JP2008067467A - Utility pole break state monitoring system and utility pole used in that utility pole break state monitoring system - Google Patents

Utility pole break state monitoring system and utility pole used in that utility pole break state monitoring system Download PDF

Info

Publication number
JP2008067467A
JP2008067467A JP2006241569A JP2006241569A JP2008067467A JP 2008067467 A JP2008067467 A JP 2008067467A JP 2006241569 A JP2006241569 A JP 2006241569A JP 2006241569 A JP2006241569 A JP 2006241569A JP 2008067467 A JP2008067467 A JP 2008067467A
Authority
JP
Japan
Prior art keywords
utility pole
optical signal
signal path
pole
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006241569A
Other languages
Japanese (ja)
Inventor
Isanaka Okamura
伊佐央 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006241569A priority Critical patent/JP2008067467A/en
Publication of JP2008067467A publication Critical patent/JP2008067467A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a utility state break state monitoring system, which can monitor the break state of a utility pole not accompanied with power failure by monitoring it at a branch office, etc., and to provide a utility pole which is used in this utility pole break state monitoring system. <P>SOLUTION: This utility pole break state monitoring system, which is equipped with a plurality of the utility poles 1 where embedded optical fibers are connected to constitute a system of optical signal path L, a light source which injects a test beam from one end of the optical signal path, and an optical signal detection means which is arranged at least at either one end or the other end of the optical signal path, detects a broken utility pole by detecting the optical signal from the optical signal path L based on the test beam injected from the light source. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、架空線を支持している複数の電柱における停電を伴わない折損の有無を検出し、又はその位置を検出する監視システム及び、該監視システムに使用される電柱に関する。   The present invention relates to a monitoring system that detects the presence or absence of breakage without power failure in a plurality of utility poles that support overhead lines, or to a utility pole that is used in the monitoring system.

従来より、電力会社等の電柱管理者は、自動車の衝突や台風などの自然災害等によって、電柱が折損した場合、特に、停電(断線)を伴わないような折損の場合、加害者や目撃者、周辺住民等からの連絡(通報)により、電柱折損の発生を認知(認識)し、それから作業員を現場に出向させて確認した後、修理対応を行っていた。   Conventionally, power pole managers of power companies, etc., are perpetrators or witnesses when a power pole breaks due to a natural disaster such as a car collision or a typhoon, especially when it breaks without a power failure (disconnection). In response to notifications from local residents, etc., they recognized (recognized) the occurrence of telephone pole breakage, and then sent workers to the site for confirmation, and then handled repairs.

このように、電柱管理者は、電柱を折損させた加害者や折損した電柱の目撃者、周辺住民等からの連絡を契機に電柱の折損を認知しているため、電柱が折損した時から修理対応を開始するまでの間にタイムラグが生じてしまう。また、前記加害者が電柱管理者へ電柱を折損した旨の連絡を失念した場合等には、第三者が折損した電柱を発見して連絡するまでは、電柱管理者は、電柱の折損を認知することができなかった。   In this way, the utility pole manager recognizes the breakage of the power pole triggered by the contact from the perpetrator who broke the power pole, the witness of the broken power pole, the surrounding residents, etc. There will be a time lag before the response starts. In addition, if the perpetrator forgets to contact the telephone pole manager that the telephone pole has been broken, etc., the telephone pole manager will not break the telephone pole until the third party finds and reports the broken telephone pole. I couldn't recognize it.

また、電柱管理者が周辺住民等の連絡によって電柱の折損を認知したとしても、激しい暴風雨等によって作業者(人)が現時確認することができない場合は、修理対応を開始する迄にはさらに時間の経過が必要となるといった問題が生じていた。   In addition, even if the telephone pole manager recognizes the breakage of the telephone pole by contacting the residents in the surrounding area, if the worker (person) cannot be confirmed at the moment due to severe storms, it will take more time to start repairs. The problem that the progress of was needed occurred.

そこで、本発明は、上記問題点に鑑み、電柱の保守を行う営業所等で監視することにより、停電を伴わない電柱の折損状況を監視することができる電柱折損状況監視システム及び該電柱折損状況監視システムで使用される電柱を提供することを課題とする。   Therefore, in view of the above problems, the present invention is a power pole breakage situation monitoring system capable of monitoring the breakage situation of a power pole without a power failure by monitoring at a sales office or the like that performs maintenance of the power pole, and the power pole breakage situation. It is an object to provide a utility pole used in a monitoring system.

そこで、上記課題を解消すべく、本発明に係る電柱折損状況監視システムは、柱状の電柱本体と、一端から他端まで連続すると共に前記電柱本体に少なくとも一部が埋設される光ファイバと、該光ファイバの両端部にそれぞれ設けられる接続手段とを備える電柱であって、前記光ファイバの埋設部は、前記電柱本体に対して下方に向かう下降部と上方に向かう上昇部とを少なくとも一対備え、前記一対の下降部と上昇部との各下端部は、電柱を設置した際に地中に埋没する位置で互いに連結されることを特徴とする電柱を使用し、埋設された光ファイバが一系統の光信号路を構成するように接続される複数本の請求項1乃至5の何れかに記載された電柱と、前記光信号路の一端から試験光を入射する光源と、前記光信号路の一端又は他端の少なくとも一方に配置される光信号検出手段とを備える電柱折損状況監視システムであって、前記光源から入射される試験光(試験信号)に基づく前記光信号路からの光信号を検出することで折損した電柱を検出することを特徴とする。   Therefore, in order to solve the above problems, a utility pole breakage monitoring system according to the present invention includes a pole-shaped utility pole body, an optical fiber continuous from one end to the other end and at least partially embedded in the utility pole body, A power pole including connection means provided at both ends of the optical fiber, wherein the buried portion of the optical fiber includes at least a pair of a downward portion and a upward portion that are directed downward with respect to the power pole main body, The lower ends of the pair of descending parts and rising parts are connected to each other at positions where they are buried in the ground when the utility poles are installed. A plurality of utility poles connected to form an optical signal path, a light source for entering test light from one end of the optical signal path, and the optical signal path One end or the other end An electric pole breakage condition monitoring system comprising at least one optical signal detection means, wherein an optical signal from the optical signal path based on test light (test signal) incident from the light source is detected. It is characterized by detecting a broken utility pole.

かかる構成によれば、前記電柱は、一端から他端まで連続する光ファイバの少なくとも一部が電柱本体に埋設され、該光ファイバの前記埋設部が電柱本体に対して下方に向かう下降部と上方に向かう上昇部とを少なくとも一対備え、前記一対の下降部と上昇部との各下端部が電柱を設置した際に地中に埋没する位置で互いに連結されている。そして、自動車が衝突したり暴風等によって電柱に横方向(水平方向)からの力が加わって折損する際には、最も力の作用する根元付近、即ち、前記光ファイバが埋設されている部分で折損する場合が多い。このように、光ファイバが埋設されている部分が折損すると、かかる部分に埋設されている光ファイバに強い曲げ(ベンディング/屈曲)や破断が発生する。   According to this configuration, at least a part of the optical fiber continuous from one end to the other end is embedded in the power pole main body, and the embedded portion of the optical fiber has a descending portion and an upper portion facing downward with respect to the power pole main body. At least a pair of ascending parts heading toward each other, and lower ends of the pair of descending parts and ascending parts are connected to each other at positions where they are buried in the ground when the utility pole is installed. And when a car collides or a force from the lateral direction (horizontal direction) is applied to the utility pole due to a storm or the like, it breaks near the root where the most force acts, that is, the portion where the optical fiber is embedded. Often breaks. As described above, when the portion in which the optical fiber is embedded is broken, strong bending (bending / bending) or breakage occurs in the optical fiber embedded in the portion.

一方、電柱折損状況監視システムは、複数の前記電柱を埋設された光ファイバが一系統の光信号路を構成するように接続し、前記一系統の光信号路の一端から光源によって試験光を入射し、該試験光に基づく光信号を該光信号路の一端又は他端に配置された光信号検出手段によって検出するように構成されている。そのため、前記光信号路において、上述のような電柱の折損によって光ファイバに強い曲げや破断が発生すると、かかる部分で光ファイバ内を伝搬する前記試験光に損失が発生し、この損失を光信号路の一端又は他端の少なくとも一方に配置される光信号検出手段によって検出することでができる。   On the other hand, the electric pole breakage status monitoring system connects a plurality of the optical poles embedded in the electric pole so as to form one optical signal path, and enters test light from one end of the one optical signal path by a light source. The optical signal based on the test light is configured to be detected by optical signal detection means arranged at one end or the other end of the optical signal path. Therefore, in the optical signal path, when the optical fiber is strongly bent or broken due to the breakage of the electric pole as described above, a loss occurs in the test light propagating in the optical fiber at such a portion, and this loss is converted into the optical signal. It can be detected by optical signal detection means arranged at at least one of the one end or the other end of the path.

尚、本発明において、電柱の折損とは、停電を伴わずに電柱が折れた状態、即ち、架空線が断線することなく電柱本体が折れた状態を言うが、完全に折れる必要もなく、埋設されている光ファイバに強い曲げ若しくは破断が生じる様な電柱の破損や損傷も含むものである。   In the present invention, the breakage of the utility pole refers to a state in which the utility pole is broken without power failure, that is, a situation in which the utility pole body is broken without breaking the overhead wire, but it is not necessary to be completely broken and is buried. This includes the breakage or damage of the utility pole that causes strong bending or breakage in the optical fiber.

また、電柱の前記下降部は、前記電柱本体の上下方向に沿って直線状に埋設されると共に、前記上昇部は、前記下降部と前記電柱本体の周方向に所定間隔をおいて略平行に埋設される構成であっても良い。   The descending portion of the utility pole is embedded in a straight line along the vertical direction of the utility pole body, and the ascending portion is substantially parallel with a predetermined interval in the circumferential direction of the descending portion and the utility pole body. The structure embedded may be sufficient.

電柱本体の上下方向に沿って直線状の光ファイバが一本しか電柱本体に埋設されていない場合、かかる光ファイバが埋設されている側と電柱の径方向反対側に自動車等が衝突し、該衝突部分が僅かしか損傷(折損)しなければ、前記光ファイバには強い曲げ等が発生しない。   When only one linear optical fiber is embedded in the power pole body along the vertical direction of the power pole body, an automobile or the like collides with the side where the optical fiber is embedded and the radial opposite side of the power pole, If the collision part is only slightly damaged (broken), strong bending or the like does not occur in the optical fiber.

しかし、上記構成によれば、電柱本体の上下方向に沿って直線状の光ファイバが所定間隔をおいて略平行に埋設されていることから、電柱の周方向において、広い範囲からの折損(損傷)に対して光ファイバに強い曲げが発生するようになる。即ち、前記のような折損に対しても埋設されている光ファイバの下降部若しくは上昇部の何れかに強い曲げ等が発生する可能性が大きくなる。   However, according to the above configuration, since the linear optical fibers are embedded substantially parallel to each other along the vertical direction of the utility pole body, breakage (damage from a wide range in the circumferential direction of the utility pole). ) Is strongly bent in the optical fiber. That is, there is a high possibility that strong bending or the like will occur in either the descending part or the ascending part of the embedded optical fiber even with respect to the above-described breakage.

従って、上記構成の電柱を用いた電柱折損状況監視システムは、遠隔地(営業所等)において電柱の折損の有無を監視することができると共に電柱の折損状況の検出感度がアップする。   Therefore, the utility pole breakage status monitoring system using the utility pole having the above-described configuration can monitor the presence or absence of a utility pole breakage at a remote location (business office or the like) and increase the detection sensitivity of the utility pole breakage status.

また、電柱の前記一対の下降部及び上昇部は、二対埋設されると共に各下降部又は上昇部が前記電柱本体の周方向に略等間隔で四箇所に埋設される構成であっても良い。   Further, the pair of descending parts and rising parts of the utility pole may be embedded in two pairs, and each descending part or raising part may be buried at four locations at substantially equal intervals in the circumferential direction of the utility pole body. .

かかる構成によれば、電柱(電柱本体)には二対の前記下降部及び上昇部が埋設されると共に各下降部又は上昇部が前記電柱本体の周方向に略等間隔で四箇所に埋設されていることから、電柱の周方向に対して、どの方向から自動車等が衝突し、若しくは暴風等によって折損しても、前記四箇所のうち何れかの光ファイバが折損箇所の近くに埋設されているため、何れかの下降部又は上昇部に強い曲げが発生するようになる。   According to this configuration, two pairs of the descending part and the ascending part are embedded in the utility pole (electric pole main body), and the descending parts or the ascending parts are embedded at four locations at substantially equal intervals in the circumferential direction of the utility pole body. Therefore, even if a car or the like collides from the circumferential direction of the utility pole or breaks due to a storm or the like, one of the four optical fibers is buried near the broken point. Therefore, a strong bend occurs in any descending part or ascending part.

従って、上記構成の電柱を用いた電柱折損状況監視システムは、遠隔地(営業所等)において電柱の折損の有無を監視することができると共に電柱の折損状況の検出感度がよりアップする。   Therefore, the utility pole breakage status monitoring system using the utility pole having the above-described configuration can monitor the presence or absence of a utility pole breakage at a remote location (such as a sales office) and can further improve the detection sensitivity of the utility pole breakage status.

また、電柱の前記光ファイバは、下降部又は上昇部の少なくとも一方且つ少なくとも一部が電柱本体の周方向に沿うと共に下降又は上昇するような螺旋状に埋設される構成であっても良い。   Further, the optical fiber of the utility pole may be configured to be embedded in a spiral shape so that at least one and at least a part of the descending portion or the ascending portion is lowered or raised along the circumferential direction of the utility pole body.

かかる構成によれば、電柱本体の光ファイバが螺旋状に埋設されている部分は、周方向全域に光ファイバが埋設されているため、電柱の周方向全体における僅かな折損(損傷)においても光ファイバに強い曲げが発生するようになる。従って、かかる電柱を用いた電柱折損状況監視システムも、折損した電柱を検出する感度がさらにアップする。   According to such a configuration, the portion of the utility pole body in which the optical fiber is helically embedded has the optical fiber embedded in the entire circumferential direction, so that even in the slight breakage (damage) in the entire circumferential direction of the utility pole, A strong bend occurs in the fiber. Therefore, the utility pole breakage monitoring system using such a utility pole also increases the sensitivity of detecting a broken utility pole.

また、電柱の前記接続手段は、前記電柱本体の周側面に取り付けられる光コンセントである構成であっても良い。   Moreover, the structure which is an optical outlet attached to the surrounding side surface of the said utility pole main body may be sufficient as the said connection means of a utility pole.

かかる構成によれば、電柱本体に埋設される光ファイバの両端に光コンセントが取り付けられているため、一つの光信号路を構成するために複数の前記電柱を接続する際に、容易に接続することができる。また、光ファイバは、水に弱いため、前記光コンセントを電柱本体の周側面に設けることで、電柱本体の周側面から光ファイバに沿って電柱本体内部に水が入ることを簡易且つ安価に防ぐことができるようになり、電柱本体に埋設された光ファイバの劣化を防ぐことができる。   According to such a configuration, since the optical outlets are attached to both ends of the optical fiber embedded in the main pole body, when connecting a plurality of the main poles to form one optical signal path, the connection is facilitated. be able to. In addition, since the optical fiber is vulnerable to water, providing the optical outlet on the peripheral side surface of the utility pole body easily and inexpensively prevents water from entering the utility pole body along the optical fiber from the peripheral side surface of the utility pole body. As a result, it is possible to prevent deterioration of the optical fiber embedded in the utility pole body.

また、電柱折損状況監視システムの前記光信号検出手段は、前記光信号路の他端に設置される光パワーメータである構成であっても良い。   Moreover, the structure which is an optical power meter installed in the other end of the said optical signal path | route may be sufficient as the said optical signal detection means of a utility pole broken condition monitoring system.

かかる構成によれば、折損が発生した電柱に埋設された光ファイバの前記折損による強い曲げ等によって、光信号路の一端から光源によって入射された試験光に前記光ファイバの強い曲げ(又は破断)部分で損失が発生し、かかる損失発生後の試験光を光信号路の他端に設置された光パワーメータが検出し、その値を読み取ることで前記光信号路内の電柱で折損が発生したことを容易且つ確実に認知することができる。   According to such a configuration, the optical fiber is strongly bent (or broken) to the test light incident from one end of the optical signal path by the light source due to the strong bending due to the breaking of the optical fiber embedded in the broken electric pole. Loss occurred at the part, and the test light after such loss was detected by the optical power meter installed at the other end of the optical signal path, and reading the value caused breakage at the utility pole in the optical signal path This can be easily and reliably recognized.

また、電柱折損状況監視システムの前記光信号検出手段は、前記光信号路の一端に設置されるOTDR測定器である構成であっても良い。   Moreover, the structure which is an OTDR measuring device installed in the end of the said optical signal path | route may be sufficient as the said optical signal detection means of a utility pole breakage condition monitoring system.

かかる構成によれば、折損が発生した電柱に埋設された光ファイバの前記折損による強い曲げ等によって、光信号路の一端から光源によって入射された試験光に前記光ファイバの強い曲げ(又は破断)部分で損失が発生し、かかる損失によって光ファイバ内の後方散乱光も減衰する。この減衰した後方散乱光を光信号路の一端に設置されるOTDR測定器で検出(受光)することで、光信号路上の電柱に折損が発生したことを検出できると共に、前記光源から該折損場所(光ファイバ内を伝搬する試験光の損失が発生した場所)迄の距離を測定することができるようになる。   According to such a configuration, the optical fiber is strongly bent (or broken) to the test light incident from one end of the optical signal path by the light source due to the strong bending due to the breaking of the optical fiber embedded in the broken electric pole. A loss occurs in the portion, and the backscattered light in the optical fiber is also attenuated by the loss. By detecting (receiving) the attenuated backscattered light with an OTDR measuring device installed at one end of the optical signal path, it is possible to detect that the electric pole on the optical signal path is broken, and from the light source to the broken place It becomes possible to measure the distance to (the place where the loss of the test light propagating in the optical fiber occurs).

また、電柱折損状況監視システムの前記光信号路の他端には、さらに光源が設置され、前記光信号検出手段は、前記光信号路の一端に光パワーメータとOTDR測定器とを切り換え可能に接続することで構成され、光パワーメータが接続されている際には、前記光信号路の他端の光源から試験光を入射し、OTDR測定器が接続されている際には、前記光信号路の一端の光源から試験光を入射する構成であっても良い。   Further, a light source is further installed at the other end of the optical signal path of the utility pole breakage monitoring system, and the optical signal detection means can switch between an optical power meter and an OTDR measuring instrument at one end of the optical signal path. When the optical power meter is connected, test light is incident from the light source at the other end of the optical signal path, and when the OTDR measuring instrument is connected, the optical signal The configuration may be such that test light is incident from a light source at one end of the path.

かかる構成によれば、光信号検出手段として、先ず、光パワーメータを光信号路の一端に接続し、該光信号路の他端の光源から入射された試験光に基づく光信号を前記光パワーメータで受光し、前述のように、電柱の折損が発生した際、該電柱の折損による光ファイバの強い曲がりや破断等による試験光の変化(光ファイバの曲がり部での曲げ損失による減衰等)を検出することで前記光信号路中の電柱が折損したことを検出する。   According to this configuration, as the optical signal detection means, first, an optical power meter is connected to one end of the optical signal path, and an optical signal based on the test light incident from the light source at the other end of the optical signal path is transmitted to the optical power. Light is received by the meter, and when the utility pole breaks as described above, the test light changes due to strong bending or breakage of the optical fiber due to breakage of the utility pole (attenuation due to bending loss at the bent portion of the optical fiber, etc.) It is detected that the utility pole in the optical signal path is broken.

この電柱の折損を検出後、前記光信号路の一端に接続されている光信号検出手段を光パワーメータからOTDR測定器に切り換えると共に光信号路に試験光を入射する光源を他端側の光源から一端側の光源に切り換える。このように切り換えることで、前述のように、光源から光ファイバに強い曲がりが生じている部分(電柱の折損部分)迄の光信号路上の距離を検出することができる。   After detecting the breakage of the utility pole, the optical signal detecting means connected to one end of the optical signal path is switched from the optical power meter to the OTDR measuring instrument, and the light source for entering the test light into the optical signal path is the light source on the other end side Switch from one to the other. By switching in this way, as described above, the distance on the optical signal path from the light source to the portion where the optical fiber is strongly bent (the broken portion of the utility pole) can be detected.

このようにすることで、光信号路上の電柱の折損の有無のみの検出と、折損した電柱までの光信号路上の距離の検出とを必要に応じて効率良く検出することができるようになる。   By doing in this way, detection of only the presence or absence of breakage of the utility pole on the optical signal path and detection of the distance on the optical signal path to the broken utility pole can be efficiently detected as necessary.

また、電柱折損状況監視システムの少なくとも各電柱の電柱番号、位置情報、及び前記光源からの光信号路上の距離情報を記憶している記憶媒体と、前記OTDR測定器で検出した光源からの光信号路上の距離情報と前記記憶媒体が記憶している各電柱の光源からの光信号路上の距離情報とを比較する演算処理部と、比較の結果、少なくとも該当する電柱番号及び位置情報を出力する出力部とを備える構成であっても良い。   In addition, a storage medium storing at least the utility pole number of each utility pole, position information, and distance information on the optical signal path from the light source of the utility pole breakage monitoring system, and an optical signal from the light source detected by the OTDR measuring instrument An arithmetic processing unit that compares the distance information on the road and the distance information on the optical signal path from the light source of each power pole stored in the storage medium, and an output that outputs at least the corresponding power pole number and position information as a result of the comparison The structure provided with a part may be sufficient.

かかる構成によれば、前述のように、光源から折損した電柱(光ファイバの強い曲がりが生じている部位)迄の光信号路上の距離(距離情報)を測定し、演算処理部において、記憶媒体に記憶されている距離情報と比較して該距離に基づいて電柱を特定し、該電柱に対応する電柱番号、電柱の位置情報等が出力部に出力される。その結果、折損している電柱を直ちに特定でき、目撃者等からの連絡を受けなくても、電柱の折損を認知でき、迅速に修理対応することができるようになる。   According to this configuration, as described above, the distance (distance information) on the optical signal path from the light source to the broken utility pole (the site where the strong bending of the optical fiber is generated) is measured, and the storage medium The utility pole is specified based on the distance compared with the distance information stored in the utility pole, and the utility pole number corresponding to the utility pole, the location information of the utility pole, and the like are output to the output unit. As a result, it is possible to immediately identify the broken utility pole, recognize the breakage of the utility pole without receiving a communication from the witnesses, etc., and can quickly repair it.

また、電柱折損状況監視システムの前記記憶媒体は、地図情報をさらに備え、前記演算処理部が前記電柱の位置情報又は光源からの距離情報と前記地図情報とを比較し、前記出力部が前記地図情報の前記電柱の位置に該当する箇所を出力する構成であっても良い。   The storage medium of the utility pole breakage status monitoring system further includes map information, the arithmetic processing unit compares position information of the utility pole or distance information from a light source with the map information, and the output unit provides the map. The structure which outputs the location applicable to the position of the said utility pole of information may be sufficient.

かかる構成によれば、前述のように、折損した電柱を特定して該電柱の位置情報等を特定し、演算処理部において、記憶媒体に記憶されている地図情報と比較することで、地図上の電柱の位置を特定し、その結果を出力することで、より電柱の特定が行い易くなり、修理対応に向かう作業者においても、間違うことなく正確且つ迅速に前記電柱に向かうことができ、より迅速に修理対応することができるようになる。   According to such a configuration, as described above, the broken pole is specified, the position information of the pole is specified, and the arithmetic processing unit compares it with the map information stored in the storage medium. By identifying the position of the power pole and outputting the result, it becomes easier to identify the power pole, and even for workers heading for repair, it is possible to go to the power pole accurately and quickly without making a mistake. It will be possible to respond quickly to repairs.

以上より、本発明によれば、電柱の保守を行う営業所等で監視することにより、停電を伴わない電柱の折損状況を監視することができる電柱折損状況監視システム及び該電柱折損状況監視システムで使用される電柱を提供することができるようになる。   As described above, according to the present invention, the power pole breakage status monitoring system and the power pole breakage status monitoring system capable of monitoring the power pole breakage status without power failure by monitoring at a business office or the like that performs maintenance of the power pole. It becomes possible to provide the utility pole used.

以下、本発明の一実施形態について、添付図面を参照しつつ説明するが、先ず、図1に基づいて、電柱折損状況監視システムに用いられる電柱1について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. First, a utility pole 1 used in a utility pole breakage monitoring system will be described based on FIG.

電柱1は、筒状に形成された電柱本体2と、該電柱本体部2に埋設され、後述する試験光(試験信号)を伝送するための光ファイバ3と、該光ファイバ3の両端にそれぞれ設けられ、外部の光ファイバ(後述する連結光ファイバr)と接続するための接続部4,5とを備える。   The utility pole 1 includes a utility pole main body 2 formed in a cylindrical shape, an optical fiber 3 embedded in the utility pole main body portion 2 for transmitting test light (test signal) described later, and both ends of the optical fiber 3 respectively. And provided with connecting portions 4 and 5 for connecting to an external optical fiber (a connecting optical fiber r described later).

電柱本体2は、鉄筋コンクリートで構成される長尺の上部が閉じた中空筒状に形成されている。   The utility pole body 2 is formed in a hollow cylindrical shape with a long upper portion made of reinforced concrete closed.

光ファイバ3は、両端部が接続部4,5にそれぞれ接続され、その間は、電柱本体2の外周面(周側面)から所定距離を保ちつつ下方又は上方に向かうように埋設されている。この光ファイバ3は、電柱本体2を形成する際に埋め込まれる(埋設される)。   Both ends of the optical fiber 3 are connected to the connection portions 4 and 5, respectively, and between them, the optical fiber 3 is embedded so as to be directed downward or upward while maintaining a predetermined distance from the outer peripheral surface (peripheral side surface) of the utility pole body 2. The optical fiber 3 is embedded (embedded) when the utility pole body 2 is formed.

詳しくは、光ファイバ3は、接続部4又は5と接続される接続端部3aと、下方に向かって配設(埋設)される下降部3bと、上方に向かって配設(埋設)される上昇部3cと、下降部3bと上昇部3cとを下方側(下端同士)で連結する下方側連結部3dと、下降部3bと上昇部3cとを上方側(上端同士)で連結する上方側連結部3eとが適宜組み合わされて一本の連続した光信号路を形成するように構成されている。   Specifically, the optical fiber 3 is provided with a connection end 3a connected to the connection part 4 or 5, a descending part 3b provided (embedded) downward, and provided (embedded) upward. A lower side connecting part 3d that connects the rising part 3c, the lowering part 3b and the rising part 3c on the lower side (lower ends), and an upper side that connects the lowering part 3b and the rising part 3c on the upper side (upper ends). The connecting portion 3e is appropriately combined to form one continuous optical signal path.

本実施形態においては、光ファイバ3は、その一端から他端に向かって、先ず、一端側の接続端部3aが電柱本体2の上方側外周面(周側面)に取り付けられた接続部4から電柱本体2の径方向中心に向かって埋設される。その中心側端部から第1の下降部3bが直線状に電柱本体2の長手方向に沿って下方に向けて(下降するように)埋設される。その下方側端部から第1の下方側連結部3dが電柱本体2の1/4周の長さで、且つ外周面に沿うように埋設される。その端部から第1の上昇部3cが長手方向に沿って上方に向けて(上昇するように)埋設される。その上端部から上方側連結部3eが下方側連結部3dと反対方向に電柱本体部2の1/2周の長さで、且つ外周面に沿うように埋設される。その端部から第2の下降部3bが直線状に電柱本体2の長手方向に沿って下方に向けて(下降するように)埋設される。その下方側端部から第2の下方側連結部3dが前記上方側連結部3eと同方向に電柱本体2の1/4周の長さで、且つ外周面に沿うように埋設される。その端部から第2の上昇部3cが直線状に電柱本体2の長手方向に沿って上方に向けて埋設される。その上端部から光ファイバ3の他端側の接続部3aが電柱本体2の径方向外側に向かって接続部5まで埋設される。このようにして、一本の連続した光信号路で構成される光ファイバ3は、一端から他端に向かって上下方向に上昇と下降を繰り返しながら、蛇行するように電柱本体2に埋設されている。   In the present embodiment, the optical fiber 3 starts from the connection portion 4 in which the connection end portion 3a on one end side is attached to the upper outer peripheral surface (circumferential side surface) of the utility pole body 2 from one end to the other end. It is embedded toward the radial center of the utility pole body 2. A first descending portion 3b is embedded linearly downward (downward) along the longitudinal direction of the utility pole body 2 from the center side end. From the lower side end portion, the first lower side connecting portion 3d is embedded in a length of ¼ circumference of the utility pole body 2 and along the outer peripheral surface. From the end portion, the first rising portion 3c is embedded upward (to rise) along the longitudinal direction. From the upper end portion, the upper side connecting portion 3e is embedded in the opposite direction to the lower side connecting portion 3d so as to be 1/2 the length of the utility pole main body 2 and along the outer peripheral surface. From the end portion, the second descending portion 3b is embedded linearly downward (downward) along the longitudinal direction of the utility pole body 2. From the lower end, the second lower connecting portion 3d is embedded in the same direction as the upper connecting portion 3e so as to have a length of ¼ circumference of the utility pole body 2 and along the outer peripheral surface. From the end portion, the second rising portion 3c is embedded in a straight line upward along the longitudinal direction of the utility pole body 2. A connecting portion 3 a on the other end side of the optical fiber 3 is embedded from the upper end portion to the connecting portion 5 toward the radially outer side of the utility pole body 2. In this way, the optical fiber 3 constituted by a single continuous optical signal path is embedded in the utility pole body 2 so as to meander while repeating upward and downward in the vertical direction from one end to the other end. Yes.

即ち、光ファイバ3の下降部3bと上昇部3cとは、それぞれ周方向に等間隔且つ互いに平行になるように電柱本体2に埋設され、対応する一組の下降部3bと上昇部3cとの下端同士を下方側連結部3dで連結し、対応する一組の下降部3bと上昇部3cとの上端同士を上方側連結部3eで連結することで、光ファイバ3は、分岐することなく連続する一本の光ファイバ3として構成される。   That is, the descending part 3b and the ascending part 3c of the optical fiber 3 are embedded in the utility pole body 2 so as to be parallel to each other at equal intervals in the circumferential direction, and a corresponding pair of descending part 3b and ascending part 3c The lower ends are connected by the lower connecting portion 3d, and the upper ends of the corresponding pair of descending portions 3b and rising portions 3c are connected by the upper connecting portion 3e, so that the optical fiber 3 is continuous without branching. Are configured as a single optical fiber 3.

また、下方側連結部3dは、電柱1を起立状態で設置(地面に立設)した際に、地中に埋没する部分に位置するように配設(埋設)される。これは、地中で電柱1が折損する可能性が非常に低いため、前記埋没部分全長に亘って光ファイバ3を埋設する必要性が少ないからである。   In addition, the lower connection portion 3d is disposed (embedded) so as to be positioned in a portion buried in the ground when the utility pole 1 is installed in a standing state (standing on the ground). This is because the possibility that the utility pole 1 breaks in the ground is very low, and thus there is little need to embed the optical fiber 3 over the entire length of the buried portion.

一方、上方側連結部3eは、電柱1を設置して架空線を敷設した際に、一番下方に敷設される架空線の近傍若しくはその上方側にあれば良い。自動車等が衝突したり、暴風等によって電柱1に横方向(地面と水平方向)の力が加わった際、電柱1は、地面に近い位置で折損することが多いため、少なくともかかる部分に光ファイバ3が埋設されていれば良いからである。また、折損する可能性の低い部分に光ファイバ3を埋設しないことで、光ファイバ3の使用量を削減でき、省コスト化を図ることができる。   On the other hand, when the utility pole 1 is installed and the overhead line is laid, the upper side connection part 3e may be in the vicinity of the overhead line laid at the lowermost position or on the upper side thereof. When a lateral force (horizontal direction with respect to the ground) is applied to the utility pole 1 due to a car crash or a storm, the utility pole 1 often breaks at a position close to the ground. This is because it is sufficient if 3 is buried. Further, by not burying the optical fiber 3 in a portion where the possibility of breakage is low, the amount of the optical fiber 3 used can be reduced, and the cost can be reduced.

接続部4,5は、電柱本体2に埋設された光ファイバ3と外部の光ファイバとを接続するための部材(接続手段)であり、本実施形態においては、光コンセント4,5で構成される。光コンセント4,5は、電柱本体2の外周面に一部が埋設される本体部(図示しない)を備え、この本体部の内部に光ファイバの先端に設けたプラグが着脱自在に接続されるアダプタを収納しており、電柱本体2に埋設された光ファイバ3の端部が接続された前記アダプタに、外部の光ファイバの先端部のプラグを接続することによって、光ファイバ同士を光学的に結合するようになっている。また、光ファイバは、水に弱いため、電柱本体2の内部の光ファイバ3と外部の光ファイバとを電柱本体2の外周面に取り付けた光コンセントを介して接続するようにしたことで、電柱1(電柱本体2)の外周面から光ファイバを伝って電柱本体2の内部に水(雨水等)が進入するのを防ぐことができるようになる。   The connection parts 4 and 5 are members (connection means) for connecting the optical fiber 3 embedded in the utility pole body 2 and an external optical fiber. In the present embodiment, the connection parts 4 and 5 are configured by optical outlets 4 and 5. The The optical outlets 4 and 5 include a main body (not shown) partially embedded in the outer peripheral surface of the utility pole main body 2, and a plug provided at the tip of the optical fiber is detachably connected to the inside of the main body. An optical fiber is optically connected to each other by connecting a plug at the tip of an external optical fiber to the adapter that houses the adapter and to which the end of the optical fiber 3 embedded in the utility pole body 2 is connected. It comes to be combined. In addition, since the optical fiber is vulnerable to water, the optical fiber 3 inside the utility pole body 2 and the external optical fiber are connected via an optical outlet attached to the outer peripheral surface of the utility pole body 2. 1 (electric pole main body 2) can be prevented from entering water (rain water, etc.) from the outer peripheral surface of the electric pole main body 2 through the optical fiber.

このような電柱1を用いて、図2に示すような、電柱折損状況監視システム(以下、単に「監視システム」と言うことがある。)10が構成される。   Using such a utility pole 1, a utility pole breakage status monitoring system (hereinafter simply referred to as “monitoring system”) 10 as shown in FIG. 2 is configured.

監視システム10は、複数の電柱1,1,…を連結用光ファイバrで連結し、一端に光信号検出手段である光パワーメータ11とOTDR測定器12とを切り換え可能に接続し、他端には光源13が接続されている。   In the monitoring system 10, a plurality of utility poles 1, 1,... Are connected by a connecting optical fiber r, and an optical power meter 11 as an optical signal detection means and an OTDR measuring instrument 12 are connected to one end in a switchable manner, and the other end. Is connected to a light source 13.

詳しくは、複数の電柱1,1,…は、隣り合う電柱1,1の一方の電柱1の接続部4と他方の電柱1の接続部5とを連結用光ファイバrで連結し、かかる連結を他の隣り合う電柱1,1間で繰り返すことで分岐することなく直列に連結され、一系統の光信号路Lが形成される。この光信号路Lの一端は、営業所Mに引き込まれて、光信号検出手段である光パワーメータ11とOTDR測定器12とに切り換え可能に接続され、他端には光源13が接続されている。光源13は、光信号路Lの前記光信号検出手段側と反対側端部に設けられているが、本実施形態においては、営業所Mから光信号路L上の距離が最も遠い電柱1で折り返し、途中に電柱1等を一切介することなく光パワーメータ11まで光ファイバを配設することで、営業所M内に配置される。   Specifically, the plurality of utility poles 1, 1,... Connect the connection portion 4 of one utility pole 1 and the connection portion 5 of the other utility pole 1 of the adjacent utility poles 1, 1 with a connecting optical fiber r, and connect them. Are connected in series without branching by repeating between adjacent electric poles 1 and 1 to form a single optical signal path L. One end of the optical signal path L is drawn into the sales office M and connected to the optical power meter 11 and the OTDR measuring instrument 12 which are optical signal detecting means, and the light source 13 is connected to the other end. Yes. The light source 13 is provided at the end of the optical signal path L opposite to the optical signal detecting means side. In the present embodiment, the light pole 13 is the farthest distance on the optical signal path L from the sales office M. The optical fiber is arranged up to the optical power meter 11 without going through the utility pole 1 or the like in the middle, and is arranged in the sales office M.

前記光信号検出手段11,12には、検出したデータ(情報)を出力し、該データに対応する情報を表示するためのモニター(出力手段)14が演算処理部15を介して接続されている。演算処理部15には、データベース等の各種データを記憶しておくための記憶媒体が備えられ(図示せず)、光信号検出手段11,12で検出したデータと前記記憶媒体に記憶されているデータとを比較し、この比較した結果をモニター画面上に表示させる(図5参照)。   A monitor (output unit) 14 for outputting detected data (information) and displaying information corresponding to the data is connected to the optical signal detection units 11 and 12 via an arithmetic processing unit 15. . The arithmetic processing unit 15 includes a storage medium (not shown) for storing various data such as a database, and is stored in the storage medium and the data detected by the optical signal detection means 11 and 12. The data is compared and the comparison result is displayed on the monitor screen (see FIG. 5).

一系統の光信号路Lは、上述のように、一端の光信号検出手段11,12から他端の光源13まで連続した一本の(分岐のない)光信号路Lを形成している。そのため、複数の分岐を備える電線網を構成する(支持する)電柱1の折損を監視するためには、図3に示すように、複数系統の光信号路L1,L2,…を配設する必要がある。詳細には、第1系統の光信号路L1は、営業所Mの直近の電柱1から順に連結用光ファイバrで接続(連結)されて一系統の光信号路L1を構成する。次に、第2系統の光信号路L2は、光信号路L1から分岐する電柱1aまでは、電柱1に接続することなく連結用光ファイバrを配設する。そして、該連結用光ファイバrは、分岐後の一つめの電柱1a’に接続される。その後は、順に電柱1,1…に連結用光ファイバrを接続(連結)することで光信号路L2を構成する。同様に、第3系統の光信号路L3は、光信号路L1から分岐する電柱1bまでは、電柱1に接続することなく連結用光ファイバrを配設し、分岐後の一つめの電柱1b’に接続する。その後は、順に電柱1,1,…に連結用光ファイバrを接続(連結)することで光信号路L3を構成する。また、第4系統の光信号路L4は、光信号路L3から分岐する電柱1cまでは、電柱1に接続することなく連結用光ファイバrを配設し、分岐後の一つめの電柱1c’に接続し、その後、順に電柱1,1,…に連結用光ファイバrを接続(連結)することで光信号路L4を構成する。同様に、第5,6,…系統の光信号路L5,L6,…も構成され、このように構成することで、複雑に分岐した電線網を構成する電柱1の欠損状況も監視できるようになる。   As described above, one optical signal path L forms one continuous (unbranched) optical signal path L from the optical signal detection means 11, 12 at one end to the light source 13 at the other end. Therefore, in order to monitor the breakage of the utility pole 1 constituting (supporting) the electric wire network having a plurality of branches, it is necessary to arrange a plurality of optical signal paths L1, L2,... As shown in FIG. There is. In detail, the optical signal path L1 of the first system is connected (connected) in order from the utility pole 1 closest to the sales office M by the connecting optical fiber r to form one optical signal path L1. Next, in the optical signal path L2 of the second system, the connecting optical fiber r is disposed without being connected to the utility pole 1 up to the utility pole 1a branched from the optical signal path L1. The connecting optical fiber r is connected to the first utility pole 1a 'after branching. After that, the optical signal path L2 is configured by connecting (connecting) the connecting optical fibers r to the utility poles 1, 1,. Similarly, in the optical signal path L3 of the third system, the connecting optical fiber r is disposed without being connected to the utility pole 1b from the optical signal path L1 to the utility pole 1b, and the first utility pole 1b after the branch is provided. Connect to '. Thereafter, the optical signal path L3 is configured by connecting (connecting) the connecting optical fibers r to the utility poles 1, 1,. Further, in the fourth optical signal path L4, the connecting optical fiber r is disposed without connecting to the utility pole 1c from the optical signal path L3 to the utility pole 1c, and the first utility pole 1c ′ after branching is provided. Then, the optical signal path L4 is configured by connecting (connecting) the connecting optical fibers r to the utility poles 1, 1,. Similarly, optical signal paths L5, L6,... Of the fifth, sixth,... System are also configured. By configuring in this way, it is possible to monitor the state of loss of the utility pole 1 that constitutes a complicatedly branched electric wire network. Become.

即ち、一つの光信号路Lを構成する光ファイバからなる芯線を、例えば1000芯束ねて光ケーブルを形成し、該光ケーブルを第1の分岐箇所で500芯ずつに分けて分岐し、その後の分岐箇所では250芯ずつに分けて分岐し、さらにその後の分岐箇所では125芯ずつに分けて分岐し、…とすることで、一つの光信号路Lを構成する芯線自体を分岐させることなく、複数の分岐箇所を備える電線網に沿って光信号路Lを配設することができるようになる。   That is, an optical cable is formed by bundling, for example, 1000 cores made of optical fibers constituting one optical signal path L, and the optical cable is divided into 500 cores at the first branching point, and then the branching point thereafter. Then, branching is divided into 250 cores, and further branching into 125 cores at subsequent branching points, and so on, so that a plurality of core wires themselves constituting a single optical signal path L can be split without branching. The optical signal path L can be disposed along the electric wire network including the branching points.

また、電柱1には、設置時に、高圧線、低圧線又は通信線等が適宜敷設されるが、上述の光信号路Lを構成する光ファイバ(連結用光ファイバr)は、本実施形態においては、地上から6〜7mに敷設される通信線に沿って配設される。しかし、これに限定される必要はなく、光信号路Lを構成する光ファイバを単独で電柱に敷設しても良く、また、低圧線等の他の架空線に沿って配設されても良い。   In addition, a high-voltage line, a low-voltage line, a communication line, or the like is appropriately laid on the utility pole 1 at the time of installation. The optical fiber (coupling optical fiber r) constituting the optical signal path L described above is used in this embodiment. Is arranged along a communication line laid 6 to 7 m from the ground. However, the present invention is not limited to this, and the optical fiber constituting the optical signal path L may be laid alone on the utility pole, or may be disposed along other overhead lines such as a low-voltage line. .

図2に戻って、この監視システム10において、通常は、営業所Mの光源13から試験光を光信号路Lの他端から入射すると共に、この入射された試験光を光信号路Lを介して受光するために、該光信号路Lの一端は、光パワーメータ11と接続状態に設定される。その際、光源13は、一定出力の試験光を光信号路Lに入射し、光信号路L上の電柱1,1,…に折損がなければ、光パワーメータ11で受光する試験光に基づく光信号(光信号路Lを介して到達した試験光)も一定出力となる。   Returning to FIG. 2, in the monitoring system 10, the test light is normally incident from the light source 13 of the sales office M from the other end of the optical signal path L, and the incident test light is transmitted through the optical signal path L. In order to receive the light, one end of the optical signal path L is set to be connected to the optical power meter 11. At that time, the light source 13 enters the test light having a constant output into the optical signal path L, and based on the test light received by the optical power meter 11 if the utility poles 1, 1,. An optical signal (test light reaching via the optical signal path L) also has a constant output.

そして、図4に示すように、光信号路L上の一の電柱1に自動車が衝突して該電柱1が折損した場合、埋設されている光ファイバ3の対応する部位に強い曲がり若しくは破断が生じる。   As shown in FIG. 4, when an automobile collides with one electric pole 1 on the optical signal path L and the electric pole 1 breaks, strong bending or breakage occurs at a corresponding portion of the embedded optical fiber 3. Arise.

光ファイバに強い曲がりが発生した場合、強い曲がり部分で内部を伝搬される光信号(試験光)に損失が発生して減衰する。それに伴って、光パワーメータ11で受光していた光信号の受光レベルが減衰する。この減衰を光パワーメータ11が検出することで、光信号路L上の何れかの電柱1に折損が発生したことを検出できる。   When a strong bend occurs in the optical fiber, a loss occurs in the optical signal (test light) propagated inside the strong bend and attenuates. Accordingly, the light reception level of the optical signal received by the optical power meter 11 is attenuated. By detecting this attenuation by the optical power meter 11, it is possible to detect the occurrence of breakage in any one of the power poles 1 on the optical signal path L.

このように、光パワーメータ11によって光信号路L上の何れかの電柱1に折損が発生したことが検出されると、次に、光信号路Lの一端が接続している光信号検出手段は、光パワーメータ11からOTDR測定器12へ切り換えられる。本実施形態において、この切り換えは、光パワーメータ11で前記電柱1の折損を検出すると自動で切り換えられるように制御されているが、これに限定される必要もなく、オペレータ等が手動で切り換えるようにしても良い。また、その際、前記電柱1の折損が発生したのをオペレータに認知させるために、モニター14の画面上にメッセージが表示されるように設定されることが望ましい。   As described above, when it is detected by the optical power meter 11 that any one of the power poles 1 on the optical signal path L is broken, the optical signal detection means to which one end of the optical signal path L is connected next. Is switched from the optical power meter 11 to the OTDR measuring device 12. In this embodiment, this switching is controlled so that it is automatically switched when the optical power meter 11 detects breakage of the utility pole 1, but it is not necessary to be limited to this. Anyway. Further, at that time, it is desirable to set so that a message is displayed on the screen of the monitor 14 in order for the operator to recognize that the electric pole 1 is broken.

前述のように、光信号検出手段が光パワーメータ11からOTDR測定器12へ切り換えられると同時に、光信号路Lに試験光を照射していた光源は、他端に設置されている光源13から一端に設置されている光源13’へ切り換えられる。尚、本実施形態においては、一端側の光源13’は、OTDR測定器に内蔵されている。   As described above, the light signal detecting means is switched from the optical power meter 11 to the OTDR measuring device 12, and at the same time, the light source that has been irradiated with the test light on the optical signal path L is from the light source 13 installed at the other end. It is switched to the light source 13 ′ installed at one end. In the present embodiment, the light source 13 'on one end side is built in the OTDR measuring instrument.

ここで、OTDR測定器(Optical Time Domain Reflectometer:光パルス試験器)とは、光ファイバの一端から光パルス(試験光)を入射した際に発生するレーリー散乱光のうち、光ファイバの導波モードとなって入射端側に戻る微弱な反射光(後方散乱光)のレベル変化を観測することにより、光源から光ファイバに生じた屈曲部(強い曲がり)迄の距離を測定することができる測定器である。従って、上述のように光パワーメータ11から切り換えることで、光源13’(OTDR測定器12)から光ファイバに生じている屈曲部(折損した電柱1)迄の光信号路L上の距離を検出することができる。   Here, an OTDR measuring device (Optical Time Domain Reflectometer) is a waveguide mode of an optical fiber among Rayleigh scattered light generated when a light pulse (test light) is incident from one end of the optical fiber. By measuring the level change of the weak reflected light (backscattered light) that returns to the incident end side, the measuring instrument can measure the distance from the light source to the bent part (strong bending) generated in the optical fiber It is. Therefore, by switching from the optical power meter 11 as described above, the distance on the optical signal path L from the light source 13 ′ (OTDR measuring device 12) to the bent portion (broken utility pole 1) generated in the optical fiber is detected. can do.

このようにして検出された距離情報は、演算処理部15に送信される。演算処理部15は、記憶媒体に記憶されている光源13’から各電柱1迄の距離情報と前記OTDR測定器によって検出された光源13’から光ファイバ3の屈曲部、即ち、折損した電柱1迄の距離情報とを比較し、折損が発生している電柱1を特定する。この特定された電柱1に関する前記記憶媒体に記憶されている情報をモニター14に出力する。この出力によって、モニター14の画面上には、図5に示すように、特定された電柱1の位置の文字情報を表示し(図5(イ)参照)、若しくは、位置の地図情報を表示する(図5(ロ)参照)。本実施形態においては、この文字情報と地図情報とは、切り換え操作を行うことによって交互に見ることができるように設定されているが、これに限定される必要はなく、どちらか一方だけが表示されるようになっていても良く、両方が一画面上に表示されるようになっていても良い。また、モニター画面上に表示される必要もなく、ペーパー等に印刷されて出力されるような構成であっても良い。   The distance information thus detected is transmitted to the arithmetic processing unit 15. The arithmetic processing unit 15 includes the distance information from the light source 13 ′ to each power pole 1 stored in the storage medium and the bent portion of the optical fiber 3 from the light source 13 ′ detected by the OTDR measuring instrument, that is, the broken power pole 1 Is compared with the distance information until the utility pole 1 where the breakage has occurred is specified. Information stored in the storage medium relating to the identified utility pole 1 is output to the monitor 14. By this output, as shown in FIG. 5, the character information of the position of the specified utility pole 1 is displayed on the screen of the monitor 14 (see FIG. 5 (a)), or the map information of the position is displayed. (See FIG. 5 (b)). In this embodiment, the character information and the map information are set so that they can be viewed alternately by performing a switching operation. However, the present invention is not limited to this, and only one of them is displayed. It may be configured such that both are displayed on one screen. Further, it may not be displayed on the monitor screen, and may be configured to be printed on paper or the like and output.

尚、本実施形態においては、前記記憶媒体に記憶されている光源13’から各電柱1迄の距離情報は、電柱及び架空線(電線)を敷設する際に、営業所Mから順に電柱1を設置して連結用光ファイバrで接続する毎に、光源13’からの距離をOTDR測定器で測定し、順次、記憶媒体に記憶させたものであるが、これに限定される必要はなく、電柱及び架空線を全て配設した後に、前記記憶媒体に入力するようにしても良い。   In the present embodiment, the distance information from the light source 13 ′ to each power pole 1 stored in the storage medium is the power pole 1 in order from the sales office M when laying the power pole and overhead wire (electric wire). Each time it is installed and connected by the connecting optical fiber r, the distance from the light source 13 ′ is measured with an OTDR measuring instrument and sequentially stored in a storage medium, but it is not necessary to be limited to this. After all the utility poles and overhead wires are arranged, the data may be input to the storage medium.

このようにして、電柱1の保守等を行う営業所Mで監視することにより、自動車の衝突や暴風等によって停電を伴わない電柱1の折損が発生した場合に加害者や目撃者等からの通報がなくとも、瞬時に電柱1の折損の有無、若しくは折損した電柱1の位置を電柱管理者は、認知することができ、該当する電柱1の修理対応に、作業者が直ちに出向することができるようになる。   In this way, by monitoring at the sales office M, which performs maintenance of the utility pole 1, etc., when a breakage of the utility pole 1 without a power failure occurs due to a car collision or storm, etc., a report from the perpetrator or witness Even if the power pole 1 is not broken, the utility pole manager can instantly recognize the presence or absence of the breakage of the utility pole 1 or the location of the broken utility pole 1 and the worker can immediately be dispatched to repair the corresponding utility pole 1. It becomes like this.

尚、本発明の電柱折損状況監視システム及び該電柱折損状況監視システムで使用される電柱は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The utility pole breakage status monitoring system of the present invention and the utility pole used in the utility pole breakage status monitoring system are not limited to the above embodiment, and various modifications can be made without departing from the scope of the present invention. Of course.

例えば、図6に示すように、本実施形態において、電柱本体2に埋設される光ファイバ3の下降部3bと上昇部3cとは、平面視電柱本体2の四方に位置するように、周側面に沿って等間隔で4箇所に埋設されているが(図6(イ)及び(ロ)参照)、これに限定される必要もなく、一対の下降部3bと上昇部3cとが所定間隔をおいて略平行に並ぶように埋設しても良い(図6(ハ)及び(ニ)参照)。このようにしても、例えば、壁W近傍に電柱本体2を設置すれば、壁Wに対向している方向からは、電柱本体2に対して力が加わること(自動車が衝突する等)がないため、かかる方向に光ファイバ3を埋設する必要は乏しく、このように埋設する光ファイバ3の下降部3b及び上昇部3cを少なくすることで、使用される光ファイバ3の量を減らすことができ、製作コストを削減することができる(省コスト化を図ることができる)。   For example, as shown in FIG. 6, in this embodiment, the descending portion 3 b and the ascending portion 3 c of the optical fiber 3 embedded in the utility pole main body 2 are positioned on the four sides of the planar power pole main body 2. (See FIGS. 6 (a) and 6 (b)), but there is no need to be limited to this, and the pair of descending parts 3b and ascending parts 3c have a predetermined interval. However, they may be embedded so as to be substantially parallel (see FIGS. 6C and 6D). Even if it does in this way, if the electric pole main body 2 is installed in the vicinity of the wall W, for example, a force is not applied to the electric pole main body 2 from the direction facing the wall W (such as an automobile colliding). Therefore, it is not necessary to embed the optical fiber 3 in such a direction, and the amount of the optical fiber 3 to be used can be reduced by reducing the descending portion 3b and the ascending portion 3c of the optical fiber 3 to be embedded in this way. Manufacturing costs can be reduced (cost savings can be achieved).

また、本実施形態においては、電柱本体2の下端部から上端部迄のほぼ全域にかけて直線状の下降部3b及び上昇部3cが埋設されているが、これに限定される必要もない。即ち、電柱1に水平方向の力が加わり折損する場合、地面との境目付近に力が集中するため、かかる部分で折損する場合が多い。また、自動車等が衝突する場合も、地面に近い位置で衝突するため、電柱1上部や下端部で折損する可能性は極めて低いことから、図7(イ)に示すように、下降部3b及び上昇部3cの上端部は、電柱本体2の上端部よりも中央部よりに設定されていても良い。また、下降部3b及び上昇部3cの下端部(下方側連結部3d)は、電柱本体2が地面に立設された際に、地中に埋没する位置、即ち、地面より地中側の位置であれば電柱本体2の下端近傍でなくても良い。   In the present embodiment, the linear descending portion 3b and the ascending portion 3c are embedded over almost the entire area from the lower end portion to the upper end portion of the utility pole body 2, but it is not necessary to be limited to this. That is, when a horizontal force is applied to the utility pole 1 and it breaks, the force concentrates near the boundary with the ground, so the part often breaks. In addition, even when a car or the like collides, since it collides at a position close to the ground, the possibility of breakage at the upper and lower ends of the utility pole 1 is extremely low. Therefore, as shown in FIG. The upper end of the rising portion 3 c may be set closer to the center than the upper end of the utility pole body 2. Moreover, the lower end part (downward side connection part 3d) of the descending part 3b and the ascending part 3c is a position buried in the ground when the utility pole body 2 is erected on the ground, that is, a position on the ground side from the ground. If so, it may not be near the lower end of the utility pole body 2.

また、本実施形態においては、光ファイバ3の下降部3b又は上昇部3cは、電柱本体2の上下方向に沿って直線状に下降又は上昇するように埋設されているが、これに限定される必要もなく、図7(ロ)に示すように、例えば、下降部3b’が電柱本体2の周方向に沿いつつ下降する螺旋状に埋設されていても良い。このように埋設されることで、電柱本体2の周縁部全域に亘って光ファイバ3(3b’)が埋設されているため、電柱本体2にどの方向から自動車等が衝突して折損しても、光ファイバに強い曲がりが発生する可能性が高く、電柱1の折損を検出する感度が高くなる。また、前記螺旋状のピッチは、一定である必要もない。最も、折損する可能性の高い地面付近は、螺旋のピッチを小さくして折損の検出感度を高くし、かかる部分より折損する可能性の低い部分については、ピッチを大きくしても良い。このようにすることで、折損の可能性の高い部位の検出感度を高くしつつ光ファイバの使用量を削減し、省コスト化も図ることができる。   Further, in the present embodiment, the descending portion 3b or the ascending portion 3c of the optical fiber 3 is embedded so as to descend or rise linearly along the vertical direction of the utility pole body 2, but is not limited thereto. There is no need, and as shown in FIG. 7B, for example, the descending portion 3 b ′ may be embedded in a spiral shape that descends along the circumferential direction of the utility pole body 2. By being embedded in this way, the optical fiber 3 (3b ′) is embedded over the entire periphery of the utility pole body 2, so that no matter which direction the automobile collides with the utility pole body 2, it can break. The possibility of strong bending in the optical fiber is high, and the sensitivity for detecting breakage of the utility pole 1 is increased. Further, the helical pitch need not be constant. In the vicinity of the ground where there is a high possibility of breakage, the pitch of the helix may be decreased to increase the detection sensitivity of breakage, and the pitch may be increased for a portion that is less likely to break than this portion. By doing in this way, the usage amount of an optical fiber can be reduced and the cost can be reduced while increasing the detection sensitivity of a portion with a high possibility of breakage.

また、本実施形態においては、営業所Mに引き込まれている光信号路Lの一端には、光検出手段として光パワーメータ11とOTDR測定器12とが切り換え可能に接続されているが、これに限定される必要もなく、光パワーメータ11又はOTDR測定器のうち、どちらか一方のみが接続されていても良い。光パワーメータ11のみが接続されている場合は、該光パワーメータ11が光信号路Lからの光信号の受光レベルの減衰を検出することで、光信号路L上の何れかの電柱1に折損が発生したのを営業所Mにおいて認知することができる。また、OTDR測定器12のみが接続されている場合は、該OTDR測定器12で光信号路Lからの光信号の常時波形を監視し、波形の異常があれば異常箇所までの距離(OTDR測定器から折損した電柱1迄の距離、より詳細には、OTDR測定器に内蔵された光源13’から電柱1に埋設されている光ファイバ3の強い曲がりが生じている箇所迄の距離)を営業所Mにおいて認知することができる。   In the present embodiment, the optical power meter 11 and the OTDR measuring device 12 are connected to one end of the optical signal path L drawn into the sales office M as a light detecting means, but this is switchable. It is not necessary to be limited to the above, and only one of the optical power meter 11 and the OTDR measuring device may be connected. When only the optical power meter 11 is connected, the optical power meter 11 detects the attenuation of the light reception level of the optical signal from the optical signal path L, so that any one of the power poles 1 on the optical signal path L is detected. The sales office M can recognize that the breakage has occurred. When only the OTDR measuring device 12 is connected, the OTDR measuring device 12 monitors the constant waveform of the optical signal from the optical signal path L, and if there is a waveform abnormality, the distance to the abnormal location (OTDR measurement). The distance from the tester to the broken pole 1, more specifically, the distance from the light source 13 ′ built in the OTDR measuring instrument to the location where the optical fiber 3 embedded in the pole 1 is strongly bent) In place M.

本実施形態に係る電柱の一部省略した概略透視斜視図を示す。1 shows a schematic perspective perspective view in which a part of a utility pole according to the present embodiment is omitted. FIG. 同実施形態に係る電柱折損状況監視システムの構成図を示す。The block diagram of the utility pole breakage condition monitoring system which concerns on the embodiment is shown. 同実施形態に係る複数の分岐を備えた電線網に沿って配設される光信号路の構成図を示す。The block diagram of the optical signal path | route arrange | positioned along the electric wire network provided with the some branch concerning the embodiment is shown. 同実施形態に係る電柱折損状況監視システムの電柱に自動車が衝突した場合の構成図を示す。The block diagram when a motor vehicle collides with the utility pole of the utility pole broken condition monitoring system which concerns on the embodiment is shown. 同実施形態に係る電柱折損状況監視システムの出力部の(イ)は、文字情報を表示するモニター画面の図を示し、(ロ)は、地図情報を表示するモニター画面の図を示す。(A) of the output part of the utility pole breakage situation monitoring system according to the embodiment shows a monitor screen for displaying character information, and (b) shows a monitor screen for displaying map information. 同実施形態に係る電柱の(イ)は、横断面図を示し、(ロ)は、一部省略した概略透視斜視図を示し、他実施形態に係る電柱の(ハ)は、横断面図を示し、(ニ)は、一部省略した透視斜視図を示す。(B) of the utility pole according to the embodiment shows a cross-sectional view, (b) shows a schematic perspective view with a part omitted, and (c) of the utility pole according to another embodiment shows a cross-sectional view. (D) shows a perspective view with a part omitted. 他実施形態に係る電柱の(イ)は、上部及び下端部に光ファイバが埋設されていない電柱の一部省略した概略透視斜視図を示し、(ロ)は、光ファイバの下降部が螺旋状に埋設されている電柱の一部省略した概略透視斜視図を示す。(B) of the electric pole according to another embodiment is a schematic perspective view in which a part of the electric pole in which the optical fiber is not embedded in the upper and lower ends is omitted, and (b) is a spiral part of the descending part of the optical fiber. The schematic perspective view which abbreviate | omitted one part of the utility pole currently embedded in is shown.

符号の説明Explanation of symbols

1…電柱、2…電柱本体、3…光ファイバ、3a…接続端部、3b,3b’…下降部、3c…上昇部、3d…下方側連結部、3e…上方側連結部、4…接続手段(光コンセント)、5…接続手段(光コンセント)、10…電柱折損状況監視システム、11…光パワーメータ(光信号検出手段)、12…OTDR測定器(光信号検出手段)、13,13’…光源、14…出力手段(モニター)、15…演算処理部、M…営業所、L,L1,L2,L3,L4…光信号路、r…連結用光ファイバ   DESCRIPTION OF SYMBOLS 1 ... Telephone pole, 2 ... Telephone pole main body, 3 ... Optical fiber, 3a ... Connection end part, 3b, 3b '... Lowering part, 3c ... Rising part, 3d ... Lower side connection part, 3e ... Upper side connection part, 4 ... Connection Means (optical outlet), 5 ... Connection means (optical outlet), 10 ... Electric pole breakage monitoring system, 11 ... Optical power meter (optical signal detection means), 12 ... OTDR measuring device (optical signal detection means), 13, 13 '... light source, 14 ... output means (monitor), 15 ... arithmetic processing unit, M ... business office, L, L1, L2, L3, L4 ... optical signal path, r ... connecting optical fiber

Claims (11)

柱状の電柱本体と、一端から他端まで連続すると共に前記電柱本体に少なくとも一部が埋設される光ファイバと、該光ファイバの両端部にそれぞれ設けられる接続手段とを備える電柱であって、
前記光ファイバの埋設部は、前記電柱本体に対して下方に向かう下降部と上方に向かう上昇部とを少なくとも一対備え、前記一対の下降部と上昇部との各下端部は、電柱を設置した際に地中に埋没する位置で互いに連結されることを特徴とする電柱。
A utility pole comprising a pole-shaped utility pole body, an optical fiber continuous from one end to the other end and at least partially embedded in the utility pole body, and connection means respectively provided at both ends of the optical fiber,
The buried portion of the optical fiber includes at least a pair of a descending portion that is directed downward and an upward portion that is directed upward with respect to the utility pole body, and each lower end portion of the pair of descending portions and the elevated portion is provided with a utility pole. The utility poles are connected to each other at positions where they are buried in the ground.
前記下降部は、前記電柱本体の上下方向に沿って直線状に埋設されると共に、前記上昇部は、前記下降部と前記電柱本体の周方向に所定間隔をおいて略平行に埋設される請求項1記載の電柱。   The descending portion is embedded in a straight line along the vertical direction of the utility pole body, and the rising portion is embedded substantially parallel to the descending portion and the circumferential direction of the utility pole body at a predetermined interval. Item 1. The utility pole according to item 1. 前記一対の下降部及び上昇部は、二対埋設されると共に各下降部又は上昇部が前記電柱本体の周方向に略等間隔で四箇所に埋設される請求項2記載の電柱。   3. The utility pole according to claim 2, wherein the pair of descending portions and the ascending portions are embedded in two pairs, and each descending portion or the ascending portion is embedded at four locations at substantially equal intervals in the circumferential direction of the utility pole body. 前記光ファイバは、下降部又は上昇部の少なくとも一方且つ少なくとも一部が電柱本体の周方向に沿うと共に下降又は上昇するような螺旋状に埋設される請求項1記載の電柱。   2. The utility pole according to claim 1, wherein the optical fiber is embedded in a spiral shape so that at least one and at least a part of the descending portion or the ascending portion is lowered or raised along the circumferential direction of the utility pole body. 前記接続手段は、前記電柱本体の周側面に取り付けられる光コンセントである請求項1乃至4の何れか一項に記載の電柱。   The utility pole according to any one of claims 1 to 4, wherein the connection means is an optical outlet attached to a peripheral side surface of the utility pole body. 埋設された光ファイバが一系統の光信号路を構成するように接続される複数本の請求項1乃至5の何れかに記載された電柱と、前記光信号路の一端から試験光を入射する光源と、前記光信号路の一端又は他端の少なくとも一方に配置される光信号検出手段とを備える電柱折損状況監視システムであって、
前記光源から入射される試験光に基づく前記光信号路からの光信号を検出することで折損した電柱を検出することを特徴とする電柱折損状況監視システム。
A plurality of utility poles connected in such a manner that embedded optical fibers constitute a single optical signal path, and test light is incident from one end of the optical signal path. A utility pole breakage monitoring system comprising a light source and an optical signal detection means disposed at least one of one end and the other end of the optical signal path,
An electric pole breakage state monitoring system, wherein a broken electric pole is detected by detecting an optical signal from the optical signal path based on test light incident from the light source.
前記光信号検出手段は、前記光信号路の他端に設置される光パワーメータである請求項6記載の電柱折損状況監視システム。   7. The utility pole breakage monitoring system according to claim 6, wherein the optical signal detection means is an optical power meter installed at the other end of the optical signal path. 前記光信号検出手段は、前記光信号路の一端に設置されるOTDR測定器である請求項6記載の電柱折損状況監視システム。   7. The utility pole breakage monitoring system according to claim 6, wherein the optical signal detection means is an OTDR measuring device installed at one end of the optical signal path. 前記光信号路の他端には、さらに光源が設置され、前記光信号検出手段は、前記光信号路の一端に光パワーメータとOTDR測定器とを切り換え可能に接続することで構成され、光パワーメータが接続されている際には、前記光信号路の他端の光源から試験光を入射し、OTDR測定器が接続されている際には、前記光信号路の一端の光源から試験光を入射する請求項6記載の電柱折損状況監視システム。   A light source is further installed at the other end of the optical signal path, and the optical signal detection means is configured by connecting an optical power meter and an OTDR measuring device to one end of the optical signal path in a switchable manner. When a power meter is connected, test light is incident from a light source at the other end of the optical signal path, and when an OTDR measuring device is connected, test light is transmitted from a light source at one end of the optical signal path. The telephone pole breakage status monitoring system according to claim 6, wherein the power pole is incident. 少なくとも各電柱の電柱番号、位置情報、及び前記光源からの光信号路上の距離情報を記憶している記憶媒体と、前記OTDR測定器で検出した光源からの光信号路上の距離情報と前記記憶媒体が記憶している各電柱の光源からの光信号路上の距離情報とを比較する演算処理部と、比較の結果、少なくとも該当する電柱番号及び位置情報を出力する出力部とを備える請求項8又は9記載の電柱折損状況監視システム。   A storage medium storing at least a power pole number of each power pole, position information, and distance information on the optical signal path from the light source; distance information on the optical signal path from the light source detected by the OTDR measuring instrument; and the storage medium The arithmetic processing part which compares the distance information on the optical signal path from the light source of each utility pole which is memorize | stored, and the output part which outputs at least applicable telephone pole number and position information as a result of the comparison, or The telephone pole breakage status monitoring system according to 9. 前記記憶媒体は、地図情報をさらに備え、前記演算処理部が前記電柱の位置情報又は光源からの距離情報と前記地図情報とを比較し、前記出力部が前記地図情報の前記電柱の位置に該当する箇所を出力する請求項10記載の電柱折損状況監視システム。   The storage medium further includes map information, the arithmetic processing unit compares position information of the utility pole or distance information from a light source and the map information, and the output unit corresponds to the position of the utility pole of the map information. The telephone pole breakage condition monitoring system according to claim 10, wherein a part to be output is output.
JP2006241569A 2006-09-06 2006-09-06 Utility pole break state monitoring system and utility pole used in that utility pole break state monitoring system Withdrawn JP2008067467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006241569A JP2008067467A (en) 2006-09-06 2006-09-06 Utility pole break state monitoring system and utility pole used in that utility pole break state monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006241569A JP2008067467A (en) 2006-09-06 2006-09-06 Utility pole break state monitoring system and utility pole used in that utility pole break state monitoring system

Publications (1)

Publication Number Publication Date
JP2008067467A true JP2008067467A (en) 2008-03-21

Family

ID=39289667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241569A Withdrawn JP2008067467A (en) 2006-09-06 2006-09-06 Utility pole break state monitoring system and utility pole used in that utility pole break state monitoring system

Country Status (1)

Country Link
JP (1) JP2008067467A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053832A (en) * 2013-09-09 2015-03-19 中国電力株式会社 Nest building detection system, and nest building detection method
JP2016021787A (en) * 2014-07-11 2016-02-04 中国電力株式会社 Nest building detection device
CN110426782A (en) * 2019-08-31 2019-11-08 浙江工业大学 A kind of single covering multi-core optical fiber with abnormality detection
WO2020044660A1 (en) 2018-08-30 2020-03-05 日本電気株式会社 State identification system, state identification device, state identification method, and non-transitory computer readable medium
WO2020044648A1 (en) 2018-08-30 2020-03-05 日本電気株式会社 Utility-pole position identification system, utility-pole position identification device, utility-pole position identification method, and non-transitory computer readable medium
WO2020044655A1 (en) 2018-08-30 2020-03-05 日本電気株式会社 Utility-pole deterioration detection system, utility-pole deterioration detection device, utility-pole deterioration detection method, and non-transitory computer readable medium
WO2021149192A1 (en) * 2020-01-22 2021-07-29 日本電気株式会社 Utility pole degradation detection system, utility pole degradation detection method, and utility pole degradation detection device
WO2022044319A1 (en) * 2020-08-31 2022-03-03 日本電気株式会社 Degradation discrimination system, degradation discrimination device, and degradation discrimination method
WO2022221185A1 (en) * 2021-04-12 2022-10-20 Nec Laboratories America, Inc. Fiber optic sensing for reduced field work conflicts
WO2022221214A1 (en) * 2021-04-12 2022-10-20 Nec Laboratories America, Inc. Utility pole hazardous event localization
WO2023164072A1 (en) * 2022-02-23 2023-08-31 Nec Laboratories America, Inc. Audio based wooden utility pole decay detection using distributed acoustic sensing and machine learning
WO2024057379A1 (en) * 2022-09-13 2024-03-21 日本電気株式会社 Optical fiber sensing system, optical fiber sensing device, and breakage detection method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053832A (en) * 2013-09-09 2015-03-19 中国電力株式会社 Nest building detection system, and nest building detection method
JP2016021787A (en) * 2014-07-11 2016-02-04 中国電力株式会社 Nest building detection device
JPWO2020044655A1 (en) * 2018-08-30 2021-09-24 日本電気株式会社 Utility pole deterioration detection system, utility pole deterioration detection device, utility pole deterioration detection method, and program
EP3845865A4 (en) * 2018-08-30 2021-10-20 NEC Corporation State identification system, state identification device, state identification method, and non-transitory computer readable medium
JP7124876B2 (en) 2018-08-30 2022-08-24 日本電気株式会社 State identification system, state identification device, state identification method, and program
WO2020044655A1 (en) 2018-08-30 2020-03-05 日本電気株式会社 Utility-pole deterioration detection system, utility-pole deterioration detection device, utility-pole deterioration detection method, and non-transitory computer readable medium
CN112567581A (en) * 2018-08-30 2021-03-26 日本电气株式会社 Telegraph pole position specifying system, telegraph pole position specifying device, telegraph pole position specifying method, and non-transitory computer readable medium
CN112585517A (en) * 2018-08-30 2021-03-30 日本电气株式会社 Telegraph pole degradation detection system, telegraph pole degradation detection device, telegraph pole degradation detection method, and non-transitory computer readable medium
WO2020044660A1 (en) 2018-08-30 2020-03-05 日本電気株式会社 State identification system, state identification device, state identification method, and non-transitory computer readable medium
US11561118B2 (en) 2018-08-30 2023-01-24 Nec Corporation State specifying system, state specifying apparatus, state specifying method, and non-transitory computer readable medium
JPWO2020044660A1 (en) * 2018-08-30 2021-08-10 日本電気株式会社 State identification system, state identification device, state identification method, and program
EP3846299A4 (en) * 2018-08-30 2021-11-03 NEC Corporation Utility-pole position identification system, utility-pole position identification device, utility-pole position identification method, and non-transitory computer readable medium
WO2020044648A1 (en) 2018-08-30 2020-03-05 日本電気株式会社 Utility-pole position identification system, utility-pole position identification device, utility-pole position identification method, and non-transitory computer readable medium
US11994417B2 (en) 2018-08-30 2024-05-28 Nec Corporation Utility pole deterioration detection system, utility pole deterioration detection apparatus, utility pole deterioration detection method, and non-transitory computer readable medium
JPWO2020044648A1 (en) * 2018-08-30 2021-08-26 日本電気株式会社 Utility pole position identification system, utility pole position identification device, utility pole position identification method, and program
US11747175B2 (en) 2018-08-30 2023-09-05 Nec Corporation Utility pole location specifying system, utility pole location specifying apparatus, utility pole location specifying method, and non-transitory computer readable medium
JP7124875B2 (en) 2018-08-30 2022-08-24 日本電気株式会社 Utility pole location identification system, utility pole location identification device, utility pole location identification method, and program
CN110426782A (en) * 2019-08-31 2019-11-08 浙江工业大学 A kind of single covering multi-core optical fiber with abnormality detection
WO2021149192A1 (en) * 2020-01-22 2021-07-29 日本電気株式会社 Utility pole degradation detection system, utility pole degradation detection method, and utility pole degradation detection device
JPWO2021149192A1 (en) * 2020-01-22 2021-07-29
WO2022044319A1 (en) * 2020-08-31 2022-03-03 日本電気株式会社 Degradation discrimination system, degradation discrimination device, and degradation discrimination method
WO2022221214A1 (en) * 2021-04-12 2022-10-20 Nec Laboratories America, Inc. Utility pole hazardous event localization
WO2022221185A1 (en) * 2021-04-12 2022-10-20 Nec Laboratories America, Inc. Fiber optic sensing for reduced field work conflicts
WO2023164072A1 (en) * 2022-02-23 2023-08-31 Nec Laboratories America, Inc. Audio based wooden utility pole decay detection using distributed acoustic sensing and machine learning
WO2024057379A1 (en) * 2022-09-13 2024-03-21 日本電気株式会社 Optical fiber sensing system, optical fiber sensing device, and breakage detection method

Similar Documents

Publication Publication Date Title
JP2008067467A (en) Utility pole break state monitoring system and utility pole used in that utility pole break state monitoring system
US11112332B2 (en) Optical fiber monitoring method, and optical fiber monitoring system
JP7124876B2 (en) State identification system, state identification device, state identification method, and program
CN108923847A (en) A kind of Cable&#39;s Fault monitoring and accurate positioning method based on GIS
KR20100038505A (en) System and method for watching pipeline
JP2009512057A (en) Intruder sensing apparatus and method using optical fiber grating sensor
JP2011142495A (en) Optical fiber line monitoring system
CN111024283B (en) Multi-parameter optical fiber sensing detection method and system for down-leading optical cable
JP2007183166A (en) Utility pole stress evaluator, utility pole stress evaluation system, utility pole stress evaluation method, and utility pole
JP4004685B2 (en) Light monitoring device
CN107123477B (en) Existing railway through ground wire anti-theft system based on optical fiber microbend design
CN108088585A (en) A kind of oil gas storage tank monitoring distribution type fiber-optic heat detector and control method
CN205353414U (en) Novel fiber distribution box
JPH11287650A (en) Measuring device for deformation of internal space of tunnel by use of optical fiber
JP2003234708A (en) Optical network system in sewerage
JP2009531826A (en) Power cable that can be searched for faults
JP4553820B2 (en) Optical fiber transmission loss display apparatus and method
JPH09247102A (en) Method for monitoring optical line
JP4413180B2 (en) Optical fiber transmission loss display apparatus and method
JP2007174597A (en) Optical cable line with line monitoring device, optical cable line, and fusing point detection method for optical cable line
CN208781385U (en) Natural disaster monitoring device
JP2001050861A (en) Light monitor
JP2009075348A (en) Closure for optical cable connection
JP5485455B2 (en) Optical fiber cable connection position judgment method
CN104217547A (en) Directly-buried pipeline safety prewarning system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080626

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110