by the proportional integration control means, the voltage command value of each dq phase output for the first time by the proportional integration control means is the voltage command value of each dq phase output by the vector angle control means before switching. The motor control device according to claim 1, wherein the motor control device has the same value as the value. 比例積分制御手段における積分ループのdq相の積分値は、ベクトル角度制御手段による制御から比例積分制御手段による制御に切換後に比例積分制御手段が初めて出力するdq各相の電圧指令値が、ベクトル角度制御手段が切換前に出力したdq各相の電圧指令値と同じ値となるように設定されることを特徴とする請求項1から18のいずれかに記載のモータ制御装置。 The integral value of the dq phase of the integral loop in the proportional integral control means is the voltage command value of each dq phase that the proportional integral control means outputs for the first time after switching from the control by the vector angle control means to the control by the proportional integral control means. The motor control device according to any one of claims 1 to 18, wherein the control means is set to have the same value as the voltage command value of each phase of dq outputted before switching. 回転部材と回転部材の回転運動によって直線運動を呈する直動部材とを備えた運動変換機構と、回転部材に連結されて回転部材にトルクを与えるモータと、請求項1から20のいずれかに記載のモータ制御装置を備えたアクチュエータ。 21. A motion conversion mechanism comprising a rotating member and a linear motion member that exhibits a linear motion by the rotating motion of the rotating member, a motor that is coupled to the rotating member and applies torque to the rotating member, and Actuator with a motor control device. dq直交座標に変換するdq変換によってd相およびq相の電流値を求めdq各相毎に電流ループ処理を行ってモータの駆動電流を制御するモータ制御方法において、dq各相の電圧指令値の合成ベクトルのベクトル角度を制御するベクトル角度制御ステップを含むことを特徴とするモータ制御方法。 In a motor control method in which current values of d and q phases are obtained by dq conversion to be converted into dq orthogonal coordinates and current loop processing is performed for each dq phase to control the motor drive current, the voltage command value of each phase of dq A motor control method comprising a vector angle control step of controlling a vector angle of a composite vector. dq各相の電流制御偏差に基づく比例積分制御とベクトル角度制御のいずれかを選択する選択ステップを含み、選択された制御を行うことを特徴とする請求項22に記載のモータ制御方法。 23. The motor control method according to claim 22, comprising a selection step of selecting either proportional-integral control or vector angle control based on a current control deviation of each of the dq phases, and performing the selected control. 選択ステップではdq各相の電圧指令値合成ベクトルの長さが閾値以上となる場合にベクトル角度制御ステップを選択することを特徴とする請求項23に記載のモータ制御方法。 24. The motor control method according to claim 23, wherein, in the selection step, the vector angle control step is selected when the length of the voltage command value combined vector of each phase of dq is equal to or greater than a threshold. ベクトル角度制御ステップでは、ベクトル角度目標値と合成ベクトル長さからdq各相の電圧指令値を求めることを特徴とする請求項22から24のいずれかに記載のモータ制御方法。 25. The motor control method according to claim 22, wherein in the vector angle control step, a voltage command value for each phase of dq is obtained from the vector angle target value and the combined vector length. ベクトル角度制御ステップでは、q相の電流制御偏差と、ベクトル角度の角度制御偏差から、合成ベクトルの回転方向を決定し、回転方向からベクトル角度目標値を設定することを特徴とする請求項22から25のいずれかに記載のモータ制御方法。 23. The vector angle control step includes determining a rotation direction of the combined vector from the q-phase current control deviation and the vector angle angle control deviation, and setting a vector angle target value from the rotation direction. The motor control method according to claim 25. 角度制御偏差は、q相電流の絶対値を最大にするベクトル角度最終値とベクトル角度の偏差に基づいて決定されることを特徴とする請求項22から26のいずれかに記載のモータ制御方法。 27. The motor control method according to claim 22, wherein the angle control deviation is determined based on a vector angle final value that maximizes an absolute value of the q-phase current and a vector angle deviation. ベクトル角度制御ステップでは、予め電気角速度をパラメータとして作成したベクトル角度のマップを参照してベクトル角度最終値を求めることを特徴とする請求項27に記載のモータ制御方法。 28. The motor control method according to claim 27, wherein, in the vector angle control step, the final value of the vector angle is obtained by referring to a vector angle map created in advance using the electrical angular velocity as a parameter. ベクトル角度制御ステップでは、q相電流ループにおける積分値を補正して合成ベクトルのベクトル角度を制御することを特徴とする請求項22から24のいずれかに記載のモータ制御方法。 25. The motor control method according to claim 22, wherein in the vector angle control step, the vector angle of the combined vector is controlled by correcting the integral value in the q-phase current loop. ベクトル角度制御ステップでは、q相電流ループにおける積分値をフィードバックして当該積分値を補正することを特徴とする請求項29に記載のモータ制御方法。 30. The motor control method according to claim 29, wherein in the vector angle control step, the integral value in the q-phase current loop is fed back to correct the integral value. ベクトル角度制御ステップでは、電気角速度からq相積分値目標値を求め、q相の積分値をq相積分値目標値になるように補正することを特徴とする請求項29または30に記載のモータ制御装置。 31. The motor according to claim 29 or 30, wherein, in the vector angle control step, a q-phase integral value target value is obtained from an electrical angular velocity, and the q-phase integral value is corrected to become a q-phase integral value target value. Control device. ベクトル角度制御ステップでは、電気角速度からq相積分値目標値を求め、q相積分値目標値とq相の積分値の積分値偏差に補正ゲインを乗じた値をq相電流ループにおける積分器の入力へ帰還してq相の積分値を補正することを特徴とする請求項29から31のいずれかに記載のモータ制御方法。 In the vector angle control step, the q-phase integral value target value is obtained from the electrical angular velocity, and the value obtained by multiplying the q-phase integral value target value and the integral value deviation of the q-phase integral value by the correction gain is set in the integrator in the q-phase current loop. 32. The motor control method according to claim 29, wherein feedback is made to the input to correct the q-phase integral value. ベクトル角度制御ステップでは、d相電流目標値を負の値に設定することを特徴とする請求項29から32のいずれかに記載のモータ制御方法。 The motor control method according to any one of claims 29 to 32, wherein the d-phase current target value is set to a negative value in the vector angle control step. q相電流目標値を電気角速度に依存したリミット値に制限するq相電流制限ステップを含むことを特徴とする請求項22から33のいずれかに記載のモータ制御方法。 34. The motor control method according to claim 22, further comprising a q-phase current limiting step of limiting the q-phase current target value to a limit value depending on the electrical angular velocity. リミット値は、q相電流の絶対値が取りうる最大値に設定されることを特徴とする請求項34に記載のモータ制御方法。 The motor control method according to claim 34, wherein the limit value is set to a maximum value that can be taken by an absolute value of the q-phase current. d相電流目標値の絶対値を、鎖交磁束最大数をd相インダクタンスで除した値に制限するd相電流制限ステップを含むことを特徴とする請求項29から35のいずれかに記載のモータ制御方法。 36. The motor according to claim 29, further comprising a d-phase current limiting step for limiting the absolute value of the d-phase current target value to a value obtained by dividing the maximum number of flux linkages by the d-phase inductance. Control method. 閾値は、電源電圧に1/√2を乗じた値に設定されることを特徴とする請求項24から36のいずれかに記載のモータ制御方法。 37. The motor control method according to claim 24, wherein the threshold value is set to a value obtained by multiplying the power supply voltage by 1 / √2. 閾値は、電源電圧に√6/4を乗じた値に設定されることを特徴とする請求項24から36のいずれかに記載のモータ制御方法。 37. The motor control method according to claim 24, wherein the threshold value is set to a value obtained by multiplying the power supply voltage by √6 / 4. 閾値は、PWM開度が飽和しない値に設定されることを特徴とする請求項24から38のいずれかに記載のモータ制御方法。 The motor control method according to any one of claims 24 to 38, wherein the threshold value is set to a value at which the PWM opening is not saturated. ベクトル角度制御から比例積分制御へ切換後、比例積分制御ステップで出力するdq各相の電圧指令値を、ベクトル角度制御ステップで切換前に出力したdq各相の電圧指令値と同じ値となるように調節する調節ステップを含むことを特徴とする請求項22から39のいずれかに記載のモータ制御方法。 After switching from vector angle control to proportional-integral control, the voltage command value for each phase of dq output in the proportional-integral control step becomes the same value as the voltage command value for each phase of dq output before switching in the vector angle control step. The motor control method according to any one of claims 22 to 39, further comprising an adjustment step of adjusting the frequency to the above. 調節ステップでは、ベクトル角度制御から比例積分制御へ切換後に比例積分制御ステップが初めて出力するdq各相の電圧指令値とベクトル角度制御ステップが切換前に出力したdq各相の電圧指令値とが同じ値となるように、比例積分制御ステップにおける積分ループのdq相の積分値を設定することを特徴とする請求項40に記載のモータ制御装置。 In the adjustment step, the voltage command value of each phase of dq that the proportional integration control step outputs for the first time after switching from vector angle control to proportional integration control is the same as the voltage command value of each phase of dq that is output before switching by the vector angle control step. 41. The motor control device according to claim 40, wherein an integration value of the dq phase of the integration loop in the proportional integration control step is set so as to be a value.
JP2006245986A 2006-09-11 2006-09-11 Motor control device, motor control method, and actuator Expired - Fee Related JP5220293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006245986A JP5220293B2 (en) 2006-09-11 2006-09-11 Motor control device, motor control method, and actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006245986A JP5220293B2 (en) 2006-09-11 2006-09-11 Motor control device, motor control method, and actuator

Publications (2)

Publication Number Publication Date
JP2008067582A true JP2008067582A (en) 2008-03-21
JP5220293B2 JP5220293B2 (en) 2013-06-26

Family

ID=39289765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006245986A Expired - Fee Related JP5220293B2 (en) 2006-09-11 2006-09-11 Motor control device, motor control method, and actuator

Country Status (1)

Country Link
JP (1) JP5220293B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050178A (en) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd Motor control device and generator control device
FR3011698A1 (en) * 2013-10-09 2015-04-10 Valeo Embrayages ELECTRIC ACTUATOR FOR VEHICLE TRANSMISSION SYSTEM
WO2015166528A1 (en) * 2014-04-28 2015-11-05 三菱電機株式会社 Ac rotating machine control device and control method, and electric power steering device
JP2017158414A (en) * 2016-03-04 2017-09-07 株式会社富士通ゼネラル Motor controller
JP2017158415A (en) * 2016-03-04 2017-09-07 株式会社富士通ゼネラル Motor controller
CN114427830A (en) * 2021-12-29 2022-05-03 中国航天空气动力技术研究院 Wide-temperature-range high-precision servo positioning system and positioning method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359953A (en) * 2001-05-31 2002-12-13 Denso Corp Synchronous machine for vehicle
WO2003009463A1 (en) * 2001-07-13 2003-01-30 Mitsubishi Denki Kabushiki Kaisha Speed control device for ac electric motor
JP2004129381A (en) * 2002-10-02 2004-04-22 East Japan Railway Co Control device of permanent magnet synchronous motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359953A (en) * 2001-05-31 2002-12-13 Denso Corp Synchronous machine for vehicle
WO2003009463A1 (en) * 2001-07-13 2003-01-30 Mitsubishi Denki Kabushiki Kaisha Speed control device for ac electric motor
JP2004129381A (en) * 2002-10-02 2004-04-22 East Japan Railway Co Control device of permanent magnet synchronous motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050178A (en) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd Motor control device and generator control device
FR3011698A1 (en) * 2013-10-09 2015-04-10 Valeo Embrayages ELECTRIC ACTUATOR FOR VEHICLE TRANSMISSION SYSTEM
EP2860869A1 (en) * 2013-10-09 2015-04-15 Valeo Embrayages Electric actuator for vehicle transmission system
WO2015166528A1 (en) * 2014-04-28 2015-11-05 三菱電機株式会社 Ac rotating machine control device and control method, and electric power steering device
CN106464182A (en) * 2014-04-28 2017-02-22 三菱电机株式会社 Ac rotating machine control device and control method, and electric power steering device
JPWO2015166528A1 (en) * 2014-04-28 2017-04-20 三菱電機株式会社 AC rotating machine control device and control method, and electric power steering device
US9712096B2 (en) 2014-04-28 2017-07-18 Mitsubishi Electric Corporation Control apparatus and control method for AC rotary machine, and electric power steering apparatus
CN106464182B (en) * 2014-04-28 2020-04-28 三菱电机株式会社 Control device and control method for AC rotating machine, and electric power steering device
JP2017158414A (en) * 2016-03-04 2017-09-07 株式会社富士通ゼネラル Motor controller
JP2017158415A (en) * 2016-03-04 2017-09-07 株式会社富士通ゼネラル Motor controller
CN114427830A (en) * 2021-12-29 2022-05-03 中国航天空气动力技术研究院 Wide-temperature-range high-precision servo positioning system and positioning method

Also Published As

Publication number Publication date
JP5220293B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP4816919B2 (en) Control device for brushless motor
JP2010095075A (en) Vehicle steering apparatus
JPWO2005091488A1 (en) Electric motor control device
JP5220293B2 (en) Motor control device, motor control method, and actuator
JP2007216822A (en) Electromagnetic suspension device
JP5495020B2 (en) Motor control device and vehicle steering device
JP5273465B2 (en) Motor control device
JP2012218498A (en) Electric power steering control device
CN108322104B (en) Control device and brushless motor
JP6288408B2 (en) Motor control method, motor control device, and electric power steering device
JP7090812B2 (en) Control device for AC rotary electric machine and electric power steering device
WO2017109884A1 (en) Rotating electric machine control device
JP2008062738A (en) Electromagnetic suspension device
JP5995079B2 (en) Motor control device
JP5495021B2 (en) Motor control device and vehicle steering device
JP4908096B2 (en) Control device and actuator control device
JP4895737B2 (en) Motor control device
JP2014139039A (en) Electric power steering device
JP5880874B2 (en) Vehicle steering control device
JP5584794B1 (en) Electric motor drive control device
JP2007312462A (en) Motor control device
WO2022113317A1 (en) Control device of rotating electric machine and electromotive power steering device
JP2012235556A (en) Motor controller
JP2006296116A (en) Motor controller
WO2022113318A1 (en) Control device for rotating electric machine and electric power steering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5220293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees