JP2008066036A - Grounding method in low-voltage distribution system - Google Patents

Grounding method in low-voltage distribution system Download PDF

Info

Publication number
JP2008066036A
JP2008066036A JP2006240626A JP2006240626A JP2008066036A JP 2008066036 A JP2008066036 A JP 2008066036A JP 2006240626 A JP2006240626 A JP 2006240626A JP 2006240626 A JP2006240626 A JP 2006240626A JP 2008066036 A JP2008066036 A JP 2008066036A
Authority
JP
Japan
Prior art keywords
grounding
low
voltage distribution
building
distribution system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006240626A
Other languages
Japanese (ja)
Other versions
JP4553261B2 (en
Inventor
Tsutomu Yamazaki
勉 山崎
Kaori Saijo
香織 西城
里枝 ▲高▼橋
Rie Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Nippon Densetsu Kogyo Co Ltd
Original Assignee
East Japan Railway Co
Nippon Densetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co, Nippon Densetsu Kogyo Co Ltd filed Critical East Japan Railway Co
Priority to JP2006240626A priority Critical patent/JP4553261B2/en
Publication of JP2008066036A publication Critical patent/JP2008066036A/en
Application granted granted Critical
Publication of JP4553261B2 publication Critical patent/JP4553261B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Patch Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grounding method superior in noise resistance and strong for a ground fault accident. <P>SOLUTION: This is the grounding method in a low-voltage distribution system in a building structure such as a building, and a neutral phase (N) in such a low-voltage distribution system is grounded by connecting to the building structures (20, 21) through a grounding resistance (13), and the neutral phase (N) of the low-voltage distribution system is grounded by connecting to the building structures (20, 21) through a breaker (15) and a resistor (14). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ビルなどの建造物内の低圧配電系統における接地方式に関する。   The present invention relates to a grounding method in a low voltage distribution system in a building such as a building.

近年、ビル設備においては、省エネルギー化の目的で使用されるインバータなどの回路からの高周波ノイズの発生が顕著である。また、例えばビル内のオフィスで用いられる各種情報機器においては、従来より信号電圧が低い集積回路が用いられるようになっており、非常にノイズの影響を受けやすい。   In recent years, in building facilities, generation of high frequency noise from circuits such as inverters used for the purpose of energy saving has been remarkable. For example, various information devices used in offices in buildings use integrated circuits with lower signal voltages than in the past, and are very susceptible to noise.

従来、ビル設備等の低圧配電系統において、日本ではTT接地方式に近い接地方式が用いられていた。ところが、TT接地方式は、ビル構造体導電部を保護導体として使用するTN接地方式に比べてノイズ耐性において劣ることが本件発明者らのノイズ調査の結果わかってきた。本件発明者らは、今後、ノイズ耐性に優れる接地方式であるTN接地方式がビル設備の低圧配電系統において採用される件数が増えると予想している。なお、電力線の配電方式として、日本では主にTT接地方式が採用されており、主としてTN接地方式は日本以外の多くの国々で採用されている。また、以下、特に断りがない場合には、本明細書においては、TN接地方式はビル構造体導電部を保護導体として使用するものとして記載する。   Conventionally, in a low-voltage distribution system such as a building facility, a grounding method similar to a TT grounding method has been used in Japan. However, as a result of noise investigations by the present inventors, the TT grounding method is inferior in noise resistance compared to the TN grounding method in which the building structure conductive portion is used as a protective conductor. The inventors of the present invention predict that the number of TN grounding systems, which are grounding systems with excellent noise resistance, will be adopted in low-voltage distribution systems of building facilities in the future. As a power line distribution method, the TT grounding method is mainly adopted in Japan, and the TN grounding method is mainly adopted in many countries other than Japan. Further, hereinafter, unless otherwise specified, in this specification, the TN grounding method is described as using the building structure conductive portion as a protective conductor.

また、TT接地方式及びTN接地方式の名称についてであるが、第一文字のTは系統接地を施すことを意味し、TT接地方式における第二文字のTは機器接地を(前記系統接地とは独立して)施すことを意味する。そしてTN接地方式における第二文字のNは機器接地がないこと(前記系統接地に結線して共用する)を意味している。   As for the names of the TT grounding system and the TN grounding system, the first letter T means system grounding, and the second letter T in the TT grounding system is equipment grounding (independent of the system grounding). It means). The second letter N in the TN grounding system means that there is no equipment grounding (connected to the system grounding and shared).

これらTT接地方式とTN接地方式を図面を参照しつつ説明する。図5は、TT接地方式を模式的に示す図であり、図6は、TN接地方式を模式的に示す図である。図5及び図6において、10は負荷、11は低圧配電系統におけるトランス、12は地中に埋設される接地抵抗、20はビルなどの建造物のコンクリート部、21はビルなどの建造物の鉄骨部をそれぞれ示している。また、低圧配電系統において、Pは電圧相、Nはニュートラル相を示している。   These TT grounding system and TN grounding system will be described with reference to the drawings. FIG. 5 is a diagram schematically showing the TT grounding method, and FIG. 6 is a diagram schematically showing the TN grounding method. 5 and 6, 10 is a load, 11 is a transformer in a low-voltage distribution system, 12 is a grounding resistance buried in the ground, 20 is a concrete part of a building such as a building, and 21 is a steel frame of the building or the like Each part is shown. In the low voltage distribution system, P indicates a voltage phase, and N indicates a neutral phase.

TN接地方式は、建造物の構造体を接地電極として使用するのに対して、TT接地方式は、ビルなどの建造物の構造体には接地せず接地抵抗12を地中に埋設してアースすることを特徴としている。したがって、図5に示すように、わが国で6kV受電のTT接地方式では、ニュートラル相Nのトランス11近傍のA点と10〜30Ωの銅板からなる接地抵抗12とを導通するように構成する。また、図6に示すように、TN接地方式では、ニュートラル相Nのトランス11近傍のA点と建造物の構造体である鉄骨部21のB点とを導通するように構成する。   In the TN grounding system, a building structure is used as a ground electrode, whereas in the TT grounding system, the grounding resistor 12 is buried in the ground without being grounded to the building structure such as a building. It is characterized by doing. Therefore, as shown in FIG. 5, in the TT grounding system receiving 6 kV in Japan, the point A in the vicinity of the transformer 11 of the neutral phase N and the grounding resistor 12 made of a 10-30 Ω copper plate are electrically connected. As shown in FIG. 6, in the TN grounding system, the point A in the vicinity of the transformer 11 of the neutral phase N and the point B of the steel frame portion 21 which is the structure of the building are electrically connected.

以上のように構成されるTT接地方式、TN接地方式のそれぞれにおいて地絡(漏電)が発生した場合について説明する。TT接地方式の場合には、地絡S0が発生したとき、地絡電流は建造物の鉄骨部21から地中に埋設された接地抵抗12を通り、ニュートラル相Nに戻るような経路をたどる(S0→S1→S2→S3→S4)。TT接地方式においては、地絡電流路に10〜30Ωの銅板などの接地抵抗12が介挿されているので、地絡電流は数十A に抑えることができる。一方、TN接地方式の場合には、地絡S0が発生したとき、地絡電流は建造物の鉄骨部21から図示するよう形でニュートラル相Nに戻るような経路をたどる(S0→S1→S2→S3)。TN接地方式の場合には、地絡S0が発生したとき、抵抗成分が電流路に介在していないので、地絡電流は数kA という短絡電流に近い電流が流れることとなる。 A case where a ground fault (leakage) occurs in each of the TT grounding system and the TN grounding system configured as described above will be described. In the case of the TT grounding method, when the ground fault S 0 occurs, the ground fault current follows a path that returns from the steel frame portion 21 of the building to the neutral phase N through the ground resistance 12 buried in the ground. (S 0 → S 1 → S 2 → S 3 → S 4 ). In the TT grounding method, since the grounding resistance 12 such as a 10-30Ω copper plate is inserted in the grounding current path, the grounding current can be suppressed to several tens of A. On the other hand, in the case of the TN grounding method, when a ground fault S 0 occurs, the ground fault current follows a path that returns from the steel frame portion 21 of the building to the neutral phase N as shown in the figure (S 0 → S 1 → S 2 → S 3 ). In the case of the TN grounding method, when the ground fault S 0 is generated, since the resistance component is not interposed in the current path, the ground fault current flows as a short-circuit current of several kA.

上述したように、TN接地方式はTT接地方式に比べてノイズ耐性に優れている接地方式である。この詳細なメカニズムについては不明な点も未だ多いが、TT接地方式がTN接地方式に比べノイズ耐性に劣っているのは、TT接地方式の場合には、10〜30Ωの銅板などの接地抵抗12が存在し、これにより接地抵抗12において残留電圧が発生することに起因すると考えられている。   As described above, the TN grounding method is a grounding method that has better noise resistance than the TT grounding method. Although there are still many unclear points about this detailed mechanism, the TT grounding method is inferior to the TN grounding method in noise resistance. In the case of the TT grounding method, the grounding resistance 12 such as a 10-30Ω copper plate is used. This is considered to be caused by the occurrence of a residual voltage in the grounding resistor 12.

なお、上記のようなTT接地方式や、JISで規定する一般的なTN接地方式については、例えば特許文献1(特開2005−278299号公報)に開示されている。   Note that the TT grounding system as described above and a general TN grounding system defined by JIS are disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-278299.

TT接地方式の別態様についても説明しておく。図7は、TT接地方式の別態様を模式的に示す図である。TT接地方式では、ニュートラル相NのA点と建造物の構造体である鉄骨部21のB点との間に、接地抵抗13を介挿した構成となっている。当該態様においても、地絡S0が発生したとき、地絡電流は建造物の鉄骨部21から接地抵抗13を介して、ニュートラル相Nに戻るような経路をたどるので、地絡電流を数十A に抑えることができる。
特開2005−278299号公報
Another aspect of the TT grounding method will also be described. FIG. 7 is a diagram schematically showing another aspect of the TT grounding method. In the TT grounding method, the grounding resistor 13 is interposed between the point A of the neutral phase N and the point B of the steel frame portion 21 which is a structure of the building. Also in this mode, when the ground fault S 0 occurs, the ground fault current follows a path that returns from the steel frame portion 21 of the building to the neutral phase N via the grounding resistor 13. A can be suppressed.
JP 2005-278299 A

上記のようにTT接地方式においては、地絡電流を抑制する効果が大きい反面ノイズ耐性がTN接地方式に比べ劣っているという問題点があり、逆にTN接地方式においては、TT接地方式に比べてノイズ耐性に勝っている反面地絡電流を抑制する効果が小さい、という問題点があった。   As described above, the TT grounding method has a problem that the effect of suppressing the ground fault current is large, but there is a problem that the noise resistance is inferior to the TN grounding method. However, it has a problem that the effect of suppressing the ground fault current is small while it is superior in noise resistance.

このような課題を解決するために、請求項1に係る発明は、建造物内の低圧配電系統における接地方式であって、低圧配電系統のニュートラル相又は系統の一線を、接地抵抗を介して建造物構造体と接続して接地すると共に、低圧配電系統のニュートラル相又は系統の一線を、遮断器及び抵抗器を介して建造物構造体と接続して接地することを特徴とする。   In order to solve such a problem, the invention according to claim 1 is a grounding method in a low-voltage distribution system in a building, and the neutral phase of the low-voltage distribution system or one line of the system is constructed through a grounding resistor. It is characterized in that the neutral phase of the low-voltage distribution system or one line of the system is connected to the building structure via a circuit breaker and a resistor and grounded while being connected to the structure structure and grounded.

また、請求項2に係る発明は、建造物内の低圧配電系統における接地方式であって、低圧配電系統のニュートラル相又は系統の一線を、接地抵抗を介して建造物構造体と接続して接地すると共に、低圧配電系統のニュートラル相又は系統の一線を、限流遮断器を介して建造物構造体と接続して接地することを特徴とする。   The invention according to claim 2 is a grounding method in a low-voltage distribution system in a building, wherein the neutral phase of the low-voltage distribution system or one line of the system is connected to the building structure via a grounding resistor and grounded. In addition, the neutral phase of the low-voltage distribution system or one line of the system is connected to the building structure via a current limiting circuit breaker and grounded.

本発明の低圧配電系統における接地方式によれば、通常時にはノイズ耐性に優れるTN接地方式のような接地形態をとり、地絡事故発生時には地絡電流を抑制することができるTT接地方式のような接地形態をとることができるので、ノイズ耐性に優れ、なおかつ地絡事故に対しても強い接地方式を提供することができる。   According to the grounding method in the low-voltage distribution system of the present invention, a grounding configuration such as a TN grounding method that is excellent in noise resistance is normally used, and a ground fault current can be suppressed when a ground fault occurs. Since a grounding form can be taken, it is possible to provide a grounding system that is excellent in noise resistance and strong against ground faults.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は、本発明の実施の形態に係る低圧配電系統における接地方式を模式的に示す図である。本発明の前提は、ビルなどの建造物内の低圧配電系統に係る接地方式である。図1は、単相2線式の低圧配電系統を示すものであり、図1において、10は負荷、11は低圧配電系統におけるトランス、13は接地抵抗、14は抵抗器、15は遮断器、20はビルなどの建造物のコンクリート部、21はビルなどの建造物の鉄骨部をそれぞれ示している。また、低圧配電系統において、Pは電圧相、Nはニュートラル相を示している。建造物におけるコンクリート部20や鉄骨部21を総称して建造物構造体と称する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing a grounding method in a low-voltage distribution system according to an embodiment of the present invention. The premise of the present invention is a grounding system related to a low voltage distribution system in a building such as a building. FIG. 1 shows a single-phase two-wire low-voltage distribution system. In FIG. 1, 10 is a load, 11 is a transformer in the low-voltage distribution system, 13 is a ground resistance, 14 is a resistor, 15 is a circuit breaker, Reference numeral 20 denotes a concrete part of a building such as a building, and 21 denotes a steel frame part of the building such as a building. In the low voltage distribution system, P indicates a voltage phase, and N indicates a neutral phase. The concrete portion 20 and the steel frame portion 21 in the building are collectively referred to as a building structure.

本発明の実施の形態に係る低圧配電系統における接地方式は、TN接地方式とTT接地方式とを組み合わせたような接地方式となっている。すなわち、本発明においては、ニュートラル相Nにおけるトランス11近傍のA点と建造物の構造体である鉄骨部21のB点との間に接地抵抗13を介挿し、また、ニュートラル相Nのニュートラル相Nにおけるトランス11近傍のC点と建造物の構造体である鉄骨部21のD点との間には、抵抗器14と遮断器15を介挿するような接地形態となっている。接地抵抗13はB種抵抗と呼ばれる法令により用いることが義務づけられているものである。また、抵抗器14は遮断器15を動作させる電流値を調整するために用いるものである。   The grounding method in the low-voltage distribution system according to the embodiment of the present invention is a grounding method in which the TN grounding method and the TT grounding method are combined. That is, in the present invention, the grounding resistor 13 is inserted between the point A near the transformer 11 in the neutral phase N and the point B of the steel frame portion 21 which is the structure of the building, and the neutral phase of the neutral phase N Between the point C in the vicinity of the transformer 11 in N and the point D of the steel frame portion 21 that is the structure of the building, a grounding configuration is provided in which a resistor 14 and a circuit breaker 15 are interposed. The ground resistor 13 is obliged to be used in accordance with a law called B-type resistor. The resistor 14 is used to adjust a current value for operating the circuit breaker 15.

次に、以上のような本発明の接地方式における動作・作用について説明する。図2及び図3は、本発明の実施の形態に係る低圧配電系統における接地方式における動作を説明する図である。図2は、地絡事故等が発生していない通常時における状態を示すものであり、図3は地絡事項が発生した時における状態を示すものである。   Next, the operation / action in the grounding system of the present invention as described above will be described. FIG.2 and FIG.3 is a figure explaining the operation | movement in the grounding system in the low voltage | pressure distribution system which concerns on embodiment of this invention. FIG. 2 shows a state at a normal time when a ground fault accident or the like does not occur, and FIG. 3 shows a state when a ground fault matter occurs.

図2に示す通常時においては、遮断器15は閉じられており、TN接地方式と同じようにニュートラル相Nと建造物の構造体である鉄骨部21とが導通し、接地されるような構成となっている。したがって、本発明の接地方式においては、通常時、ノイズ耐性に優れている接地方式であるTN接地方式と同じ効果を享受することができる。   In the normal state shown in FIG. 2, the circuit breaker 15 is closed, and the neutral phase N and the steel part 21 which is the structure of the building are electrically connected and grounded as in the TN grounding system. It has become. Therefore, in the grounding system of the present invention, the same effect as that of the TN grounding system, which is a grounding system that is excellent in noise resistance, can be obtained in normal times.

図3に示す地絡事故発生時においては、遮断器15の動作によってC−D間はオープンとなる。したがって、本発明の接地方式においては、地絡時、地絡電流を抑制することができるTT接地方式と同様のメリットがある。本発明においては、地絡S0が発生したとき、地絡電流は建造物の鉄骨部21から地中に埋設された接地抵抗13を通り、ニュートラル相Nに戻るような経路をたどる(S0→S1→S2→S3)。このように地絡電流は、接地抵抗13を電路とするようになっているために、地絡電流を数十A に抑えることができる。 At the time of occurrence of the ground fault shown in FIG. 3, C-D is opened by the operation of the circuit breaker 15. Therefore, the grounding system of the present invention has the same merit as the TT grounding system that can suppress the ground fault current at the time of ground fault. In the present invention, when a ground fault S 0 occurs, the ground fault current follows a path from the steel frame portion 21 of the building through the ground resistance 13 buried in the ground and back to the neutral phase N (S 0). → S 1 → S 2 → S 3 ). Thus, the ground fault current can be suppressed to several tens of A since the grounding resistor 13 is used as an electric circuit.

以上、本発明の低圧配電系統における接地方式によれば、通常時にはノイズ耐性に優れるTN接地方式のような接地形態をとり、地絡事故発生時には地絡電流を抑制することができるTT接地方式のような接地形態をとることができるので、ノイズ耐性に優れ、なおかつ地絡事故に対しても強い接地方式を提供することができる。   As described above, according to the grounding system in the low-voltage distribution system of the present invention, the TT grounding system that can take a grounding form such as a TN grounding system that is excellent in noise resistance in a normal state and can suppress a ground fault current when a ground fault occurs. Therefore, it is possible to provide a grounding method that is excellent in noise resistance and strong against ground faults.

なお、本実施形態においては単相2線式を例に挙げて説明したが、本発明は三相3線式や単相3線式などの低圧配電系統における場合にも用いることができることは言うまでもない。なお、三相3線式や単相3線式などの場合には、単相2線式における「ニュートラル相N」という概念はないので、三相3線式や単相3線式などに本発明を適用する場合は、系統の一線を、単相2線式におけるニュートラル相N同様に接地すればよい。   In the present embodiment, a single-phase two-wire system has been described as an example, but it goes without saying that the present invention can also be used in a low-voltage distribution system such as a three-phase three-wire system or a single-phase three-wire system. Yes. In the case of a three-phase three-wire system or a single-phase three-wire system, there is no concept of “neutral phase N” in a single-phase two-wire system. When the invention is applied, one line of the system may be grounded like the neutral phase N in the single-phase two-wire system.

次に本発明の他の実施の形態を図面を参照しつつ説明する。図4は、本発明の他の実施の形態に係る低圧配電系統における接地方式を模式的に示す図である。図4は、単相2線式の低圧配電系統を示すものであり、図4において、10は負荷、11は低圧配電系統におけるトランス、13は接地抵抗、16は限流遮断器、20はビルなどの建造物のコンクリート部、21はビルなどの建造物の鉄骨部をそれぞれ示している。また、低圧配電系統において、Pは電圧相、Nはニュートラル相を示している。建造物におけるコンクリート部20や鉄骨部21を総称して建造物構造体と称する。   Next, another embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a diagram schematically showing a grounding method in a low-voltage distribution system according to another embodiment of the present invention. FIG. 4 shows a single-phase two-wire low-voltage distribution system. In FIG. 4, 10 is a load, 11 is a transformer in the low-voltage distribution system, 13 is a grounding resistance, 16 is a current limiting circuit breaker, and 20 is a building. A concrete part of a building such as, and 21 indicate a steel frame part of a building such as a building. In the low voltage distribution system, P indicates a voltage phase, and N indicates a neutral phase. The concrete portion 20 and the steel frame portion 21 in the building are collectively referred to as a building structure.

本実施形態が先に実施形態と異なる点は、C−D間に限流遮断器16を用いた点である。この限流遮断器16は、地絡事故発生時に、アークによってエネルギーを消費させることによって全体に流れる電流を制御するものである。本実施形態における作用も、先の実施形態と同様で、通常時においては閉となっている限流遮断器16により、C−D間が短絡してTN接地方式のメリットを享受することができ、地絡事故発生時においては、限流遮断器16が開となり、地絡電流は接地抵抗13の経路(A−B間)を通ることで、地絡電流の抑制を図ることができる。   This embodiment is different from the previous embodiment in that a current limiting breaker 16 is used between C and D. This current limiting circuit breaker 16 controls the current flowing through the whole by consuming energy by an arc when a ground fault occurs. The operation in this embodiment is the same as in the previous embodiment, and the current-limiting circuit breaker 16 which is normally closed can short-circuit between C and D and enjoy the benefits of the TN grounding method. When a ground fault occurs, the current limiting breaker 16 is opened, and the ground fault current can be suppressed by passing through the path of the ground resistor 13 (between A and B).

以上、本発明の他の実施形態の低圧配電系統における接地方式によれば、通常時にはノイズ耐性に優れるTN接地方式のような接地形態をとり、地絡事故発生時には地絡電流を抑制することができるTT接地方式のような接地形態をとることができるので、ノイズ耐性に優れ、なおかつ地絡事故に対しても強い接地方式を提供することができる。   As described above, according to the grounding method in the low-voltage distribution system according to another embodiment of the present invention, the grounding method such as the TN grounding method that is excellent in noise resistance is normally used, and the ground fault current is suppressed when a ground fault occurs. Since it can take a grounding form such as a TT grounding method, it is possible to provide a grounding method that is excellent in noise resistance and strong against ground faults.

なお、本実施形態においては単相2線式を例に挙げて説明したが、本発明は三相3線式や単相3線式などの低圧配電系統における接地の場合にも用いることができることは言うまでもない。なお、三相3線式や単相3線式などの場合には、単相2線式における「ニュートラル相N」という概念はないので、三相3線式や単相3線式などに本発明を適用する場合は、系統の一線を、単相2線式におけるニュートラル相N同様に接地すればよい。   In this embodiment, a single-phase two-wire system has been described as an example. However, the present invention can also be used for grounding in a low-voltage distribution system such as a three-phase three-wire system or a single-phase three-wire system. Needless to say. In the case of a three-phase three-wire system or a single-phase three-wire system, there is no concept of “neutral phase N” in a single-phase two-wire system. When the invention is applied, one line of the system may be grounded like the neutral phase N in the single-phase two-wire system.

本発明の実施の形態に係る低圧配電系統における接地方式を模式的に示す図である。It is a figure which shows typically the grounding system in the low voltage | pressure distribution system which concerns on embodiment of this invention. 本発明の実施の形態に係る低圧配電系統における接地方式(通常時)における動作を説明する図である。It is a figure explaining the operation | movement in the earthing | grounding system (normal time) in the low voltage | pressure distribution system which concerns on embodiment of this invention. 本発明の実施の形態に係る低圧配電系統における接地方式(地絡時)における動作を説明する図である。It is a figure explaining the operation | movement in the grounding system (at the time of a ground fault) in the low voltage | pressure distribution system which concerns on embodiment of this invention. 本発明の他の実施の形態に係る低圧配電系統における接地方式を模式的に示す図である。It is a figure which shows typically the grounding system in the low voltage | pressure distribution system which concerns on other embodiment of this invention. TT接地方式を模式的に示す図である。It is a figure which shows a TT grounding system typically. TN接地方式を模式的に示す図である。It is a figure which shows a TN grounding system typically. TT接地方式の別態様を模式的に示す図である。It is a figure which shows typically the other aspect of a TT grounding system.

符号の説明Explanation of symbols

10・・・負荷、11・・・トランス、12・・・接地抵抗、13・・・接地抵抗(B種抵抗)、14・・・抵抗器、15・・・遮断器、16・・・限流遮断器、20・・・コンクリート部、21・・・鉄骨部 DESCRIPTION OF SYMBOLS 10 ... Load, 11 ... Transformer, 12 ... Grounding resistance, 13 ... Grounding resistance (class B resistance), 14 ... Resistor, 15 ... Circuit breaker, 16 ... Limit Current breaker, 20 ... concrete part, 21 ... steel frame part

Claims (2)

建造物内の低圧配電系統における接地方式であって、
低圧配電系統のニュートラル相又は系統の一線を、接地抵抗を介して建造物構造体と接続して接地すると共に、低圧配電系統のニュートラル相又は系統の一線を、遮断器及び抵抗器を介して建造物構造体と接続して接地することを特徴とする低圧配電系統における接地方式。
A grounding method in a low-voltage distribution system in a building,
Connect the neutral phase of the low-voltage distribution system or one line of the system to the building structure via a grounding resistor and ground it, and construct the neutral phase or system line of the low-voltage distribution system via a circuit breaker and resistor. A grounding method in a low-voltage distribution system, characterized by connecting to a structure and grounding.
建造物内の低圧配電系統における接地方式であって、
低圧配電系統のニュートラル相又は系統の一線を、接地抵抗を介して建造物構造体と接続して接地すると共に、低圧配電系統のニュートラル相又は系統の一線を、限流遮断器を介して建造物構造体と接続して接地することを特徴とする低圧配電系統における接地方式。
A grounding method in a low-voltage distribution system in a building,
The neutral phase of the low-voltage distribution system or one line of the system is connected to the building structure via a grounding resistor and grounded, and the neutral phase or system line of the low-voltage distribution system is connected to the building via a current limiting circuit breaker. A grounding method in a low-voltage distribution system characterized by connecting to a structure and grounding.
JP2006240626A 2006-09-05 2006-09-05 Grounding method in low voltage distribution system Expired - Fee Related JP4553261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006240626A JP4553261B2 (en) 2006-09-05 2006-09-05 Grounding method in low voltage distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006240626A JP4553261B2 (en) 2006-09-05 2006-09-05 Grounding method in low voltage distribution system

Publications (2)

Publication Number Publication Date
JP2008066036A true JP2008066036A (en) 2008-03-21
JP4553261B2 JP4553261B2 (en) 2010-09-29

Family

ID=39288584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240626A Expired - Fee Related JP4553261B2 (en) 2006-09-05 2006-09-05 Grounding method in low voltage distribution system

Country Status (1)

Country Link
JP (1) JP4553261B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056535B1 (en) 2009-05-27 2011-08-12 한국 전기안전공사 Ground Simulation Circuit and Device of Low Voltage Wiring System
KR20160015425A (en) * 2014-07-30 2016-02-15 한국 전기안전공사 Low-voltage open phase circuit breaker for PEN conductor in TN-C-S grounding system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388994A (en) * 1977-01-17 1978-08-04 Hitachi Cable Ltd Cable line
JPS5943070U (en) * 1982-09-14 1984-03-21 株式会社東芝 earthing device
JPS6248685U (en) * 1985-09-12 1987-03-25
JPH06104066A (en) * 1992-09-24 1994-04-15 Hitachi Electron Service Co Ltd High frequency grounding method for electronic apparatus
JPH07169516A (en) * 1993-12-17 1995-07-04 Showa Electric Wire & Cable Co Ltd Grounding device for equipment
JP2001101963A (en) * 1999-09-30 2001-04-13 Matsushita Electric Works Ltd Leakage breaker
JP2001118614A (en) * 1999-10-21 2001-04-27 Fujitsu Ltd Earthing assembly and its manufacturing method
JP2003208929A (en) * 2002-01-16 2003-07-25 Tadahiro Omi Earthing system of building
JP2005056594A (en) * 2003-08-05 2005-03-03 Kajima Corp Skeleton grounding structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388994A (en) * 1977-01-17 1978-08-04 Hitachi Cable Ltd Cable line
JPS5943070U (en) * 1982-09-14 1984-03-21 株式会社東芝 earthing device
JPS6248685U (en) * 1985-09-12 1987-03-25
JPH06104066A (en) * 1992-09-24 1994-04-15 Hitachi Electron Service Co Ltd High frequency grounding method for electronic apparatus
JPH07169516A (en) * 1993-12-17 1995-07-04 Showa Electric Wire & Cable Co Ltd Grounding device for equipment
JP2001101963A (en) * 1999-09-30 2001-04-13 Matsushita Electric Works Ltd Leakage breaker
JP2001118614A (en) * 1999-10-21 2001-04-27 Fujitsu Ltd Earthing assembly and its manufacturing method
JP2003208929A (en) * 2002-01-16 2003-07-25 Tadahiro Omi Earthing system of building
JP2005056594A (en) * 2003-08-05 2005-03-03 Kajima Corp Skeleton grounding structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056535B1 (en) 2009-05-27 2011-08-12 한국 전기안전공사 Ground Simulation Circuit and Device of Low Voltage Wiring System
KR20160015425A (en) * 2014-07-30 2016-02-15 한국 전기안전공사 Low-voltage open phase circuit breaker for PEN conductor in TN-C-S grounding system
KR101599787B1 (en) 2014-07-30 2016-03-08 한국 전기안전공사 Low-voltage open phase circuit breaker for PEN conductor in TN-C-S grounding system

Also Published As

Publication number Publication date
JP4553261B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
Salonen et al. Protection scheme for an LVDC distribution system
KR101489939B1 (en) Gas insulated switch-gear
JP4770403B2 (en) Operation test method for ground fault direction relay
KR20130017612A (en) Gas insulated switch-gear
CN106856323B (en) Protection device for protecting transformer from influence of geomagnetic induction current
Wu et al. Arc fault model for low-voltage AC systems
JP4553261B2 (en) Grounding method in low voltage distribution system
Paul et al. High-resistance grounded power-system equivalent circuit damage at the line–ground fault location—Part II
WO2004008600A3 (en) Electrical network protection system
Bapat et al. Advanced concepts in high resistance grounding
JP2006020452A (en) Protection relay system for generator main circuit
PM et al. ANALYSIS OF OVERVOLTAGES OCCURRING AT GROUNDING FAULTS IN A MEDIUM VOLTAGE NETWORK DEPENDING ON THE NEUTRAL TREATMENT.
Oppel et al. Evaluation of the performance of line protection schemes on the NYSEG six phase transmission system
JPH05137239A (en) Method and circuit for testing ground directional relay
KR20090120766A (en) Fault current limiting method through the application of superconducting fault current limiter into the neutral line of power system
JP2007060797A (en) Generator protective relay device
US8837095B2 (en) DC electrical power system
KR20190019764A (en) Neutral ground reactor for preventing harmonics and manufacture method thereof
US20110148222A1 (en) Method for determining a switching time of an electrical switching device
JP2005192337A (en) Transformer protecting relay device
KR200364906Y1 (en) bus-bar and current transformer using it
SU1185488A1 (en) Device for compensating single-phase circuit current
Pesce et al. Study of protection strategies against breakdown effects in the SPIDER experiment
RU2550348C2 (en) DEVICE OF PROTECTION FOR AERIAL AND CABLES LINES OF DISTRIBUTED NETWORK 6-35 kV
JP3136858B2 (en) Loop current switching test equipment for disconnector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees