JP2008064503A - Method and device for optical reflectometry - Google Patents

Method and device for optical reflectometry Download PDF

Info

Publication number
JP2008064503A
JP2008064503A JP2006240498A JP2006240498A JP2008064503A JP 2008064503 A JP2008064503 A JP 2008064503A JP 2006240498 A JP2006240498 A JP 2006240498A JP 2006240498 A JP2006240498 A JP 2006240498A JP 2008064503 A JP2008064503 A JP 2008064503A
Authority
JP
Japan
Prior art keywords
beat signal
monitoring
optical
light
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006240498A
Other languages
Japanese (ja)
Other versions
JP4769668B2 (en
Inventor
Shinyuu Fan
ファン・シンユウ
Fumihiko Ito
文彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006240498A priority Critical patent/JP4769668B2/en
Publication of JP2008064503A publication Critical patent/JP2008064503A/en
Application granted granted Critical
Publication of JP4769668B2 publication Critical patent/JP4769668B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3172Reflectometers detecting the back-scattered light in the frequency-domain, e.g. OFDR, FMCW, heterodyne detection

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for optical reflectometry measuring device capable of measurement by C-OFDR with a high-distance resolution. <P>SOLUTION: The device is provided with the monitoring part 12 for monitoring the nonlinearity of the frequency sweep of the coherent light source 1, based on this monitoring results, the measurement results in the measuring part 11 is corrected, i.e. at the monitoring part 12, by the self delayed homodyne detection, the monitoring beat signal of the light source output light is generated, the wave shape of which is sampled by the sampling part 16. The continuous function R(t) indicating the waveform is analyzed, and the zero cross points are obtained. The continuous function obtained by sampling the interference beat signal at the measuring part 11 is substituted with the zero cross points of the continuous function R(t), wherein the numerous train obtained is FFT processed. Then the measurement results are obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、光回路などの被測定回路における、反射率の伝播方向に対する分布を測定するリフレクトメトリ測定方法と、この方法を実施する装置に関する。   The present invention relates to a reflectometry measurement method for measuring a distribution of reflectance with respect to a propagation direction in a circuit to be measured such as an optical circuit, and an apparatus for implementing the method.

光回路などの伝送損失の測定や故障箇所の診断に用いられる光反射測定方法の一つとして、コヒーレント光周波数領域リフレクトメトリ測定方法(C−OFDR)が知られている(例えば非特許文献1を参照)。この方法は、周波数掃引コヒーレント光源からの出力光を2分岐し、測定対象からの反射光と一方の分岐光との干渉により生じる干渉ビート信号を解析することにより、測定対象における後方散乱光強度の光伝播方向に対する分布を測定するものである。   A coherent optical frequency domain reflectometry measurement method (C-OFDR) is known as one of the light reflection measurement methods used for measuring transmission loss of optical circuits and the like and diagnosing faults (for example, see Non-Patent Document 1). reference). In this method, the output light from the frequency-swept coherent light source is split into two, and the interference beat signal generated by the interference between the reflected light from the measurement target and one of the split lights is analyzed, whereby the backscattered light intensity of the measurement target is measured. The distribution with respect to the light propagation direction is measured.

すなわちC−OFDRは、光周波数を掃引されたコヒーレント光源からの出力光を2分岐し、そのうちの一方を測定光として被測定光回路に入射し、他方を局発光として後方散乱光(測定光が被測定光回路の伝搬距離に応じた各位置で反射されて発生する反射光)と合波させる。これにより生じる干渉ビート信号を検出し、そのスペクトラムを分析して、被測定光回路の伝搬距離に応じた各位置の反射率をスペクトラムの周波数成分の強度として測定するものである。
「Optical frequency domain reflectometry in single-mode fiber」, W.Eickhoff and R.Ulrich, Applied Physics Letters 39(9), pp.693-695.
That is, the C-OFDR splits the output light from the coherent light source whose optical frequency has been swept into two, one of which is incident as the measurement light on the measured optical circuit and the other as the local light, and the backscattered light (the measurement light is transmitted). And reflected light generated at each position corresponding to the propagation distance of the optical circuit to be measured). The resulting interference beat signal is detected, the spectrum is analyzed, and the reflectance at each position corresponding to the propagation distance of the optical circuit under measurement is measured as the intensity of the frequency component of the spectrum.
`` Optical frequency domain reflectometry in single-mode fiber '', W. Eickhoff and R. Ulrich, Applied Physics Letters 39 (9), pp.693-695.

しかしながら既存の技術においては、周波数掃引コヒーレント光源の出力光の光周波数を、良好な直線性で掃引することが困難である。この周波数掃引速度の非直線性により干渉ビート信号のスペクトル幅が広がることから、既知のC−OFDRにおいては高い距離分解能による測定が難しいという課題がある。
この発明は上記事情によりなされたもので、その目的は、C−OFDRによる測定を高い距離分解能で実施することの可能な光リフレクトメトリ測定方法および光リフレクトメトリ測定装置を提供することにある。
However, in the existing technology, it is difficult to sweep the optical frequency of the output light of the frequency sweep coherent light source with good linearity. Since the spectrum width of the interference beat signal widens due to the nonlinearity of the frequency sweep speed, there is a problem that measurement with high distance resolution is difficult in the known C-OFDR.
This invention is made | formed by the said situation, The objective is to provide the optical reflectometry measuring method and optical reflectometry measuring apparatus which can implement the measurement by C-OFDR with high distance resolution.

上記目的を達成するためにこの発明の一態様によれば、測定対象における反射率の伝播方向に対する分布をコヒーレント光周波数領域リフレクトメトリ測定方法(C−OFDR)により測定する光リフレクトメトリ測定装置において、光周波数を掃引されるコヒーレント光源と、このコヒーレント光源の出力光の特性をモニタするモニタ部と、前記出力光と前記測定対象からの後方散乱光との干渉ビート信号を検出する測定部と、前記光周波数掃引の非直線性を前記モニタした特性に基づき補正して前記干渉ビート信号に基づく測定結果を得る解析部とを具備することを特徴とする光リフレクトメトリ測定装置が提供される。
このような手段を講じることにより、コヒーレント光源の光周波数掃引の非直線性を補正した測定結果が得られる。従ってC−OFDRによる測定を高い距離分解能で実施することが可能になる。
In order to achieve the above object, according to one aspect of the present invention, in an optical reflectometry measurement apparatus that measures a distribution of reflectance in a measurement object with respect to a propagation direction by a coherent optical frequency domain reflectometry measurement method (C-OFDR), A coherent light source whose optical frequency is swept, a monitor unit that monitors the characteristics of the output light of the coherent light source, a measurement unit that detects an interference beat signal between the output light and backscattered light from the measurement object, and An optical reflectometry measuring apparatus is provided, comprising: an analysis unit that corrects the nonlinearity of the optical frequency sweep based on the monitored characteristic and obtains a measurement result based on the interference beat signal.
By taking such means, a measurement result in which the nonlinearity of the optical frequency sweep of the coherent light source is corrected can be obtained. Therefore, the measurement by C-OFDR can be performed with high distance resolution.

この発明によれば、C−OFDRによる測定を高い距離分解能で実施することの可能な光リフレクトメトリ測定方法および光リフレクトメトリ測定装置を提供することができる。   According to the present invention, it is possible to provide an optical reflectometry measuring method and an optical reflectometry measuring apparatus capable of performing measurement by C-OFDR with high distance resolution.

以下、図面を参照して詳しい説明を行う。まず、この発明の実施の形態の説明の前に、既存の技術につき詳しく述べる。
図1は、C−OFDRによる光リフレクトメトリ測定装置の基本構成の一例を示す図である。図1において、周波数掃引コヒーレント光源1からの出力光は光方向性結合器Aにより分岐され、一方は参照光3として用いられ、他方は光被測定光回路4に入射される。被測定光回路4の内部で後方散乱された信号光5は光方向性結合器Aにより取り出され、光方向性結合器Bにより参照光3と合波されたのち受信器6により検波される。このとき、2光波の干渉により生じる干渉ビート信号をサンプリング装置7によりサンプリングし、測定したデータを周波数解析装置8にて解析することにより、被測定光回路4内の各位置からの後方散乱光強度分布が測定される。
Hereinafter, detailed description will be given with reference to the drawings. First, the existing technology will be described in detail before the description of the embodiment of the present invention.
FIG. 1 is a diagram illustrating an example of a basic configuration of an optical reflectometry measuring apparatus using C-OFDR. In FIG. 1, the output light from the frequency swept coherent light source 1 is branched by the optical directional coupler A, one of which is used as the reference light 3 and the other incident on the optical circuit under test 4. The signal light 5 backscattered inside the optical circuit 4 to be measured is extracted by the optical directional coupler A, combined with the reference light 3 by the optical directional coupler B, and then detected by the receiver 6. At this time, the interference beat signal generated by the interference of the two light waves is sampled by the sampling device 7, and the measured data is analyzed by the frequency analysis device 8, whereby the intensity of the backscattered light from each position in the measured optical circuit 4. Distribution is measured.

ここで、周波数掃引コヒーレント光源1からの出力光2の周波数を時間T、最大光周波数掃引幅ΔFで時間に対して直線的に掃引するとき、被測定光回路4内のある点Xで後方散乱された信号光により生じるビート信号の周波数Fbは、参照光と点Xで後方散乱された信号光との光路長差ΔL、光周波数掃引速度γ、光の屈折率n、および光速Cを用いて次式(1)により与えられる。

Figure 2008064503
Here, when the frequency of the output light 2 from the frequency swept coherent light source 1 is swept linearly with respect to time with time T and maximum optical frequency sweep width ΔF, backscattering is performed at a certain point X in the optical circuit 4 to be measured. The frequency Fb of the beat signal generated by the transmitted signal light is obtained by using the optical path length difference ΔL between the reference light and the signal light backscattered at the point X, the optical frequency sweep speed γ, the light refractive index n, and the light speed C. It is given by the following equation (1).
Figure 2008064503

ただし、γ=ΔF/Tである。また、距離分解能Δzは受信ビート信号のスペクトル幅ΔAを用いて式(2)により与えられる。

Figure 2008064503
However, γ = ΔF / T. The distance resolution Δz is given by the equation (2) using the spectrum width ΔA of the received beat signal.
Figure 2008064503

ただし以上の条件は理想的な場合であり、現状のC−OFDRにおいては光周波数を良好な直線性で掃引することが困難である。   However, the above conditions are ideal cases, and in the current C-OFDR, it is difficult to sweep the optical frequency with good linearity.

図2は、周波数掃引コヒーレント光源1の光周波数の非直線性を示す図である。一定値F[Hz]を基準変調周波数として、光周波数は時間TのときにF+γT[Hz]なる値に掃引される。ここで、非直線性のある周波数掃引速度はγで表される。この周波数掃引速度の非直線性により干渉ビート信号のスペクトル幅は広がり、距離分解能の精度が低下する。   FIG. 2 is a diagram showing the nonlinearity of the optical frequency of the frequency swept coherent light source 1. With the constant value F [Hz] as a reference modulation frequency, the optical frequency is swept to a value of F + γT [Hz] at time T. Here, the frequency sweep speed with nonlinearity is represented by γ. Due to the nonlinearity of the frequency sweep speed, the spectral width of the interference beat signal is widened, and the accuracy of the distance resolution is lowered.

図3は、この発明に係わる光リフレクトメトリ測定装置の実施の形態を示す機能ブロック図である。この光リフレクトメトリ測定装置は、被測定回路における反射率の伝播方向に対する分布をC−OFDR測定する。図3において、光周波数掃引されたコヒーレント光源1からの出力光9は光方向性結合器Cにより分岐され、一方は測定光2として測定部11に入射し、他方はモニタリング光10としてモニタリング部12に入射する。測定部11による測定の結果とモニタリング部12によるモニタの結果とを解析部13に入力し、演算処理により被測定回路(測定手段11内)における後方散乱光強度分布を得る。   FIG. 3 is a functional block diagram showing an embodiment of the optical reflectometry measuring apparatus according to the present invention. This optical reflectometry measuring device measures C-OFDR of the distribution of the reflectance in the circuit under measurement with respect to the propagation direction. In FIG. 3, the output light 9 from the coherent light source 1 swept by the optical frequency is branched by the optical directional coupler C, one of which enters the measurement unit 11 as the measurement light 2, and the other the monitoring unit 12 as the monitoring light 10. Is incident on. The result of measurement by the measurement unit 11 and the result of monitoring by the monitoring unit 12 are input to the analysis unit 13, and a backscattered light intensity distribution in the circuit under measurement (in the measurement means 11) is obtained by arithmetic processing.

測定部11はコヒーレント光源1の出力光と被測定回路からの後方散乱光との干渉ビート信号を検出する。モニタリング部12は例えば自己遅延ホモダイン検波により出力光の特性をモニタする。そのモニタ結果に基づいて解析部13は、コヒーレント光源1の光周波数掃引の非直線性を補正して干渉ビート信号に基づく測定結果を得る。   The measuring unit 11 detects an interference beat signal between the output light of the coherent light source 1 and the backscattered light from the circuit under measurement. The monitoring unit 12 monitors the characteristics of the output light by, for example, self-delayed homodyne detection. Based on the monitoring result, the analysis unit 13 corrects the nonlinearity of the optical frequency sweep of the coherent light source 1 and obtains a measurement result based on the interference beat signal.

図4は、図3の光リフレクトメトリ測定装置をより詳細に示す機能ブロック図である。モニタリング部12に入射されたモニタリング光は方向性結合器Dにより2分岐され、一方の光のみが遅延部14により遅延されたのち互いに方向性結合器Eで合波される。合波された光は受信器15により検波され、モニタリングビート信号が生成されてサンプリング装置16に入力される。サンプリング装置16は、解析部13に備わるクロック17のクロックに同期するタイミングでモニタリングビート信号の波形をサンプリングし、サンプリングデータを解析部13の周波数解析装置8に入力する。   FIG. 4 is a functional block diagram showing the optical reflectometry measuring device of FIG. 3 in more detail. The monitoring light incident on the monitoring unit 12 is branched into two by the directional coupler D, and only one of the lights is delayed by the delay unit 14 and then multiplexed by the directional coupler E. The combined light is detected by the receiver 15, and a monitoring beat signal is generated and input to the sampling device 16. The sampling device 16 samples the waveform of the monitoring beat signal at a timing synchronized with the clock 17 of the analysis unit 13 and inputs the sampling data to the frequency analysis device 8 of the analysis unit 13.

測定部11に入射された測定光11は図1と同様の処理を施され、干渉ビート信号がサンプリング装置7に入力される。サンプリング装置7はクロック17のクロックに同期するタイミングで、すなわちサンプリング装置16と互いに同期する間隔で干渉ビート信号の波形をサンプリングする。これにより得られたサンプリングデータは周波数解析装置8に入力される。   The measurement light 11 incident on the measurement unit 11 is subjected to the same processing as in FIG. 1, and an interference beat signal is input to the sampling device 7. The sampling device 7 samples the waveform of the interference beat signal at a timing synchronized with the clock 17, that is, at an interval synchronized with the sampling device 16. The sampling data thus obtained is input to the frequency analysis device 8.

