JP2008067538A - Method for detecting abnormality in gas insulated power apparatus - Google Patents

Method for detecting abnormality in gas insulated power apparatus Download PDF

Info

Publication number
JP2008067538A
JP2008067538A JP2006243965A JP2006243965A JP2008067538A JP 2008067538 A JP2008067538 A JP 2008067538A JP 2006243965 A JP2006243965 A JP 2006243965A JP 2006243965 A JP2006243965 A JP 2006243965A JP 2008067538 A JP2008067538 A JP 2008067538A
Authority
JP
Japan
Prior art keywords
gas
adsorbent
sealed container
ground tank
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006243965A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shinkai
裕行 新開
Masafumi Yashima
政史 八島
Hisashi Goshima
久司 五島
Kaoru Takuma
薫 宅間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2006243965A priority Critical patent/JP2008067538A/en
Publication of JP2008067538A publication Critical patent/JP2008067538A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect internal abnormality with high sensitivity, and moreover, to detect discharge at a spacer, while distinguishing from other abnormalities. <P>SOLUTION: In the method for detecting abnormality of a gas insulated power device, where a conductor 3 is contained in a grounded tank 2 filled with insulating gas 1, while being electrically insulated by a spacer 8, and the decomposition gas of the insulating gas 1 generated in the grounded tank 2 is removed, while being adsorbed by an adsorbent 4; the adsorbent 4 is contained in an enclosed container 5 independently of the grounded tank 2, and the enclosed container 5 is connected to the grounded tank 2 to interconnect the inside of the enclosed container 5 and the grounded tank 2 so that the decomposed gas is introduced into the enclosed container 5 and is adsorbed by the adsorbent 4 for removal. When abnormality detection is performed, a gas that has not yet contacted the adsorbent 4 is sampled from a sampling port 13 provided in the interconnection passage 9 from the grounded tank 2 to the adsorbent 4, and discharge at the spacer is detected, based on the detection of the decomposed gas containing C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えばSFガスやSFガスを含む混合ガス等を主絶縁媒体あるいはアーク消弧媒体等として用いたガス絶縁電力機器、例えば、ガス絶縁開閉装置(GIS)、ガス遮断器(GCB)、キュービクル形ガス開閉装置(C−GIS)、ガス絶縁変圧器、管路気中ガス絶縁送電線路(GIL)などのガス絶縁電力機器の異常検出方法に関する。 The present invention relates to a gas insulated power device using, for example, SF 6 gas or a mixed gas containing SF 6 gas as a main insulating medium or arc extinguishing medium, for example, a gas insulated switchgear (GIS), a gas circuit breaker (GCB) ), A cubicle type gas switchgear (C-GIS), a gas insulation transformer, a pipeline gas-insulated power transmission line (GIL) and the like.

ガス絶縁電力機器は大気圧以上の絶縁ガスを絶縁媒体に使用するため、電気回路となる高電圧中心導体(主回路)を固体支持絶縁物(スペーサ)とともに金属製の接地タンク(機器外被)内に格納し、密閉構造を成している。そのため、外部環境の影響を受けない、機器のコンパクト化を図れる、保守面で安全であるなど種々の利点を有し、わが国では極めて多用されている。反面、機器外部からは内部の状態を監視しにくく、万一、主回路の導通や機器絶縁に異常が発生しても、その異常を検出しにくいとの問題がある。そこで、機器の内部の状態、特に絶縁性能を外部から検出する技術の開発が強く求められている。   Since gas-insulated power equipment uses an insulating gas above atmospheric pressure as an insulating medium, a high-voltage central conductor (main circuit) that becomes an electric circuit is used together with a solid support insulator (spacer) and a metal ground tank (equipment jacket) It is housed inside and has a sealed structure. Therefore, it has various advantages such as being unaffected by the external environment, being able to reduce the size of the device, and being safe in terms of maintenance, and is extremely frequently used in Japan. On the other hand, there is a problem that it is difficult to monitor the internal state from the outside of the device, and even if an abnormality occurs in the conduction of the main circuit or the device insulation, it is difficult to detect the abnormality. Therefore, there is a strong demand for the development of technology for detecting the internal state of equipment, particularly the insulation performance from the outside.

例えば、ガス絶縁開閉装置内でコロナ放電が発生すると電磁波が放射されることから、この電磁波を受信することでコロナ放電を検出する絶縁異常検出装置がある(特開平01−235865号公報)。この絶縁異常検出装置では、コロナ放電により生じる電磁波に対して受信感度が高い位置にコロナ放電検出用アンテナを配置すると共に、コロナ放電により生じる電磁波に対して受信感度が十分低い位置にノイズ検出用アンテナを配置し、コロナ放電検出用アンテナで受信された信号とノイズ検出用アンテナで受信された信号の差をとることにより、コロナ放電信号のみを取り出し異常を検出している。   For example, when a corona discharge occurs in a gas insulated switchgear, an electromagnetic wave is radiated. Therefore, there is an insulation abnormality detection device that detects the corona discharge by receiving this electromagnetic wave (Japanese Patent Laid-Open No. 01-235865). In this insulation abnormality detection device, the antenna for detecting the corona discharge is disposed at a position where the reception sensitivity is high with respect to the electromagnetic wave generated by the corona discharge, and the noise detection antenna is disposed at a position where the reception sensitivity is sufficiently low with respect to the electromagnetic wave generated by the corona discharge. , And taking the difference between the signal received by the corona discharge detection antenna and the signal received by the noise detection antenna, only the corona discharge signal is extracted to detect an abnormality.

また、異常に起因した音を検出する部分放電検出装置がある(特開平5−45402号公報)。この部分放電検出装置では、電気機器を収容する密閉容器にAE(アコースティック・エミッション)センサを取り付け、AEセンサの出力をバンドパスフィルタ、プリアンプに入力している。AEセンサは、部分放電により発生するAE波の周波数スペクトルの強度が最大となる周波数に共振する特性を有しており、部分放電発生時に生じる音波を電気信号に変換する。この電気信号のうちAEセンサの共振周波数を中心としてプリアンプの内部雑音が最小となる周波数領域の電気信号だけをバンドパスフィルタで通過させ、外部からのノイズを除去して部分放電を検出するようにしている。   There is also a partial discharge detection device that detects sound caused by an abnormality (Japanese Patent Laid-Open No. 5-45402). In this partial discharge detection device, an AE (acoustic emission) sensor is attached to a sealed container that houses electrical equipment, and the output of the AE sensor is input to a band-pass filter and a preamplifier. The AE sensor has a characteristic of resonating at a frequency at which the intensity of the frequency spectrum of the AE wave generated by the partial discharge is maximized, and converts sound waves generated when the partial discharge is generated into an electric signal. Of these electrical signals, only the electrical signal in the frequency region where the internal noise of the preamplifier is minimized with the resonance frequency of the AE sensor as the center is passed through the bandpass filter, and the external discharge is removed to detect the partial discharge. ing.

さらに、通電異常や絶縁異常に伴う部分放電あるいはアーク放電によってSFガスから分解生成された各種の派生ガス(以下、分解ガスという)を化学的に検出する放電検出装置がある(特開昭50−129938号公報)。この放電検出装置では、SFを充満させたガス絶縁電気装置の密封容器の内部に、分解ガスと反応して抵抗値が低下するガラスエポキシ積層基板からなる検出素子を配置し、検出素子の抵抗値を監視する。放電が発生すると、SFが分解して活性ガスが生成され、検出素子がSF分解生成ガスと反応するため、検出素子の抵抗値の低下を測定することにより放電を検出することができる。 Furthermore, there is a discharge detection device that chemically detects various derived gases (hereinafter referred to as decomposition gas) decomposed and generated from SF 6 gas by partial discharge or arc discharge due to abnormality in energization or insulation (Japanese Patent Laid-Open No. Sho 50). -129938). In this discharge detection device, a detection element made of a glass epoxy laminated substrate whose resistance value is reduced by reacting with decomposition gas is disposed inside a sealed container of a gas-insulated electric apparatus filled with SF 6 , and the resistance of the detection element Monitor the value. When the discharge occurs, SF 6 is decomposed to generate active gas, and the detection element reacts with the SF 6 decomposition product gas. Therefore, the discharge can be detected by measuring the decrease in the resistance value of the detection element.

しかしながら、上述の異常発生に伴う電磁波をアンテナで受信して異常を検出する手法や、異常発生に伴うAE波をAEセンサによって感知して異常を検出する手法は、ガス絶縁機器が設置されている変電所などの環境下では背景雑音の存在によってその性能を十分に発揮できていない。なぜなら、異常の検出感度を高めるために受信感度・センサ感度を高めても、背景雑音をも検出することになり、異常を示す真の情報と背景雑音の識別(いわゆるS/N比)を高めることは極めて困難だからである。ここで、上述の異常発生に伴う電磁波をアンテナで受信して異常を検出する絶縁異常検出装置では、ノイズ検出用アンテナを設けることで背景雑音のキャンセルを図っているが、コロナ放電検出用アンテナが設けられている場所の背景雑音を計測しているわけではないので、背景雑音の影響を完全に排除することはできないと考えられる。   However, a gas insulating device is installed in the method of detecting an abnormality by receiving an electromagnetic wave accompanying the occurrence of the abnormality with the antenna and the method of detecting an abnormality by detecting an AE wave accompanying the occurrence of the abnormality with an AE sensor. Under the environment of substations, the performance is not fully demonstrated due to the presence of background noise. This is because even if the reception sensitivity / sensor sensitivity is increased in order to increase the detection sensitivity of the abnormality, the background noise is also detected, and the discrimination between the true information indicating the abnormality and the background noise (so-called S / N ratio) is increased. This is extremely difficult. Here, in the insulation abnormality detection device that detects the abnormality by receiving the electromagnetic wave accompanying the occurrence of the abnormality with the antenna, the background noise is canceled by providing the noise detection antenna. Since the background noise of the place where it is provided is not measured, it is considered that the influence of the background noise cannot be completely eliminated.

この点、分解ガスを化学的に検出する手法はこのような背景雑音の問題はなく、しかも、部分放電などの異常が極めて軽微であっても、SFガスの分解ガスは通常蓄積されるため、次第に濃度が増えて検出が容易となる利点がある。ところが、SFガスの分解ガスの多くは金属を腐食するなど、機器に有害な影響を与えるものが多いため、通常は機器の内部に分解ガスを吸着・除去するための吸着材が封入され、機器に有害な影響を与えない程度の濃度に抑えるようにしている。 In this regard, a technique for detecting a decomposed gas chemically is no problem of such background noise, moreover, even an extremely small abnormalities such as partial discharge, because decomposition gas of SF 6 gas that is normally accumulated There is an advantage that the concentration gradually increases and the detection becomes easy. However, since many of the decomposition gases of SF 6 gas corrode metals, and many of them have harmful effects on the equipment, usually an adsorbent for adsorbing and removing the decomposition gas is sealed inside the equipment, The concentration is set to a level that does not adversely affect the equipment.

特開平01−235865号Japanese Patent Laid-Open No. 01-235865 特開平5−45402号JP-A-5-45402 特開昭50−129938号JP 50-129938 A

このように、ガス絶縁電力機器では、機器内部に分解ガスを吸着する吸着材が封入されているため、通電異常あるいは絶縁異常等をSFガスの分解ガスに基づいて検出しようとしても、検出素子等のセンサ類によって分解ガスを検出する前に分解ガスが吸着材に吸着されてしまい、分解ガスを良好に検出することができず、その実用化が難しい。つまり、吸着材に接触した後のガスに基づいてガス中の分解ガスを検出するので、分解ガスの検出感度に劣り、異常発生を良好に検出することが困難である。 As described above, in the gas-insulated power device, since the adsorbent that adsorbs the decomposition gas is sealed in the device, even if it is attempted to detect an energization abnormality or an insulation abnormality based on the decomposition gas of SF 6 gas, the detection element The cracked gas is adsorbed by the adsorbent before the cracked gas is detected by sensors such as the above, so that the cracked gas cannot be detected well, and its practical use is difficult. That is, since the cracked gas in the gas is detected based on the gas after coming into contact with the adsorbent, the detection sensitivity of the cracked gas is inferior, and it is difficult to detect abnormal occurrences well.

また、接地タンク内で発生する異常としては、スペーサにおける放電の他に、導体の表面で生じる部分放電や接地タンク内の塵等に起因して生じる部分放電等がある。これらの異常のうち、自己修復しないスペーサにおける放電の検出は保守管理上重要であり、他の異常と区別して検出したいとの要請がある。   In addition to the discharge in the spacer, abnormalities that occur in the ground tank include partial discharge that occurs on the surface of the conductor, partial discharge that occurs due to dust and the like in the ground tank, and the like. Among these abnormalities, detection of discharge in spacers that do not self-repair is important for maintenance management, and there is a demand to detect them separately from other abnormalities.

本発明は、内部の異常を高感度に検出することができ、しかもスペーサにおける放電を他の異常と区別して検出することができるガス絶縁電力機器の異常検出方法を提供することを目的とする。   An object of the present invention is to provide an abnormality detection method for a gas-insulated power device that can detect an internal abnormality with high sensitivity and can detect a discharge in a spacer separately from other abnormalities.

かかる目的を達成するために請求項1記載の発明は、絶縁ガスが封入された接地タンク内に導体をスペーサによって電気的に絶縁した状態で収容すると共に、接地タンク内で発生した絶縁ガスの分解ガスを吸着材によって吸着除去するガス絶縁電力機器の異常検出方法において、吸着材を接地タンクとは別の密閉容器に収容すると共に、密閉容器を接地タンクに接続して密閉容器内と接地タンク内とを連通し、分解ガスを密閉容器内に導いて吸着材によって吸着除去する一方、異常検出を行う場合には、接地タンクから吸着材に至るまでの間の連通路に設けた採取口から吸着材に接する前のガスを採取し、Cを含む分解ガスの検出に基づいてスペーサにおける放電を検出するものである。ここで、スペーサにおける放電としては各種の放電があるが、例えば部分放電、コロナ放電、ストリーマ放電、リーダ放電等がある。   In order to achieve such an object, the invention according to claim 1 is characterized in that a conductor is housed in a ground tank filled with an insulating gas in a state of being electrically insulated by a spacer, and the insulating gas generated in the ground tank is decomposed. In an abnormality detection method for gas-insulated power equipment that adsorbs and removes gas using an adsorbent, the adsorbent is housed in a closed container separate from the ground tank, and the sealed container is connected to the ground tank so that the inside of the sealed container and the ground tank In the case of detecting abnormalities, the cracked gas is introduced into the sealed container and is adsorbed and removed by the adsorbent. The gas before contact with the material is collected, and the discharge in the spacer is detected based on the detection of the decomposition gas containing C. Here, there are various types of discharges in the spacer, such as partial discharge, corona discharge, streamer discharge, leader discharge and the like.

接地タンク内でスペーサにおける放電が発生すると、スペーサの表面が溶融し、スペーサを構成する元素が絶縁ガス中に放出される。スペーサはエポキシ樹脂等のCを含む絶縁材料で形成されている。一方、絶縁ガスはSFガスやSFガスを含む混合ガスであり、Cを含んでいない。このため、Cを含む分解ガスの検出に基づいてスペーサにおける放電を検出することができる。 When a discharge occurs in the spacer in the ground tank, the surface of the spacer is melted and the elements constituting the spacer are released into the insulating gas. The spacer is formed of an insulating material containing C such as an epoxy resin. On the other hand, the insulating gas is a mixed gas containing SF 6 gas or SF 6 gas, and does not contain C. For this reason, the discharge in the spacer can be detected based on the detection of the cracked gas containing C.

接地タンク内と密閉容器内とは連通されており、接地タンク内で発生した分解ガスは密閉容器内で吸着材によって吸着除去される。このため、接地タンク内の分解ガスの濃度は減少する。本発明では、吸着材に接する前のガスを採取口から採取するので、吸着材によってCを含む分解ガスが吸着除去される前にガスの採取を行なうことができる。また、接地タンク内を開放することはなく、接地タンク内の気密性を維持しながらガスを採取することができる。   The ground tank and the sealed container communicate with each other, and the decomposition gas generated in the ground tank is adsorbed and removed by the adsorbent in the sealed container. For this reason, the density | concentration of the decomposition gas in a ground tank reduces. In the present invention, since the gas before coming into contact with the adsorbent is collected from the collection port, the gas can be collected before the decomposition gas containing C is adsorbed and removed by the adsorbent. Further, the inside of the ground tank is not opened, and the gas can be collected while maintaining the airtightness in the ground tank.

また、請求項2記載の発明は、絶縁ガスが封入された接地タンク内に導体をスペーサによって電気的に絶縁した状態で収容すると共に、接地タンク内で発生した絶縁ガスの分解ガスを吸着材によって吸着除去するガス絶縁電力機器の異常検出方法において、吸着材を接地タンクとは別の密閉容器に収容すると共に、密閉容器を接地タンクに切り離し可能に接続して密閉容器内と接地タンク内とを連通し、分解ガスを密閉容器内に導いて吸着材によって吸着除去する一方、異常検出を行う場合には、接地タンク側連通路を閉じた状態で接地タンクから密閉容器を切り離して吸着材の分析を行ない、Cを含む分解ガスの検出に基づいてスペーサにおける放電を検出するものである。   According to a second aspect of the present invention, the conductor is housed in a ground tank filled with an insulating gas in a state of being electrically insulated by a spacer, and the decomposition gas of the insulating gas generated in the ground tank is absorbed by an adsorbent. In the abnormality detection method for gas-insulated power equipment to be removed by adsorption, the adsorbent is housed in a closed container separate from the ground tank, and the sealed container is detachably connected to the ground tank so that the sealed container and the ground tank are connected. While communicating, the cracked gas is introduced into the sealed container and adsorbed and removed by the adsorbent, while when detecting abnormality, the sealed container is disconnected from the grounded tank with the ground tank side communication path closed, and the adsorbent is analyzed. The discharge in the spacer is detected based on the detection of the cracked gas containing C.

接地タンク内でスペーサにおける放電が発生すると、スペーサの表面が溶融し、スペーサを構成する元素が絶縁ガス中に放出される。スペーサはエポキシ樹脂等のCを含む絶縁材料で形成されている。一方、絶縁ガスはSFガスやSFガスを含む混合ガスであり、Cを含んでいない。このため、Cを含む分解ガスの検出に基づいてスペーサにおける放電を検出することができる。 When a discharge occurs in the spacer in the ground tank, the surface of the spacer is melted and the elements constituting the spacer are released into the insulating gas. The spacer is formed of an insulating material containing C such as an epoxy resin. On the other hand, the insulating gas is a mixed gas containing SF 6 gas or SF 6 gas, and does not contain C. For this reason, the discharge in the spacer can be detected based on the detection of the cracked gas containing C.

接地タンク内と密閉容器内とは連通されており、接地タンク内で発生した分解ガスは密閉容器内で吸着材によって吸着除去される。このため、接地タンク内の分解ガスの濃度は減少し、吸着材に分解ガスが蓄積される。本発明では、密閉容器を接地タンクから切り離し、吸着材を取り出して分析を行なうことができる。接地タンク側連通路を閉じた状態で密閉容器を切り離すので、接地タンク内の気密性を維持できる。つまり、接地タンク内の気密性を維持しながら吸着材を取り出し分析にかけることができる。   The ground tank and the sealed container communicate with each other, and the decomposition gas generated in the ground tank is adsorbed and removed by the adsorbent in the sealed container. For this reason, the concentration of the cracked gas in the ground tank decreases, and the cracked gas accumulates in the adsorbent. In the present invention, the sealed container can be separated from the ground tank, and the adsorbent can be taken out for analysis. Since the sealed container is cut off with the ground tank side communication path closed, airtightness in the ground tank can be maintained. That is, the adsorbent can be taken out and analyzed while maintaining the airtightness in the ground tank.

請求項1記載のガス絶縁電力機器の異常検出方法では、吸着材を接地タンクとは別の密閉容器に収容すると共に、密閉容器を接地タンクに切り離し可能に接続して密閉容器内と接地タンク内とを連通し、分解ガスを密閉容器内に導いて吸着材によって吸着除去する一方、異常検出を行う場合には、接地タンクから吸着材に至るまでの間の連通路に設けた採取口から吸着材に接する前のガスを採取し、Cを含む分解ガスの検出に基づいてスペーサにおける放電を検出するので、接地タンク内で発生する異常の中でもより重要度の高いスペーサにおける放電を、他の異常と区別して検出することができる。また、吸着材によってCを含む分解ガスが吸着除去される前にガスの採取を行なうことができるので、分解ガスの濃度が高い状態で検出を行うことができる。このため、Cを含む分解ガスの検出がより確実なものとなり、スペーサにおける放電をより確実に検出することができる。さらに、接地タンク内の気密性を維持しながらガスの採取を行なうことができるので、ガス絶縁電力機器の運転を止めずに接地タンク内で生じた異常を検出することができる。   The abnormality detection method for a gas insulated power device according to claim 1, wherein the adsorbent is housed in a sealed container different from the ground tank, and the sealed container is detachably connected to the ground tank so that the sealed container and the ground tank are connected. In the case of detecting abnormalities, the cracked gas is introduced into the sealed container and is adsorbed and removed by the adsorbent. On the other hand, when abnormality is detected, the gas is adsorbed from the sampling port provided in the communication path from the ground tank to the adsorbent. Since the gas before contact with the material is collected and the discharge in the spacer is detected based on the detection of the cracked gas containing C, the discharge in the spacer, which is more important among the abnormalities occurring in the ground tank, is detected by other abnormalities. And can be detected separately. Further, since the gas can be collected before the decomposition gas containing C is adsorbed and removed by the adsorbent, the detection can be performed in a state where the concentration of the decomposition gas is high. For this reason, the detection of the decomposition gas containing C becomes more reliable, and the discharge in the spacer can be detected more reliably. Furthermore, since the gas can be collected while maintaining the airtightness in the ground tank, an abnormality occurring in the ground tank can be detected without stopping the operation of the gas insulated power device.

また、請求項2記載のガス絶縁電力機器の異常検出方法では、吸着材を接地タンクとは別の密閉容器に収容すると共に、密閉容器を接地タンクに切り離し可能に接続して密閉容器内と接地タンク内とを連通し、分解ガスを密閉容器内に導いて吸着材によって吸着除去する一方、異常検出を行う場合には、接地タンク側連通路を閉じた状態で接地タンクから密閉容器を切り離して吸着材の分析を行ない、Cを含む分解ガスの検出に基づいてスペーサにおける放電を検出するので、接地タンク内で発生する異常の中でもより重要度の高いスペーサにおける放電を、他の異常と区別して検出することができる。また、たとえCを含む分解ガスの濃度がわずかであっても、吸着材には吸着した分解ガスが蓄積されるので、分解ガスの検出がより確実なものとのなる。即ち、Cを含む分解ガスの検出がより確実なものとなり、スペーサにおける放電をより確実に検出することができる。さらに、接地タンク内の気密性を維持しながら吸着材を回収することができるので、ガス絶縁電力機器の運転を止めずに、接地タンク内で生じた異常を検出することができる。   Further, in the abnormality detection method for gas insulated power equipment according to claim 2, the adsorbent is housed in a sealed container different from the ground tank, and the sealed container is detachably connected to the ground tank so as to be grounded. While communicating with the inside of the tank, the cracked gas is introduced into the sealed container and adsorbed and removed by the adsorbent.On the other hand, when detecting an abnormality, the sealed container is disconnected from the grounded tank with the grounded tank side communication path closed. Since the adsorbent is analyzed and the discharge in the spacer is detected based on the detection of the cracked gas containing C, the discharge in the spacer more important among the abnormalities occurring in the ground tank is distinguished from other abnormalities. Can be detected. Even if the concentration of the cracked gas containing C is small, the adsorbed cracked gas is accumulated in the adsorbent, so that the cracked gas can be detected more reliably. That is, the detection of the cracked gas containing C becomes more reliable, and the discharge in the spacer can be detected more reliably. Furthermore, since the adsorbent can be recovered while maintaining the airtightness in the ground tank, an abnormality occurring in the ground tank can be detected without stopping the operation of the gas-insulated power device.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1に、本発明のガス絶縁電力機器の異常検出方法の一例を実施するガス絶縁電力機器を示す。このガス絶縁電力機器は、絶縁ガス1が封入された接地タンク2内に導体3を電気的に絶縁した状態で収容すると共に、接地タンク2内で発生した絶縁ガス1の分解ガスを吸着材4によって吸着除去するものである。そして、吸着材4を接地タンク2とは別の密閉容器5に収容すると共に、密閉容器5を接地タンク2に接続して密閉容器5内と接地タンク2内とを連通させ、密閉容器5を切り離す場合に接地タンク側連通路28を閉じる第1の開閉弁を備えている。   FIG. 1 shows a gas-insulated power device that implements an example of an abnormality detection method for a gas-insulated power device according to the present invention. This gas-insulated power device accommodates a conductor 3 in a grounded tank 2 in which an insulating gas 1 is sealed in an electrically insulated state, and adsorbs a decomposition gas of the insulating gas 1 generated in the grounded tank 2. Is removed by adsorption. The adsorbent 4 is accommodated in a sealed container 5 different from the ground tank 2 and the sealed container 5 is connected to the ground tank 2 so that the sealed container 5 and the grounded tank 2 communicate with each other. A first on-off valve is provided to close the ground tank side communication path 28 when disconnecting.

接地タンク2には、内部の真空引き及び絶縁ガス1の封入に使用する給排気管(ガス配管)6と、この給排気管6を開閉する開閉弁7が設けられている。本実施形態では、接地タンク側連通路28は接地タンク2の給排気管6であり、第1の開閉弁は給排気管6に設けられた開閉弁7である。つまり、接地タンク2に通常設けられている既存の給排気管6と開閉弁7を利用している。このため、密閉容器5の取り付けが容易である。また、既存の接地タンク2の設計変更を行わずにそのまま密閉容器5を取り付けることができ、特に、既に設置され運転されているガス絶縁電力機器に対しても後付けすることができる。さらに、後付けした密閉容器5を取り外すことでガス絶縁電力機器を元の状態に戻すことができる。なお、既に設置され運転されているガス絶縁電力機器に適用する場合には、接地タンク2内に設けられている吸着材を撤去しておく。   The ground tank 2 is provided with an air supply / exhaust pipe (gas pipe) 6 used for evacuating the inside and sealing the insulating gas 1 and an opening / closing valve 7 for opening and closing the air supply / exhaust pipe 6. In the present embodiment, the ground tank side communication path 28 is the supply / exhaust pipe 6 of the ground tank 2, and the first on-off valve is the on-off valve 7 provided on the supply / exhaust pipe 6. That is, the existing air supply / exhaust pipe 6 and on-off valve 7 normally provided in the ground tank 2 are used. For this reason, attachment of the airtight container 5 is easy. Further, the sealed container 5 can be attached as it is without changing the design of the existing grounded tank 2, and in particular, it can be retrofitted to gas-insulated power equipment that has already been installed and operated. Furthermore, the gas-insulated power device can be returned to its original state by removing the airtight container 5 attached later. In addition, when applying to the gas-insulated electric power apparatus already installed and operated, the adsorbent provided in the ground tank 2 is removed.

密閉容器5には、密閉容器側連通路10と、密閉容器5を切り離す場合に密閉容器側連通路10を閉じる第2の開閉弁11が設けられている。密閉容器側連通路10は接地タンク側連通路28に接続されている。密閉容器側連通路10と接地タンク側連通路28とは、互いのフランジ10a,6aを突き合わせてボルトによって固定することで切り離し可能に接続されている。   The hermetic container 5 is provided with a hermetic container side communication path 10 and a second on-off valve 11 that closes the hermetic container side communication path 10 when the hermetic container 5 is separated. The closed container side communication path 10 is connected to the ground tank side communication path 28. The sealed container side communication path 10 and the ground tank side communication path 28 are detachably connected by abutting each other's flanges 10a and 6a and fixing them with bolts.

また、接地タンク2から吸着材4に至るまでの間の連通路9には吸着材4に接する前のガスを採取する採取口13が設けられている。本実施形態では、密閉容器5に採取口13が設けられている。ただし、採取口13を設ける位置は密閉容器5に限るものではなく、吸着材4に接する前のガスを採取できる位置であれば良い。採取口13を密閉容器5に設けることで、採取口13の設置が容易であると共に、一体化したユニットとして取り扱うことができるので、その扱いが容易である。採取口13には開閉弁14が設けられており、ガスを採取する時以外の時には採取口13を閉じておき、接地タンク2内及び密閉容器5内の気密性を確保している。   A sampling port 13 is provided in the communication path 9 from the ground tank 2 to the adsorbent 4 to collect gas before coming into contact with the adsorbent 4. In the present embodiment, a sampling port 13 is provided in the sealed container 5. However, the position where the sampling port 13 is provided is not limited to the sealed container 5, and may be a position where the gas before contacting the adsorbent 4 can be sampled. By providing the sampling port 13 in the sealed container 5, the sampling port 13 can be easily installed and handled as an integrated unit, which is easy to handle. The sampling port 13 is provided with an opening / closing valve 14, and the sampling port 13 is closed at times other than when gas is sampled to ensure airtightness in the ground tank 2 and the sealed container 5.

導体(主回路)3は、例えば高電圧中心導体で、例えば円筒形状を成している。導体3は、例えば円筒形状を成す接地タンク(機器外被)2の中心位置に配置され、支持絶縁物(スペーサ)8によって支持されている。絶縁ガス1は、例えばSFガス、SFガスを含む混合ガス等である。ただし、これらのガスに限るものではなく、Cを含むガス以外のガスであれば使用可能である。Cを含むガス以外のガスとしては、例えばNガス等の使用が可能である。 The conductor (main circuit) 3 is a high-voltage center conductor, for example, and has a cylindrical shape, for example. The conductor 3 is arranged at the center position of a ground tank (equipment jacket) 2 having a cylindrical shape, for example, and is supported by a support insulator (spacer) 8. Insulating gas 1 is, for example, SF 6 gas, mixed gas containing SF 6 gas. However, the gas is not limited to these gases, and any gas other than the gas containing C can be used. As the gas other than the gas containing C, for example, N 2 gas or the like can be used.

スペーサ8は例えばポストタイプのスペーサである。ただし、ポストタイプのスペーサに限るものではない。例えば、ディスクタイプのスペーサ、コーンタイプのスペーサ等でも良く、その他のタイプのスペーサでも良い。スペーサ8はエポキシ樹脂等のCを含む絶縁材料で形成されている。   The spacer 8 is, for example, a post type spacer. However, it is not limited to the post type spacer. For example, a disk type spacer, a cone type spacer, or the like may be used, and other types of spacers may be used. The spacer 8 is formed of an insulating material containing C such as an epoxy resin.

ガス絶縁電力機器の運転時には、第1及び第2の開閉弁7,11を開き、接地タンク2内と密閉容器5内とを連通させておく。また、開閉弁14を閉じておく。接地タンク2内で通電異常や絶縁異常等の異常が発生すると、絶縁ガス1から分解ガスが発生し、分解ガスの濃度が増加する。接地タンク2内と密閉容器5内とは連通されており、分解ガスは自然に拡散して密閉容器5内に到達し、吸着材4によって吸着除去される。このため、接地タンク2内の分解ガスの濃度を減少させることができる。分解ガスの多くは金属を腐食させる腐食性ガスである。吸着材4によって分解ガスを吸着除去するので、接地タンク2や導体3等を腐食させる程には分解ガスの濃度は高くならず、これらの腐食を防止することができる。   During operation of the gas insulated power device, the first and second on-off valves 7 and 11 are opened to allow the inside of the ground tank 2 and the inside of the sealed container 5 to communicate with each other. Moreover, the on-off valve 14 is closed. When an abnormality such as an energization abnormality or an insulation abnormality occurs in the ground tank 2, a decomposition gas is generated from the insulating gas 1, and the concentration of the decomposition gas increases. The ground tank 2 and the sealed container 5 are in communication with each other, and the decomposition gas naturally diffuses to reach the sealed container 5 and is adsorbed and removed by the adsorbent 4. For this reason, the concentration of the cracked gas in the ground tank 2 can be reduced. Many of the cracked gases are corrosive gases that corrode metals. Since the decomposition gas is adsorbed and removed by the adsorbent 4, the concentration of the decomposition gas does not become so high that the ground tank 2, the conductor 3 and the like are corroded, and these corrosions can be prevented.

密閉容器5を接地タンク2から切り離す場合、第1の開閉弁7によって接地タンク側連通路28を閉じることで接地タンク2内の気密性を維持できる。このため、ガス絶縁電力機器の運転を止めずに密閉容器5を切り離すことができ、吸着材4を取り出して交換や修理・再生を行うことができる。また、第2の開閉弁11によって密閉容器側連通路10を閉じることで密閉容器5内の気密性を維持することができ、後述するように吸着材4に吸着されているガスに基づいて異常の検出を行なう場合には、切り離した密閉容器5内の吸着材4を外気に接触させることなく分析にかけることができる。   When the sealed container 5 is separated from the ground tank 2, the air tightness in the ground tank 2 can be maintained by closing the ground tank side communication path 28 using the first on-off valve 7. For this reason, the sealed container 5 can be separated without stopping the operation of the gas-insulated power device, and the adsorbent 4 can be taken out and replaced, repaired, or regenerated. Moreover, the airtightness in the airtight container 5 can be maintained by closing the airtight container side communication path 10 by the second on-off valve 11, and an abnormality is caused based on the gas adsorbed on the adsorbent 4 as described later. When the detection is performed, the adsorbent 4 in the separated sealed container 5 can be analyzed without contacting the outside air.

接地タンク2内での異常は、以下のようにして検出できる。即ち、本発明のガス絶縁電力機器の異常検出方法は、絶縁ガス1が封入された接地タンク2内に導体3をスペーサ8によって電気的に絶縁した状態で収容すると共に、接地タンク2内で発生した絶縁ガス1の分解ガスを吸着材4によって吸着除去するガス絶縁電力機器の異常検出方法であって、吸着材4を接地タンク2とは別の密閉容器5に収容すると共に、密閉容器5を接地タンク2に接続して密閉容器5内と接地タンク2内とを連通し、分解ガスを密閉容器5内に導いて吸着材4によって吸着除去する一方、異常検出を行う場合には、接地タンク2から吸着材4に至るまでの間の連通路9に設けた採取口13から吸着材4に接する前のガスを採取し、Cを含む分解ガスの検出に基づいてスペーサ8における放電を検出するものである。ここで、スペーサ8における放電としては各種の放電があるが、例えば部分放電、コロナ放電、ストリーマ放電、リーダ放電等がある。   Abnormalities in the ground tank 2 can be detected as follows. That is, the method for detecting an abnormality of a gas-insulated power device according to the present invention accommodates the conductor 3 in the ground tank 2 in which the insulating gas 1 is sealed while being electrically insulated by the spacer 8 and is generated in the ground tank 2. This is a method for detecting an abnormality of a gas-insulated power device in which the decomposed gas of the insulating gas 1 is adsorbed and removed by the adsorbent 4. The adsorbent 4 is accommodated in a sealed container 5 separate from the ground tank 2, and the sealed container 5 is The ground tank 2 is connected to the grounded tank 5 to communicate with the grounded tank 2, and the decomposition gas is guided into the sealed container 5 to be adsorbed and removed by the adsorbent 4. The gas before coming into contact with the adsorbent 4 is collected from the sampling port 13 provided in the communication passage 9 between 2 and the adsorbent 4, and the discharge in the spacer 8 is detected based on the detection of the decomposition gas containing C. Is. Here, the discharge in the spacer 8 includes various types of discharge, for example, partial discharge, corona discharge, streamer discharge, leader discharge, and the like.

接地タンク2内で通電異常や絶縁異常等の異常が発生すると、絶縁ガス1から分解ガスが発生する。接地タンク2内で発生する異常の中でもスペーサ8における放電は保守的観点からより重要度が高いものである。スペーサ8はエポキシ樹脂等のCを含む絶縁材料で形成されており、スペーサ8において放電が発生すると、その表面が溶融し絶縁ガス1中にCが放出される。一方、絶縁ガス1にはCは含まれていない。このため、Cを含む分解ガスが検出された場合、そのCはスペーサ8に由来するものであり、スペーサ8において放電が発生したと考えられる。したがって、本発明の異常検出方法では、外から見ることができないスペーサ8における放電を、他の異常とは区別して検出することができる。   When an abnormality such as an energization abnormality or an insulation abnormality occurs in the ground tank 2, a decomposition gas is generated from the insulating gas 1. Among the abnormalities occurring in the ground tank 2, the discharge in the spacer 8 is more important from a conservative viewpoint. The spacer 8 is formed of an insulating material containing C, such as an epoxy resin. When discharge occurs in the spacer 8, the surface thereof melts and C is released into the insulating gas 1. On the other hand, the insulating gas 1 does not contain C. For this reason, when cracked gas containing C is detected, the C is derived from the spacer 8, and it is considered that discharge occurred in the spacer 8. Therefore, according to the abnormality detection method of the present invention, the discharge in the spacer 8 that cannot be seen from the outside can be detected separately from other abnormalities.

Cを含む分解ガスとしては、例えばCSガス、CFガス等が考えられる。ただし、これらに限るものではなく、Cを含む分解ガスであればその他のガスでも良い。 Examples of the cracked gas containing C include CS 2 gas and CF 4 gas. However, it is not limited to these, and other gases may be used as long as they are cracked gases containing C.

この異常検出方法では、開閉弁14を開けて採取口13よりガスを採取することで、吸着材4に接する前のガスを採取することができる。このため、分解ガスをより多く含む状態のガスを使用してCを含む分解ガスの検出を行うことができ、スペーサ8における放電の発生をより確実に検出することができる。また、接地タンク2内を密閉したままガスを採取することができるので、ガス絶縁電力機器の運転を止めずにスペーサ8における放電を検出することができる。Cを含む分解ガスを検出するためのガスの採取は、例えば定期的に又は不定期に行なわれる。   In this abnormality detection method, the gas before contacting the adsorbent 4 can be collected by opening the on-off valve 14 and collecting gas from the collection port 13. For this reason, it is possible to detect cracked gas containing C using a gas containing a larger amount of cracked gas, and more reliably detect the occurrence of discharge in the spacer 8. In addition, since gas can be collected while the inside of the ground tank 2 is sealed, discharge in the spacer 8 can be detected without stopping the operation of the gas-insulated power device. Collection of gas for detecting cracked gas containing C is performed, for example, regularly or irregularly.

また、ガス絶縁電力機器の運転時には第1及び第2の開閉弁7,11を常時開いておき、吸着材4による分解ガスの吸着除去を行い続けるようにしても良いが、例えばガスの採取を行なう所定時間前に第1及び第2の開閉弁7,11を閉じておき、吸着材4による分解ガスの吸着除去をできないようにしておき、分解ガスの濃度を増加させておくようにしても良い。この場合には、Cを含む分解ガスの検出がより一層確実なものになる。   In addition, the first and second on-off valves 7 and 11 may be kept open at the time of operation of the gas-insulated power device, and the adsorption and removal of the decomposition gas by the adsorbent 4 may be continued. The first and second on-off valves 7 and 11 are closed before a predetermined time, so that the adsorption gas 4 cannot be adsorbed and removed by the adsorbent 4, and the concentration of the decomposition gas is increased. good. In this case, the detection of the cracked gas containing C becomes even more reliable.

また、接地タンク2内での異常を以下のようにして検出することもできる。即ち、本発明のガス絶縁電力機器の異常検出方法は、絶縁ガス1が封入された接地タンク2内に導体3をスペーサ8によって電気的に絶縁した状態で収容すると共に、接地タンク2内で発生した絶縁ガス1の分解ガスを吸着材4によって吸着除去するガス絶縁電力機器の異常検出方法であって、吸着材4を接地タンク2とは別の密閉容器5に収容すると共に、密閉容器5を接地タンク2に切り離し可能に接続して密閉容器5内と接地タンク2内とを連通し、分解ガスを密閉容器5内に導いて吸着材4によって吸着除去する一方、異常検出を行う場合には、接地タンク側連通路28を閉じた状態で接地タンク2から密閉容器5を切り離して吸着材4の分析を行ない、Cを含む分解ガスの検出に基づいてスペーサ8における放電を検出するものである。   Also, an abnormality in the ground tank 2 can be detected as follows. That is, the method for detecting an abnormality of a gas-insulated power device according to the present invention accommodates the conductor 3 in the ground tank 2 in which the insulating gas 1 is sealed while being electrically insulated by the spacer 8 and is generated in the ground tank 2. This is a method for detecting an abnormality of a gas-insulated power device in which the decomposed gas of the insulating gas 1 is adsorbed and removed by the adsorbent 4. The adsorbent 4 is accommodated in a sealed container 5 separate from the ground tank 2 and the sealed container 5 is When connecting to the grounded tank 2 in a separable manner, the sealed container 5 and the grounded tank 2 are communicated, and the cracked gas is guided into the sealed container 5 to be adsorbed and removed by the adsorbent 4 while detecting an abnormality. The adsorbent 4 is analyzed by separating the sealed container 5 from the ground tank 2 with the ground tank side communication path 28 closed, and the discharge in the spacer 8 is detected based on the detection of the cracked gas containing C. That.

密閉容器5内の吸着材4によって発生した分解ガスを吸着除去することで、吸着材4には分解ガスが蓄積される。第1及び第2の開閉弁7,11を閉じて密閉容器5を接地タンク2から切り離し、外気を遮断した状態で吸着材4を取り出して分析する。吸着材4の分析によってCを含む分解ガスを検出し、これによって接地タンク2内での異常発生を検出する。吸着材4には分解ガスが蓄積されているので、たとえ接地タンク2内のCを含む分解ガスの濃度が低くても、Cを含む分解ガスの検出は容易であり、スペーサ8における放電の発生をより確実に検出することができる。   By decomposing and removing the decomposition gas generated by the adsorbent 4 in the sealed container 5, the decomposition gas is accumulated in the adsorbent 4. The first and second on-off valves 7 and 11 are closed, the sealed container 5 is disconnected from the ground tank 2, and the adsorbent 4 is taken out and analyzed in a state where the outside air is shut off. The analysis of the adsorbent 4 detects cracked gas containing C, thereby detecting the occurrence of abnormality in the ground tank 2. Since the decomposition gas is accumulated in the adsorbent 4, the detection of the decomposition gas containing C is easy even if the concentration of the decomposition gas containing C in the ground tank 2 is low, and the occurrence of discharge in the spacer 8 is generated. Can be detected more reliably.

ここで、ガスを分析するためには吸着材4に吸着されている分解ガスを放出させる必要があるが、吸着材4に吸着されているガスの放出は、例えば吸着材4を加熱することで行なわれる。吸着材4から放出されたガスを、例えばフーリエ変換赤外分光光度計(FTIR)、ガスクロマトグラフ等によって分析し、Cを含む分解ガス検出する。ただし、ガスを分析する装置としては、これらに限るものではなく、その他の装置を使用しても良い。   Here, in order to analyze the gas, it is necessary to release the decomposition gas adsorbed on the adsorbent 4. For example, the gas adsorbed on the adsorbent 4 is released by heating the adsorbent 4. Done. The gas released from the adsorbent 4 is analyzed by, for example, a Fourier transform infrared spectrophotometer (FTIR), a gas chromatograph or the like, and a cracked gas containing C is detected. However, the gas analyzing device is not limited to these, and other devices may be used.

なお、本実施形態では、上記2つの方法、即ち、吸着材4に接触する前のガスを採取して分析する方法と、吸着材4に吸着されたガスを分析する方法とを併用しているが、これら2つの方法のうち、いずれか一方のみを使用しても良い。   In the present embodiment, the above two methods, that is, the method of collecting and analyzing the gas before contacting the adsorbent 4 and the method of analyzing the gas adsorbed on the adsorbent 4 are used in combination. However, only one of these two methods may be used.

また、吸着材4に接触する前のガスを分析対象とする方法を使用しない場合等には採取口13を省略しても良い。   Further, the sampling port 13 may be omitted when a method for analyzing the gas before contacting the adsorbent 4 is not used.

また、接地タンク2から密閉容器5を切り離した場合に、吸着材4が外気に触れても良い場合等には、第2の開閉弁11を省略しても良い。   In addition, when the sealed container 5 is separated from the ground tank 2, the second opening / closing valve 11 may be omitted when the adsorbent 4 may touch the outside air.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention.

例えば、図2に示すガス絶縁電力機器に適用しても良い。なお、上述のガス絶縁電力機器の部材と同一の部材には同一の符号を付し、それらの説明は省略する。   For example, you may apply to the gas insulated power apparatus shown in FIG. In addition, the same code | symbol is attached | subjected to the member same as the member of the above-mentioned gas insulated power apparatus, and those description is abbreviate | omitted.

このガス絶縁電力機器は、接地タンク2内と密閉容器5内とを連通する連通路9を往路15と復路16とを有する循環路にすると共に、接地タンク2内のガスを往路15から密閉容器5に導いて吸着材4に接触させた後、復路16から接地タンク2へと循環させる循環装置22を備えている。本実施形態では、往路15と復路16を二重管状に配置された内管17と外管18とによって構成している。   In this gas insulated power device, the communication path 9 that connects the inside of the ground tank 2 and the inside of the sealed container 5 is used as a circulation path having the forward path 15 and the return path 16, and the gas in the ground tank 2 is sealed from the forward path 15 to the sealed container. A circulation device 22 that circulates from the return path 16 to the ground tank 2 after being guided to 5 and brought into contact with the adsorbent 4 is provided. In the present embodiment, the forward path 15 and the return path 16 are constituted by an inner pipe 17 and an outer pipe 18 arranged in a double tubular shape.

二重管状の連通路9は、接地タンク2に既存の給排気管6を利用して形成されている。即ち、給排気管6内に内管27を挿入することで二重の管路を設けて接地タンク側連通路28とし、密閉容器側連通路10を内管19と外管29より構成される二重管によって構成し、給排気管6と外管29、内管27と内管19を切り離し可能に接続している。つまり、内管27と内管19とによって内管17を構成し、給排気管6と外管29とによって外管18を構成している。   The double tubular communication passage 9 is formed in the ground tank 2 using the existing air supply / exhaust pipe 6. That is, by inserting the inner pipe 27 into the air supply / exhaust pipe 6, a double pipe is provided as the ground tank side communication path 28, and the sealed container side communication path 10 is constituted by the inner pipe 19 and the outer pipe 29. It is constituted by a double pipe, and the air supply / exhaust pipe 6 and the outer pipe 29, and the inner pipe 27 and the inner pipe 19 are detachably connected. That is, the inner pipe 17 is constituted by the inner pipe 27 and the inner pipe 19, and the outer pipe 18 is constituted by the air supply / exhaust pipe 6 and the outer pipe 29.

二重管の外管29は密閉容器5内の空間20に開口し、内管19は密閉容器5内の吸着材収容室21に開口している。また、吸着材収容室21の入口には、空間20内のガスを吸着材収容室21内に送り込む循環装置22が設置されている。循環装置22は、例えば図示しないモータによって駆動される電動ファンである。採取口13は、二重管の外管29の途中に設けられている。   The double tube outer tube 29 opens into the space 20 in the sealed container 5, and the inner tube 19 opens into the adsorbent housing chamber 21 in the sealed container 5. Further, a circulation device 22 for sending the gas in the space 20 into the adsorbent accommodating chamber 21 is installed at the entrance of the adsorbent accommodating chamber 21. The circulation device 22 is an electric fan driven by a motor (not shown), for example. The sampling port 13 is provided in the middle of the double tube outer tube 29.

循環装置22を始動させると、密閉容器5内の空間20が負圧、吸着材収容室21内が正圧となり、強制的なガスの流れが形成される。接地タンク2内のガスは給排気管6と内管27の間の空間(以下、給排気管外側通路という)に吸い込まれ、二重管の外管29と内管19の間の空間(以下、二重管外側通路という)を通って密閉容器5内の空間20に吸引される。そして、循環装置22によって吸着材収容室21内に送り込まれ、吸着材4に接触した後、二重管の内管19内の空間(以下、二重管内側通路という)→給排気管6内の内管27の内側の空間(以下、給排気管内側通路という)→接地タンク2内へと強制的に循環される。接地タンク2内で発生した分解ガスは、この流れに乗って吸着材4に到達し、吸着除去される。   When the circulation device 22 is started, the space 20 in the sealed container 5 has a negative pressure, and the adsorbent storage chamber 21 has a positive pressure, so that a forced gas flow is formed. The gas in the ground tank 2 is sucked into a space between the air supply / exhaust pipe 6 and the inner pipe 27 (hereinafter referred to as an air supply / exhaust pipe outer passage), and a space between the outer pipe 29 and the inner pipe 19 of the double pipe (hereinafter referred to as the internal pipe 19) (Referred to as a double pipe outer passage) and sucked into the space 20 in the sealed container 5. Then, after being sent into the adsorbent accommodating chamber 21 by the circulation device 22 and contacting the adsorbent 4, the space in the inner pipe 19 of the double pipe (hereinafter referred to as the double pipe inner passage) → inside the air supply / exhaust pipe 6 The inner space of the inner pipe 27 (hereinafter referred to as an air supply / exhaust pipe inner passage) is forcedly circulated into the ground tank 2. The cracked gas generated in the ground tank 2 reaches this adsorbent 4 on this flow and is adsorbed and removed.

このように、連通路を循環路とし、循環装置22を設けて強制的にガスを循環させるので、分解ガスが自然拡散により吸着材4に到達するのを待つ場合に比べ、素早く分解ガスを吸着除去することができると共に、接地タンク2内への分解ガスの残留防止を図ることができる。   In this way, the communication path is a circulation path, and the circulation device 22 is provided to forcibly circulate the gas, so that the decomposition gas is adsorbed more quickly than when waiting for the decomposition gas to reach the adsorbent 4 by natural diffusion. In addition to being able to be removed, it is possible to prevent the decomposition gas from remaining in the ground tank 2.

また、二重管外側通路には吸着材4に接触する前のガスが流れているので、採取口13より吸着材4に接触する前の状態のガスを採取することができる。   Moreover, since the gas before contacting the adsorbent 4 flows through the double pipe outer passage, the gas in the state before contacting the adsorbent 4 can be collected from the sampling port 13.

なお、上述の説明では、給排気管外側通路と二重管外側通路を往路15とし、二重管内側通路と給排気管内側通路を復路16としているが、必ずしもこの構成にする必要はなく、二重管内側通路と給排気管内側通路を往路15とし、給排気管外側通路と二重管外側通路を復路16としても良い。   In the above description, the supply / exhaust pipe outer passage and the double pipe outer passage are defined as the forward path 15, and the double pipe inner path and the supply / exhaust pipe inner passage are defined as the return path 16. The double pipe inner passage and the supply / exhaust pipe inner passage may be the forward path 15, and the supply / exhaust pipe outer passage and the double pipe outer passage may be the return path 16.

また、上述の説明では、循環装置22を吸着材収容室21の入口に設けていたが、ガスの強制的な循環流を発生させることが可能な位置であれば循環装置22を他の位置に設けても良い。   In the above description, the circulation device 22 is provided at the inlet of the adsorbent accommodating chamber 21, but the circulation device 22 is moved to another position as long as it is a position where a forced circulation flow of gas can be generated. It may be provided.

ここで、連通路9の二重管構造について説明する。連通路9の二重管構造としては、例えばガス絶縁電力機器の運転時等には二重管となっているが、接地タンク2から密閉容器5を切り離す場合には一重管となる構造の採用が考えられる。その一例を図3に示す。連通路9の内管17は、例えば可撓性のあるチューブで構成されている。密閉容器5内には、チューブ巻取装置23が設けられている。チューブ巻取装置23によって内管17を巻き取ることで、外管18内から内管17を引き抜くことができる。また、巻き取った内管17をチューブ巻取装置23によって外管18内に送り出すことができる。内管17が送り出されることで、連通路9は二重管構造となる。つまり、内管27と二重管の内管19を1本のチューブで構成している。   Here, the double pipe structure of the communication path 9 will be described. As the double pipe structure of the communication passage 9, for example, a double pipe is used when the gas insulated power device is operated, but when the sealed container 5 is separated from the ground tank 2, a single pipe structure is adopted. Can be considered. An example is shown in FIG. The inner tube 17 of the communication passage 9 is formed of a flexible tube, for example. A tube winding device 23 is provided in the sealed container 5. By winding the inner tube 17 with the tube winding device 23, the inner tube 17 can be pulled out from the outer tube 18. Further, the wound inner tube 17 can be fed into the outer tube 18 by the tube winding device 23. By communicating the inner pipe 17, the communication path 9 has a double pipe structure. That is, the inner tube 27 and the double tube inner tube 19 are formed of a single tube.

第1の開閉弁7と第2の開閉弁11は、例えばバルブとして開路の状態で給排気管6又は外管29の断面と直線性が確保できるフルボアタイプのボールバルブである。第1及び第2の開閉弁7,11を開くことで外管29と給排気管6とで構成される外管18の中に内管17を送り出すことが可能になる。また、内管17を巻き取ることで、第1及び第2の開閉弁7,11を閉じることが可能になる。ただし、第1及び第2の開閉弁7,11として、フルボアタイプのボールバルブ以外のバルブを使用しても良い。   The first on-off valve 7 and the second on-off valve 11 are, for example, full-bore type ball valves that can ensure the cross section and linearity of the air supply / exhaust pipe 6 or the outer pipe 29 in the open state as valves. By opening the first and second on-off valves 7 and 11, the inner pipe 17 can be fed into the outer pipe 18 constituted by the outer pipe 29 and the air supply / exhaust pipe 6. In addition, the first and second on-off valves 7 and 11 can be closed by winding up the inner pipe 17. However, valves other than the full bore type ball valve may be used as the first and second on-off valves 7 and 11.

ガス絶縁電力機器の運転時には、第1及び第2の開閉弁7,11を開き、内管17を外管18の中に送り出しておくことで、連通路9を往路15と復路16とからなる循環路にすることができる。そして、接地タンク2から密閉容器5を切り離す場合には、チューブ巻取装置23によって内管17を巻き取った後、第1及び第2の開閉弁7,11を閉じ、給排気管6から外管29を取り外せば良い。また、切り離した密閉容器5を接地タンク2に取り付ける場合には、絶縁ガス1雰囲気で給排気管6に外管29を接続した後、第1及び第2の開閉弁7,11を開き、チューブ巻取装置23によって内管17を外管18の中に送り出せばよい。   During operation of the gas-insulated power device, the first and second on-off valves 7 and 11 are opened, and the inner pipe 17 is sent into the outer pipe 18 so that the communication path 9 includes the forward path 15 and the return path 16. It can be a circuit. When the sealed container 5 is separated from the ground tank 2, after the inner tube 17 is wound up by the tube winding device 23, the first and second on-off valves 7 and 11 are closed and the outer supply pipe 6 is The tube 29 may be removed. When the separated sealed container 5 is attached to the ground tank 2, after connecting the outer pipe 29 to the supply / exhaust pipe 6 in the atmosphere of the insulating gas 1, the first and second on-off valves 7 and 11 are opened, and the tube The inner tube 17 may be sent out into the outer tube 18 by the winding device 23.

なお、電動のチューブ巻取装置23は密閉容器5の外から遠隔操作される。ただし、電動のチューブ巻取装置23に代えて、手動のチューブ巻取装置23を使用しても良く、この場合には、ガスシールが施されたハンドルを操作してチューブ巻取装置23を駆動させる。   The electric tube winding device 23 is remotely operated from the outside of the sealed container 5. However, a manual tube winding device 23 may be used in place of the electric tube winding device 23. In this case, the tube winding device 23 is driven by operating a handle provided with a gas seal. Let

また、内管17として可撓性のチューブの使用に代えて、蛇腹構造の内管17を使用し、伸縮させることで外管18の中に挿入したり引き抜いたりするようにしても良い。蛇腹構造の内管17を伸縮させる手段としては、例えば内管17内にロッドを挿入して先端同士を接続しておき、ロッド操作によって蛇腹構造の内管17を伸縮させることが考えられる。あるいは、内管17をテレスコープ形シリンダ構造、即ち直径が少しずつ異なる複数のパイプによって内管17を構成し、各パイプを順次隣のパイプ内に収納したり引き出したりすることで全体として伸縮できる構造にし、伸縮させることで外管18の中に挿入したり引き抜いたりするようにしても良い。この構造の内管17を伸縮させる手段としては、例えば内管17内にロッドを挿入して先端同士を接続しておき、ロッド操作によって内管17を伸縮させることが考えられる。   Further, instead of using a flexible tube as the inner tube 17, the inner tube 17 having a bellows structure may be used, and the inner tube 17 may be inserted into or pulled out from the outer tube 18 by expanding and contracting. As a means for expanding and contracting the bellows-structured inner tube 17, for example, it is conceivable to insert a rod into the inner tube 17 to connect the tips thereof, and to extend and contract the bellows-structured inner tube 17 by operating the rod. Alternatively, the inner tube 17 can be expanded and contracted as a whole by forming the inner tube 17 with a telescopic cylinder structure, that is, a plurality of pipes having slightly different diameters, and sequentially storing and pulling each pipe into and from the adjacent pipe. The structure may be inserted into the outer tube 18 or pulled out by expanding and contracting. As a means for expanding and contracting the inner tube 17 having this structure, for example, it is conceivable to insert a rod into the inner tube 17 to connect the tips thereof, and to expand and contract the inner tube 17 by operating the rod.

また、伸縮可能な内管17に代えて、例えば金属製のパイプ等の伸縮しない内管17を使用してもよい。即ち、長尺の内管17をそのまま軸方向に引き抜くようにしても良い。この場合には、構造を簡単にすることができる。ただし、図3の矢印A方向に内管17を軸方向に引き抜くことができる空間を必要とするので、かかる空間が確保できる場合に有効である。   Further, instead of the extendable inner tube 17, for example, a non-expandable inner tube 17 such as a metal pipe may be used. That is, the long inner tube 17 may be pulled out in the axial direction as it is. In this case, the structure can be simplified. However, since a space in which the inner tube 17 can be pulled out in the axial direction in the direction of arrow A in FIG. 3 is required, it is effective when such a space can be secured.

また、連通路9の二重管構造としては、上述の接地タンク2から密閉容器5を切り離す場合に一重管にする構造の他に、一重管にすることができずに常時二重管となっている構造の採用も考えられる。この場合、第1及び第2の開閉弁7,11として、例えば図4に示すように、フルボアタイプのボールバルブのボール7a,11a内の貫通孔を連通路9の二重管と同一径で接続される二重構造として、往路15と復路16の両方を同時に開閉できる構造とすることが考えられる。   Moreover, as a double pipe structure of the communication path 9, in addition to the structure in which the closed container 5 is separated from the ground tank 2 described above, a single pipe cannot be used and a double pipe is always used. It is also possible to adopt the structure that is used. In this case, as the first and second on-off valves 7 and 11, for example, as shown in FIG. 4, the through holes in the balls 7 a and 11 a of the full bore type ball valve have the same diameter as the double pipe of the communication passage 9. As a double structure to be connected, it can be considered that both the forward path 15 and the return path 16 can be opened and closed simultaneously.

また、上述の説明では、接地タンク2に既存の給排気管6を利用して連通路9を構成していたが、給排気管6とは別に連通路9を設けても良い。この例を図5に示す。この例では、接地タンク2に既設のハンドホールフランジ(開口フランジ)蓋24に孔を設けて接地タンク側連通路28となる二重管30を固着し、これに密閉容器側連通路10となる二重管31を連結している。この場合には、各二重管30,31の直径をある程度自由に選択できるため、連通路9の設計の自由度が向上し、連通路9の形成が容易である。ただし、二重管30の固着位置としては、ハンドホールフランジ蓋24に限るものではない。   In the above description, the communication path 9 is configured using the existing air supply / exhaust pipe 6 in the ground tank 2, but the communication path 9 may be provided separately from the air supply / exhaust pipe 6. An example of this is shown in FIG. In this example, a hole is formed in an existing handhole flange (opening flange) lid 24 in the ground tank 2, and a double pipe 30 serving as a ground tank side communication path 28 is fixed to the sealed tank side communication path 10. The double pipe 31 is connected. In this case, since the diameter of each double pipe 30 and 31 can be freely selected to some extent, the degree of freedom in designing the communication path 9 is improved, and the formation of the communication path 9 is easy. However, the fixing position of the double pipe 30 is not limited to the hand hole flange cover 24.

また、例えば、図6に示すガス絶縁電力機器に適用しても良い。なお、上述のガス絶縁電力機器の部材と同一の部材には同一の符号を付し、それらの説明は省略する。   Further, for example, the present invention may be applied to the gas insulated power device shown in FIG. In addition, the same code | symbol is attached | subjected to the member same as the member of the above-mentioned gas insulated power apparatus, and those description is abbreviate | omitted.

このガス絶縁電力機器は、往路15と復路16を別々に設けた配管25,26,32,33によって構成している。配管25,26は、例えばハンドホールフランジ蓋24に孔を設けて固着している。また、配管32,33は密閉容器5に固着している。配管32は配管25に、配管33は配管26にそれぞれ切り離し可能に接続されている。   This gas-insulated power device is constituted by pipes 25, 26, 32, and 33 in which an outward path 15 and a return path 16 are separately provided. For example, the pipes 25 and 26 are fixed by providing holes in the hand hole flange lid 24. The pipes 32 and 33 are fixed to the sealed container 5. The pipe 32 is connected to the pipe 25 and the pipe 33 is connected to the pipe 26 so as to be separable.

ハンドホールフランジ蓋24は給排気管6よりも大径であり、連通路9を二重管構造とした場合に比べて、往路15と復路16との間を離して設置することができる。このため、接地タンク2内でガスをより効率よく循環させることができ、接地タンク2内の分解ガスの残留をより一層防止することができる。また、ハンドホールフランジ蓋24への配管25,26の固着は容易であり、ガス絶縁電力機器の製造は簡単である。なお、配管25,26をハンドホールフランジ蓋24以外の部分に固着させても良い。また、各配管25,26のいずれか一方を給排気管6を利用して構成しても良い。また、ガス絶縁電力機器の同一ガス区画に2ヵ所以上のハンドホールフランジ蓋24が設けられている場合には、別々のハンドホールフランジ蓋24に往路15となる配管25と復路16となる配管26を固着するようにしても良い。この場合には、往路15と復路16をさらに離すことができるため、接地タンク2内でガスをより一層効率よく循環させることができ、接地タンク2内の分解ガスの残留をさらに防止することができる。   The handhole flange cover 24 has a larger diameter than the air supply / exhaust pipe 6 and can be installed with a distance between the forward path 15 and the return path 16 as compared with the case where the communication path 9 has a double pipe structure. For this reason, it is possible to circulate the gas more efficiently in the ground tank 2 and to further prevent the decomposition gas from remaining in the ground tank 2. Further, the pipes 25 and 26 are easily fixed to the handhole flange lid 24, and the manufacture of the gas insulated power device is simple. The pipes 25 and 26 may be fixed to portions other than the hand hole flange lid 24. Moreover, you may comprise either one of each piping 25 and 26 using the air supply / exhaust pipe 6. FIG. Further, when two or more handhole flange lids 24 are provided in the same gas section of the gas-insulated power device, a pipe 25 serving as the forward path 15 and a pipe 26 serving as the return path 16 are provided in different handhole flange lids 24. May be fixed. In this case, since the forward path 15 and the return path 16 can be further separated from each other, the gas can be circulated more efficiently in the ground tank 2, and the residual cracked gas in the ground tank 2 can be further prevented. it can.

本発明の異常検出方法を実施するガス絶縁電力機器の第1の実施形態を示す概略構成図である。It is a schematic block diagram which shows 1st Embodiment of the gas insulated power apparatus which implements the abnormality detection method of this invention. 本発明の異常検出方法を実施するガス絶縁電力機器の第2の実施形態を示す概略構成図である。It is a schematic block diagram which shows 2nd Embodiment of the gas insulated power apparatus which implements the abnormality detection method of this invention. 連通路の内管を伸縮させる構造の例を示す概略構成図である。It is a schematic block diagram which shows the example of the structure which expands / contracts the inner pipe | tube of a communicating path. 第1及び第2の開閉弁を示し、(A)は開路状態の断面図、(B)は閉鎖状態の断面図である。The 1st and 2nd on-off valve is shown, (A) is sectional drawing of an open circuit state, (B) is sectional drawing of a closed state. 図2のガス絶縁電力機器の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of the gas insulated power apparatus of FIG. 本発明の異常検出方法を実施するガス絶縁電力機器の第3の実施形態を示す概略構成図である。It is a schematic block diagram which shows 3rd Embodiment of the gas insulated power apparatus which implements the abnormality detection method of this invention.

符号の説明Explanation of symbols

1 絶縁ガス
2 接地タンク
3 導体
4 吸着材
5 密閉容器
6 接地タンク側連通路
8 スペーサ
9 連通路
13 採取口
1 Insulating gas 2 Ground tank 3 Conductor 4 Adsorbent 5 Sealed container 6 Ground tank side communication path 8 Spacer 9 Communication path 13 Sampling port

Claims (2)

絶縁ガスが封入された接地タンク内に導体をスペーサによって電気的に絶縁した状態で収容すると共に、前記接地タンク内で発生した前記絶縁ガスの分解ガスを吸着材によって吸着除去するガス絶縁電力機器の異常検出方法において、前記吸着材を前記接地タンクとは別の密閉容器に収容すると共に、前記密閉容器を前記接地タンクに接続して前記密閉容器内と前記接地タンク内とを連通し、前記分解ガスを前記密閉容器内に導いて前記吸着材によって吸着除去する一方、異常検出を行う場合には、前記接地タンクから前記吸着材に至るまでの間の連通路に設けた採取口から前記吸着材に接する前のガスを採取し、Cを含む分解ガスの検出に基づいて前記スペーサにおける放電を検出することを特徴とするガス絶縁電力機器の異常検出方法。   A gas-insulated power device that accommodates a conductor in a grounded tank filled with insulating gas in a state of being electrically insulated by a spacer, and adsorbs and removes the decomposition gas generated in the grounded tank by an adsorbent. In the abnormality detection method, the adsorbent is accommodated in a sealed container different from the ground tank, and the sealed container is connected to the ground tank so that the sealed container and the grounded tank communicate with each other. When the gas is introduced into the sealed container and adsorbed and removed by the adsorbent, and when abnormality is detected, the adsorbent is collected from a sampling port provided in a communication path from the grounded tank to the adsorbent. An abnormality detection method for gas-insulated power equipment, comprising: collecting a gas before contacting the gas and detecting a discharge in the spacer based on detection of cracked gas containing C. 絶縁ガスが封入された接地タンク内に導体をスペーサによって電気的に絶縁した状態で収容すると共に、前記接地タンク内で発生した前記絶縁ガスの分解ガスを吸着材によって吸着除去するガス絶縁電力機器の異常検出方法において、前記吸着材を前記接地タンクとは別の密閉容器に収容すると共に、前記密閉容器を前記接地タンクに切り離し可能に接続して前記密閉容器内と前記接地タンク内とを連通し、前記分解ガスを前記密閉容器内に導いて前記吸着材によって吸着除去する一方、異常検出を行う場合には、接地タンク側連通路を閉じた状態で前記接地タンクから前記密閉容器を切り離して前記吸着材の分析を行ない、Cを含む分解ガスの検出に基づいて前記スペーサにおける放電を検出することを特徴とするガス絶縁電力機器の異常検出方法。   A gas-insulated power device that accommodates a conductor in a grounded tank filled with insulating gas in a state of being electrically insulated by a spacer, and adsorbs and removes the decomposition gas generated in the grounded tank by an adsorbent. In the abnormality detection method, the adsorbent is housed in a sealed container different from the ground tank, and the sealed container is detachably connected to the ground tank so that the sealed container communicates with the ground tank. When the cracked gas is introduced into the sealed container and adsorbed and removed by the adsorbent, the abnormality is detected by separating the sealed container from the grounded tank with the grounded tank side communication path closed. Abnormality of gas-insulated power equipment, characterized in that an adsorbent is analyzed and discharge in the spacer is detected based on detection of cracked gas containing C Way out.
JP2006243965A 2006-09-08 2006-09-08 Method for detecting abnormality in gas insulated power apparatus Pending JP2008067538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006243965A JP2008067538A (en) 2006-09-08 2006-09-08 Method for detecting abnormality in gas insulated power apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006243965A JP2008067538A (en) 2006-09-08 2006-09-08 Method for detecting abnormality in gas insulated power apparatus

Publications (1)

Publication Number Publication Date
JP2008067538A true JP2008067538A (en) 2008-03-21

Family

ID=39289726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006243965A Pending JP2008067538A (en) 2006-09-08 2006-09-08 Method for detecting abnormality in gas insulated power apparatus

Country Status (1)

Country Link
JP (1) JP2008067538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151956A (en) * 2011-01-18 2012-08-09 Chugoku Electric Power Co Inc:The Gas insulation switchgear
CN104659700A (en) * 2015-01-29 2015-05-27 重庆市送变电工程有限公司 Automatic gas filling warning device of SF6 gas insulated metal closed switch equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553110A (en) * 1978-10-11 1980-04-18 Mitsubishi Electric Corp Absorbing device
JPS60152204A (en) * 1984-01-17 1985-08-10 株式会社東芝 Enclosed switchboard
JPH0412608A (en) * 1990-04-28 1992-01-17 Mitsubishi Electric Corp Internal malfunction diagnostic device for gas insulated electric equipment
JPH04151536A (en) * 1990-10-16 1992-05-25 Mitsubishi Electric Corp Gas sampling device
JPH11337457A (en) * 1998-05-25 1999-12-10 Fuji Electric Co Ltd Decomposed gas detecting device and method of gas insulating machinery
JP2001296218A (en) * 2000-04-14 2001-10-26 Mitsubishi Electric Corp Analytical equipment and analysis method for organic substance in internal gas of power apparatus and power apparatus with the analytical equipment
JP2002027623A (en) * 2000-07-06 2002-01-25 Mitsubishi Electric Corp Failure decision device for gas-insulated electrical, apparatus and gas-insulated electric apparatus monitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553110A (en) * 1978-10-11 1980-04-18 Mitsubishi Electric Corp Absorbing device
JPS60152204A (en) * 1984-01-17 1985-08-10 株式会社東芝 Enclosed switchboard
JPH0412608A (en) * 1990-04-28 1992-01-17 Mitsubishi Electric Corp Internal malfunction diagnostic device for gas insulated electric equipment
JPH04151536A (en) * 1990-10-16 1992-05-25 Mitsubishi Electric Corp Gas sampling device
JPH11337457A (en) * 1998-05-25 1999-12-10 Fuji Electric Co Ltd Decomposed gas detecting device and method of gas insulating machinery
JP2001296218A (en) * 2000-04-14 2001-10-26 Mitsubishi Electric Corp Analytical equipment and analysis method for organic substance in internal gas of power apparatus and power apparatus with the analytical equipment
JP2002027623A (en) * 2000-07-06 2002-01-25 Mitsubishi Electric Corp Failure decision device for gas-insulated electrical, apparatus and gas-insulated electric apparatus monitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151956A (en) * 2011-01-18 2012-08-09 Chugoku Electric Power Co Inc:The Gas insulation switchgear
CN104659700A (en) * 2015-01-29 2015-05-27 重庆市送变电工程有限公司 Automatic gas filling warning device of SF6 gas insulated metal closed switch equipment
CN104659700B (en) * 2015-01-29 2017-02-22 重庆市送变电工程有限公司 Automatic gas filling warning device of SF6 gas insulated metal closed switch equipment

Similar Documents

Publication Publication Date Title
JP4596531B2 (en) Gas insulated power equipment and abnormality detection method thereof
EP2008076A1 (en) Apparatus for performing dissolved gas analysis
JP2008249617A (en) Abnormality diagnostic method for oil-immersed electric equipment
JP2008067538A (en) Method for detecting abnormality in gas insulated power apparatus
JP2007271558A (en) Leakage testing apparatus
US10794877B2 (en) Sorbent tube apparatus
JP2010021263A (en) Insulation diagnosing method for gas insulated electrical apparatus
KR101961616B1 (en) Apparatus for measuring dissolved gas
KR101884322B1 (en) Pressure reducing and state observation device for electric transformer
JP2008067536A (en) Gas insulated power apparatus and abnormality detection method therefor
JP5771564B2 (en) Electrical test apparatus and electrical test method
KR20090086533A (en) Improved coupler
JP4801541B2 (en) Gas insulated power equipment
JP2008067535A (en) Method for detecting abnormality in gas insulated power apparatus
JP2010206963A (en) Method of detecting abnormal conditions in gas-insulated power apparatus
JP4206498B2 (en) Liquid storage tank leak detection system
JP2015530064A (en) Inspection equipment for equipment
CN104076127A (en) Device for testing accuracy of sulfur hexafluoride humidity sensor
JP2005083910A (en) Jig for checking leakage
CN217135019U (en) Gas monitoring structure of high-voltage switch
JP2010206962A (en) Method of detecting abnormal conditions in gas-insulated power apparatus
CN116818423A (en) Automatic collecting device and method for partial discharge products of GIS equipment
CN208921352U (en) A kind of gas switch detector
CN112051006B (en) Instrument and instrument equipment on-line monitoring device based on industrial internet
JPH0538008A (en) Detecting device for ground fault of gas-insulated switchgear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129