JP2008063961A - Wind and water turbine concentric rotary shaft direct drive type electric energy extracting device - Google Patents

Wind and water turbine concentric rotary shaft direct drive type electric energy extracting device Download PDF

Info

Publication number
JP2008063961A
JP2008063961A JP2006240060A JP2006240060A JP2008063961A JP 2008063961 A JP2008063961 A JP 2008063961A JP 2006240060 A JP2006240060 A JP 2006240060A JP 2006240060 A JP2006240060 A JP 2006240060A JP 2008063961 A JP2008063961 A JP 2008063961A
Authority
JP
Japan
Prior art keywords
wind
propeller
rotating shaft
rotary shaft
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006240060A
Other languages
Japanese (ja)
Inventor
Masataka Murahara
村原正隆
Kazuichi Seki
和市 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006240060A priority Critical patent/JP2008063961A/en
Publication of JP2008063961A publication Critical patent/JP2008063961A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Hydraulic Turbines (AREA)
  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind and water turbine concentric rotary shaft direct drive type electric energy extracting device which acquires power generation energy equivalent to a doubled flow velocity through the relative rotations by connecting the rotation of a pair of front and rear propellers reversely rotated with each other directly to a rotating element and stator of a generator in a horizontal rotary shaft wind and water turbine and by connecting the rotation of a pair of upper and lower impellers reversely rotated with each other directly to the rotating element and stator of the generator in a vertical rotary shaft wind and water turbine. <P>SOLUTION: In a wind and water turbine concentric rotary shaft direct drive type electric energy extracting device, wind and water turbines having a horizontal rotary shaft or vertical rotary shaft are respectively provided with concentric rotary shafts and composed of a set of two units rotated in the directions opposite to each other. An outside rotary shaft and inside rotary shaft are provided with one-way clutch bearings rotated opposite to each other respectively. A propeller or impeller in a first wind and water turbine has a longer diameter than that in a second wind and water turbine. One rotary shaft is taken as a rotor of a generator and the other rotary shaft is taken as a stator. The device acquires power generation energy equivalent to a doubled flow velocity through these relative rotations. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

同一回転軸を有し互いの回転方向が逆なる2基一組の風水車の各軸を発電機のローターとステーターとした風水車同心回転軸直接駆動型電気エネルギー抽出装置に関する。 The present invention relates to a wind turbine concentric rotating shaft direct drive type electric energy extraction device in which the shafts of a pair of wind turbines having the same rotation axis and the rotation directions of which are opposite to each other are used as a rotor and a stator of a generator.

風や水の平均流速が低いためこれらの流れを電気エネルギーに変換するためには風水車軸の回転を発電機に伝達するための歯車などの増速機が不可欠である。しかし、歯車によるエネルギーの駆動ロスやと突風による歯車同士の競合破壊、歯車同士の摩擦音、歯車の高重量などの問題点を解決することが重要課題となっている。 Since the average flow velocity of wind and water is low, a speed increaser such as a gear for transmitting the rotation of the wind turbine shaft to the generator is indispensable in order to convert these flows into electric energy. However, it has become an important issue to solve problems such as loss of energy drive by gears, competing destruction of gears due to wind gusts, friction noise between gears, and high gear weight.

歯車によるエネルギーの駆動ロスを軽減する目的で、ダイレクトドライブ方式が提案されている。現在の通勤電車の駆動方式は、台車に取り付けられたモーターのトルクをたわみ継ぎ手と減速歯車装置を介して車軸に伝達するカルダン方式が主流であった。この駆動方式の減速歯車を省略し、モーターのトルクを直接車輪に伝えようとする試みは、非特許文献1に開示されているように、従来の誘導モーターの代わりに永久磁石式同期モーターを採用している。また特許文献1にはローターが周方向極性交互に複数の永久磁石を有するステーターの外周側に配置されるダイレクトドライブ型電動車輪構造が開示されている。 A direct drive method has been proposed for the purpose of reducing the drive loss of energy caused by gears. The current driving system for commuter trains is the cardan system that transmits the torque of the motor attached to the carriage to the axle via a flexible joint and a reduction gear. Attempts to transmit the motor torque directly to the wheels, omitting this drive reduction gear, use a permanent magnet synchronous motor instead of the conventional induction motor as disclosed in Non-Patent Document 1. is doing. Further, Patent Document 1 discloses a direct drive type electric wheel structure in which a rotor is disposed on the outer peripheral side of a stator having a plurality of permanent magnets alternately in the circumferential direction.

このダイレクトドライブ方式を風車に適用したのは非特許文献2に示すように、風車のプロペラを二重反転方式とし、発電機のローターとステーターを夫々前後の各プロペラで駆動することで増速装置をなくした方法が、1931年ドイツのH.ホンネフにより提案され、超大型風力発電装置に採用されたが成功しなかった。特許文献2には少なくとも2枚の羽を含む風力発電機において、ステーターとローターが相互に同心の管セクションにより形成され、これらの向かい合わせの面に夫々永久磁石および巻線が配置されていることが開示されている。 As shown in Non-Patent Document 2, this direct drive system is applied to a wind turbine, the wind turbine propeller is a double reversal system, and the rotor and stator of the generator are driven by the front and rear propellers, respectively. In 1931 German H. Proposed by Honef and adopted in a super-large wind power generator, it was not successful. In Patent Document 2, in a wind power generator including at least two wings, a stator and a rotor are formed by mutually concentric tube sections, and permanent magnets and windings are respectively arranged on opposite surfaces of these. Is disclosed.

本願発明の同心回転軸とは複数組のプロペラや羽根車の回転軸が同じでその同心円状に深溝軸受や同筒ころ軸受あるいは互いに回転方向を逆にしたワンウエイクラッチベアリングなどを複数個装着し、かつ互いの風水車軸が回転軸を中心として同心円状に回転することを意味する。複数組のプロペラや羽根車の回転軸が同じである風車については、特許文献3に示された図によると、サボニウス型風車を5基同軸に積み重ね、その一端に発電機を連結し、地表より高さの異なる各高度の風力エネルギーを効果的に捕捉している。特許文献4では上部に低速型のクロスフロー型風車と下部に高速型のダリウス型風車とを重ね、一方の風車の回転中心軸を他方の風車の中空回転軸に挿入し、低風状態から高風力状態まで候高率な発電を可能にしている。2枚のプロペラを同軸上に配置した例として、特許文献5には前後2枚のプロペラを同軸上に設け、後ろ側のプロペラは正面から来る風に加え前側の風車の回転によって起こされた風も受けて回転し、それらの回転を夫々の歯車によって増速し2台の発電機を駆動するものである。同様に特許文献6では前後2枚のプロペラを同軸上に設け、前側のプロペラと後方のプロペラの回転方向は逆であるが、夫々の回転軸に取り付けられた歯車によって増速し、2台の発電機を駆動するものである。 The concentric rotating shaft of the present invention is the same as the rotating shafts of a plurality of sets of propellers and impellers, and a plurality of concentric deep groove bearings, cylindrical roller bearings, or one-way clutch bearings whose rotational directions are opposite to each other are mounted, And it means that the wind turbine shafts of each other rotate concentrically around the rotation axis. According to the figure shown in Patent Document 3, five sets of Savonius type windmills are stacked on the same axis, and a generator is connected to one end of the windmill with the same rotation axis of the propellers and impellers. It effectively captures wind energy at different altitudes. In Patent Document 4, a low-speed crossflow type windmill is placed on the upper part and a high-speed Darrieus type windmill is placed on the lower part, the rotation center axis of one windmill is inserted into the hollow rotation axis of the other windmill, It is possible to generate electricity at a high rate even up to wind power. As an example in which two propellers are arranged coaxially, Patent Document 5 provides two front and rear propellers on the same axis, and the rear propeller is a wind generated by the rotation of the front windmill in addition to the wind coming from the front. It also receives and rotates, and those rotations are accelerated by the respective gears to drive the two generators. Similarly, in Patent Document 6, two front and rear propellers are provided on the same axis, and the front propeller and the rear propeller are rotated in opposite directions, but the speed is increased by gears attached to the respective rotation shafts. It drives the generator.

2枚のプロペラを同軸上に配置した発明として、最も注目されるのが特許文献7である。前段プロペラと前段プロペラよりも小径のプロペラを後段に配置し、それらを同軸上に配置し、かついずれか一方のプロペラを発電機の電気子ロータに、他方のロータを発電機の界磁ロータに連結した構造であり、微風下では後段のプロペラが前段のプロペラとは逆方向に回転し、風速の増加と共に回転速度が最高になった後、徐々に減速し、停止状態を経て前段のプロペラと同方向に回転し始め、しかも微風下では前段プロペラが回転しなくても後段プロペラが回転するような翼形状を成し、前後2段のプロペラが発電機の内外回転し(電気子、界磁)を夫々駆動させることが開示されている。本特許文献によると大型プロペラ(ロータ)風車は大出力に適しているが微風下では稼動せず、微風下では小径プロペラ風車が適している。しかし強風下での出力が極めて小さいため適用範囲は限られ、かつ強風下での発電機への過負荷を避けるため、ブレーキや可変ピッチなどの回転抑制機構が必要としていた。これらの課題を解決し、極微風状態から強風状態にわたって効率良く動作し、定格風速以上でもブレーキ機構なしで一定出力が得られるのがこの発明であると記されている。 As an invention in which two propellers are arranged on the same axis, Patent Document 7 is most noticeable. The front stage propeller and the propeller having a smaller diameter than the front stage propeller are arranged in the rear stage, they are arranged coaxially, and one of the propellers is used as an electric rotor of the generator, and the other rotor is used as a field rotor of the generator. The structure is connected, and in the light wind, the rear propeller rotates in the opposite direction to the previous propeller, and after the rotational speed reaches its maximum as the wind speed increases, it gradually decelerates, and after stopping, The wing shape starts to rotate in the same direction, and the rear propeller rotates even if the front propeller does not rotate in a breeze. The front and rear propellers rotate in and out of the generator (electron, field, ) Are each driven. According to this patent document, a large propeller (rotor) windmill is suitable for high output, but does not operate in a leeward wind, and a small-diameter propeller windmill is suitable in a leeward wind. However, since the output under a strong wind is extremely small, the range of application is limited, and in order to avoid overloading the generator under a strong wind, a rotation suppression mechanism such as a brake or a variable pitch is required. It is described that the present invention solves these problems, operates efficiently from a very low wind condition to a strong wind condition, and provides a constant output without a brake mechanism even at a rated wind speed or higher.

上述した参考文献を統括すると風力発電の欠点は風速が遅い時は風車が回転せず、風速が速い時は発電機への過負荷防止のためブレーキが必要であり、これらを解決するために複数基のプロペラや羽根車風車を同軸上で回転して風車の性能向上を行う工夫がなされている。 To summarize the above-mentioned references, the disadvantage of wind power generation is that the wind turbine does not rotate when the wind speed is slow, and when the wind speed is fast, a brake is necessary to prevent overload on the generator. A device has been devised to improve the performance of the wind turbine by rotating the propeller and impeller wind turbine on the same axis.

特開平10−86885号公報Japanese Patent Laid-Open No. 10-86885 特公2005−503098号Japanese Patent Publication No. 2005-503098 特開2002−130110号公報JP 2002-130110 A 特開2006−132514号公報JP 2006-132514 A 特開2003−269316号公報JP 2003-269316 A 特開2002−295361号公報JP 2002-295361 A 特開2004−100546号公報Japanese Patent Laid-Open No. 2004-1000054 東芝レビューVol.60(8)、52頁(2005)Toshiba Review Vol. 60 (8), 52 pages (2005) 風力エネルギーの基礎、牛山泉著、株式会社オーム社、109頁、平成17年7月20日発行Wind energy basics, by Ushiyama Izumi, Ohm Co., Ltd., page 109, published on July 20, 2005

風力発電で得られるエネルギー(W)は、受風面積(A)、空気密度(ρ)、風速(V)とすると W=AρV/2 で与えられる。すなわち風車の回転面を通過する気流速度を増大すれば、風車の出力は気流速度の3乗に比例する。ところが風車の回転速度は直径の大きいものほど回転数が低くなる。一方風車を水の流れとして用いれば、水の密度は1025kg/m3と空気の密度の1.2kg/m3に対して854倍であり、エネルギー変換効率は高い。しかし風の流速に比べ水の流速は極端に低く、黒潮でも秒速2メートル内外である。このため歯車などを用いた増速機が不可欠と成る。しかしこの増速機でロスするエネルギーは大きく、また起動トルクも大きい。さらに重量やコスト高になる。また強風時の過負荷による歯車破壊事故も多い。そこでこの増速機を省き、長期間故障の無い風や水流などの流体エネルギーを電気エネルギーに変換する抽出装置を開発する事が本発明の課題である。 Energy obtained by wind power (W) is swept area (A), air density ([rho), is given by When the wind speed (V) W = AρV 3/ 2. That is, if the airflow speed passing through the rotating surface of the windmill is increased, the output of the windmill is proportional to the cube of the airflow speed. However, the rotational speed of the windmill decreases as the diameter increases. On the other hand the use of the wind turbine as a flow of water, the density of water is 854 times the 1025kg / m 3 and 1.2 kg / m 3 of density of the air, the energy conversion efficiency is high. However, the water flow rate is extremely low compared to the wind flow rate, and even within the Kuroshio Current, it is 2 meters per second. For this reason, a gearbox using gears is indispensable. However, the energy lost by this gearbox is large, and the starting torque is also large. In addition, the weight and cost are increased. There are also many gear destruction accidents due to overload in strong winds. Therefore, it is an object of the present invention to omit the speed increaser and develop an extraction device that converts fluid energy such as wind or water current that has no failure for a long period of time into electrical energy.

本発明は上述した問題点に鑑みて創案されたものである。すなわち、本発明の目的は、水平回転軸風水車にあっては互いに逆回転している前後一組のプロペラの回転を発電機の回転素子と固定子に直結し、垂直回転軸風水車にあっては互いに逆回転している上下一組の羽根車の回転発電機の回転素子と固定子に直結し、それらの相対回転により2倍の流速と等価な風水車同心回転軸直接駆動型電気エネルギー抽出装置を提供することにある。 The present invention has been made in view of the above-described problems. That is, the object of the present invention is that in the case of a horizontal rotating shaft wind turbine, the rotation of a pair of front and rear propellers rotating in reverse is directly connected to the rotating element and stator of the generator, and the vertical rotating shaft wind turbine is provided. Directly connected to the rotating element and stator of the rotating generator of a pair of upper and lower impellers rotating in reverse, and the relative rotation of them makes the wind turbine concentric rotating shaft direct drive type electric energy equivalent to twice the flow velocity It is to provide an extraction device.

特許文献7によると微風速下では小型風車が有利で、大型風車は大出力用とされているが、これは逆で、微風速下ではプロペラ直径の大きい大型風車が有利であり、直径が小さい小型風車は強風時に出力が得られるのが基本である。また直径が大きい風車を風上側に、直径が小さい風車を風下側にすると記述されているが、これも全く逆で、直径が小さな風車は風上側、大きい直径の風車は風下側にすることによって、風の流れを風上側の風車と風下側の風車に有効に取り入れ発電エネルギーを得る。 According to Patent Document 7, a small windmill is advantageous under a slight wind speed, and a large windmill is intended for a large output, but conversely, a large windmill having a large propeller diameter is advantageous and the diameter is small under a slight wind speed. Basically, small windmills can provide output during strong winds. In addition, it is described that a windmill with a large diameter is on the leeward side and a windmill with a small diameter is on the leeward side, but this is also the opposite, by making the windmill with a small diameter on the leeward side and the windmill with a large diameter on the leeward side. The wind flow is effectively taken into the windmill on the windward side and the windmill on the leeward side to obtain power generation energy.

上記目的を達成するため、水平回転軸を有する2基一組の水平軸型プロペラ風車の場合には、風上に設置する1基目のプロペラと風切り角を逆にした2基目のプロペラを風下側にそれぞれを隣接あるいは発電機を隔てて設置し、2基一組の風車が互いに干渉せず、かつ1基目の風車の受風面積と2基目の風車の受風面積を等しくするために、2基目のプロペラには1基目のプロペラの直径(2r)と同径の支持翼(2r)で支えられた長直径(2r√2)のプロペラを有することが望ましい。さらに背風や裏風によるプロペラの逆転を阻止するために、2基一組の水平回転軸の外側回転軸と内側回転軸に夫々回転方向が逆のワンウエイクラッチベアリングあるいはラチェットを備した後、その2組の同軸回転軸の一方に発電機の回転子、他方の回転軸に固定子を備し、それらの相対回転により約2倍の流速と等価な発電エネルギーを得る。 In order to achieve the above object, in the case of a pair of horizontal axis type propeller wind turbines having a horizontal rotation axis, the first propeller installed on the windward and the second propeller with the wind cut angle reversed. Install them on the leeward side adjacent to each other or with a generator separated from each other so that the two wind turbines do not interfere with each other, and the wind receiving area of the first wind turbine is equal to the wind receiving area of the second wind turbine. Therefore, it is desirable that the second propeller has a long diameter (2r 1 √2) propeller supported by a support blade (2r 1 ) having the same diameter as the first propeller diameter (2r 1 ). . Further, in order to prevent the propeller from reversing due to the back wind or the back wind, the one-way clutch bearing or ratchet having the opposite rotation direction is provided on the outer rotating shaft and the inner rotating shaft of the pair of horizontal rotating shafts. A generator rotor is provided on one of the coaxial rotating shafts, and a stator is provided on the other rotating shaft, and a power generation energy equivalent to about twice the flow velocity is obtained by relative rotation thereof.

水平軸型プロペラ風車の場合タワーによる気流の錯乱が問題になる。このイレギュラーな流れの影響を避けるために、タワーの前側上方から風を受けるアップウインドーの場合は一対のプロペラを風上に向け仰角(コーニング角)を負側に傾け、タワーの後側下方から風を受けるダウンウインドーの場合は一対のプロペラを風下に向け仰角(コーニング角)を正側に傾ける。とくに周囲に障害物が無い海洋や大型風車においてはダウンウインドーが望ましい。 In the case of a horizontal axis type propeller wind turbine, the confusion of the air flow by the tower becomes a problem. In order to avoid the effect of this irregular flow, in the case of an up window that receives wind from the upper front side of the tower, the pair of propellers are directed upward and the elevation angle (corning angle) is inclined to the negative side, and the lower rear side of the tower In the case of a down window that receives wind from the wind, tilt the elevation angle (corning angle) to the positive side with the pair of propellers facing downwind. The down window is desirable especially in the ocean and large windmills where there are no obstacles around.

他方、垂直回転軸風水車は風や水の流れ方向に左右されないため流れに対して羽根車の回転軸を垂直にしておけばよい。ただし風車の場合は地表からの高度が高くなるに連れて風速が早くなるため、2基一組の同軸風車では、2基目の羽根車の上部に1基目の羽根車よりも短直径を有する1基目の羽根車を設備する。ただし羽根車の上下で風速にあまり差が無い時は上下の羽根車の直径が等しくても良い。また本願発明は2組の同軸回転軸の一方に発電機の回転子、他方の回転軸に固定子を備し、それらの相対回転により2倍の流速と等価な発電エネルギーを得る構造であるが、両方が同方向に回転しない限り1倍以上の発電エネルギーが得られるため、羽根車の直径にあまり拘らなくとも良い。ただし、互いに逆回転している羽根車が風の逆流や乱れにより正規の回転を逸脱することを阻止するために、2基一組の垂直回転軸の外側回転軸と内側回転軸に夫々回転方向が逆のワンウエイクラッチベアリングあるいはラチェットを備した後、その2組の同軸回転軸の一方に発電機の回転子、他方の回転軸に固定子を備し、それらの相対回転により1から2倍の流速と等価な発電エネルギーを得る。 On the other hand, since the vertical rotation axis wind turbine is not affected by the flow direction of wind or water, the rotation axis of the impeller may be set perpendicular to the flow. However, in the case of a windmill, the wind speed increases as the altitude from the ground surface increases, so a pair of coaxial windmills has a shorter diameter at the top of the second impeller than the first impeller. The first impeller is installed. However, when there is not much difference in wind speed between the top and bottom of the impeller, the diameters of the top and bottom impellers may be equal. The present invention has a structure in which a generator rotor is provided on one of the two sets of coaxial rotary shafts and a stator is provided on the other rotary shaft, and the relative rotational speed of the two rotors obtains power generation energy equivalent to twice the flow velocity. As long as both do not rotate in the same direction, power generation energy of 1 time or more can be obtained, so the diameter of the impeller need not be so much concerned. However, in order to prevent the impellers rotating in reverse from each other from deviating from normal rotation due to the backflow or turbulence of the wind, the rotation direction of each of the pair of vertical rotation shafts on the outer rotation shaft and the inner rotation shaft is respectively Is equipped with a reverse one-way clutch bearing or ratchet, then a generator rotor is provided on one of the two coaxial rotary shafts and a stator is provided on the other rotary shaft. Power generation energy equivalent to the flow rate is obtained.

垂直回転軸を共有する2基一組の垂直軸水車であり、1基目の水車の下部に2基目の水車を設備し、それらが互いに逆回転している羽根車が水の逆流や乱れにより正規の回転を逸脱することを阻止するために、2基一組の垂直回転軸の外側回転軸と内側回転軸に夫々回転方向が逆のワンウエイクラッチベアリングあるいはラチェットを備した後、その2組の同軸回転軸の一方に発電機の回転子、他方の回転軸に固定子を備し、それらの相対回転により1から2倍の流速と等価な発電エネルギーを得る。 A set of two vertical axis turbines that share the same vertical axis of rotation. A second turbine is installed under the first turbine, and the impellers that rotate in reverse from each other cause reverse flow and disturbance of water. In order to prevent deviating from normal rotation, two sets of one-way clutch bearings or ratchets with opposite rotation directions are provided on the outer and inner rotary shafts of a pair of vertical rotary shafts, respectively. A generator rotor is provided on one of the coaxial rotating shafts and a stator is provided on the other rotating shaft, and a power generation energy equivalent to a flow velocity of 1 to 2 times is obtained by relative rotation thereof.

風力と水流力とを組み合わせた発電方式で、垂直回転軸を共有する2基一組の垂直軸風水車の1基目の水車は水面下に、2基目の風車は水面上に設置され、それらが互いに逆回転している羽根車であり、それらの回転方向が水の逆流や乱れにより正規の回転から逸脱することを阻止するために、2基一組の垂直回転軸の外側回転軸と内側回転軸に夫々回転方向が逆のワンウエイクラッチベアリングあるいはラチェットを備した後、その2組の同軸回転軸の一方に発電機の回転子、他方の回転軸に固定子を備し、それらの相対回転により1から2倍の流速と等価な発電エネルギーを得る。この場合いずか一方の流れが止まっても他方が回っていれば発電が行われる。風力と流体力とでは夫々の回転が大きく異なるが、それらの相対回転による発電のためなんら問題は生じない。 In the power generation method combining wind power and hydropower, the first turbine of a pair of vertical axis wind turbines sharing a vertical rotation axis is installed below the water surface, and the second wind turbine is installed above the water surface, In order to prevent them from deviating from normal rotation due to backflow or turbulence of water, they are impellers rotating in reverse with each other. After one-way clutch bearings or ratchets with opposite rotation directions are provided on the inner rotary shaft, a generator rotor is provided on one of the two sets of coaxial rotary shafts, and a stator is provided on the other rotary shaft. Power generation energy equivalent to 1 to 2 times the flow velocity is obtained by rotation. In this case, even if one of the flows stops, power generation is performed if the other is rotating. Wind power and fluid power have different rotations, but no problem arises due to power generation by their relative rotation.

したがって、本発明は、水平回転軸風水車にあっては互いに逆回転している前後一組のプロペラの回転を発電機の回転素子と固定子に直結し、垂直回転軸風水車にあっては互いに逆回転している上下一組の羽根車の回転発電機の回転素子と固定子に直結し、それらの相対回転により2倍の流速と等価な電気エネルギーを抽出することができ、この結果、発電効率の向上を図ることができる。 Therefore, in the case of a horizontal rotation axis wind turbine, the rotation of a pair of front and rear propellers rotating in reverse is directly connected to the rotating element and the stator of the generator, and in the vertical rotation axis wind turbine. Directly connected to the rotating element and the stator of the rotary generator of a pair of upper and lower impellers rotating in reverse directions, the electric energy equivalent to twice the flow rate can be extracted by their relative rotation. The power generation efficiency can be improved.

上記したように、本発明によれば、水平回転軸風水車にあっては互いに逆回転している前後一組のプロペラの回転を発電機の回転素子と固定子に直結し、垂直回転軸風水車にあっては互いに逆回転している上下一組の羽根車の回転発電機の回転素子と固定子に直結し、それらの相対回転により2倍の流速と等価な電気エネルギーを抽出することができ、この結果、発電効率を向上させることができる等の優れた効果が得られる。 As described above, according to the present invention, in the case of a horizontal rotating shaft wind turbine, the rotation of a pair of front and rear propellers that are rotating reversely to each other is directly connected to the rotating element and the stator of the generator, and the vertical rotating shaft wind turbine In the car, it is directly connected to the rotating element and the stator of the rotary generator of a pair of upper and lower impellers rotating in reverse, and the electric energy equivalent to twice the flow rate can be extracted by their relative rotation. As a result, excellent effects such as improvement of power generation efficiency can be obtained.

以下、本発明の効果的な実施の形態を図1〜図8に基づいて詳細に説明する。なお、各図において同一部分には同一符号を付している。 Hereinafter, an effective embodiment of the present invention will be described in detail with reference to FIGS. In the drawings, the same parts are denoted by the same reference numerals.

図1は、本発明の実施形態の概略構成図である。この図に示すように、水平回転軸を有する2基一組の水平軸型プロペラ風車の場合には、風上14に設置する1基目のプロペラ1と風切り角を逆にした2基目のプロペラ2をその後方に隣接あるいは発電機室3を隔てて設置し、2基一組の風車が互いに干渉せず、かつ1基目のプロペラ1の受風面積(πr )と2基目のプロペラ2の受風面積(πr −πr )を等しくするために、2基目のプロペラには1基目のプロペラ1の直径4(2r)と同径の支持翼5(2r)で支えられた長直径6(2r=2r√2)のプロペラ2を有することが望ましい。さらに背風や裏風によるプロペラの逆転を阻止するために、2基一組の水平回転軸の外側回軸7と内側回転軸8に夫々回転方向が逆のワンウエイクラッチベアリング14,15,16,17あるいはラチェット14,15,16,17を備した後、その2組の同軸回転軸の一方に発電機の回転子9、他方の回転軸に固定子10を備し、それらの相対回転11,12により約2倍の流速と等価な発電エネルギーを得る。 FIG. 1 is a schematic configuration diagram of an embodiment of the present invention. As shown in this figure, in the case of a set of two horizontal axis type propeller wind turbines having a horizontal rotation axis, the first propeller 1 installed on the windward 14 and the second one with the wind cut angle reversed. Propeller 2 is installed adjacent to or behind generator room 3, and a pair of wind turbines do not interfere with each other, and the wind receiving area (πr 1 2 ) of first propeller 1 and the second In order to make the wind receiving area (πr 2 2 −πr 1 2 ) of the propeller 2 equal, the second propeller has a support blade 5 (2r 1 ) having the same diameter as the diameter of the first propeller 1 (2r 1 ). It is desirable to have a propeller 2 having a long diameter 6 (2r 2 = 2r 1 √2) supported by 2r 1 ). Further, in order to prevent the reverse of the propeller due to the back wind or the back wind, the one-way clutch bearings 14, 15, 16, 17 whose rotation directions are opposite to the outer rotation shaft 7 and the inner rotation shaft 8 of the pair of horizontal rotation shafts, respectively. Alternatively, after the ratchets 14, 15, 16, 17 are provided, the generator rotor 9 is provided on one of the two sets of coaxial rotary shafts, and the stator 10 is provided on the other rotary shaft, and their relative rotations 11, 12 are provided. Thus, a power generation energy equivalent to about twice the flow rate is obtained.

図2は発電室3の内部の詳細図である。水平回転軸あるいは垂直回転軸を有する風水車が夫々同心回転軸を有し、互いに逆の回転方向11、12である2基一組で、かつ外側回転軸7と内側回転軸8に夫々回転方向が逆のワンウエイクラッチベアリング14,15,16,17あるいはラチェット14,15,16,17を備し、その一方の回転軸が発電機の回転子9、他方の回転軸が固定子10であり、回転子9が永久磁石の場合は回転する固定子10のコイルに発生する起電力を取り出すために、外側回転軸7にスリップリング18とブラシ19を備する。図2には記載してないが、回転子9が電磁石の場合には内側回転軸8にもスリップリング18とブラシ19を備する。ここで側回転軸7と内側回転軸8に夫々回転方向が逆のワンウエイクラッチベアリング14,15,16,17あるいはラチェット14,15,16,17を備しているが、夫々の回転軸の両端にワンウエイクラッチベアリングあるいはラチェットを付けなくても、一端をボールベアリングにすることもできる。 FIG. 2 is a detailed view of the inside of the power generation chamber 3. A wind turbine having a horizontal rotating shaft or a vertical rotating shaft has a concentric rotating shaft, two sets of rotating directions 11 and 12 opposite to each other, and a rotating direction on the outer rotating shaft 7 and the inner rotating shaft 8 respectively. Comprises one-way clutch bearings 14, 15, 16, 17 or ratchets 14, 15, 16, 17, with one rotating shaft being the generator rotor 9 and the other rotating shaft being the stator 10, When the rotor 9 is a permanent magnet, a slip ring 18 and a brush 19 are provided on the outer rotating shaft 7 in order to take out an electromotive force generated in the coil of the rotating stator 10. Although not shown in FIG. 2, when the rotor 9 is an electromagnet, the inner rotary shaft 8 is also provided with a slip ring 18 and a brush 19. Here, the side rotary shaft 7 and the inner rotary shaft 8 are provided with one-way clutch bearings 14, 15, 16, 17 or ratchets 14, 15, 16, 17 whose rotational directions are opposite to each other. One end can be a ball bearing without a one-way clutch bearing or ratchet.

図3はアップウインドーとダウンウインドーへの適応図である。水平軸型プロペラ風車の場合タワー13による気流の錯乱が問題になる。このイレギュラーな流れの影響を避けるために、タワー13の前側上方から風14を受けるアップウインドー(c)の場合は一対のプロペラ1、2を風上に向け仰角20(コーニング角α)を負側に傾け、タワー13の後側下方から風を受けるダウンウインドー(d)の場合は一対のプロペラ1、2を風下に向け仰角20(コーニング角α)を正側に傾ける。とくに周囲に障害物が無い海洋や大型風車においてはダウンウインドー(d)が望ましい。 FIG. 3 is an adaptation diagram for an up window and a down window. In the case of a horizontal axis type propeller wind turbine, the confusion of the air flow by the tower 13 becomes a problem. In order to avoid the influence of this irregular flow, in the case of the up window (c) which receives the wind 14 from the upper front side of the tower 13, the pair of propellers 1 and 2 are directed upward and the elevation angle 20 (corning angle α) is set. In the case of the down window (d) that is inclined to the negative side and receives the wind from the lower rear side of the tower 13, the pair of propellers 1 and 2 are directed downward and the elevation angle 20 (corning angle α) is inclined to the positive side. In particular, the down window (d) is desirable in the ocean and large windmills where there are no obstacles around.

図4は2基一組のプロペラを隔てて設置する場合の図である。水平回転軸を有する2基一組の水平軸風車の1基目の風車の短径プロペラ1と風切り角を逆にした2基目のプロペラ2を発電室3を隔てて設置した場合である。図1に示した発電室3の前方に2基一組の水平軸風車を置いた場合に比べ図4のように互いのプロペラを隔てて置くとタワー13で発電室3を支えるための重量バランスの調整ができる点は有利である。 FIG. 4 is a diagram showing a case where two sets of propellers are installed apart from each other. This is a case where a short-diameter propeller 1 of a first wind turbine of a set of two horizontal axis wind turbines each having a horizontal rotation axis and a second propeller 2 having a reversed wind angle are installed across a power generation chamber 3. Compared to the case where two sets of horizontal axis wind turbines are placed in front of the power generation chamber 3 shown in FIG. 1, the weight balance for supporting the power generation chamber 3 by the tower 13 when the propellers are placed apart as shown in FIG. 4. This is advantageous in that it can be adjusted.

図5は互いの羽根車径が異なる2基一組の垂直回転軸風車を上下に配置した図である。垂直に翼23(ブレード)を複数枚並べた垂直回転軸風水車は風や水の流れ方向に左右されないため流れに対して羽根車21、22の回転軸を垂直にしておけばよい。ただし風車の場合は地表からの高度が高くなるに連れて風速14が早くなるため、2基一組の同軸風車では、2基目の羽根車22の上部に1基目の羽根車21を乗せ、1基目の羽根車21よりも長直径を有する羽根車22を設備する。上部に設置した1基目の羽根車21は内側回転軸8により発電室3に設備した発電用回転子9を直接駆動し、2基目の羽根車22は外側回転軸7により発電室3に設備した発電用固定子10を直接駆動し、それらの相対回転11、12により約2倍の流速と等価な発電エネルギーを得る。これら同軸回転軸の設定された回転方向を逸脱させないようにするため、2基一組の垂直回転軸の外側回軸7と内側回転軸8に夫々回転方向が逆のワンウエイクラッチベアリング14,15,16,17あるいはラチェット14,15,16,17を備す。このように相対回転11、12により約2倍の流速と等価な発電エネルギーを得る目的では、羽根車21および2の回転は同じである必要は無い。極端のことを言えば、一方が止まっていた場合でも発電は行われる。従って図6に示すように同じ径を有する羽根車21を上下に配置しても良い。 FIG. 5 is a diagram in which two sets of vertical rotating shaft wind turbines having different impeller diameters are arranged vertically. A vertical rotation axis wind turbine with a plurality of blades 23 (blades) arranged vertically is not affected by the flow direction of wind or water, and therefore the rotation shafts of the impellers 21 and 22 may be set perpendicular to the flow. However, in the case of a windmill, the wind speed 14 increases as the altitude from the ground surface increases, so in a pair of coaxial windmills, the first impeller 21 is placed on top of the second impeller 22. An impeller 22 having a longer diameter than the first impeller 21 is installed. The first impeller 21 installed on the upper side directly drives the generator rotor 9 installed in the power generation chamber 3 by the inner rotary shaft 8, and the second impeller 22 enters the power generation chamber 3 by the outer rotary shaft 7. The installed power generation stator 10 is directly driven, and power generation energy equivalent to about twice the flow velocity is obtained by the relative rotations 11 and 12 thereof. In order not to deviate from the set rotation direction of these coaxial rotation shafts, the one-way clutch bearings 14, 15, whose rotation directions are opposite to the outer rotation shaft 7 and the inner rotation shaft 8 of two sets of vertical rotation shafts, respectively, 16, 17 or ratchet 14, 15, 16, 17 are provided. As described above, the rotation of the impellers 21 and 2 does not have to be the same for the purpose of obtaining power generation energy equivalent to a flow velocity approximately twice as large as the relative rotations 11 and 12. In an extreme case, power is generated even if one of them is stopped. Therefore, as shown in FIG. 6, you may arrange | position the impeller 21 which has the same diameter up and down.

図7は垂直回転軸を共有する2基一組の垂直軸水車である。船底26の上に固定台25を介して発電機室3を設備し、水面28より下部に1基目の水車27とその下に2基目の水車27を設備し、それらが互いに逆回転している羽根車が水の逆流や乱れにより正規の回転を逸脱することを阻止するために、2基一組の垂直回転軸の外側回転軸7と内側回転軸8に夫々回転方向が逆のワンウエイクラッチベアリング14,15,16,17あるいはラチェット14,15,16,17を備した後、その2組の同軸回転軸の一方に発電機の回転子9、他方の回転軸に回転固定子10を備し、水流29による2基一組の水車軸の相対回転により1から2倍の流速と等価な発電エネルギーを得る。 FIG. 7 shows a set of two vertical axis turbines sharing a vertical rotation axis. The generator room 3 is installed on the ship bottom 26 via the fixed base 25, the first turbine 27 is installed below the water surface 28, and the second turbine 27 is installed therebelow. In order to prevent the impellers from deviating from normal rotation due to the backflow or turbulence of water, the one-way in which the rotation direction is opposite to the outer rotation shaft 7 and the inner rotation shaft 8 of the pair of vertical rotation shafts, respectively. After the clutch bearings 14, 15, 16, 17 or the ratchets 14, 15, 16, 17 are provided, the generator rotor 9 is provided on one of the two coaxial rotary shafts, and the rotary stator 10 is provided on the other rotary shaft. In addition, by the relative rotation of a pair of water wheel shafts by the water flow 29, a power generation energy equivalent to a flow velocity of 1 to 2 times is obtained.

図8は風力と水流力とを組み合わせた発電方式である。甲板上24と船底26のとの間に固定台25を介して発電機室3を設備し、甲板24の上部には垂直回転軸を共有する2基一組の垂直軸風水車の内2基目の風車羽根車21、水面28を挟んで船底26の下には1基目の水車羽根車27が設置され、それらが互いに逆回転11、12している羽根車21、22であり、それらの回転方向が水の逆流や乱れにより正規の回転から逸脱することを阻止するために、2基一組の垂直回転軸の外側回転軸7と内側回転軸8に夫々回転方向が逆のワンウエイクラッチベアリング14,15,16,17あるいはラチェット14,15,16,17を備した後、それらの相対回転により1から2倍の流速と等価な発電エネルギーを得る。この場合風14あるいは水流29のいずか一方の流れが止まっても他方が回っていれば発電が行われる。風力と流体力とでは夫々の回転が大きく異なるが、それらの相対回転による発電のためなんら問題は生じない。 FIG. 8 shows a power generation method combining wind power and hydropower. The generator room 3 is installed between the deck 24 and the ship bottom 26 via the fixed base 25, and the upper part of the deck 24 has two sets of two vertical axis wind turbines sharing a vertical rotation axis. The first windmill impeller 21 and the first watermill impeller 27 are installed under the ship bottom 26 across the water surface 28, and these are the impellers 21 and 22 rotating in reverse directions 11 and 12, respectively. In order to prevent the rotation direction of the motor from deviating from the normal rotation due to the backflow or disturbance of water, the one-way clutch whose rotation direction is opposite to the outer rotation shaft 7 and the inner rotation shaft 8 of the pair of vertical rotation shafts, respectively. After the bearings 14, 15, 16, 17 or the ratchets 14, 15, 16, 17 are provided, the generated energy equivalent to the flow velocity of 1 to 2 times is obtained by their relative rotation. In this case, even if one of the winds 14 or the water flow 29 stops, power generation is performed if the other is turning. Wind power and fluid power have different rotations, but no problem arises due to power generation by their relative rotation.

以上説明したように、本発明によれば、水平回転軸風水車にあっては互いに逆回転している前後一組のプロペラの回転を発電機の回転素子と固定子に直結し、垂直回転軸風水車にあっては互いに逆回転している上下一組の羽根車の回転発電機の回転素子と固定子に直結し、それらの相対回転により2倍の流速と等価な電気エネルギーを抽出の効率向上をも図ることができる。 As described above, according to the present invention, in the case of a horizontal rotating shaft wind turbine, the rotation of a pair of front and rear propellers rotating in reverse is directly connected to the rotating element and stator of the generator, and the vertical rotating shaft The wind turbine is directly connected to the rotating element and the stator of the rotating generator of a pair of upper and lower impellers rotating in opposite directions, and extraction efficiency is equivalent to twice the flow velocity due to their relative rotation. Improvement can also be achieved.

本願発明によれば、水平回転軸風水車にあっては互いに逆回転している前後一組のプロペラの回転を発電機の回転素子と固定子に直結し、垂直回転軸風水車にあっては互いに逆回転している上下一組の羽根車の回転発電機の回転素子と固定子に直結し、それらの相対回転により2倍の流速と等価な電気エネルギーを抽出し、これらのエネルギーを用い、海洋資源採取現場の船上で海水の電気分解により苛性ソーダーやナトリウム、マグネシウムなどの水素発生金属、あるいは真水などを製造し、それら生産物を寄港先で陸揚げすることにより、生産・貯蔵・輸送時におけるエネルギーロスを無くし、システム全体の効率を向上させることができる。このことは資源の世界的枯渇と資源高をもたらし、これに伴う資源供給国の台頭が国際社会に影響力を拡大させている現況を沈静化するに留まらず、無尽蔵にあるクリーンな海洋資源を化石燃料を使わず経済的に製造する事は、4面を海に囲まれる我が国の産業に取って重要な手段である。 According to the present invention, in the case of a horizontal rotating shaft wind turbine, the rotation of a pair of front and rear propellers rotating in reverse is directly connected to the rotating element and the stator of the generator, and in the vertical rotating shaft wind turbine. Directly connected to the rotating element and stator of the rotary generator of a pair of upper and lower impellers rotating in reverse, extracting electrical energy equivalent to twice the flow velocity by their relative rotation, and using these energies, By producing seawater electrolysis of seawater on the marine resource collection site, hydrogen-producing metals such as caustic soda, sodium and magnesium, or fresh water, and landing these products at the port of call, during production, storage and transportation Energy loss can be eliminated and overall system efficiency can be improved. This has led to a global depletion of resources and high resources, and the rise of resource-providing countries that accompanies this has not only calmed the current situation that is expanding its influence on the international community, but also the inexhaustible clean marine resources. Producing economically without using fossil fuels is an important measure for Japanese industries surrounded by the sea.

2重反転プロペラ風車の概略構成図Schematic configuration diagram of a double reversing propeller wind turbine 発電室内部の詳細断面図Detailed cross-sectional view of the power generation chamber アップウインドーとダウンウインドーの適応図Adaptation of up window and down window 2基一組のプロペラ風車を発電室を隔てて備えた2重反転風車の概略構成図Schematic configuration diagram of a double reversing wind turbine provided with a set of two propeller wind turbines separated by a power generation chamber 羽根車の直径が異なる2基一組の2重反転式垂直軸型風車の概略構成図Schematic configuration diagram of a pair of double reversing vertical axis wind turbines with different diameters of impellers 羽根車の直径が等しい2基一組の2重反転式垂直軸型風車概略構成図Schematic configuration diagram of double reversing vertical axis wind turbines with a pair of two impellers having the same diameter 羽根車の直径が等しい2基一組の2重反転式垂直軸型水車概略構成図Schematic configuration diagram of a pair of double reversing vertical axis water turbines with the same impeller diameter 2基一組の風水車のうち、1基の風車を甲板上に、もう1つを船底に備した風水車発電装置概略構成図Schematic block diagram of a wind turbine generator with one wind turbine on the deck and the other on the bottom of a set of two wind turbines

符号の説明Explanation of symbols

a プロペラ型風車平面図
b プロペラ型風車断面図
c アップウインドー
d ダウンウインドー
1 小直径プロペラ
2 大直径プロペラ
3 発電室
4 小プロペラ直径
5 支持翼
6 大直径プロペラの直径
7 外側回転軸
8 内側回転軸
9 回転子(ローター)
10 回転固定子(ステーター)
11 回転方向
12 逆回転方向
13 タワー
14 ワンウエイクラッチベアリング、クラッチ
15 ワンウエイクラッチベアリング、クラッチ(14、15のうち1つがボールベアリングでも可)
16 ワンウエイクラッチベアリング、クラッチ
17 ワンウエイクラッチベアリング、クラッチ(14、15のうち1つがボールベアリングでも可)
18 スリップリング
19 ブラシ
20 仰角(コーニング角)
21 垂直軸型風車(羽根車)
22 大直径垂直軸型風車(羽根車)
23 翼(ブレード)
24 甲板またはプラットホーム
25 浮体船
26 船底
27 垂直軸型水車(羽根車)
28 喫水線(水面)
29 水流
a Propeller type windmill top view
b Propeller type windmill cross section
c Up window
d Down window 1 Small diameter propeller 2 Large diameter propeller
3 Power generation chamber 4 Small propeller diameter 5 Support wing 6 Large diameter propeller diameter 7 Outer rotating shaft 8 Inner rotating shaft 9 Rotor
10 Rotating stator (stator)
11 Rotating direction 12 Reverse rotating direction 13 Tower 14 One-way clutch bearing, clutch 15 One-way clutch bearing, clutch (one of 14 and 15 can be a ball bearing)
16 One-way clutch bearing, clutch 17 One-way clutch bearing, clutch (One of 14, 15 can be ball bearing)
18 Slip ring 19 Brush 20 Elevation angle (corning angle)
21 Vertical axis windmill (impeller)
22 Large diameter vertical axis windmill (impeller)
23 Wings
24 Deck or platform 25 Floating ship 26 Bottom 27 Vertical shaft type water wheel (impeller)
28 water line (water surface)
29 Water flow

Claims (5)

水平回転軸あるいは垂直回転軸を有する風水車が夫々同心回転軸を有し、互いの回転方向が逆の2基一組で、かつ外側回転軸と内側回転軸に夫々回転方向が逆のワンウエイクラッチベアリングあるいはラチェットを備する風水車であり、1基目の風水車のプロペラあるいは羽根車が2基目のプロペラあるいは羽根車よりも長直径あるいは同じ直径または小直径を有し、その一方のプロペラまたは羽根車の回転軸が発電機の回転子、他方の回転軸が固定子であることを特徴とする風水車同心回転軸直接駆動型電気エネルギー抽出装置。 A one-way clutch having a horizontal rotating shaft or a vertical rotating shaft, each having a concentric rotating shaft, two sets of rotating directions opposite to each other, and the rotating directions of the outer rotating shaft and the inner rotating shaft being reversed. A wind turbine equipped with a bearing or ratchet, wherein the propeller or impeller of the first wind turbine has a longer diameter, the same diameter or a smaller diameter than the second propeller or impeller, A wind turbine concentric rotating shaft direct drive type electric energy extracting device, wherein the rotating shaft of the impeller is a rotor of the generator and the other rotating shaft is a stator. 請求項1に記載の水平回転軸を有する2基一組の水平軸風車であり、夫々の風車の受風面積が同一面積以上の直径を有し、かつ風上に設置する1基目の風車のプロペラと風切り角を逆にした2基目のプロペラを風下側にそれぞれを隣接あるいは隔てて設置し、1基目の風上側のプロペラは2基目より短径で、かつ2基目のプロペラは1基目のプロペラと同じ直径以上の支持翼を有し、その支持翼の延長線上がプロペラであり、それら2基のプロペラが互いに反対方向に回転し、かつタワーの風下にプロペラを設置するかまたはタワーの風上側にプロペラを設置することを特徴とする請求項1に記載の風水車同心回転軸直接駆動型電気エネルギー抽出装置。 A pair of horizontal axis wind turbines each having the horizontal rotation shaft according to claim 1, wherein the wind receiving area of each wind turbine has a diameter equal to or larger than the same area, and is installed on the windward side. The propeller of the second and the second propeller with the wind-off angle reversed are installed on the leeward side adjacent to or separated from each other, and the first propeller on the leeward side is shorter than the second and has the second propeller. Has a support wing of the same diameter or more as the first propeller, the propeller is on the extension line of the support wing, the two propellers rotate in opposite directions, and the propeller is installed in the lee of the tower 2. The wind turbine concentric rotating shaft direct drive type electric energy extraction device according to claim 1, wherein a propeller is installed on the windward side of the tower. 請求項1に記載の垂直回転軸を共有する2基一組の垂直軸風車であり、2基目の羽根車の上部に1基目の羽根車よりも短直径あるいは同じ直径を有する1基目の羽根車を設備し、それらが互いに反対方向に回転することを特徴とする請求項1に記載の風水車同心回転軸直接駆動型電気エネルギー抽出装置。 2. A pair of vertical axis wind turbines sharing a vertical rotation axis according to claim 1, wherein the first unit has a shorter diameter or the same diameter as the first impeller at the top of the second impeller. The wind turbine concentric rotating shaft direct drive type electric energy extracting device according to claim 1, wherein the impellers are installed in such a manner that they rotate in directions opposite to each other. 請求項1に記載の垂直回転軸を共有する2基一組の垂直軸水車であり、1基目の水車の下部に2基目の水車を設備し、それらが互いに反対方向に回転することを特徴とする請求項1に記載の風水車同心回転軸直接駆動型電気エネルギー抽出装置。 A set of two vertical axis turbines sharing the vertical axis of rotation according to claim 1, wherein a second turbine is installed under the first turbine and they rotate in opposite directions. 2. A wind turbine concentric rotating shaft direct drive type electric energy extraction device according to claim 1, wherein 請求項1に記載の垂直回転軸を共有する2基一組の垂直軸風水車であり、1基目の水車は水面下に、2基目の風車は水面上に設置され、それらの回転軸が互いに反対方向に回転することを特徴とする請求項1に記載の風水車同心回転軸直接駆動型電気エネルギー抽出装置。 A set of two vertical axis wind turbines sharing the vertical rotation axis according to claim 1, wherein the first turbine is installed below the water surface and the second wind turbine is installed above the water surface. The wind turbines concentric rotating shaft direct drive type electric energy extracting device according to claim 1, wherein the rotary shafts rotate in opposite directions.
JP2006240060A 2006-09-05 2006-09-05 Wind and water turbine concentric rotary shaft direct drive type electric energy extracting device Pending JP2008063961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006240060A JP2008063961A (en) 2006-09-05 2006-09-05 Wind and water turbine concentric rotary shaft direct drive type electric energy extracting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006240060A JP2008063961A (en) 2006-09-05 2006-09-05 Wind and water turbine concentric rotary shaft direct drive type electric energy extracting device

Publications (1)

Publication Number Publication Date
JP2008063961A true JP2008063961A (en) 2008-03-21

Family

ID=39286902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240060A Pending JP2008063961A (en) 2006-09-05 2006-09-05 Wind and water turbine concentric rotary shaft direct drive type electric energy extracting device

Country Status (1)

Country Link
JP (1) JP2008063961A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010675A1 (en) * 2009-07-21 2011-01-27 株式会社エコ・テクノロジー Hydroelectric power generating equipment
JP2011130661A (en) * 2009-12-18 2011-06-30 General Electric Co <Ge> Counter-rotatable generator
CN102364094A (en) * 2011-11-15 2012-02-29 新疆尚能太阳能科技有限公司 Bidirectional wind barrel type magnetic suspension wind power generation device
WO2013005707A1 (en) * 2011-07-05 2013-01-10 合同会社アルバトロス・テクノロジー Natural energy extraction device
WO2013065826A1 (en) * 2011-11-04 2013-05-10 Nakamura Takuju Floating structure fluid dynamic force use system and wind-propelled vessel
WO2013111852A1 (en) * 2012-01-27 2013-08-01 クリーンパワー株式会社 Vertical axis-type wind-powered electricity generation device
KR101380937B1 (en) * 2012-02-28 2014-04-03 한국에너지기술연구원 Hybrid Vertical-Axis Wind Turbine
WO2014061116A1 (en) * 2012-10-17 2014-04-24 株式会社協和コンサルタンツ Submersible power generator
CN103925163A (en) * 2014-05-09 2014-07-16 哈尔滨工业大学 Hydraulic and pneumatic one-way shaft and birotor type power generating device
JP2014152768A (en) * 2013-02-14 2014-08-25 Penta Ocean Construction Co Ltd Power generator, water flow generation device and wind power/water flow generation device
CN104246211A (en) * 2013-03-05 2014-12-24 株式会社协和工程顾问 Submersible generator
CN104295451A (en) * 2014-10-16 2015-01-21 新疆尚能太阳能科技有限公司 Small wind power generator and power generation system
CN104564544A (en) * 2015-01-05 2015-04-29 浙江大学 Direct speedup type continuous variable transmission chain structure of wind power generation set
JP2015126696A (en) * 2013-12-26 2015-07-06 志鴻 魏 Fluid power generator
JP2016156381A (en) * 2016-04-07 2016-09-01 拓樹 中村 Floating body type fluid force utilization system and wind propulsion ship using the same
US9599097B2 (en) 2014-03-04 2017-03-21 Chih-Hung Wei Fluid power generating apparatus
CN106958617A (en) * 2017-03-14 2017-07-18 西南交通大学 A kind of energy feedback damper based on automobile vibration
RU178822U1 (en) * 2017-09-08 2018-04-19 Анатолий Александрович Катаев ELECTRICITY POWER MODULE
US10047723B2 (en) 2011-06-01 2018-08-14 Albatross Technology LLC Natural energy extraction apparatus
US10094355B2 (en) 2012-10-03 2018-10-09 Kyowa Engineering Consultants Co., Ltd. Water turbine generator
JP2020067010A (en) * 2018-10-23 2020-04-30 三菱電機エンジニアリング株式会社 Propeller device
CN111946571A (en) * 2020-08-11 2020-11-17 何景安 Spiral reciprocating rotator of single-phase rotating device
JP2021017870A (en) * 2019-07-23 2021-02-15 三菱電機エンジニアリング株式会社 Small-sized windmill device
JP2022522529A (en) * 2019-04-23 2022-04-19 シーアール フライト エル.エル.シー. Reverse rotation axial flow electric motor assembly

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010675A1 (en) * 2009-07-21 2011-01-27 株式会社エコ・テクノロジー Hydroelectric power generating equipment
JP5659428B2 (en) * 2009-07-21 2015-01-28 株式会社エコ・テクノロジー Hydroelectric generator
CN102575637A (en) * 2009-07-21 2012-07-11 生态技术株式会社 Hydroelectric power generating equipment
JPWO2011010675A1 (en) * 2009-07-21 2013-01-07 株式会社エコ・テクノロジー Hydroelectric generator
JP2011130661A (en) * 2009-12-18 2011-06-30 General Electric Co <Ge> Counter-rotatable generator
US10047723B2 (en) 2011-06-01 2018-08-14 Albatross Technology LLC Natural energy extraction apparatus
EP2730778A1 (en) * 2011-07-05 2014-05-14 Albatross Technology LLC Natural energy extraction device
WO2013005707A1 (en) * 2011-07-05 2013-01-10 合同会社アルバトロス・テクノロジー Natural energy extraction device
EP2730778A4 (en) * 2011-07-05 2015-01-21 Albatross Technology LLC Natural energy extraction device
US9284941B2 (en) 2011-07-05 2016-03-15 Albatross Technology LLC Natural energy extraction apparatus
JP2013096373A (en) * 2011-11-04 2013-05-20 Takuki Nakamura Floating body type hydrodynamic force use system and wind propulsion ship using the same
WO2013065826A1 (en) * 2011-11-04 2013-05-10 Nakamura Takuju Floating structure fluid dynamic force use system and wind-propelled vessel
KR20140075766A (en) * 2011-11-04 2014-06-19 타쿠쥬 나카무라 Floating structure fluid dynamic force use system and wind-propelled vessel
US9751602B2 (en) 2011-11-04 2017-09-05 Takuju Nakamura Floating structure fluid dynamic force use system and wind-propelled vessel
KR101640386B1 (en) 2011-11-04 2016-07-18 타쿠쥬 나카무라 Floating structure fluid dynamic force use system and wind-propelled vessel
CN104040170A (en) * 2011-11-04 2014-09-10 中村拓树 Floating structure fluid dynamic force use system and wind-propelled vessel
CN102364094A (en) * 2011-11-15 2012-02-29 新疆尚能太阳能科技有限公司 Bidirectional wind barrel type magnetic suspension wind power generation device
WO2013111852A1 (en) * 2012-01-27 2013-08-01 クリーンパワー株式会社 Vertical axis-type wind-powered electricity generation device
JP2013155641A (en) * 2012-01-27 2013-08-15 Clean Power Kk Vertical axis-type wind-powered electricity generation device
KR101380937B1 (en) * 2012-02-28 2014-04-03 한국에너지기술연구원 Hybrid Vertical-Axis Wind Turbine
US10094355B2 (en) 2012-10-03 2018-10-09 Kyowa Engineering Consultants Co., Ltd. Water turbine generator
US9506450B2 (en) 2012-10-17 2016-11-29 Kyowa Engineering Consultants Co., Ltd. Submersible power generator
WO2014061116A1 (en) * 2012-10-17 2014-04-24 株式会社協和コンサルタンツ Submersible power generator
JP5541760B1 (en) * 2012-10-17 2014-07-09 株式会社協和コンサルタンツ Submerged generator
CN104246209A (en) * 2012-10-17 2014-12-24 株式会社协和工程顾问 Submersible power generator
KR101611840B1 (en) * 2012-10-17 2016-04-26 가부시키가이샤 교와 컨설턴츠 Submersible power generator and submersible power generation system
JP2014152768A (en) * 2013-02-14 2014-08-25 Penta Ocean Construction Co Ltd Power generator, water flow generation device and wind power/water flow generation device
US9506449B2 (en) 2013-03-05 2016-11-29 Kyowa Engineering Consultants Co., Ltd. Submersible power generator
CN104246211A (en) * 2013-03-05 2014-12-24 株式会社协和工程顾问 Submersible generator
JP2015126696A (en) * 2013-12-26 2015-07-06 志鴻 魏 Fluid power generator
US9599097B2 (en) 2014-03-04 2017-03-21 Chih-Hung Wei Fluid power generating apparatus
CN103925163A (en) * 2014-05-09 2014-07-16 哈尔滨工业大学 Hydraulic and pneumatic one-way shaft and birotor type power generating device
CN104295451A (en) * 2014-10-16 2015-01-21 新疆尚能太阳能科技有限公司 Small wind power generator and power generation system
CN104564544A (en) * 2015-01-05 2015-04-29 浙江大学 Direct speedup type continuous variable transmission chain structure of wind power generation set
CN104564544B (en) * 2015-01-05 2017-05-24 浙江大学 Direct speedup type continuous variable transmission chain structure of wind power generation set
JP2016156381A (en) * 2016-04-07 2016-09-01 拓樹 中村 Floating body type fluid force utilization system and wind propulsion ship using the same
CN106958617A (en) * 2017-03-14 2017-07-18 西南交通大学 A kind of energy feedback damper based on automobile vibration
RU178822U1 (en) * 2017-09-08 2018-04-19 Анатолий Александрович Катаев ELECTRICITY POWER MODULE
JP2020067010A (en) * 2018-10-23 2020-04-30 三菱電機エンジニアリング株式会社 Propeller device
JP2022522529A (en) * 2019-04-23 2022-04-19 シーアール フライト エル.エル.シー. Reverse rotation axial flow electric motor assembly
JP7369203B2 (en) 2019-04-23 2023-10-25 シーアール フライト エル.エル.シー. Counter-rotating axial electric motor assembly
JP2021017870A (en) * 2019-07-23 2021-02-15 三菱電機エンジニアリング株式会社 Small-sized windmill device
CN111946571A (en) * 2020-08-11 2020-11-17 何景安 Spiral reciprocating rotator of single-phase rotating device

Similar Documents

Publication Publication Date Title
JP2008063961A (en) Wind and water turbine concentric rotary shaft direct drive type electric energy extracting device
JP2008063960A (en) Ocean float type wind and water turbine fluid extracting power generating facilities
CA2780030C (en) Wind turbine with torque balancing mechanism
CA2740120C (en) Wind powered apparatus having counter rotating blades
CN103930670B (en) Systems and methods for improved water rotors
EP2108821A2 (en) Shaftless vertical axis wind turbine
JP2008175070A (en) Vertical shaft magnus type wind power generator
CN101660499B (en) Grid-connected hybrid-driven variable-pitch variable-speed constant-frequency wind turbine generator set
KR20140015520A (en) Horizontal multiple stages wind turbine
EP2143938A1 (en) Wind-driven power plant
US8629570B1 (en) Wind turbine blades with reinforcing, supporting and stabilizing components and enlarged swept area
JP2003129935A (en) Wind power generator
JP2018040301A (en) Wind and water power generation device
CN102364094A (en) Bidirectional wind barrel type magnetic suspension wind power generation device
GB2449436A (en) Fluid driven generator
JP2018507973A (en) Rotor for generator
WO1990008881A1 (en) Turbine device
JP2011064203A (en) Wind wheel
JP2005171868A (en) Compound windmill
CN101649812B (en) Vertical shaft integrated horizontal self-varied propeller-type wind power generation device
CN105065188A (en) Wind wave power generation device
RU107828U1 (en) MOBILE WIND-HYDRO POWER PLANT
US20170298906A1 (en) Wind-water-light-magnetism-air five-energy integrated power generation device
CN106907288A (en) The symmetrical direct-drive type ocean current generator group of big L/D ratio
CN103362764B (en) A kind of rotation column clean energy power device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110301