次に数式を用いて定量的に説明する。コヒーレント光源1の出力光の光周波数を、一定値F[Hz]を基準変調周波数として時間TのときにF+γT[Hz]に掃引されるとする。周波数掃引速度の非直線性はγをパラメータとして表される。図4の遅延部14を長さ2Lの光ファイバとすると、方向性結合器Eにて合波された両光波の周波数差は2nLγ/cとなる。よって受信器15により検波されるモニタリングビート信号は次式(3)で与えられる。

Figure 2008064503
Next, it demonstrates quantitatively using numerical formula. Assume that the optical frequency of the output light of the coherent light source 1 is swept to F + γT [Hz] at time T with a constant value F [Hz] as a reference modulation frequency. The nonlinearity of the frequency sweep rate is expressed with γ as a parameter. If the delay unit 14 in FIG. 4 is an optical fiber having a length of 2 L, the frequency difference between the two light waves combined by the directional coupler E is 2 nLγ / c. Therefore, the monitoring beat signal detected by the receiver 15 is given by the following equation (3).
Figure 2008064503

このモニタリングビート信号の最大周波数Wは、W=2nLγmax/cとなる。ただしγmaxは、コヒーレント光源1の最大周波数掃引速度である。   The maximum frequency W of the monitoring beat signal is W = 2nLγmax / c. Where γmax is the maximum frequency sweep speed of the coherent light source 1.

標本化定理によれば、R(t)を時間tの関数であるとし、これが0〜Wの範囲の周波数成分を持ち、W以上の周波数成分を含まないとすると、関数全体が一つに決まる。すなわちR(t)は次式(4)で与えられる。

Figure 2008064503
According to the sampling theorem, assuming that R (t) is a function of time t, which has a frequency component in the range of 0 to W and does not include a frequency component greater than W, the entire function is determined as one. . That is, R (t) is given by the following equation (4).
Figure 2008064503

ただし、Rnは1/(2W)秒間隔でサンプリングしたデータである。 However, Rn is data sampled at intervals of 1 / (2W) seconds.

図5は、受信器15からの出力R(t)を1/(2W)秒間隔でサンプリングしたデータRnと、そのゼロクロス点ZNとを示す図である。図5(a)に示されるようには、
離散的なデータRnに式(4)を用いて連続関数R(t)を決める。図5(b)に示すR(t)のゼロクロス点ZNは次式(5)で与えられる。

Figure 2008064503
FIG. 5 is a diagram showing data Rn obtained by sampling the output R (t) from the receiver 15 at 1 / (2 W) second intervals and its zero cross point ZN. As shown in FIG. 5 (a),
The continuous function R (t) is determined using the equation (4) for the discrete data Rn. The zero cross point ZN of R (t) shown in FIG. 5B is given by the following equation (5).
Figure 2008064503

ただしNは整数である。 N is an integer.

次に、図4においてコヒーレント光源1から反射点までの距離をl1、l2、…、lm(l1、l2、…、lm≦L)とし、各点での反射率をr1、r2、…、rmとする。ここで被測定光回路4の長さはLより短くなくてはならない。そうすると受信器6で検波される信号は次式(6)で与えられる。

Figure 2008064503
Next, in FIG. 4, the distance from the coherent light source 1 to the reflection point is defined as l1, l2,..., Lm (l1, l2,..., Lm ≦ L), and the reflectance at each point is r1, r2,. And Here, the length of the optical circuit 4 to be measured must be shorter than L. Then, the signal detected by the receiver 6 is given by the following equation (6).
Figure 2008064503

すなわち、受信器15からのモニタリングビート信号と同じように最大周波数WはW=2nLγmax/Cとなる。 That is, like the monitoring beat signal from the receiver 15, the maximum frequency W is W = 2nLγmax / C.

図6は、受信器6からの出力(干渉ビート信号)X(t)を1/(2W)秒間隔でサンプリングしたデータXnと、t=ZNにおけるX(t)の値とを示す図である。干渉ビート信号X(t)はW以上の周波数成分を含まないので、連続関数X(t)は図6(a)のXnを用いて次式(7)で与えられる。

Figure 2008064503
FIG. 6 is a diagram showing data Xn obtained by sampling the output (interference beat signal) X (t) from the receiver 6 at 1 / (2 W) second intervals and the value of X (t) at t = ZN. . Since the interference beat signal X (t) does not include a frequency component equal to or greater than W, the continuous function X (t) is given by the following equation (7) using Xn in FIG.
Figure 2008064503

図6(b)はt=ZN(ゼロクロス点)におけるX(t)の値を示す図である。t=ZNでのX(t)は、式(6)のtを式(5)のZNで置き換えて次式(8)となる。

Figure 2008064503
FIG. 6B is a diagram illustrating the value of X (t) at t = ZN (zero cross point). X (t) at t = ZN becomes the following equation (8) by replacing t in equation (6) with ZN in equation (5).
Figure 2008064503

式(8)から明らかなようにSinの引数からγが消え、この式は正弦波を等間隔にサンプリングしたデータと同じ格好になる。従って、距離lmからのビート信号が周波数lm/Lのスペクトル成分に対応することになり、このことを用いてコヒーレント光源1のレーザ光周波数掃引の非直線性を補正することができる。 As is clear from equation (8), γ disappears from the argument of Sin, and this equation looks the same as data obtained by sampling sine waves at equal intervals. Therefore, the beat signal from the distance lm corresponds to the spectral component of the frequency lm / L, and this can be used to correct the nonlinearity of the laser light frequency sweep of the coherent light source 1.

式(8)の離散点(数列)を用いて高速フーリエ変換(FFT)を行うことで、伝搬距離lmとこの伝搬距離に応じた各位置の反射率rmを簡単に算出できる。上述のように式(8)の離散点は正弦波を等間隔にサンプリングしたデータと同じであるので、FFTのスペクトルの広がりを避けることができ、これにより掃引非直線性の影響なく高い距離分解能を実現できる。   By performing Fast Fourier Transform (FFT) using the discrete points (sequence) of Expression (8), the propagation distance lm and the reflectance rm at each position according to the propagation distance can be easily calculated. As described above, since the discrete points of the equation (8) are the same as the data obtained by sampling the sine wave at equal intervals, it is possible to avoid the spread of the FFT spectrum, and thereby high distance resolution without the influence of sweep nonlinearity. Can be realized.

図7は、図4の光リフレクトメトリ測定装置における処理手順を示すフローチャートである。ステップS20でコヒーレント光源1の光周波数は掃引される。モニタリング部12は、受信器15から出力されるモニタリングビート信号を1/(2W)秒間隔でサンプリングし、サンプリングデータRnを内部メモリ(図示せず)などに記録する(ステップS23)。周波数解析装置8はこのサンプリングデータRnに式(4)を用いることにより連続関数R(t)を求め(ステップS25)、その値に0を代入してR(t)のゼロクロス点t=ZNを求める(ステップS27)。   FIG. 7 is a flowchart showing a processing procedure in the optical reflectometry measuring apparatus of FIG. In step S20, the optical frequency of the coherent light source 1 is swept. The monitoring unit 12 samples the monitoring beat signal output from the receiver 15 at 1 / (2W) second intervals, and records the sampling data Rn in an internal memory (not shown) or the like (step S23). The frequency analysis device 8 obtains a continuous function R (t) by using the equation (4) for the sampling data Rn (step S25), substitutes 0 for the value, and sets the zero cross point t = ZN of R (t). Obtained (step S27).

一方、測定部11は、受信器6から出力される干渉ビート信号を1/(2W)秒間隔でサンプリングし、サンプリングデータXnを内部メモリ(図示せず)などに記録する(ステップS24)。周波数解析装置8はこのサンプリングデータXnに式(7)を用いることにより連続関数X(t)を求める(ステップS25)。   On the other hand, the measurement unit 11 samples the interference beat signal output from the receiver 6 at 1 / (2 W) second intervals, and records the sampling data Xn in an internal memory (not shown) or the like (step S24). The frequency analyzer 8 obtains the continuous function X (t) by using the expression (7) for the sampling data Xn (step S25).

さらに周波数解析装置8は、モニタリング部12から受け取ったゼロクロス点のtの値を連続関数X(t)に代入し、X(ZN)を数列として求める(ステップS28)。そして周波数解析装置8は、X(ZN)に対して高速フーリエ変換(FFT)処理を行って、伝播距離に応じた各位置(反射点)の反射率rmを算出する(ステップS29)。   Further, the frequency analysis device 8 substitutes the value of t at the zero crossing point received from the monitoring unit 12 into the continuous function X (t), and obtains X (ZN) as a numerical sequence (step S28). Then, the frequency analysis device 8 performs a fast Fourier transform (FFT) process on X (ZN) to calculate the reflectance rm at each position (reflection point) according to the propagation distance (step S29).

以上説明したようにこの実施形態では、コヒーレント光源1の周波数掃引の非直線性をモニタするモニタリング部12を設け、そのモニタの結果に基づいて測定部11における測定結果を補正するようにしている。すなわち、モニタリング部12において自己遅延ホモダイン検波により光源出力光のモニタリングビート信号を生じさせ、サンプリング部16によりその波形をサンプリングする。その波形を示す連続関数R(t)を解析し、ゼロクロス点を求める。また測定部11における干渉ビート信号をサンプリングして得た連続関数にR(t)のゼロクロス点を代入し、得られた数列にFFT処理を施して測定結果を得るようにしている。   As described above, in this embodiment, the monitoring unit 12 that monitors the nonlinearity of the frequency sweep of the coherent light source 1 is provided, and the measurement result in the measurement unit 11 is corrected based on the monitoring result. That is, the monitoring unit 12 generates a monitoring beat signal of the light source output light by self-delayed homodyne detection, and the sampling unit 16 samples the waveform. A continuous function R (t) indicating the waveform is analyzed to obtain a zero cross point. Further, the zero cross point of R (t) is substituted into the continuous function obtained by sampling the interference beat signal in the measurement unit 11, and the obtained number sequence is subjected to FFT processing to obtain a measurement result.

このようにすることで、コヒーレント光源1の光周波数掃引に非直線性がある場合でもFFTのスペクトルの広がりを防ぐことができる。従って光周波数掃引の非直線性に制限されることなく、C−OFDRによる測定を高い距離分解能で実施することの可能な光リフレクトメトリ測定方法および光リフレクトメトリ測定装置を提供することが可能となる。   By doing so, even if the optical frequency sweep of the coherent light source 1 has nonlinearity, it is possible to prevent the spread of the spectrum of the FFT. Therefore, it is possible to provide an optical reflectometry measuring method and an optical reflectometry measuring apparatus capable of performing measurement by C-OFDR with high distance resolution without being limited by the nonlinearity of optical frequency sweep. .

なお、この発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.

C−OFDRによる光リフレクトメトリ測定装置の基本構成の一例を示す図。The figure which shows an example of the basic composition of the optical reflectometry measuring apparatus by C-OFDR. 周波数掃引コヒーレント光源1の光周波数の非直線性を示す図。The figure which shows the nonlinearity of the optical frequency of the frequency sweep coherent light source. この発明に係わる光リフレクトメトリ測定装置の実施の形態を示す機能ブロック図。The functional block diagram which shows embodiment of the optical reflectometry measuring apparatus concerning this invention. 図3の光リフレクトメトリ測定装置をより詳細に示す機能ブロック図。The functional block diagram which shows the optical reflectometry measuring apparatus of FIG. 3 in detail. 受信器15からの出力R(t)を1/(2W)秒間隔でサンプリングしたデータRnと、そのゼロクロス点ZNとを示す図。The figure which shows the data Rn which sampled the output R (t) from the receiver 15 at 1 / (2W) second interval, and its zero crossing point ZN. 受信器6からの出力X(t)を1/(2W)秒間隔でサンプリングしたデータXnと、t=ZNにおけるX(t)の値とを示す図。The figure which shows the data Xn which sampled the output X (t) from the receiver 6 at 1 / (2W) second interval, and the value of X (t) in t = ZN. 図4の光リフレクトメトリ測定装置における処理手順を示すフローチャート。The flowchart which shows the process sequence in the optical reflectometry measuring apparatus of FIG.

符号の説明Explanation of symbols

1…周波数掃引コヒーレント光源、2…測定光、3…参照光、4…被測定光回路、5…信号光、6…受信器、7…サンプリング装置、8…周波数解析装置、9…光源からの出力光、10…モニタリング光、11…測定部、12…モニタリング部、13…解析部、14…遅延部、15…受信器、16…サンプリング装置、17…クロック、A,B,C,D,E…光方向性結合器   DESCRIPTION OF SYMBOLS 1 ... Frequency sweep coherent light source, 2 ... Measurement light, 3 ... Reference light, 4 ... Optical circuit to be measured, 5 ... Signal light, 6 ... Receiver, 7 ... Sampling device, 8 ... Frequency analysis device, 9 ... From light source Output light, 10 ... monitoring light, 11 ... measurement unit, 12 ... monitoring unit, 13 ... analysis unit, 14 ... delay unit, 15 ... receiver, 16 ... sampling device, 17 ... clock, A, B, C, D, E ... Optical directional coupler

Claims (6)

光周波数を掃引されるコヒーレント光源からの出力光を測定対象に入射してこの測定対象における反射率の伝播方向に対する分布を測定するコヒーレント光周波数領域リフレクトメトリ測定方法(C−OFDR)である光リフレクトメトリ測定方法において、
前記出力光の特性をモニタし、
前記出力光と前記測定対象からの後方散乱光との干渉ビート信号を検出し、
前記光周波数掃引の非直線性を前記モニタした特性に基づき補正して前記干渉ビート信号に基づく測定結果を得ることを特徴とする光リフレクトメトリ測定方法。
Optical reflect, which is a coherent optical frequency domain reflectometry measurement method (C-OFDR), in which output light from a coherent light source whose optical frequency is swept is incident on a measurement object and the distribution of reflectance in the measurement object is measured with respect to the propagation direction. In the measurement method,
Monitor the characteristics of the output light,
Detecting an interference beat signal between the output light and backscattered light from the measurement object;
An optical reflectometry measurement method, wherein the measurement result based on the interference beat signal is obtained by correcting the nonlinearity of the optical frequency sweep based on the monitored characteristic.
前記コヒーレント光源からの出力光を分岐して得たモニタリング光を自己遅延ホモダイン検波してモニタリングビート信号を生成し、このモニタリングビート信号により前記出力光の特性をモニタすることを特徴とする請求項1に記載の光リフレクトメトリ測定方法。 2. The monitoring light obtained by branching the output light from the coherent light source is subjected to self-delay homodyne detection to generate a monitoring beat signal, and the characteristics of the output light are monitored by the monitoring beat signal. A method for measuring optical reflectometry as described in 1. above. 前記モニタリングビート信号の波形と前記干渉ビート信号の波形とを互いに同期する間隔でサンプリングし、
前記モニタリングビート信号の波形のサンプリングデータからこのモニタリングビート信号の波形のゼロクロス点を求め、
前記干渉ビート信号の波形のサンプリングデータからこの干渉ビート信号の前記ゼロクロス点における値を数列として求め、
前記数列に対するフーリエ変換処理により前記測定結果を得ることを特徴とする請求項2に記載の光リフレクトメトリ測定方法。
The monitoring beat signal waveform and the interference beat signal waveform are sampled at an interval synchronized with each other,
From the sampling data of the monitoring beat signal waveform, the zero cross point of the monitoring beat signal waveform is obtained,
From the sampling data of the waveform of the interference beat signal, obtain the value at the zero cross point of the interference beat signal as a sequence of numbers,
The optical reflectometry measurement method according to claim 2, wherein the measurement result is obtained by Fourier transform processing on the sequence.
測定対象における反射率の伝播方向に対する分布をコヒーレント光周波数領域リフレクトメトリ測定方法(C−OFDR)により測定する光リフレクトメトリ測定装置において、
光周波数を掃引されるコヒーレント光源と、
このコヒーレント光源の出力光の特性をモニタするモニタ部と、
前記出力光と前記測定対象からの後方散乱光との干渉ビート信号を検出する測定部と、
前記光周波数掃引の非直線性を前記モニタした特性に基づき補正して前記干渉ビート信号に基づく測定結果を得る解析部とを具備することを特徴とする光リフレクトメトリ測定装置。
In an optical reflectometry measuring apparatus that measures a distribution of a reflectance in a measurement object with respect to a propagation direction by a coherent optical frequency domain reflectometry measuring method (C-OFDR),
A coherent light source that sweeps the optical frequency;
A monitor unit for monitoring the characteristics of the output light of the coherent light source;
A measurement unit for detecting an interference beat signal between the output light and the backscattered light from the measurement target;
An optical reflectometry measurement apparatus comprising: an analysis unit that corrects the nonlinearity of the optical frequency sweep based on the monitored characteristic and obtains a measurement result based on the interference beat signal.
前記出力光を2分岐して一方をモニタリング光として前記モニタ部に入射する分岐手段を具備し、
前記モニタ部は、
前記モニタリング光を2分岐する分配部と、
この分配手段により分岐された一方の光を遅延する遅延部と、
前記分配手段により分岐された他方の光と前記遅延手段により遅延された光とを合波してモニタリングビート信号を生成する方向性結合器と、
前記モニタリングビート信号の波形をサンプリングしたサンプリングデータを前記解析部に入力するサンプリング手段とを備えることを特徴とする請求項4に記載の光リフレクトメトリ測定装置。
Branching means for splitting the output light into two and entering one of them as monitoring light into the monitor unit;
The monitor unit is
A distribution unit for bifurcating the monitoring light;
A delay unit for delaying one light branched by the distribution means;
A directional coupler for generating a monitoring beat signal by combining the other light branched by the distributing means and the light delayed by the delay means;
The optical reflectometry measuring apparatus according to claim 4, further comprising sampling means for inputting sampling data obtained by sampling the waveform of the monitoring beat signal to the analysis unit.
前記測定部は、
前記干渉ビート信号の波形を前記サンプリング手段と互いに同期する間隔でサンプリングするサンプル手段を備え、
前記解析部は、
前記モニタリングビート信号の波形のサンプリングデータからこのモニタリングビート信号の波形のゼロクロス点を求め、
前記干渉ビート信号の波形のサンプリングデータからこの干渉ビート信号の前記ゼロクロス点における値を数列として求め、
前記数列に対するフーリエ変換処理により前記測定結果を得ることを特徴とする請求項5に記載の光リフレクトメトリ測定装置。
The measuring unit is
Sample means for sampling the waveform of the interference beat signal at an interval synchronized with the sampling means,
The analysis unit
From the sampling data of the monitoring beat signal waveform, the zero cross point of the monitoring beat signal waveform is obtained,
From the sampling data of the waveform of the interference beat signal, obtain the value at the zero cross point of the interference beat signal as a sequence of numbers,
The optical reflectometry measuring apparatus according to claim 5, wherein the measurement result is obtained by Fourier transform processing on the sequence.
JP2006240498A 2006-09-05 2006-09-05 Optical reflectometry measuring method and apparatus Expired - Fee Related JP4769668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006240498A JP4769668B2 (en) 2006-09-05 2006-09-05 Optical reflectometry measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006240498A JP4769668B2 (en) 2006-09-05 2006-09-05 Optical reflectometry measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2008064503A true JP2008064503A (en) 2008-03-21
JP4769668B2 JP4769668B2 (en) 2011-09-07

Family

ID=39287360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240498A Expired - Fee Related JP4769668B2 (en) 2006-09-05 2006-09-05 Optical reflectometry measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4769668B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154790A (en) * 2011-01-26 2012-08-16 Nippon Telegr & Teleph Corp <Ntt> Optical frequency domain reflectometry and optical frequency domain reflectometer
JP2013007695A (en) * 2011-06-27 2013-01-10 Nippon Telegr & Teleph Corp <Ntt> Method and device for measuring optical frequency domain reaction
JP2017526911A (en) * 2014-07-25 2017-09-14 ディーエスシージー ソルーションズ,インコーポレイテッド Laser phase estimation and correction
CN110749420A (en) * 2019-09-12 2020-02-04 芯华创(武汉)光电科技有限公司 OFDR detection device
CN111238550A (en) * 2020-01-17 2020-06-05 浙江大学 Optical frequency domain reflectometer system with digital modulation type frequency sweep
CN113465528A (en) * 2021-08-09 2021-10-01 天津大学 High-speed distributed strain measurement system and method based on optical frequency domain reflection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109682403B (en) * 2019-01-29 2020-10-16 南京大学 Method for correcting nonlinear frequency sweep of tunable laser in optical frequency domain reflectometer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187603A (en) * 1989-01-17 1990-07-23 Yokogawa Electric Corp Absolute measuring device
JPH08338786A (en) * 1995-06-12 1996-12-24 Nippon Telegr & Teleph Corp <Ntt> Light reflection measuring method
JP2000111312A (en) * 1998-08-04 2000-04-18 Mitsubishi Heavy Ind Ltd Optical frequency linear sweeping device and modulated correction data recorder for optical frequency sweeping device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187603A (en) * 1989-01-17 1990-07-23 Yokogawa Electric Corp Absolute measuring device
JPH08338786A (en) * 1995-06-12 1996-12-24 Nippon Telegr & Teleph Corp <Ntt> Light reflection measuring method
JP2000111312A (en) * 1998-08-04 2000-04-18 Mitsubishi Heavy Ind Ltd Optical frequency linear sweeping device and modulated correction data recorder for optical frequency sweeping device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154790A (en) * 2011-01-26 2012-08-16 Nippon Telegr & Teleph Corp <Ntt> Optical frequency domain reflectometry and optical frequency domain reflectometer
JP2013007695A (en) * 2011-06-27 2013-01-10 Nippon Telegr & Teleph Corp <Ntt> Method and device for measuring optical frequency domain reaction
JP2017526911A (en) * 2014-07-25 2017-09-14 ディーエスシージー ソルーションズ,インコーポレイテッド Laser phase estimation and correction
US10739448B2 (en) 2014-07-25 2020-08-11 DSCB Solutions, Inc. Laser phase estimation and correction
CN110749420A (en) * 2019-09-12 2020-02-04 芯华创(武汉)光电科技有限公司 OFDR detection device
CN111238550A (en) * 2020-01-17 2020-06-05 浙江大学 Optical frequency domain reflectometer system with digital modulation type frequency sweep
CN111238550B (en) * 2020-01-17 2021-08-17 浙江大学 Optical frequency domain reflectometer system with digital modulation type frequency sweep
CN113465528A (en) * 2021-08-09 2021-10-01 天津大学 High-speed distributed strain measurement system and method based on optical frequency domain reflection
CN113465528B (en) * 2021-08-09 2022-08-23 天津大学 High-speed distributed strain measurement system and method based on optical frequency domain reflection

Also Published As

Publication number Publication date
JP4769668B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
EP2128588B1 (en) Optical refractometry measuring method and device
JP6494459B2 (en) Vibration distribution measuring method and vibration distribution measuring apparatus
JP4769668B2 (en) Optical reflectometry measuring method and apparatus
JP6893137B2 (en) Optical fiber vibration detection sensor and its method
JP6814180B2 (en) Distributed optical fiber vibration measuring device and distributed optical fiber vibration measuring method
JP2016161512A (en) Optical fiber vibration measuring method and system
JP4826747B2 (en) Method for measuring frequency shift of Brillouin scattered light and apparatus using the same
JP6796043B2 (en) Light reflection measuring device and its method
JP5613627B2 (en) Laser optical coherence function measuring method and measuring apparatus
JP5827140B2 (en) Laser light characteristic measuring method and measuring apparatus
JP5371933B2 (en) Laser light measuring method and measuring apparatus
JP6751379B2 (en) Optical time domain reflectometry method and optical time domain reflectometry apparatus
JP5207252B2 (en) Optical frequency domain reflection measurement method and optical frequency domain reflection measurement apparatus
JP2012154790A (en) Optical frequency domain reflectometry and optical frequency domain reflectometer
JP5478087B2 (en) Optical frequency domain reflection measurement method and apparatus
JP5470320B2 (en) Laser light coherence length measuring method and measuring apparatus
JP6751371B2 (en) Spatial mode dispersion measuring method and spatial mode dispersion measuring apparatus
JP4990853B2 (en) Optical polarization state distribution measuring method and apparatus
JP4916347B2 (en) Optical heterodyne OFDR device
JP2011058938A (en) Method and instrument for measuring optical path reflection distribution and optical path installation monitoring system
JP6347552B2 (en) Apparatus and method for measuring impulse response of optical device
JP6751378B2 (en) Optical time domain reflectometry method and optical time domain reflectometry apparatus
JP6887901B2 (en) Measuring device and measuring method
JP2011058850A (en) Method and instrument for measuring optical path characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

R150 Certificate of patent or registration of utility model

Ref document number: 4769668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees