JP2008066350A - Led color adjusting device - Google Patents

Led color adjusting device Download PDF

Info

Publication number
JP2008066350A
JP2008066350A JP2006239658A JP2006239658A JP2008066350A JP 2008066350 A JP2008066350 A JP 2008066350A JP 2006239658 A JP2006239658 A JP 2006239658A JP 2006239658 A JP2006239658 A JP 2006239658A JP 2008066350 A JP2008066350 A JP 2008066350A
Authority
JP
Japan
Prior art keywords
led
color
color adjustment
movable
leds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006239658A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Kondo
強司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpine Electronics Inc
Original Assignee
Alpine Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpine Electronics Inc filed Critical Alpine Electronics Inc
Priority to JP2006239658A priority Critical patent/JP2008066350A/en
Publication of JP2008066350A publication Critical patent/JP2008066350A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an LED color adjusting device which can easily adjust the variation of the light emission of respective LEDs to obtain an optional color when mixing colors emitted from the LEDs of RGB colors to obtain a specified color. <P>SOLUTION: A surface resistor 2 is provided with three fixed electrodes corresponding to LEDs of R, G and B colors at apexes of a triangle, and a slider 3 which has a movable contact S that can move while being in contact with an optional position on the surface resistor 2 is provided. The respective electrodes outputs to the LEDs to adjust their colors according to rates of resistance between R and S, between G and S and between B and S as a resistance value relevant to a distance between the movable contact S and the respective electrodes when applying electricity between the movable contact S and the electrodes RGB. When adjusting colors, a current of each LED is directly controlled by the resistance of the surface resistors, or the conduction of the current control semiconductor of the LED is controlled, or the conduction pulse of the current control semiconductor of the LED is controlled, or storage data of memory data concerning the controlled values of the conduction pulse is used to adjust a color. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発光する半導体素子であるLEDを複数個用いて、所望の色に発光するように調整を行うためのLED色調整装置に関する。   The present invention relates to an LED color adjustment apparatus for adjusting a light emission to a desired color by using a plurality of LEDs which are semiconductor elements that emit light.

電流を流すと所定の色に発光する半導体素子であるLED(Light Emitting Diode)は、白熱灯や蛍光灯に比べて長寿命であり、視認性が良好で屋内外を問わずに幅広く使うことができ、小型化が容易で照明器具として自由な設計が可能になるとともに、小電力でも点灯可能であり、熱線や紫外線をほとんど含まず、調光・点滅が自在など、多くの長所がある。そのため、各種電気製品の意匠効果を高めるため、ノブ照明等に多色LEDの組み合わせでバリエーションのある照明が商品企画されており、また所定の色で発光する交通信号としても用いられるようになっている。   LEDs (Light Emitting Diodes), which are semiconductor elements that emit light in a predetermined color when an electric current is applied, have a longer life than incandescent and fluorescent lamps, have good visibility, and can be used widely both indoors and outdoors. It is easy to miniaturize and can be freely designed as a lighting fixture. It can be turned on even with low power, has almost no heat rays or ultraviolet rays, and has many advantages such as dimming and blinking. For this reason, in order to enhance the design effect of various electrical products, a variety of illuminations are designed by combining multi-color LEDs with knob illuminations, etc., and they are also used as traffic signals that emit light of a predetermined color. Yes.

また、このようなLEDはLCD(Liquid Crystal Display)のバックライト光源にも採用されるようになってきた。即ち、LCDは2枚のガラス板の間に特定の液体を封入し、電圧をかけることによって液晶分子の向きを変え、光の透過率を増減させることで像を表示する構造になっており、液晶自体は発光しないので、明るいところでは自然光の反射光を用いることができるが、暗いところでは背後に照明用の光源としてのバックライトを設ける必要がある。このようなLCDのバックライトとして従来は冷陰極管(CCFL)が用いられてきたが、より色再現性の良い光源としてLEDが注目され、次第に使用されるようになった。   Moreover, such LEDs have come to be used as backlight light sources for LCDs (Liquid Crystal Displays). In other words, the LCD has a structure in which a specific liquid is sealed between two glass plates, an image is displayed by changing the direction of liquid crystal molecules by applying a voltage, and increasing or decreasing the light transmittance. Since the light does not emit light, reflected light of natural light can be used in a bright place, but it is necessary to provide a backlight as a light source for illumination behind in a dark place. Conventionally, cold cathode fluorescent lamps (CCFLs) have been used as backlights for such LCDs, but LEDs have attracted attention as light sources with better color reproducibility and have gradually been used.

LCDのバックライトに用いるLEDとしては光源の「白色度」が重要であり、この白色はRGBの3種のLEDの光を混合することにより得られる。各色を発光するLEDはLEDの製造時に生じる特性の相違、更にそのLEDに供給する電流によって、同じような色でも微妙に異なってくる。そのため、RとGとBの各半導体で発光した3種の色を混合して白色を得るとき、各半導体の製造過程で生じた特性のバラツキにより、製造ロット毎や部品毎に輝度バラツキが大きい傾向がある。また、例え特性が極めて近似したLEDを選択して用いたとしても、各LEDに対する供給電流のバランスによっても所望の白色を得ることができなくなる。   The “whiteness” of the light source is important as the LED used for the backlight of the LCD, and this white color can be obtained by mixing the light of the three types of RGB LEDs. An LED that emits each color is slightly different even in the same color depending on the difference in characteristics that occur during the manufacture of the LED and the current supplied to the LED. Therefore, when three colors emitted from each of the R, G, and B semiconductors are mixed to obtain a white color, there is a large variation in brightness for each manufacturing lot or for each part due to variations in characteristics that occur in the manufacturing process of each semiconductor. Tend. Moreover, even if an LED having very similar characteristics is selected and used, a desired white color cannot be obtained due to the balance of the supply current to each LED.

なお、LEDバックライトシステムの色ムラ性能を改善するため、それぞれR、G、BのLED が配列されたLED モジュールを、LCDパネルの画面中心点に対して点対称に配置し、LEDドライバによりそれぞれに供給される電力を個別に制御するようにし、画面中心に輝度・色 度を検出カラーセンサを取り付け、その検出値に基づいてLEDモジュール毎にそれぞれ画面中心より見て同じ輝度・色 度に調整するようにした技術は特許文献1に開示されている。
特開2006−119268号公報
In order to improve the color unevenness performance of the LED backlight system, an LED module in which R, G, and B LEDs are arranged is arranged symmetrically with respect to the center point of the LCD panel screen, The brightness and chromaticity are detected at the center of the screen, and a color sensor is installed at the center of the screen, and each LED module is adjusted to the same brightness and chromaticity when viewed from the center of the screen based on the detected value. The technique made to do so is disclosed in Patent Document 1.
JP 2006-119268 A

前記のように近年のLEDは広範な分野の光源として用いられており、特にLCDのバックライトとして注目されているが、LCDのバックライトとしてRGBの3色の各LEDの光を混合して白色を出すため、例えLCDの特性がほぼ等しくても各LEDに供給する電流バランスが異なると白色度が異なってきて、LCDの色再現性が悪くなる。特にLCDの特性が大きく異なるときには、その特性の相違に合わせて、各LEDに供給する電流を異ならせて調整を行い、電流バランスをとる必要がある。   As described above, LEDs in recent years have been used as light sources in a wide range of fields, and are particularly attracting attention as LCD backlights. Therefore, even if the characteristics of the LCD are almost equal, if the current balance supplied to each LED is different, the whiteness will be different and the color reproducibility of the LCD will be poor. In particular, when the characteristics of the LCD are greatly different, it is necessary to adjust the current supplied to each LED in accordance with the difference in the characteristics to balance the current.

このような各LEDに供給する電流の調整に際しては例えば図10のようにして行っている。即ち図10(a)には、赤用LED(R)、緑用LED(G)、青用LED(B)が並んでそれぞれが発光することにより混合した色の照明を行う発光部分に対して、共通電源から電流供給可能とし、この発光部分から延びる各LEDのアース回路部分に電流制御素子を配置し、外部の信号により電流量を制御することによって各LEDに所望の色調に発光させ、全体として白色、或いは所望の色になるようにしている。また、例えばLCDバックライトのように光量を多く必要とする場合には各R、G、B毎に複数のLEDを直列に接続してそれぞれR群、G群、B群を構成し、これらの各群毎に前記と同様の電流制御素子を配置し、外部の信号により各群毎に電流量を制御することによって、各群のLEDを所望の色調に発光させ、全体として白色等の所望の色になるようにする。   Adjustment of the current supplied to each LED is performed as shown in FIG. That is, in FIG. 10A, a red LED (R), a green LED (G), and a blue LED (B) are arranged side by side and each emits light to emit light of a mixed color. The current can be supplied from a common power source, a current control element is arranged in the ground circuit portion of each LED extending from the light emitting portion, and the amount of current is controlled by an external signal to cause each LED to emit light in a desired color tone. White or a desired color. For example, when a large amount of light is required as in an LCD backlight, a plurality of LEDs are connected in series for each of R, G, and B to form an R group, a G group, and a B group. By arranging the current control element similar to the above for each group and controlling the amount of current for each group by an external signal, each group of LEDs emits light in a desired color tone, and as a whole, a desired white or other desired color is emitted. Try to be a color.

上記のようなR、G、Bの電流の調節は、図11に示すような略三角形状をなす国際色空間RGB規格において、使用するLEDの赤、緑、青は各LEDの特性のずれに応じて各純色頂点からそれぞれずれ、また色飽和度が最も高い外縁部から内側にずれた位置に存在し、各LEDの発光の強さ、即ち各LEDの発光の強さの比率を調節することによって三角形内の所望の色を得ることとなる。このような調節により、各LEDの性能にバラツキがあっても、それらの電流量調節によって例えば三角形中心部に位置する白色も得ることができ、また三角形の所定の位置にある所望の色も得ることができる。   The adjustment of the currents of R, G, and B as described above is based on the deviation of the characteristics of the LEDs in the international color space RGB standard having a substantially triangular shape as shown in FIG. Accordingly, the light intensity of each LED is shifted from the outer edge with the highest color saturation to the inside, and the light emission intensity of each LED, that is, the ratio of the light emission intensity of each LED is adjusted. To obtain the desired color within the triangle. By such adjustment, even if there is a variation in the performance of each LED, it is possible to obtain, for example, white located at the center of the triangle by adjusting the amount of current, and also obtain a desired color at a predetermined position of the triangle. be able to.

この色調整に際して例えば前記図11の国際色空間RGB規格に対応する図12に示すように、赤のLEDのみが発光効率が良かったり赤LEDの電流が多すぎて色バランスが崩れた場合には赤みがかった白となり、ホワイトバランスが悪い画面になる。そのための修正としては「赤LED」の光量を減じる必要がある。この場合は単純に赤だけを調整すれば良いが、青も緑も所望な値になっているとは限らないので、3個のLEDについて各々の電流を制御して「白」を作る必要がある。このとき、個別に調整するのは高度の技術が必要であり、且つ極めて多くの作業時間を要するという問題がある。   In this color adjustment, for example, as shown in FIG. 12 corresponding to the international color space RGB standard in FIG. 11, when only the red LED has a good luminous efficiency or the red LED has too much current, the color balance is lost. The screen becomes reddish white and the white balance is poor. As a correction for that, it is necessary to reduce the amount of light of the “red LED”. In this case, it is only necessary to adjust only red, but blue and green are not necessarily the desired values, so it is necessary to control each current for three LEDs to create “white”. is there. At this time, there is a problem that a high level of technology is required for individual adjustment, and a very long work time is required.

このようなRGBの各LEDに供給する電流のバランス調整は、LEDを前記のようなLCDのバックライトにおける白色を得るために調整を行うときに問題となるばかりでなく、他の白色を必要とする照明装置の光源としてLEDを用いるときも同様の問題を生じ、更にRGBの各LEDの光を混合して白色を得る以外にも、これらの色を混合して所定の色の光を得て、例えばムード照明等に用いるときにも同様の問題を生じる。   Such a balance adjustment of the current supplied to each LED of RGB not only becomes a problem when the LED is adjusted to obtain the white color in the backlight of the LCD as described above, but also requires another white color. When using an LED as the light source of a lighting device, the same problem occurs, and in addition to mixing the light of each LED of RGB to obtain white, these colors are mixed to obtain a light of a predetermined color For example, the same problem occurs when used for mood lighting.

したがって本発明は、RGBの各色を発光するLEDを用い、各LEDの発光色を混合して所定の色を得るに際して、各LEDの発光色特性のバラツキや、各LEDの発光強度のバラツキを調節して所望の色を得るとき、簡単な装置により簡単な操作によって正確な色調整を行うことができるようにしたLED色調整装置を提供することを主たる目的とする。   Therefore, the present invention uses LEDs that emit RGB colors and mixes the emission colors of the LEDs to obtain a predetermined color, thereby adjusting variations in the emission color characteristics of the LEDs and variations in the emission intensity of the LEDs. The main object of the present invention is to provide an LED color adjustment device capable of performing accurate color adjustment by a simple operation with a simple device when a desired color is obtained.

本発明に係るLED色調整装置は、前記課題を解決するため、三角形の頂点部分に、R、G、Bの三色のLEDに対応する3個の電極を備えた面抵抗体と、前記面抵抗体に接触し任意の位置に移動可能な可動接点を有するスライダーとを備え、前記可動接点から各電極に通電したときの可動接点と各電極との距離に応じた抵抗値により、各電極から前記各LEDに対して色調整用出力を行うことを特徴とする。   In order to solve the above-described problem, an LED color adjusting device according to the present invention includes a surface resistor including three electrodes corresponding to LEDs of three colors R, G, and B at the apex of a triangle, and the surface. A slider having a movable contact that contacts the resistor and is movable to an arbitrary position, and from each electrode by a resistance value according to the distance between the movable contact and each electrode when the electrode is energized from the movable contact Color adjustment output is performed on each LED.

また、本発明に係る他のLED色調整装置は、前記LED色調整装置において、前記色調整用出力が面抵抗体の抵抗値であり、各LEDの電流を該抵抗値により直接制御し、色調整を行うことを特徴とする。   According to another LED color adjustment device of the present invention, in the LED color adjustment device, the color adjustment output is a resistance value of a surface resistor, and the current of each LED is directly controlled by the resistance value. Adjustment is performed.

また、本発明に係る他のLED色調整装置は、前記LED色調整装置において、前記色調整用出力により各LEDの電流制御用半導体の通電制御を行い、色調整を行うことを特徴とする。   Another LED color adjusting apparatus according to the present invention is characterized in that, in the LED color adjusting apparatus, the current adjustment semiconductor is energized and controlled by the color adjustment output to perform color adjustment.

また、本発明に係る他のLED色調整装置は、前記LED色調整装置において、前記色調整用出力により各LEDの電流制御用半導体の通電パルスの制御を行い、色調整を行うことを特徴とする。   Another LED color adjustment device according to the present invention is characterized in that, in the LED color adjustment device, the color adjustment is performed by controlling the energization pulse of the current control semiconductor of each LED by the color adjustment output. To do.

また、本発明に係る他のLED色調整装置は、前記LED色調整装置において、前記色調整用出力値を各LED毎に記憶する記憶手段を備え、予め色調整したときの各色調整用出力値を記憶しておき、該記憶した出力値を用いて色調整を行うことを特徴とする。   In addition, another LED color adjustment device according to the present invention includes storage means for storing the color adjustment output value for each LED in the LED color adjustment device, and each color adjustment output value when color adjustment is performed in advance. Is stored, and color adjustment is performed using the stored output value.

また、本発明に係る他のLED色調整装置は、前記LED色調整装置において、前記面抵抗体上に可動電極の可動範囲を規制する内面を備えた枠を設け、前記枠の内面に、少なくとも前記3個の電極の位置に対応して前記可動電極またはスライダーの一部が入る窪みを設けたことを特徴とする。   According to another LED color adjustment device of the present invention, in the LED color adjustment device, a frame having an inner surface that regulates a movable range of the movable electrode is provided on the surface resistor, and at least an inner surface of the frame is provided on the inner surface of the frame. A recess is provided in which the movable electrode or a part of the slider enters corresponding to the position of the three electrodes.

また、本発明に係る他のLED色調整装置は、前記LED色調整装置において、前記面抵抗体は、中心から遠ざかる程厚く形成したことを特徴とする。   Further, another LED color adjusting device according to the present invention is characterized in that in the LED color adjusting device, the surface resistor is formed thicker as it goes away from the center.

また、本発明に係る他のLED色調整装置は、前記LED色調整装置において、前記面抵抗体を表面に設けた基板と、前記基板を覆い、中心部に開口を形成したケースと、前記開口に挿入し下端部に可動電極を備えた操作軸と、前記操作軸に固定したストッパーと前記ケースの裏面との間に配置した可動カバーと、前記可動接点を面抵抗側に押圧し、ストッパーを介して前記可動カバーをケース裏面に押圧するスプリングとを備えたことを特徴とする。   Another LED color adjusting device according to the present invention is the LED color adjusting device, wherein the surface resistor is provided on the surface, a case that covers the substrate and has an opening at the center, and the opening. An operation shaft having a movable electrode inserted into the lower end, a movable cover disposed between a stopper fixed to the operation shaft and the back surface of the case, and pressing the movable contact toward the surface resistance side, And a spring for pressing the movable cover against the back of the case.

また、本発明に係る他のLED色調整装置は、前記LED色調整装置において、端部に可動電極を備え、支点を中心に前後左右に揺動する操作軸と、前記可動電極の軌跡に対応して球状に形成した面抵抗体とを備えたことを特徴とする。   Another LED color adjusting apparatus according to the present invention is the LED color adjusting apparatus according to the above-described LED color adjusting apparatus, which includes a movable electrode at an end, an operation shaft that swings back and forth and right and left around a fulcrum, and a locus of the movable electrode. And a sheet resistor formed in a spherical shape.

本発明に係るLED色調整装置は前記のように構成したので、RGBの各色を発光するLEDを用い、各LEDの発光色を混合して所定の色を得るに際して、各LEDの発光色特性のバラツキや、各LEDの発光強度のバラツキを調節して所望の色を得るとき、簡単な装置により簡単な操作によって正確な色調整を行うことができる。   Since the LED color adjusting device according to the present invention is configured as described above, when the LEDs emitting light of RGB are used and the emission colors of the LEDs are mixed to obtain a predetermined color, the emission color characteristics of the LEDs are adjusted. When a desired color is obtained by adjusting variations and variations in emission intensity of each LED, accurate color adjustment can be performed by a simple operation with a simple device.

RGBの各色を発光するLEDの発光色を混合して所定の色を得るに際して、各LEDの発光バラツキを容易に調節して所望の色を得るという課題を、三角形の頂点部分に、R、G、Bの三色のLEDに対応する3個の電極を備えた面抵抗体と、前記面抵抗体に接触し任意の位置に移動可能な可動接点を有するスライダーとを備え、前記可動接点から各電極に通電したときの可動接点と各電極との距離に応じた抵抗値により、各電極から前記各LEDに対して色調整用出力を行うことにより実現した。   When mixing the emission colors of LEDs that emit RGB colors to obtain a predetermined color, the problem of easily adjusting the emission variation of each LED to obtain a desired color is given to R, G at the apex of the triangle. , B comprising a surface resistor having three electrodes corresponding to the three colors of LEDs, and a slider having a movable contact that contacts the surface resistor and can be moved to an arbitrary position. This was realized by performing color adjustment output from each electrode to each LED with a resistance value corresponding to the distance between the movable contact when each electrode was energized and each electrode.

本発明の実施例を図面に沿って説明する。図1は本発明によるLED色調整装置の基本構造を示しており、赤色(R)、緑色(G)、青色(B)の3個のLEDに対して制御電流を供給する2次元面抵抗型ポテンショメーター1の構造例を示している。図1(a)の例においては図中正三角形で示す面抵抗体2の3個の頂点に、赤固定電極(R)、緑固定電極(G)、青固定電極(B)を設け、各電極には各色のLEDに対する電流を制御するための出力線が接続されている。この面抵抗体2上における任意の位置に利用者が移動させることができる可動電極3を設け、この可動電極3に対して電流を供給する電源を接続し、この可動電極3の面抵抗との接触点である可動接点Sの位置に応じて、例えば図1(b)に示すように、この可動接点Sと各電極との間で面抵抗体2によるR−S間抵抗、G−S間抵抗、B−S間抵抗を得ることができる。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a basic structure of an LED color adjusting device according to the present invention, which is a two-dimensional surface resistance type that supplies control current to three LEDs of red (R), green (G), and blue (B). The structural example of the potentiometer 1 is shown. In the example of FIG. 1A, a red fixed electrode (R), a green fixed electrode (G), and a blue fixed electrode (B) are provided at three vertices of a sheet resistor 2 indicated by a regular triangle in the figure, and each electrode is provided. Are connected to output lines for controlling currents to the LEDs of the respective colors. A movable electrode 3 that can be moved by a user to an arbitrary position on the surface resistor 2 is provided, and a power source that supplies current to the movable electrode 3 is connected. Depending on the position of the movable contact S that is a contact point, for example, as shown in FIG. 1B, the resistance between R and S by the surface resistor 2 between the movable contact S and each electrode, between G and S, as shown in FIG. Resistance and B-S resistance can be obtained.

このような面抵抗体2における三角形の頂点にRGBの各電極を配置し、面抵抗上の任意の位置に電流を供給する可動電極としての可動接点Sを移動することにより、その位置に応じた各電極間での抵抗が得られ、且つその抵抗値は可動接点の位置が例えばR側に移動して抵抗値を小さくしてRの制御電流を多くすると、その分だけG、Bの少なくとも片方、或いは両方の抵抗を大きくして各制御電流を少なくすることができ、全体としての制御電流の比率の制御を行い、全体のバランスをとりながら、各電極への制御電流の調整を行うことができる。この制御電流は、後述するように、種々の態様で利用することができる。   Each electrode of RGB is arranged at the apex of a triangle in such a surface resistor 2, and the movable contact S serving as a movable electrode that supplies current to an arbitrary position on the surface resistance is moved, so that it corresponds to the position. The resistance between the electrodes is obtained, and the resistance value is such that when the position of the movable contact moves to the R side, for example, when the resistance value is decreased and the control current of R is increased, at least one of G and B is correspondingly increased. Alternatively, both resistances can be increased to reduce each control current, the overall control current ratio can be controlled, and the control current to each electrode can be adjusted while maintaining the overall balance. it can. This control current can be used in various ways as will be described later.

その一つの態様を図2に示す。図2に示す例においては前記図10(a)の従来例と同様に、赤用LED(R)、緑用LED(G)、青用LED(B)が並んでそれぞれが発光することにより混合した色の照明を行う発光部分5に対して、共通電源から電流供給可能としている。また、RGBの発光部分5から延びる各LEDのアース回路部分を、前記図1(a)と同様の2次元面抵抗型ポテンショメーター1の面抵抗上におけるRGBの固定電極にそれぞれ接続し、その面抵抗上の任意の点に接触している可動電極Sから共通のアース線で設置している。   One embodiment is shown in FIG. In the example shown in FIG. 2, the red LED (R), the green LED (G), and the blue LED (B) are arranged side by side and mixed as in the conventional example of FIG. 10 (a). A current can be supplied from a common power source to the light emitting portion 5 that performs illumination of the selected color. Further, the ground circuit portion of each LED extending from the RGB light emitting portion 5 is connected to the RGB fixed electrode on the surface resistance of the two-dimensional surface resistance potentiometer 1 similar to that shown in FIG. The movable electrode S that is in contact with any upper point is installed with a common ground wire.

その結果、RGBの各色を発光するLEDに対する電流は、面抵抗における可動接点Sの位置に応じて、R−S間抵抗、G−S間抵抗、B−S間抵抗によって電流制御され、各LEDの発光特性を調整し、例えば所望の色が白色であるときには、各LEDの製造上の色特性差等による発光特性の差を吸収し、所定の白色に容易に調整することができる。この操作は3個のLEDの発光によって所望の色を得る場合も同様にして行うことができ、その際には所望の色を近くに置き、その色に合うように調整することにより、容易にその調整を行うことができる。この態様は本発明の基本原理をほぼそのまま用いた手法であり、LED全体として小電流の時に、最も簡単な手法として採用することができる。   As a result, the currents for the LEDs emitting RGB colors are controlled by the R-S resistance, the G-S resistance, and the B-S resistance according to the position of the movable contact S in the surface resistance. For example, when the desired color is white, it is possible to absorb the difference in the light emission characteristics due to the color characteristic difference in the manufacture of each LED and easily adjust to a predetermined white color. This operation can be performed in the same way when a desired color is obtained by the light emission of the three LEDs. In this case, the desired color is placed close to and easily adjusted to match the color. That adjustment can be made. This mode is a method that uses the basic principle of the present invention almost as it is, and can be adopted as the simplest method when the entire LED has a small current.

更に他の制御態様を図3に示す。図3に示す態様においては前記と同様の2次元面抵抗型ポテンショメーター1を用い、可動電極Sに電源から電流供給可能とし、RGBの各電極から各抵抗を介してアースする線に対して、各々抵抗を介して各調整電圧を出力可能とし、これを電流制御用半導体としての電流制御トランジスタTr.B、Tr.R、Tr.Gの各ベースに接続する。それにより、2次元面抵抗型ポテンショメーター1の可動接点Sの位置に応じて電流制御トランジスタにより、RGBの各LEDの電流を制御することができる。   Still another control mode is shown in FIG. In the embodiment shown in FIG. 3, the same two-dimensional surface resistance potentiometer 1 as described above is used, and a current can be supplied from the power source to the movable electrode S. Each adjustment voltage can be output through a resistor, and this voltage is connected to each base of current control transistors Tr.B, Tr.R, and Tr.G as current control semiconductors. Thereby, the current of each RGB LED can be controlled by the current control transistor according to the position of the movable contact S of the two-dimensional surface resistance potentiometer 1.

この制御態様においては、前記図2の態様のものより全LEDに供給する電流が多い中電流LEDの時に有効であり、前記図2に示す態様より2次元面抵抗型ポテンショメーター1に流す電流を少なくすることができ、小型化することができる。また、LEDの置かれている位置と離れた任意の位置でこの調整作業を行うことができるようになる。   This control mode is effective in the case of a medium-current LED that supplies more current to all LEDs than in the mode of FIG. 2, and less current flows through the two-dimensional surface resistance potentiometer 1 than the mode shown in FIG. Can be reduced in size. In addition, this adjustment operation can be performed at an arbitrary position away from the position where the LED is placed.

更に他の制御態様を図4に示す。図4に示す態様においても前記と同様に2次元面抵抗型ポテンショメーター1を用い、また図3の調整電圧出力手法を用いて、そのアナログの調整電圧出力をデジタル化し、PWM(Pulse Width Modulation)制御を行うパルス制御回路6にそれぞれ入力して、各RGBの調整電圧に応じて通電幅の異なるパルスを出力する。図4に示す例においては前記図10(b)と同様に、LCDバックライトのような光量を多く必要とする際に、各R、G、B毎に複数のLEDを直列に接続してそれぞれR群、G群、B群を構成し、これらの各群の電流制御を行うトランジスタTr.R、Tr.G、Tr.B毎に、パルス制御回路6から所定幅のパルスを出力する。   Still another control mode is shown in FIG. In the embodiment shown in FIG. 4, the two-dimensional surface resistance potentiometer 1 is used in the same manner as described above, and the analog adjustment voltage output is digitized using the adjustment voltage output method shown in FIG. 3, and PWM (Pulse Width Modulation) control is performed. Are respectively input to the pulse control circuit 6 that performs the above-described operations, and pulses having different energization widths are output in accordance with the RGB adjustment voltages. In the example shown in FIG. 4, as in the case of FIG. 10B, when a large amount of light such as an LCD backlight is required, a plurality of LEDs are connected in series for each R, G, and B, respectively. A pulse having a predetermined width is output from the pulse control circuit 6 for each of the transistors Tr.R, Tr.G, and Tr.B that configures the R group, the G group, and the B group, and controls the current of each group.

なお、パルス制御回路6から出力する制御パルスは、一定周期で出力するパルスの通電幅を制御する以外に、所定幅のパルスを一定時間に出力する回数によって制御しても良い。このようなパルス制御により、RGBの各群毎に電流量を制御することによって、各群のLEDを所望の色調に発光させ、全体として白色等の所望の色になるようにする。この制御態様においては、前記図3の態様のものより全LEDに供給する電流が多い大電流LEDのときに特に有効である。   The control pulse output from the pulse control circuit 6 may be controlled by the number of times a pulse having a predetermined width is output in a fixed time, in addition to controlling the energization width of the pulse output in a fixed cycle. By controlling the amount of current for each group of RGB by such pulse control, each group of LEDs emits light in a desired color tone, and as a whole, a desired color such as white is obtained. This control mode is particularly effective in the case of a high-current LED that supplies more current to all LEDs than in the mode of FIG.

更に他の制御態様を図5に示す。図5に示す態様においては、前記図4の制御態様と同様のA/D変換とPWM制御を行うマイコン制御回路7を備えている。即ち、前記図4のパルス制御回路6と同様の機能を行う制御回路をマイコン化しており、更にこのPWM制御におけるLEDのR群、G群、B群の制御値を別途設けた調整値格納用EEPROM8に記憶させる機能も行う。このように調整値格納用EEPROM8に調整値を記憶することにより、その後は2次元面抵抗型ポテンショメーター1による調整は不要となるので、これを取り外しても良くなる。   Yet another control mode is shown in FIG. The embodiment shown in FIG. 5 includes a microcomputer control circuit 7 that performs A / D conversion and PWM control similar to the control embodiment of FIG. That is, a control circuit that performs the same function as the pulse control circuit 6 of FIG. 4 is made into a microcomputer, and further, control values for adjusting values stored in the R group, G group, and B group of LEDs in this PWM control are separately provided. The function of storing in the EEPROM 8 is also performed. By storing the adjustment value in the adjustment value storing EEPROM 8 in this way, the adjustment by the two-dimensional surface resistance potentiometer 1 is not necessary thereafter, and it may be removed.

そのため、このようにマイコン制御回路7とその制御回路での調整値を記憶する調整値格納用EEPROM8を、LEDを備えた機器側に設けたものにおいては、工場等で2次元面抵抗型ポテンショメーター1を用いて前記のように調整を行って調整値を記憶した後はこれを取り外して出荷しても、その後はマイコン制御回路7がこの調整値格納用EEPROMの値を読み込み、各LED群の電流制御を行うことができる。   Therefore, in the case where the microcomputer control circuit 7 and the adjustment value storage EEPROM 8 for storing the adjustment value in the control circuit are provided on the device side provided with the LED, the two-dimensional surface resistance potentiometer 1 is used at a factory or the like. After adjusting and storing the adjustment value as described above, the microcomputer control circuit 7 reads the value of the adjustment value storage EEPROM after that and removes the adjustment value. Control can be performed.

前記のような種々の制御態様において、本発明のLED色調整装置で用いる2次元面抵抗型ポテンショメーター1は、例えば図6に示すような構造とすることができる。即ち図6に示す2次元面抵抗型ポテンショメーター1においては、底面に前記と同様の面抵抗体からなる面抵抗領域10を備え、その上方に可変位置電極としてのスライダーの可動範囲を規制する枠を設け、その枠内面11によって面抵抗領域10に対して直角に移動するスライダーの可動範囲を規制している。   In the various control modes as described above, the two-dimensional surface resistance potentiometer 1 used in the LED color adjusting apparatus of the present invention can have a structure as shown in FIG. 6, for example. That is, in the two-dimensional surface resistance potentiometer 1 shown in FIG. 6, the bottom surface is provided with a surface resistance region 10 made of a surface resistor similar to the above, and a frame for restricting the movable range of the slider as the variable position electrode is provided above the surface resistance region 10. The slider inner surface 11 restricts the movable range of the slider that moves at right angles to the surface resistance region 10.

この枠内面11には図中スライダーの移動位置として示しているR、G、Bの位置に窪みを設け、且つこの位置に対応して赤電極、緑電極、青電極を配置し、各窪みにスライダーが入ったときクリック感を与え、またスライダーが各所定の位置に置かれたとき、各電極に接触することができるようにしている。それにより、各電極に接触した位置でR、G、Bの各所定の色を出力することができるようにする。また、各電極間においても図示するように中間位置に枠内面11に窪みを設け、各位置が黄色、シアン、マゼンダに相当する位置とし、したがってスライダーを枠内面11に沿って移動し、この窪みに入ったことを利用者がクリック感により感知したとき、所定の前記の各色を出力することができるようになる。   The inner surface 11 of the frame is provided with depressions at R, G, and B positions indicated as slider movement positions in the figure, and red, green, and blue electrodes are disposed corresponding to these positions. When the slider enters, a click feeling is given, and when the slider is placed at each predetermined position, it can come into contact with each electrode. Thereby, each predetermined color of R, G, and B can be output at a position in contact with each electrode. Also, between the electrodes, as shown in the figure, a recess is provided in the frame inner surface 11 at an intermediate position, and each position is set to a position corresponding to yellow, cyan, and magenta. Therefore, the slider is moved along the frame inner surface 11. When the user senses that the user has entered the image by clicking, the predetermined colors can be output.

上記のような2次元面抵抗型ポテンショメーター1を用いることにより、可動電極をセンター位置に移動して3個のLEDの発光により白色を得る以外に、例えば所定のシアンの色を得ることができ、この位置がずれることにより白みがかったシアンとなることを確実に防止することができる。   By using the two-dimensional surface resistance potentiometer 1 as described above, a predetermined cyan color can be obtained, for example, in addition to moving the movable electrode to the center position and obtaining white by light emission of three LEDs, It can be surely prevented that the position is shifted and white cyan is obtained.

また、このような2次元面抵抗型ポテンショメーター1において、前記図4及び図5の大電流LEDのPWM制御の図から明らかなように、各固定電極R、G、Bに接続した抵抗R1.R、R1.G、R1.Bは可動電極の接点Sと各固定電極間の可変抵抗と各々直列接続となる。そのため例えばR−S間抵抗とR1.R抵抗との間からとる制御信号は両抵抗の分圧値となり、R1.Rは分圧抵抗として作用する。したがって面抵抗の可変抵抗とこの分圧抵抗の比率で出力電圧が変わるので、この分圧抵抗を面抵抗と比較して十分小さくすることにより、例えば図6のシアンの位置に可動電極を移動したとき、その対向位置にある赤色の混入を少なくすることができる。   Further, in such a two-dimensional surface resistance potentiometer 1, as is apparent from the PWM control diagrams of the large current LEDs in FIGS. 4 and 5, the resistors R1.R connected to the fixed electrodes R, G, B are used. , R1.G and R1.B are connected in series with the variable resistor between the contact S of the movable electrode and each fixed electrode. Therefore, for example, a control signal taken from between the R-S resistance and the R1.R resistance becomes a divided value of both resistances, and R1.R acts as a voltage dividing resistance. Accordingly, since the output voltage varies depending on the ratio of the variable resistance of the surface resistance and the voltage dividing resistance, the movable electrode is moved to the cyan position in FIG. 6, for example, by making this voltage dividing resistance sufficiently smaller than the surface resistance. At this time, it is possible to reduce the red mixing at the opposite position.

前記の2次元面抵抗型ポテンショメーターは平面に対して均一厚みで面抵抗を作成した例を示したが、例えば図7に示すように周辺エリアの色純度の高い要求エリア部分が厚くなるように形成しても良い。このような面抵抗においては抵抗値「R=ρ・L/A」で表される。ここでρは抵抗体の固有抵抗、Lは2点間の距離、Aは抵抗断面積である。Aは幅×厚みとも表せる。そこで、蒸着あるいは塗布による抵抗体の厚みを部分的にコントロールする事により、抵抗特性を変えることができる。したがって図7に示すように面抵抗の厚みを凹レンズ状に厚みコントロールして作製すると周辺部の面抵抗率を低く、中心部に行くほど面抵抗率が大きくなる特性をもたす事も出来る。これにより、G+Bでシアン色を作るときにR成分の混入を比率的に減少させることが出来る。   The above-described two-dimensional surface resistance type potentiometer has shown an example in which the surface resistance is created with a uniform thickness with respect to the plane. For example, as shown in FIG. 7, the required area portion with high color purity in the peripheral area is formed thick. You may do it. Such a surface resistance is represented by a resistance value “R = ρ · L / A”. Here, ρ is a specific resistance of the resistor, L is a distance between two points, and A is a resistance cross-sectional area. A can also be expressed as width × thickness. Therefore, the resistance characteristics can be changed by partially controlling the thickness of the resistor by vapor deposition or coating. Therefore, as shown in FIG. 7, when the thickness of the surface resistance is controlled to be a concave lens shape, the surface resistivity of the peripheral portion can be lowered, and the surface resistivity can be increased toward the center portion. Thereby, the mixing of the R component can be reduced in proportion when a cyan color is created with G + B.

本発明による2次元面抵抗型ポテンショメーターのより具体例を図8に基づいて説明する。図8に示す例においては、面抵抗膜21を表面に設けた基板22をケース23で覆っており、ケース23の中心部には開口24を形成しており、開口24の内周面は枠内面25としている。開口24から操作軸26をケース23内部に挿入し、操作軸26の下端にはこの操作軸26に対して上下動自在に可動接点27を嵌合し、可動接点27と操作軸26の下端面との間にスプリング28を縮設している。操作軸26の下端にはストッパ29を固定しており、このストッパー29の上面とケース23の裏面との間に、前記スプリング28の力により可動カバー30を挟んでいる。   A more specific example of the two-dimensional surface resistance potentiometer according to the present invention will be described with reference to FIG. In the example shown in FIG. 8, a substrate 22 having a surface resistance film 21 provided on the surface is covered with a case 23, an opening 24 is formed at the center of the case 23, and the inner peripheral surface of the opening 24 is a frame. The inner surface 25 is used. An operating shaft 26 is inserted into the case 23 from the opening 24, and a movable contact 27 is fitted to the lower end of the operating shaft 26 so as to be movable up and down with respect to the operating shaft 26. A spring 28 is shrunk between the two. A stopper 29 is fixed to the lower end of the operation shaft 26, and the movable cover 30 is sandwiched between the upper surface of the stopper 29 and the back surface of the case 23 by the force of the spring 28.

面抵抗膜21には前記のようにRGBの3極を銀電極により形成しており、それぞれケース23外に突出する端子31に接続している。また、可動接点27もフレキシブル配線32によってケース外に突出する端子31に接続している。それによりケース外に突出する端子は、RGB用の各端子及び可動接点用端子の4個存在する。開口24の内周面を形成する枠内面25には、前記図6の例と同様に、各電極位置、及びそれらの中間位置の6箇所にクリック感を与える窪み33を形成し、この部分で操作軸26の側面を受けるようにしている。   As described above, the surface resistance film 21 is formed of three electrodes of RGB by silver electrodes, and each is connected to a terminal 31 protruding outside the case 23. The movable contact 27 is also connected to a terminal 31 protruding outside the case by a flexible wiring 32. As a result, there are four terminals protruding out of the case, each terminal for RGB and a terminal for movable contact. In the frame inner surface 25 that forms the inner peripheral surface of the opening 24, as in the example of FIG. 6, depressions 33 that give a click feeling to each electrode position and six intermediate positions thereof are formed. The side surface of the operation shaft 26 is received.

上記のような構成をなす2次元面抵抗型ポテンショメーター1においては、利用者が操作軸26のつまみ34を摘んで任意の方向に移動すると、可動接点27がスプリング28により面抵抗膜21と接触しながら移動する。その時可動カバー30もスプリング28の反力によりカバー23の裏面に接触しつつ開口を覆いながら移動する。その際可動接点27はフレキシブル配線32により端子31との接続が維持される。このような簡単な構造により、前記のようなRGBの各LEDの通電量を調節し、光の混合により白色を含む所定の色を得ることができる。なお、端子31から得られる信号は、前記図2〜図5の各態様において、直接電流調整用として、或いは調整用電圧信号として用いることができる。   In the two-dimensional surface resistance potentiometer 1 configured as described above, when the user picks the knob 34 of the operation shaft 26 and moves in an arbitrary direction, the movable contact 27 comes into contact with the surface resistance film 21 by the spring 28. Move while. At that time, the movable cover 30 also moves while covering the opening while contacting the back surface of the cover 23 by the reaction force of the spring 28. At that time, the movable contact 27 is kept connected to the terminal 31 by the flexible wiring 32. With such a simple structure, it is possible to adjust the energization amount of each of the RGB LEDs as described above and obtain a predetermined color including white by mixing light. The signal obtained from the terminal 31 can be used for direct current adjustment or as an adjustment voltage signal in each of the embodiments shown in FIGS.

前記各実施例においては面抵抗体を平面状、或いは面抵抗率を変化させるために面抵抗の厚さを変化する例を示したが、その他例えば図9に示すように、操作ノブ35が回転中心部36を中心にジョイスティック状に回動するとき、その端部に設けた可動接点37が描く球面形状に対応して、内面を球面形状にした面抵抗体38としてもよい。   In each of the above embodiments, the surface resistor has a planar shape, or the thickness of the surface resistance is changed in order to change the surface resistivity. However, as shown in FIG. 9, for example, the operation knob 35 is rotated. When rotating in a joystick shape around the center portion 36, a surface resistor 38 having a spherical inner surface corresponding to the spherical shape drawn by the movable contact 37 provided at the end thereof may be used.

本発明は上記のように種々の態様で実施することができるものであるが、上記の趣旨にしたがい、更に各種の態様で実施することが可能である。   Although the present invention can be implemented in various modes as described above, the present invention can be further implemented in various modes in accordance with the above spirit.

本発明によるLED色調整装置は、LCDのバックライトとしてRGBの各LEDの発光により白色を得るために有効に利用することができるが、そのほか任意の色に発光させる各種照明のために、種々の機器に対して用いることができる。   The LED color adjusting device according to the present invention can be effectively used to obtain white color by emitting light from each of RGB LEDs as an LCD backlight. Can be used for equipment.

本発明の実施例の基本構造を示す図である。It is a figure which shows the basic structure of the Example of this invention. 本発明の第1の実施形態を示す図である。It is a figure which shows the 1st Embodiment of this invention. 本発明の第2の実施形態を示す図である。It is a figure which shows the 2nd Embodiment of this invention. 本発明の第3の実施形態を示す図である。It is a figure which shows the 3rd Embodiment of this invention. 本発明の第4の実施形態を示す図である。It is a figure which shows the 4th Embodiment of this invention. 本発明による2次元面抵抗型ポテンショメーターの構造例を示す図である。It is a figure which shows the structural example of the two-dimensional surface resistance type potentiometer by this invention. 本発明による2次元面抵抗型ポテンショメーターにおいて外周程面抵抗体の膜圧を厚くする例を示す断面図である。It is sectional drawing which shows the example which thickens the film | membrane pressure of a surface resistor to the outer periphery in the two-dimensional surface resistance type potentiometer by this invention. 本発明による2次元面抵抗型ポテンショメーター1のより具体例を示す図であり、(a)は平面図、(b)は断面図である。It is a figure which shows the more specific example of the two-dimensional surface resistance type potentiometer 1 by this invention, (a) is a top view, (b) is sectional drawing. 本発明の2次元面抵抗型ポテンショメーターの他の態様を示す図である。It is a figure which shows the other aspect of the two-dimensional surface resistance type potentiometer of this invention. 従来例を示す図である。It is a figure which shows a prior art example. 国際色空間RGB規格による色調整の説明図である。It is explanatory drawing of the color adjustment by international color space RGB specification. 同色調整における純白への調整を説明する図である。It is a figure explaining the adjustment to pure white in the same color adjustment.

符号の説明Explanation of symbols

1 2次元面抵抗型ポテンショメーター
2 面抵抗体
3 スライダー電極
1 2D surface resistance potentiometer
2 Surface resistor 3 Slider electrode

Claims (9)

三角形の頂点部分に、R、G、Bの三色のLEDに対応する3個の電極を備えた面抵抗体と、
前記面抵抗体に接触し任意の位置に移動可能な可動接点を有するスライダーとを備え、
前記可動接点から各電極に通電したときの可動接点と各電極との距離に応じた抵抗値により、各電極から前記各LEDに対して色調整用出力を行うことを特徴とするLED色調整装置。
A surface resistor having three electrodes corresponding to LEDs of three colors R, G, and B at the apex of the triangle;
A slider having a movable contact that contacts the surface resistor and is movable to an arbitrary position;
An LED color adjustment device for performing color adjustment output from each electrode to each LED according to a resistance value corresponding to a distance between the movable contact and each electrode when the electrodes are energized from the movable contact .
前記色調整用出力は面抵抗体の抵抗値であり、
各LEDの電流を該抵抗値により直接制御し、色調整を行うことを特徴とする請求項1記載のLED色調整装置。
The color adjustment output is a resistance value of the surface resistor,
2. The LED color adjusting device according to claim 1, wherein color adjustment is performed by directly controlling the current of each LED by the resistance value.
前記色調整用出力により各LEDの電流制御用半導体の通電制御を行い、色調整を行うことを特徴とする請求項1記載のLED色調整装置。   2. The LED color adjusting apparatus according to claim 1, wherein the color adjustment is performed by performing energization control of a current control semiconductor of each LED by the color adjustment output. 前記色調整用出力により各LEDの電流制御用半導体の通電パルスの制御を行い、色調整を行うことを特徴とする請求項1記載のLED色調整装置。   2. The LED color adjustment device according to claim 1, wherein the color adjustment is performed by controlling the energization pulse of the current control semiconductor of each LED by the color adjustment output. 前記色調整用出力値を各LED毎に記憶する記憶手段を備え、
予め色調整したときの各色調整用出力値を記憶しておき、該記憶した出力値を用いて色調整を行うことを特徴とする請求項1記載のLED色調整装置。
Storage means for storing the output value for color adjustment for each LED;
2. The LED color adjustment apparatus according to claim 1, wherein each color adjustment output value when color adjustment is performed in advance is stored, and color adjustment is performed using the stored output value.
前記面抵抗体上に可動電極の可動範囲を規制する内面を備えた枠を設け、
前記枠の内面に、少なくとも前記3個の電極の位置に対応して前記可動電極またはスライダーの一部が入る窪みを設けたことを特徴とする請求項1記載のLED色調整装置。
Provide a frame with an inner surface that regulates the movable range of the movable electrode on the surface resistor,
2. The LED color adjusting device according to claim 1, wherein a recess into which a part of the movable electrode or the slider enters corresponding to the position of at least the three electrodes is provided on the inner surface of the frame.
前記面抵抗体は、中心から遠ざかる程厚く形成したことを特徴とする請求項1記載のLED色調整装置。   2. The LED color adjusting device according to claim 1, wherein the surface resistor is formed thicker as it gets farther from the center. 前記面抵抗体を表面に設けた基板と、
前記基板を覆い、中心部に開口を形成したケースと、
前記開口に挿入し下端部に可動電極を備えた操作軸と、
前記操作軸に固定したストッパーと前記ケースの裏面との間に配置した可動カバーと、
前記可動接点を面抵抗側に押圧し、ストッパーを介して前記可動カバーをケース裏面に押圧するスプリングとを備えたことを特徴とする請求項1記載のLED色調整装置。
A substrate provided with the surface resistor on the surface;
A case covering the substrate and forming an opening in the center;
An operating shaft inserted into the opening and provided with a movable electrode at the lower end;
A movable cover disposed between a stopper fixed to the operation shaft and the back surface of the case;
The LED color adjusting device according to claim 1, further comprising a spring that presses the movable contact toward the surface resistance side and presses the movable cover against the back of the case via a stopper.
端部に可動電極を備え、支点を中心に前後左右に揺動する操作軸と、
前記可動電極の軌跡に対応して球状に形成した面抵抗体とを備えたことを特徴とする請求項1記載のLED色調整装置。
An operating shaft that has a movable electrode at the end and swings back and forth and left and right around a fulcrum;
The LED color adjusting device according to claim 1, further comprising a sheet resistor formed in a spherical shape corresponding to a locus of the movable electrode.
JP2006239658A 2006-09-04 2006-09-04 Led color adjusting device Withdrawn JP2008066350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239658A JP2008066350A (en) 2006-09-04 2006-09-04 Led color adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239658A JP2008066350A (en) 2006-09-04 2006-09-04 Led color adjusting device

Publications (1)

Publication Number Publication Date
JP2008066350A true JP2008066350A (en) 2008-03-21

Family

ID=39288817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239658A Withdrawn JP2008066350A (en) 2006-09-04 2006-09-04 Led color adjusting device

Country Status (1)

Country Link
JP (1) JP2008066350A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040344A (en) * 2009-08-18 2011-02-24 Kyushu Electric Power Co Inc Light control system
JP2015510238A (en) * 2012-02-07 2015-04-02 コーニンクレッカ フィリップス エヌ ヴェ Lighting system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040344A (en) * 2009-08-18 2011-02-24 Kyushu Electric Power Co Inc Light control system
JP2015510238A (en) * 2012-02-07 2015-04-02 コーニンクレッカ フィリップス エヌ ヴェ Lighting system

Similar Documents

Publication Publication Date Title
JP4182930B2 (en) Display device and backlight device
CN101803454B (en) Limiting the color gamut in solid state lighting panels
US8654064B2 (en) Backlight having blue light emitting diodes and method of driving same
CN1954250B (en) Backlight device and color liquid crystal display unit
JP4850122B2 (en) LED backlight unit
TWI412834B (en) Multi-colored led backlight with color-compensated clusters near edge
JP4684073B2 (en) LED backlight device and image display device
JP4666387B2 (en) Backlight unit and image display device including the unit
KR101078195B1 (en) Brightness controllable led illumination device with tactile sensor sensing intensity of force or intensity of pressure, flat panel display having the same, mobile terminal keypad having the same, robot eye, robot nose having the same and method of operating the same
US8552964B2 (en) Backlight assembly and method of driving the same
EP1947490A2 (en) Backlight assembly and cover for a compact display apparatus
KR20070000988A (en) Illuminating device and display device including the same
WO2007125623A1 (en) Lighting apparatus and liquid crystal display device provided with same
US8724051B2 (en) Backlight device, and liquid crystal display using the same
CN109389947B (en) Display device
JP2005310996A (en) Fixed current driving device, back light optical source equipment, and color liquid crystal display device
KR101269592B1 (en) LED organization method for liquid crystal display module
US11273710B2 (en) Graphical display assembly for depicting a straight gate vehicle shifter position
US11010120B2 (en) Graphical display assembly for depicting vehicle shifter position
JP2008066350A (en) Led color adjusting device
JPH08125229A (en) Aggregation type lamp
KR101322458B1 (en) Multi color light emitting apparatus
CN113053323A (en) Display device and color coordinate adjusting method thereof
Zwanenburg et al. 41.2: High‐efficiency LEDs for LCD Backlights
CN109449191A (en) A kind of OLED display panel and its control method, display device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110