JP2008063947A - Oil supplying device for vehicle - Google Patents

Oil supplying device for vehicle Download PDF

Info

Publication number
JP2008063947A
JP2008063947A JP2006239502A JP2006239502A JP2008063947A JP 2008063947 A JP2008063947 A JP 2008063947A JP 2006239502 A JP2006239502 A JP 2006239502A JP 2006239502 A JP2006239502 A JP 2006239502A JP 2008063947 A JP2008063947 A JP 2008063947A
Authority
JP
Japan
Prior art keywords
oil
flow rate
pressure
electric motor
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006239502A
Other languages
Japanese (ja)
Other versions
JP4732281B2 (en
Inventor
Rei Nishikawa
玲 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006239502A priority Critical patent/JP4732281B2/en
Publication of JP2008063947A publication Critical patent/JP2008063947A/en
Application granted granted Critical
Publication of JP4732281B2 publication Critical patent/JP4732281B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil supplying device for a vehicle capable of improving the operating efficiency of an electric oil pump without complicating the structure and control of the pump, thereby reducing the power consumption and manufacturing cost. <P>SOLUTION: Oil discharged from a high-pressure pump mechanism part 50 is supplied to a rotating operation mechanism 11 through a line pressure passage 33 and oil discharged from a low-pressure pump mechanism part 51 is supplied to a lubricating/cooling passage 34. The pressure of the line pressure passage 33 is regulated by a pressure regulating valve 35 and excessive oil is supplied to the lubricating/cooling passage 34. A total required flow volume is obtained by adding a leak flow volume during non-operation of the rotating operation mechanism 11 and a flow volume required in the lubricating/cooling passage 34. A number of revolutions N1 required for obtaining the flow volume is calculated. A threshold number of revolutions N2 as a limit value that permits the leak flow volume to be compensated is calculated. When N1 is equal to or larger than N2, an electric motor 52 is driven at N1. When N1 is smaller than N2, the electric motor 52 is driven at N2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、電動オイルポンプによって高圧系油路と低圧系油路にオイルを供給する車両のオイル供給装置に関するものである。   The present invention relates to a vehicle oil supply device that supplies oil to a high-pressure oil passage and a low-pressure oil passage by an electric oil pump.

車両の油圧アクチュエータを作動させるためのオイルの供給と、各種機器の冷却や潤滑のためのオイルの供給を一つの電動オイルポンプで賄うものが知られている(例えば、特許文献1参照)。   There is known one that supplies oil for operating a hydraulic actuator of a vehicle and supplies oil for cooling and lubrication of various devices with one electric oil pump (see, for example, Patent Document 1).

この電動オイルポンプは、共通の電動モータで駆動される高圧ポンプ機構部と低圧ポンプ機構部を有し、高圧ポンプ機構部から吐出されたオイルが主に油圧アクチュエータの作動に用いられ、低圧ポンプ機構部から吐出されたオイルが各種機器の冷却や潤滑に用いられるようになっている。   This electric oil pump has a high-pressure pump mechanism and a low-pressure pump mechanism that are driven by a common electric motor, and oil discharged from the high-pressure pump mechanism is mainly used for the operation of the hydraulic actuator. The oil discharged from the section is used for cooling and lubrication of various devices.

この電動オイルポンプが採用される車両のオイル供給装置は、高圧ポンプ機構部が調圧弁を介してライン圧通路に接続され、低圧ポンプ機構部が冷却通路や潤滑通路等の低圧オイル通路に接続されている。高圧ポンプ機構部側の調圧弁は、ライン圧通路に供給するオイルを設定圧に調圧するとともに、余剰オイルを低圧オイル通路に供給するようになっている。
また、電動オイルポンプは、油圧アクチュエータで必要とするオイルの流量と、機器の冷却や潤滑で必要とするオイルの流量を求め、これらの各必要流量を得るのに要する駆動回転速度のうちの高い方の回転速度で電動モータを駆動する。これにより、油圧アクチュエータ側のライン圧通路と、冷却や潤滑のための低圧オイル通路において常に供給オイルの不足が生じなくなる。
特開2000−27992号公報
In a vehicle oil supply apparatus employing this electric oil pump, a high pressure pump mechanism is connected to a line pressure passage through a pressure regulating valve, and a low pressure pump mechanism is connected to a low pressure oil passage such as a cooling passage or a lubrication passage. ing. The pressure regulating valve on the high pressure pump mechanism section regulates oil supplied to the line pressure passage to a set pressure and supplies surplus oil to the low pressure oil passage.
In addition, the electric oil pump obtains the oil flow rate required for the hydraulic actuator and the oil flow rate required for cooling and lubrication of the equipment, and the drive rotational speed required to obtain these required flow rates is high. The electric motor is driven at one rotational speed. As a result, a shortage of supply oil does not always occur in the line pressure passage on the hydraulic actuator side and the low pressure oil passage for cooling and lubrication.
JP 2000-27992 A

しかし、この従来のオイル供給装置においては、高圧側と低圧側で夫々必要流量を得るのに要する駆動回転速度のうちの高い方の回転速度で電動モータを駆動する構成となっているため、常に供給オイルの不足は生じなくなるものの、余剰オイルの流量が多くなり、電動モータの不要な電力消費が増大してしまう。具体的には、車両の運転時には前記の油圧アクチュエータを作動させない時間の方が圧倒的に多いにも拘わらず、冷却や潤滑のための供給オイルを確保するために、必要以上の流量のオイルを油圧アクチュエータ側にも流し続けることになり、このオイルを流すための駆動電力が無駄になってしまう。   However, in this conventional oil supply device, the electric motor is driven at the higher rotational speed of the drive rotational speeds required to obtain the required flow rates on the high pressure side and the low pressure side, respectively. Although the shortage of supply oil does not occur, the flow rate of surplus oil increases and unnecessary power consumption of the electric motor increases. Specifically, in order to secure supply oil for cooling and lubrication despite the overwhelming amount of time during which the hydraulic actuator is not operated when the vehicle is in operation, oil with a flow rate higher than necessary is required. It will continue to flow to the hydraulic actuator side, and driving power for flowing this oil will be wasted.

そこでこの発明は、構造や制御の複雑化を招くことなく、電動オイルポンプの運転効率を高め、電力消費の低減と製造コストの低減の両立を図ることのできる車両のオイル供給装置を提供しようとするものである。   Therefore, the present invention aims to provide an oil supply device for a vehicle that can increase the operation efficiency of the electric oil pump without complicating the structure and control, and reduce both power consumption and manufacturing cost. To do.

上記の課題を解決するための請求項1に記載の発明は、共通の電動モータ(例えば、後述の実施形態における電動モータ52)で駆動される高圧ポンプ機構部(例えば、後述の実施形態における高圧ポンプ機構部50)と低圧ポンプ機構部(例えば、後述の実施形態における低圧ポンプ機構部51)を有する電動オイルポンプ(例えば、後述の実施形態における電動オイルポンプ32)と、前記高圧ポンプ機構部から吐出されたオイルを車両の油圧アクチュエータに供給するライン圧通路(例えば、後述の実施形態におけるライン圧通路33)と、前記低圧ポンプ機構部から吐出されたオイルを車両機器の低圧オイル利用部に供給する低圧オイル通路(例えば、後述の実施形態における潤滑・冷却通路34)と、前記高圧ポンプ機構部から吐出されて前記ライン圧通路に供給されるオイルを設定圧に調圧し、余剰オイルを前記低圧オイル通路に供給する調圧弁(例えば、後述の実施形態における調圧弁35)と、前記油圧アクチュエータの非作動時に、同油圧アクチュエータからリークするオイルの流量を算出するリーク流量算出手段(例えば、後述の実施形態におけるリーク流量算出手段60)と、前記低圧オイル通路で必要とするオイルの流量を算出する低圧必要流量算出手段(例えば、後述の実施形態における低圧必要流量算出手段61)と、前記油圧アクチュエータの非作動時に、前記リーク流量算出手段と低圧必要流量算出手段の算出結果からオイルの総合必要流量を算出する総合必要流量算出手段(例えば、後述の実施形態における総合必要流量算出手段62)と、前記総合必要流量を得るための電動モータの必要回転速度を算出する必要モータ速度算出手段(例えば、後述の実施形態における必要モータ速度算出手段63)と、前記高圧ポンプ機構部でのオイルの吐出流量が前記油圧アクチュエータからのオイルのリーク流量とほぼ同じになる電動モータの閾値回転速度を算出する閾値モータ速度算出手段(例えば、後述の実施形態における閾値モータ速度算出手段64)と、前記必要モータ速度算出手段と閾値モータ速度算出手段の算出結果に基づき、前記油圧アクチュエータの非作動時に、前記総合必要流量を得るための電動モータの必要回転速度が前記閾値回転速度以上の場合には、電動モータを前記必要回転速度で駆動し、前記総合必要流量を得るための電動モータの必要回転速度が前記閾値回転速度よりも小さい場合には、電動モータを前記閾値回転速度以上の設定速度で駆動する駆動制御手段(例えば、後述の実施形態における駆動制御手段65)と、を備えたことを特徴とする。   The invention according to claim 1 for solving the above-described problem is a high-pressure pump mechanism (for example, a high pressure in an embodiment described later) driven by a common electric motor (for example, an electric motor 52 in an embodiment described later). An electric oil pump (for example, an electric oil pump 32 in an embodiment described later) having a pump mechanism section 50) and a low pressure pump mechanism section (for example, a low pressure pump mechanism section 51 in an embodiment described later), and the high pressure pump mechanism section A line pressure passage (for example, a line pressure passage 33 in an embodiment described later) for supplying discharged oil to a hydraulic actuator of the vehicle, and oil discharged from the low-pressure pump mechanism section are supplied to a low-pressure oil utilization section of a vehicle device. Discharge from the low pressure oil passage (for example, the lubrication / cooling passage 34 in the embodiment described later) and the high pressure pump mechanism. The pressure regulating valve that regulates the oil supplied to the line pressure passage to a set pressure and supplies surplus oil to the low pressure oil passage (for example, the pressure regulating valve 35 in an embodiment described later), and the hydraulic actuator is inoperative Sometimes, a leak flow rate calculating means for calculating the flow rate of oil leaking from the hydraulic actuator (for example, a leak flow rate calculating means 60 in an embodiment described later), and a low pressure required for calculating the flow rate of oil required in the low pressure oil passage. The total required flow rate of oil is calculated from the calculation results of the flow rate calculation means (for example, the low pressure required flow rate calculation means 61 in the embodiment described later) and the leak flow rate calculation means and the low pressure required flow rate calculation means when the hydraulic actuator is not operated. Total required flow rate calculating means (for example, total required flow rate calculating means 62 in the embodiment described later), The required motor speed calculating means for calculating the required rotational speed of the electric motor for obtaining the total required flow rate (for example, the required motor speed calculating means 63 in the embodiment described later) and the oil discharge flow rate at the high-pressure pump mechanism section are as follows. Threshold motor speed calculation means (for example, threshold motor speed calculation means 64 in an embodiment described later) for calculating a threshold rotation speed of an electric motor that is substantially the same as the leak flow rate of oil from the hydraulic actuator, and the necessary motor speed calculation. And when the required rotational speed of the electric motor for obtaining the total required flow rate is equal to or higher than the threshold rotational speed when the hydraulic actuator is not operated based on the calculation result of the means and the threshold motor speed calculating means, The required rotational speed of the electric motor for driving at the required rotational speed and obtaining the total required flow rate is the threshold rotational speed. When the angle is smaller than 50 degrees, drive control means for driving the electric motor at a set speed equal to or higher than the threshold rotation speed (for example, drive control means 65 in an embodiment described later) is provided.

これにより、油圧アクチュエータの非作動時には、リーク流量算出手段で油圧アクチュエータからリークするオイルの流量が算出されるとともに、低圧必要流量算出手段で低圧オイル通路で必要とするオイルの流量が算出され、さらに、これらの算出結果に基づいて総合必要流量算出手段でオイルの総合必要流量が算出される。この後に必要モータ速度算出手段で前記の総合必要流量を得るための電動モータの必要回転速度が算出されるとともに、閾値モータ速度算出手段で電動モータの閾値回転速度が算出される。そして、このとき電動モータの必要回転速度が閾値回転速度以上であれば、電動モータが駆動制御手段によって必要回転速度で駆動され、電動モータの必要回転速度が閾値回転速度よりも小さいときには、電動モータが駆動制御手段によって閾値回転速度以上の設定速度で駆動される。したがって、電動オイルポンプは、基本的に低圧側と高圧側の総合必要流量を満たすように運転され、ライン圧通路のオイルの流量が油圧アクチュエータからのリーク流量を下回る可能性のあるときには、確実にリーク流量以上のオイルの流量が得られる閾値回転速度以上の設定速度で運転されることになる。   Thus, when the hydraulic actuator is not operating, the leak flow rate calculating means calculates the flow rate of oil leaking from the hydraulic actuator, the low pressure required flow rate calculating means calculates the required oil flow rate in the low pressure oil passage, Based on these calculation results, the total required flow rate of the oil is calculated by the total required flow rate calculation means. Thereafter, the required motor speed calculating means calculates the required rotational speed of the electric motor for obtaining the total required flow rate, and the threshold motor speed calculating means calculates the threshold rotational speed of the electric motor. At this time, if the required rotational speed of the electric motor is equal to or higher than the threshold rotational speed, the electric motor is driven at the required rotational speed by the drive control means, and if the required rotational speed of the electric motor is smaller than the threshold rotational speed, the electric motor Is driven at a set speed equal to or higher than the threshold rotation speed by the drive control means. Therefore, the electric oil pump is basically operated so as to satisfy the total required flow rate of the low pressure side and the high pressure side, and when the flow rate of the oil in the line pressure passage may be lower than the leak flow rate from the hydraulic actuator, it is ensured. The engine is operated at a set speed that is equal to or higher than a threshold rotational speed at which an oil flow rate equal to or higher than the leak flow rate is obtained.

請求項2に記載の発明は、請求項1に記載の車両のオイル供給装置において、前記調圧弁は、前記油圧アクチュエータの非作動時に電動モータを前記必要回転速度で駆動する場合に、前記高圧ポンプ機構部から吐出されたオイルの流量から前記油圧アクチュエータのリーク流量を差し引いた流量が前記低圧オイル通路に供給されるように設定されていることを特徴とする。
これにより、油圧アクチュエータの非作動時に電動モータが必要回転速度で駆動されている間は、高圧ポンプ機構部から吐出された余剰オイルが調圧弁を通して低圧オイル通路に供給され、車両機器の低圧オイル利用部で有効利用される。
According to a second aspect of the present invention, in the vehicle oil supply device according to the first aspect, the pressure regulating valve is configured such that the high pressure pump is driven when the electric motor is driven at the required rotational speed when the hydraulic actuator is not operated. A flow rate obtained by subtracting a leak flow rate of the hydraulic actuator from a flow rate of oil discharged from the mechanical unit is set to be supplied to the low-pressure oil passage.
As a result, while the electric motor is driven at the required rotational speed when the hydraulic actuator is not operated, surplus oil discharged from the high-pressure pump mechanism is supplied to the low-pressure oil passage through the pressure regulating valve, and the low-pressure oil used in the vehicle equipment is used. Effectively used in departments.

請求項3に記載の発明は、請求項1または2のいずれか1項に記載の車両のオイル供給装置において、前記ライン圧通路に供給されたオイルは駆動機構の油圧アクチュエータの作動に用いられ、前記低圧オイル通路に供給されたオイルは車両機器の冷却と潤滑の少なくともいずれかに用いられることを特徴とする。   Invention of Claim 3 is the oil supply apparatus of the vehicle of any one of Claim 1 or 2, The oil supplied to the said line pressure path is used for the action | operation of the hydraulic actuator of a drive mechanism, The oil supplied to the low-pressure oil passage is used for at least one of cooling and lubrication of vehicle equipment.

請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の車両のオイル供給装置において、前記高圧ポンプ機構部から吐出されるオイルの温度を検出する温度検出手段(例えば、後述の実施形態における温度センサ67)を備え、前記リーク流量算出手段は、前記温度検出手段での検出温度に基づいてリーク流量を算出することを特徴とする。
これにより、温度に応じて変化する油圧アクチュエータからのオイルのリーク流量がリーク流量算出手段によって正確に算出されるようになる。
According to a fourth aspect of the present invention, in the vehicle oil supply device according to any one of the first to third aspects, a temperature detecting means for detecting a temperature of oil discharged from the high-pressure pump mechanism (for example, And a leak flow rate calculating unit that calculates a leak flow rate based on a temperature detected by the temperature detection unit.
As a result, the leak flow rate of the oil from the hydraulic actuator that changes according to the temperature is accurately calculated by the leak flow rate calculation means.

請求項5に記載の発明は、請求項1〜4のいずれか1項に記載の車両のオイル供給装置において、前記高圧ポンプ機構部から吐出されるオイルの温度を検出する温度検出手段を備え、前記必要モータ速度算出手段と閾値モータ速度算出手段は、前記温度検出手段での検出温度に基づいて電動モータの必要回転速度と閾値回転速度を算出することを特徴とする。
これにより、温度に応じて変化する電動モータの必要回転速度と閾値回転速度が必要モータ速度算出手段と閾値モータ速度算出手段によって正確に算出されるようになる。
A fifth aspect of the present invention is the vehicle oil supply device according to any one of the first to fourth aspects, further comprising a temperature detection means for detecting a temperature of oil discharged from the high-pressure pump mechanism. The required motor speed calculation means and the threshold motor speed calculation means calculate the required rotation speed and the threshold rotation speed of the electric motor based on the temperature detected by the temperature detection means.
As a result, the required rotation speed and threshold rotation speed of the electric motor that change according to the temperature are accurately calculated by the required motor speed calculation means and the threshold motor speed calculation means.

請求項6に記載の発明は、請求項1〜5のいずれか1項に記載の車両のオイル供給装置において、前記油圧アクチュエータは、円周方向に沿うように永久磁石(例えば、後述の実施形態における永久磁石9)が配設された内周側回転子(例えば、後述の実施形態における内周側回転子6)と、この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿うように永久磁石が配設された外周側回転子(例えば、後述の実施形態における外周側回転子5)と、油圧によって前記内周側回転子と外周側回転子を相対回動させて両者の相対的な位相を変更する位相変更手段(例えば、後述の実施形態における回動操作機構11)とを備えた電動機(例えば、後述の実施形態における電動機1)の前記位相変更手段であることを特徴とする。
この場合、例えば、電動機の内周側回転子と外周側回転子の相対的な位相を任意位置で固定するときには、オイルのリークを補うように位相変更手段にオイルの供給が続けられる。このとき、位相変更手段には電動オイルポンプからオイルが供給されるが、電動オイルポンプはライン圧通路のオイルの流量が位相変更手段でのリーク流量を常に上回るように運転されるため、内周側回転子と外周側回転子の相対的な位相は確実に一定位置に保持される。
According to a sixth aspect of the present invention, in the vehicle oil supply device according to any one of the first to fifth aspects, the hydraulic actuator has a permanent magnet (e.g., an embodiment described later) along the circumferential direction. And the inner peripheral side rotor (for example, the inner peripheral side rotor 6 in the embodiments described later) and the outer peripheral side of the inner peripheral side rotor so as to be coaxial and relatively rotatable. An outer circumferential rotor (for example, an outer circumferential rotor 5 in an embodiment described later) disposed with a permanent magnet along the circumferential direction, and the inner circumferential rotor and the outer circumference by hydraulic pressure. An electric motor (for example, an electric motor 1 in an embodiment to be described later) provided with phase changing means (for example, a rotation operation mechanism 11 in an embodiment to be described later) that relatively rotates the side rotor to change the relative phase between the two. ) Of said phase change means And wherein the door.
In this case, for example, when the relative phase between the inner and outer rotors of the electric motor is fixed at an arbitrary position, the oil is continuously supplied to the phase changing means so as to compensate for the oil leak. At this time, oil is supplied to the phase changing means from the electric oil pump, but the electric oil pump is operated so that the oil flow rate in the line pressure passage always exceeds the leak flow rate in the phase changing means. The relative phase between the side rotor and the outer rotor is reliably held at a fixed position.

請求項1に記載の発明によれば、基本的に、低圧側と高圧側の総合必要流量が得られるように電動モータの駆動速度を制御し、ライン圧通路のオイルの流量が油圧アクチュエータからのリーク流量を下回る可能性のあるときだけ、確実にリーク流量以上のオイルの流量が得られる閾値回転速度以上の設定速度に電動モータの駆動速度を制御するため、極めて簡単な構成でありながら、電動オイルポンプの動力ロスを確実に低減することができる。したがって、これによって電動モータの消費電力の低減と製造コストの低減が可能になる。   According to the first aspect of the present invention, basically, the drive speed of the electric motor is controlled so that the total required flow rates on the low pressure side and the high pressure side are obtained, and the oil flow rate in the line pressure passage is controlled by the hydraulic actuator. The electric motor drive speed is controlled to a set speed that is equal to or higher than the threshold rotational speed that ensures that the oil flow rate is greater than the leak flow rate only when there is a possibility that the leak flow rate will be lower. The power loss of the oil pump can be reliably reduced. Therefore, this makes it possible to reduce power consumption and manufacturing cost of the electric motor.

請求項2に記載の発明によれば、高圧ポンプ機構部から吐出された余剰オイルを車両機器の低圧オイル利用部で有効利用することができるため、電動モータの動力ロスを低減しつつ、油圧アクチュエータでのオイルのリーク分を確実に補償することができる。   According to the second aspect of the present invention, the surplus oil discharged from the high-pressure pump mechanism can be effectively used in the low-pressure oil utilization unit of the vehicle equipment, so that the hydraulic actuator reduces the power loss of the electric motor. It is possible to reliably compensate for oil leakage at the tank.

請求項3に記載の発明によれば、油圧アクチュエータのオイルリークを補償して駆動機構の保持圧を維持しつつ、車両機器の冷却や潤滑を充分に行うことができる。   According to the third aspect of the present invention, the vehicle equipment can be sufficiently cooled and lubricated while maintaining the holding pressure of the drive mechanism by compensating for the oil leak of the hydraulic actuator.

請求項4に記載の発明によれば、油圧アクチュエータからのオイルのリーク流量をオイルの温度変化を反映して正確に算出することができるため、電動モータの駆動制御をより正確に行うことができる。   According to the fourth aspect of the present invention, the leak flow rate of the oil from the hydraulic actuator can be accurately calculated by reflecting the temperature change of the oil, so that the drive control of the electric motor can be performed more accurately. .

請求項5に記載の発明によれば、電動モータの必要回転速度と閾値回転速度をオイルの温度変化を反映して正確に算出することができるため、電動モータの駆動制御をより正確に行うことができる。   According to the fifth aspect of the present invention, the required rotation speed and the threshold rotation speed of the electric motor can be accurately calculated by reflecting the temperature change of the oil, so that the drive control of the electric motor can be performed more accurately. Can do.

請求項6に記載の発明によれば、電動オイルポンプでの電力消費の低減を図りつつ、電動機の誘起電圧定数を設定値に安定的に保持することが可能になる。   According to the sixth aspect of the present invention, it is possible to stably maintain the induced voltage constant of the electric motor at the set value while reducing the power consumption in the electric oil pump.

以下、この発明の一実施形態を図面に基づいて説明する。
図1〜図5は、ハイブリッド車両や電動車両等の走行駆動源として用いられる電動機1を示す。この電動機1は、円環状の固定子2の内周側に回転子ユニット3が配置されたインナロータ型のブラシレスモータである。固定子2は複数相の固定子巻線2aを有し、回転子ユニット3は軸芯部に回転軸4を有している。また、電動機1の回転力はトランスミッション(図示せず)を介して車輪の駆動軸(図示せず)に伝達されるようになっている。この場合、電動機1は車両の減速時に発電機として機能させれば、回生エネルギーとして蓄電器に回収することもできる。また、ハイブリッド車においては、電動機1の回転軸4をさらに内燃機関のクランクシャフト(図示せず)に連結することにより、内燃機関による発電にも利用することができる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1 to 5 show an electric motor 1 used as a travel drive source for a hybrid vehicle, an electric vehicle, or the like. The electric motor 1 is an inner rotor type brushless motor in which a rotor unit 3 is disposed on the inner peripheral side of an annular stator 2. The stator 2 has a multi-phase stator winding 2a, and the rotor unit 3 has a rotating shaft 4 at the shaft core. Further, the rotational force of the electric motor 1 is transmitted to a wheel drive shaft (not shown) via a transmission (not shown). In this case, if the electric motor 1 functions as a generator when the vehicle is decelerated, it can be recovered as regenerative energy in the electric storage device. Further, in the hybrid vehicle, the rotating shaft 4 of the electric motor 1 can be further connected to a crankshaft (not shown) of the internal combustion engine so that it can be used for power generation by the internal combustion engine.

回転子ユニット3は、円環状の外周側回転子5と、この外周側回転子5の内側に同軸に配置される円環状の内周側回転子6を備え、外周側回転子5と内周側回転子6が設定角度の範囲で回動可能とされている。   The rotor unit 3 includes an annular outer circumferential rotor 5 and an annular inner circumferential rotor 6 disposed coaxially inside the outer circumferential rotor 5, and includes the outer circumferential rotor 5 and the inner circumferential surface. The side rotor 6 is rotatable within a set angle range.

外周側回転子5と内周側回転子6は、回転子本体である円環状のロータ鉄心7,8が例えば焼結金属によって形成され、その各ロータ鉄心7,8の外周側に偏寄した位置に、複数の磁石装着スロット7a,8aが円周方向等間隔に形成されている。各磁石装着スロット7a,8aには、厚み方向に磁化された2つの平板状の永久磁石9,9が並列に並んで装着されている。同じ磁石装着スロット7a,8a内に装着される2つの永久磁石9,9は同方向に磁化され、各隣接する磁石装着スロット7a,7a、及び、8a,8aに装着される永久磁石9の対同士は磁極の向きが逆向きになるように設定されている。即ち、各回転子5,6においては、外周側がN極とされた永久磁石9の対と、S極とされた永久磁石9の対が円周方向に交互に並んで配置されている。なお、各回転子5,6の外周面の隣接する磁石装着スロット7a,7a、及び、8a,8aの各間には、永久磁石9の磁束の流れを制御するための切欠き部10が回転子5,6の軸方向に沿って形成されている。   The outer rotor 5 and the inner rotor 6 are formed by, for example, sintered rotor cores 7 and 8 made of sintered metal, and are biased toward the outer periphery of the rotor cores 7 and 8. A plurality of magnet mounting slots 7a, 8a are formed at equal intervals in the circumferential direction. In each of the magnet mounting slots 7a and 8a, two flat plate-like permanent magnets 9 and 9 magnetized in the thickness direction are mounted in parallel. Two permanent magnets 9, 9 mounted in the same magnet mounting slot 7a, 8a are magnetized in the same direction, and a pair of permanent magnets 9 mounted in each adjacent magnet mounting slot 7a, 7a and 8a, 8a. The magnetic poles are set so that the directions of the magnetic poles are opposite to each other. That is, in each of the rotors 5 and 6, a pair of permanent magnets 9 whose outer peripheral side is an N pole and a pair of permanent magnets 9 that are an S pole are alternately arranged in the circumferential direction. A notch 10 for controlling the flow of magnetic flux of the permanent magnet 9 is rotated between the adjacent magnet mounting slots 7a, 7a and 8a, 8a on the outer peripheral surfaces of the rotors 5, 6. It is formed along the axial direction of the children 5 and 6.

外周側回転子5と内周側回転子6の磁石装着スロット7a,8aは夫々同数設けられ、両回転子5,6の永久磁石9…が夫々1対1で対応するようになっている。したがって、外周側回転子5と内周側回転子6の各磁石装着スロット7a,8a内の永久磁石9の対を互いに同極同士で対向させる(異極配置にする)ことにより、回転子ユニット3全体の界磁が最も弱められる弱め界磁の状態(図4,図5(b)参照)を得ることができるとともに、外周側回転子5と内周側回転子6の各磁石装着スロット7a,8a内の永久磁石9の対を互いに異極同士で対向させる(同極配置にする)ことにより、回転子ユニット3全体の界磁が最も強められる強め界磁の状態(図2,図5(a)参照)を得ることができる。   The same number of magnet mounting slots 7a, 8a of the outer rotor 5 and inner rotor 6 are provided, and the permanent magnets 9 of the rotors 5, 6 correspond to each other on a one-to-one basis. Therefore, by making the pair of permanent magnets 9 in each of the magnet mounting slots 7a and 8a of the outer peripheral rotor 5 and the inner peripheral rotor 6 face each other with the same polarity (with different polar arrangement), the rotor unit 3 is able to obtain a field weakening state (see FIGS. 4 and 5B) in which the field of the entire field is most weakened, and the magnet mounting slots 7a of the outer peripheral rotor 5 and the inner peripheral rotor 6. , 8a, the pair of permanent magnets 9 are opposed to each other with different polarities (with the same polarity arrangement), so that the field of the entire rotor unit 3 is most strongly strengthened (see FIGS. 2 and 5). (See (a)) can be obtained.

また、回転子ユニット3は、外周側回転子5と内周側回転子6が回動操作機構11によって相対的に回動操作されるようになっている。回動操作機構11は、図6に示す油圧回路の油圧によって操作され、この発明に係るオイル供給装置の油圧アクチュエータを構成するようになっている。   In the rotor unit 3, the outer peripheral side rotor 5 and the inner peripheral side rotor 6 are relatively rotated by a rotation operation mechanism 11. The rotation operation mechanism 11 is operated by the hydraulic pressure of the hydraulic circuit shown in FIG. 6, and constitutes a hydraulic actuator of the oil supply apparatus according to the present invention.

回動操作機構11は、図1〜図4に示すように回転軸4の外周に一体回転可能にスプライン嵌合されるベーンロータ14と、ベーンロータ14の外周側に相対回動可能に配置される環状ハウジング15とを備え、この環状ハウジング15が内周側回転子6の内周面に一体に嵌合固定されるとともに、ベーンロータ14が、環状ハウジング15と内周側回転子6の軸方向両側の側端部を跨ぐ円板状の一対のドライブプレート16,16を介して外周側回転子5に一体に結合されている。したがって、ベーンロータ14は回転軸4と外周側回転子5に一体化され、環状ハウジング15は内周側回転子6に一体化されている。   As shown in FIGS. 1 to 4, the rotation operation mechanism 11 is a vane rotor 14 that is spline-fitted to the outer periphery of the rotation shaft 4 so as to be integrally rotated, and an annular shape that is disposed on the outer periphery side of the vane rotor 14 so as to be relatively rotatable. The annular housing 15 is integrally fitted and fixed to the inner peripheral surface of the inner circumferential rotor 6, and the vane rotor 14 is provided on both axial sides of the annular housing 15 and the inner circumferential rotor 6. It is integrally coupled to the outer peripheral rotor 5 via a pair of disk-shaped drive plates 16, 16 straddling the side end portions. Therefore, the vane rotor 14 is integrated with the rotary shaft 4 and the outer peripheral rotor 5, and the annular housing 15 is integrated with the inner peripheral rotor 6.

ベーンロータ14は、回転軸4にスプライン嵌合される円筒状のボス部17の外周に、径方向外側に突出する複数のベーン18が円周方向等間隔に設けられている。一方、環状ハウジング15は、内周面に円周方向等間隔に複数の凹部19が設けられ、この各凹部19にベーンロータ14の対応するベーン18が収容配置されるようになっている。各凹部19は、ベーン18の先端部の回転軌道にほぼ合致する円弧面を有する底壁20と、隣接する凹部19,19同士を隔成する略三角形状の仕切壁21によって構成され、ベーンロータ14と環状ハウジング15の相対回動時に、ベーン18が一方の仕切壁21と他方の仕切壁21の間を変位し得るようになっている。この実施形態の場合、仕切壁21はベーン18と当接することにより、ベーンロータ14と環状ハウジング15の相対回動を規制するストッパとしても機能する。なお、各ベーン18の先端部と仕切壁21の先端部には、軸方向に沿うようにシール部材22が設けられ、これらのシール部材22によってベーン18と凹部19の底壁20、仕切壁21とボス部17の外周面の各間が液密にシールされている。   In the vane rotor 14, a plurality of vanes 18 projecting radially outward are provided at equal intervals in the circumferential direction on the outer periphery of a cylindrical boss portion 17 that is spline-fitted to the rotary shaft 4. On the other hand, the annular housing 15 is provided with a plurality of concave portions 19 on the inner peripheral surface at equal intervals in the circumferential direction, and the corresponding vanes 18 of the vane rotor 14 are accommodated in the concave portions 19. Each recess 19 is constituted by a bottom wall 20 having an arc surface that substantially matches the rotational trajectory of the tip of the vane 18 and a substantially triangular partition wall 21 that separates the adjacent recesses 19, 19. The vane 18 can be displaced between the one partition wall 21 and the other partition wall 21 during relative rotation of the annular housing 15. In the case of this embodiment, the partition wall 21 also functions as a stopper that restricts the relative rotation of the vane rotor 14 and the annular housing 15 by contacting the vane 18. A seal member 22 is provided along the axial direction at the tip of each vane 18 and the tip of the partition wall 21, and the vane 18, the bottom wall 20 of the recess 19, and the partition wall 21 are provided by these seal members 22. And the outer peripheral surface of the boss portion 17 are liquid-tightly sealed.

また、内周側回転子6に固定される環状ハウジング15のベース部15aは一定厚みの円筒状に形成されるとともに、図1に示すように内周側回転子6や仕切壁21に対して軸方向外側に突出している。このベース部15aの外側に突出した各端部は、ドライブプレート16に形成された環状のガイド溝16aに摺動自在に保持され、環状ハウジング15と内周側回転子6が、外周側回転子5や回転軸4にフローティング状態で支持されるようになっている。   Further, the base portion 15a of the annular housing 15 fixed to the inner peripheral rotor 6 is formed in a cylindrical shape having a constant thickness, and is also provided with respect to the inner peripheral rotor 6 and the partition wall 21 as shown in FIG. Projects outward in the axial direction. Each end projecting outward of the base portion 15a is slidably held in an annular guide groove 16a formed in the drive plate 16, and the annular housing 15 and the inner peripheral rotor 6 are connected to the outer peripheral rotor. 5 and the rotating shaft 4 are supported in a floating state.

外周側回転子5とベーンロータ14を連結する両側のドライブプレート16,16は、環状ハウジング15の両側面(軸方向の両端面)に摺動自在に密接し、環状ハウジング15の各凹部19の側方を夫々閉塞する。したがって、各凹部19は、ベーンロータ14のボス部17と両側のドライブプレート16,16によって夫々独立した空間部を形成し、この空間部は、オイルが導入される導入空間23となっている。各導入空間23内は、ベーンロータ14の対応する各ベーン18によって夫々2室に隔成され、一方の部屋が進角側作動室24、他方の部屋が遅角側作動室25とされている。進角側作動室24は、内部に導入されたオイルの圧力によって内周側回転子6を外周側回転子5に対して進角方向に相対回動させ、遅角側作動室25は、内部に導入されたオイルの圧力によって内周側回転子6を外周側回転子5に対して遅角方向に相対回動させる。この場合、「進角」とは、内周側回転子6を外周側回転子5に対して、図2,図4中の矢印Rで示す電動機1の回転方向に進めることを言い、「遅角」とは、内周側回転子6を外周側回転子5に対して、電動機1の回転方向Rと逆側に進めることを言うものとする。   The drive plates 16 and 16 on both sides connecting the outer rotor 5 and the vane rotor 14 are slidably in close contact with both side surfaces (both end surfaces in the axial direction) of the annular housing 15, and the side of each recess 19 of the annular housing 15. Respectively. Therefore, each recessed part 19 forms the independent space part by the boss | hub part 17 of the vane rotor 14, and the drive plates 16 and 16 of both sides, and this space part becomes the introduction space 23 into which oil is introduced. Each introduction space 23 is divided into two chambers by the corresponding vanes 18 of the vane rotor 14, and one room is an advance side working chamber 24 and the other room is a retard side working chamber 25. The advance side working chamber 24 rotates the inner circumferential side rotor 6 relative to the outer circumferential side rotor 5 in the advance direction by the pressure of the oil introduced therein. The inner rotor 6 is rotated relative to the outer rotor 5 in the retarding direction by the pressure of the oil introduced into the outer periphery. In this case, “advance angle” means that the inner circumferential rotor 6 is advanced relative to the outer circumferential rotor 5 in the rotational direction of the electric motor 1 indicated by an arrow R in FIGS. 2 and 4. “Angle” means that the inner rotor 6 is advanced to the opposite side of the rotation direction R of the electric motor 1 with respect to the outer rotor 5.

また、各進角側作動室24と遅角側作動室25に対するオイルの給排は回転軸4を通して行われるようになっている。具体的には、進角側作動室24は、図6に示す油圧回路の進角側給排通路26に接続され、遅角側作動室25は同油圧回路の遅角側給排通路27に接続されているが、進角側給排通路26と遅角側給排通路27の一部は、図1に示すように、夫々回転軸4に軸方向に沿って形成させた通路孔26a,27aによって構成されている。そして、各通路孔26a,27aの端部は、回転軸4の外周面の軸方向にオフセットした位置に形成された環状溝26b,27bに接続され、その各環状溝26b,27bは、ベーンロータ14のボス部17に略半径方向に沿って形成された複数の導通孔26c…,27c…に接続されている。進角側給排通路26の各導通孔26cは環状溝26bと各進角側作動室24とを接続し、遅角側給排通路27の各導通孔27cは環状溝27bと各遅角側作動室25とを接続している。   In addition, oil is supplied to and discharged from each of the advance side working chambers 24 and the retard side working chambers 25 through the rotary shaft 4. Specifically, the advance side working chamber 24 is connected to the advance side supply / discharge passage 26 of the hydraulic circuit shown in FIG. 6, and the retard side operation chamber 25 is connected to the retard side supply / discharge passage 27 of the hydraulic circuit. Although connected, a part of the advance side supply / exhaust passage 26 and the retard side supply / exhaust passage 27 are, as shown in FIG. 1, passage holes 26a formed along the axial direction of the rotary shaft 4, respectively. 27a. The end portions of the passage holes 26a and 27a are connected to annular grooves 26b and 27b formed at positions offset in the axial direction of the outer peripheral surface of the rotating shaft 4, and the annular grooves 26b and 27b are connected to the vane rotor 14. Are connected to a plurality of conduction holes 26c,..., 27c. Each conduction hole 26c of the advance side supply / discharge passage 26 connects the annular groove 26b and each advance side working chamber 24, and each conduction hole 27c of the retard side supply / exhaust passage 27 connects to the annular groove 27b and each retard side. The working chamber 25 is connected.

ここで、この実施形態の電動機1の場合、内周側回転子6が外周側回転子5に対して最遅角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9が異極同士で対向して強め界磁の状態(図2,図5(a)参照)になり、内周側回転子6が外周側回転子5に対して最進角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9が同極同士で対向して弱め界磁の状態(図4,図5(b)参照)になるように設定されている。
なお、この電動機1は、進角側作動室24と遅角側作動室25に対する作動油の給排制御によって、強め界磁の状態と弱め界磁の状態を任意に変更し得るものであるが、こうして磁界の強さが変更されると、それに伴って誘起電圧定数が変化し、その結果、電動機1の特性が変更される。即ち、強め界磁によって誘起電圧定数が大きくなると、電動機1として運転可能な許容回転速度は低下するものの、出力可能な最大トルクは増大し、逆に、弱め界磁によって誘起電圧定数が小さくなると、電動機1の出力可能な最大トルクは減少するものの、運転可能な許容回転速度は上昇する。
Here, in the case of the electric motor 1 of this embodiment, when the inner circumferential rotor 6 is at the most retarded position with respect to the outer circumferential rotor 5, the outer circumferential rotor 5 and the inner circumferential rotor 6 are permanent. The magnets 9 are opposed to each other with different polarities and are in a strong field state (see FIGS. 2 and 5A), and the inner circumferential rotor 6 is at the most advanced position with respect to the outer circumferential rotor 5. Sometimes, the permanent magnets 9 of the outer rotor 5 and the inner rotor 6 are set so as to face each other with the same poles and to have a field weakening state (see FIGS. 4 and 5B). Yes.
The electric motor 1 can arbitrarily change the state of the strong field and the state of the weak field by controlling the supply and discharge of hydraulic oil to and from the advance side working chamber 24 and the retard side working chamber 25. Thus, when the strength of the magnetic field is changed, the induced voltage constant is changed accordingly, and as a result, the characteristics of the electric motor 1 are changed. That is, if the induced voltage constant increases due to the strong field, the allowable rotational speed at which the motor 1 can be operated decreases, but the maximum torque that can be output increases. Conversely, if the induced voltage constant decreases due to the weak field, Although the maximum torque that can be output from the electric motor 1 decreases, the allowable rotational speed at which the motor 1 can operate increases.

図6は、この発明に係る車両のオイル供給装置13を示す油圧回路図である。オイル供給装置13は、油圧供給源として電動オイルポンプ32を備え、この電動オイルポンプ32から吐出されたオイルが高圧系油路と低圧系油路とに供給されるようになっている。電動オイルポンプ32は高圧ポンプ機構部50と低圧ポンプ機構部51を備え、これらのポンプ機構部50,51が共通の電動モータ52の出力軸によって回転駆動されるようになっている。高圧ポンプ機構部50は高圧系油路であるライン圧通路33に接続され、低圧ポンプ機構部51は低圧系油路である潤滑・冷却通路34(低圧オイル通路)に接続されている。   FIG. 6 is a hydraulic circuit diagram showing the vehicle oil supply device 13 according to the present invention. The oil supply device 13 includes an electric oil pump 32 as a hydraulic pressure supply source, and oil discharged from the electric oil pump 32 is supplied to the high-pressure oil passage and the low-pressure oil passage. The electric oil pump 32 includes a high-pressure pump mechanism 50 and a low-pressure pump mechanism 51, and these pump mechanisms 50 and 51 are driven to rotate by a common output shaft of an electric motor 52. The high pressure pump mechanism 50 is connected to a line pressure passage 33 that is a high pressure oil passage, and the low pressure pump mechanism 51 is connected to a lubrication / cooling passage 34 (low pressure oil passage) that is a low pressure oil passage.

高圧ポンプ機構部50とライン圧通路33の間には、ライン圧通路33への供給圧を調圧する調圧弁35が介装されており、調圧弁35で余剰分として排出されるオイルはドレン通路53を通して潤滑・冷却通路34に供給されるようになっている。また、ライン圧通路33の調圧弁35の近傍位置には、高圧ポンプ機構部50から吐出されるオイルの温度を検出する油温センサ67(温度検出手段)が設けられ、この温度センサ67による検出温度信号がコントローラ38に入力されるようになっている。   A pressure regulating valve 35 that regulates the supply pressure to the line pressure passage 33 is interposed between the high pressure pump mechanism 50 and the line pressure passage 33, and oil discharged as an excess by the pressure regulating valve 35 is drain passage. 53 is supplied to the lubrication / cooling passage 34. An oil temperature sensor 67 (temperature detection means) that detects the temperature of oil discharged from the high-pressure pump mechanism 50 is provided in the vicinity of the pressure regulating valve 35 in the line pressure passage 33, and is detected by the temperature sensor 67. A temperature signal is input to the controller 38.

ライン圧通路33には、スプール式の流路切換弁37を介して電動機1の回動操作機構11の進角側給排通路26と遅角側給排通路27が接続されている。流路切換弁37は、ライン圧通路33に導入された作動油を進角側給排通路26と遅角側給排通路27に振り分けるとともに、進角側給排通路26と遅角側給排通路27で不要な作動油をドレン通路36に排出するものであり、油圧操作されるスプールの位置に応じてこれらの操作が行われる。そして、流路切換弁37の操作圧はライン圧通路33の圧力を基に電磁式の調圧弁39によって作られ、この調圧弁39がコントローラ38によって制御されるようになっている。したがって、回動操作装置11による回転子ユニット3の位相制御はコントローラ38による調圧弁39の制御を通して行われる。
なお、回転子ユニット3の位相変更を行わない場合には、回動操作機構11でのオイルリークを補うだけのオイルの補給がライン圧通路33を通して行われるようになっている。
The line pressure passage 33 is connected to the advance side supply / discharge passage 26 and the retard side supply / discharge passage 27 of the rotational operation mechanism 11 of the electric motor 1 via a spool type flow switching valve 37. The flow path switching valve 37 distributes the hydraulic oil introduced into the line pressure passage 33 to the advance side supply / discharge passage 26 and the retard side supply / exhaust passage 27, and to the advance side supply / discharge passage 26 and the retard side supply / discharge passage. Unnecessary hydraulic oil is discharged to the drain passage 36 through the passage 27, and these operations are performed according to the position of the spool that is hydraulically operated. The operation pressure of the flow path switching valve 37 is created by an electromagnetic pressure regulating valve 39 based on the pressure in the line pressure passage 33, and the pressure regulating valve 39 is controlled by a controller 38. Therefore, the phase control of the rotor unit 3 by the rotation operation device 11 is performed through the control of the pressure regulating valve 39 by the controller 38.
When the phase of the rotor unit 3 is not changed, oil is supplied through the line pressure passage 33 so as to compensate for oil leakage in the rotation operation mechanism 11.

また、低圧ポンプ機構部51に接続された潤滑・冷却通路34は、電動機1や周囲の動力伝達系機器等を潤滑する潤滑通路51Aと、電動機1内の冷却部1aや周囲の機器に作動油を冷却液として供給する冷却通路51Bとに分岐し、冷却通路51Bへの作動油の供給が制御弁56によって適宜コントロールされるようになっている。なお、図6中57は、オイルクーラ圧制御弁であり、58は、オイルクーラである。   Further, the lubrication / cooling passage 34 connected to the low-pressure pump mechanism 51 includes a lubricating passage 51A that lubricates the electric motor 1 and surrounding power transmission system devices, and a working oil for the cooling portion 1a in the electric motor 1 and surrounding devices. Is branched to a cooling passage 51B that supplies the coolant as a coolant, and the supply of hydraulic oil to the cooling passage 51B is appropriately controlled by a control valve 56. In FIG. 6, 57 is an oil cooler pressure control valve, and 58 is an oil cooler.

ところで、電動オイルポンプ32を制御するコントローラ38は、電動機1の回動操作機構11が非作動状態のときに電動モータ52の駆動速度を制御するための以下の(a)〜(f)の構成を備えている(図7参照)。
(a)回動操作機構11の非作動時に、同操作機構11からリークするオイルの流量Qleakを算出するリーク流量算出手段60。
(b)潤滑・冷却通路34で必要とするオイルの流量Qcoolを算出する低圧必要流量算出手段61。
(c)回動操作機構11の非作動時に、リーク流量算出手段60と低圧必要流量算出手段61の算出結果を加算してオイルの総合必要流量Qleak+Qcoolを求める総合必要流量算出手段62。
(d)総合必要流量Qleak+Qcoolを得るための電動モータ52の必要回転速度N1を算出する必要モータ速度算出手段63。
(e)高圧ポンプ機構部50でのオイルの吐出流量が回動操作機構11のオイルのリーク流量Qleakとほぼ同じになる電動モータ52の閾値回転速度N2を算出する閾値モータ速度算出手段64。
(f) 必要モータ速度算出手段63と閾値モータ速度算出手段64の算出結果を受け、その算出結果に応じて電動モータ52の駆動速度を制御する駆動制御手段65。
Incidentally, the controller 38 for controlling the electric oil pump 32 has the following configurations (a) to (f) for controlling the driving speed of the electric motor 52 when the rotation operation mechanism 11 of the electric motor 1 is in an inoperative state. (See FIG. 7).
(A) Leakage flow rate calculation means 60 for calculating the flow rate Qleak of oil leaking from the operation mechanism 11 when the rotation operation mechanism 11 is not operated.
(B) Low pressure required flow rate calculation means 61 for calculating the oil flow rate Qcool required in the lubrication / cooling passage 34.
(C) Total required flow rate calculation means 62 that calculates the total required flow rate Qleak + Qcool of oil by adding the calculation results of the leak flow rate calculation means 60 and the low pressure required flow rate calculation means 61 when the rotation operation mechanism 11 is not operating.
(D) Necessary motor speed calculation means 63 for calculating the necessary rotational speed N1 of the electric motor 52 for obtaining the total necessary flow rate Qleak + Qcool.
(E) Threshold motor speed calculation means 64 for calculating the threshold rotation speed N2 of the electric motor 52 at which the oil discharge flow rate at the high-pressure pump mechanism 50 is substantially the same as the oil leak flow rate Qleak of the rotation operation mechanism 11.
(F) Drive control means 65 that receives the calculation results of the necessary motor speed calculation means 63 and the threshold motor speed calculation means 64 and controls the drive speed of the electric motor 52 according to the calculation results.

リーク流量算出手段60は、例えば、図8に示すようなオイル温度tとリーク流量Qleakの相関マップ1をコントローラ38の記憶部に記憶させておき、油温センサ37による検出温度tに対応するリーク流量Qleakを、相関マップ1を参照して求める。   For example, the leak flow rate calculation means 60 stores the correlation map 1 between the oil temperature t and the leak flow rate Qleak as shown in FIG. 8 in the storage unit of the controller 38, and leaks corresponding to the detected temperature t detected by the oil temperature sensor 37. The flow rate Qleak is obtained with reference to the correlation map 1.

低圧必要流量算出手段61は、電動機1内の冷却部1aの温度や潤滑する機器の作動速度等の検出信号が図示しないセンサを通してコントローラ38に入力され、これらの検出信号を基にして、潤滑・冷却通路34で必要とするオイルの流量Qcoolを算出する。この場合も、相関マップを参照する等によって流量Qcoolを求めるようにしても良い。   The low pressure required flow rate calculation means 61 receives detection signals such as the temperature of the cooling section 1a in the electric motor 1 and the operating speed of the equipment to be lubricated through a sensor (not shown) to the controller 38, and based on these detection signals, lubrication / An oil flow rate Qcool required in the cooling passage 34 is calculated. Also in this case, the flow rate Qcool may be obtained by referring to a correlation map.

また、必要モータ速度算出手段63は、総合必要流量算出手段62で求めた総合必要流量Qleak+Qcoolのデータを受け、低圧ポンプ機構部51の吐出流量Qlと高圧ポンプ機構部50の吐出流量Qhを合計したオイル流量Ql+Qhが現在の総合必要流量Qleak+Qcoolに等しくなるような電動モータ52の必要回転速度N1を求める。具体的には、例えば、図9に示すような電動オイルポンプ32の総合吐出流量Ql+Qhと電動モータ52の必要回転速度N1の相関マップ2をコントローラ38の記憶部に記憶させておき、Ql+Qh=Qleak+Qcoolであるとして、総合必要流量の算出データQleak+Qcoolに対応する必要回転速度N1を、相関マップ2を参照して求める。この場合、相関マップ2の総合吐出流量Ql+Qhと必要回転速度N1の相関データはオイルの温度毎(例えばt1,t2,t3毎。(t1>t2>t3))に設けておき、油温センサ37による検出温度に対応する相関データを用いて必要回転速度N1を求める。   The required motor speed calculation means 63 receives the data of the total required flow rate Qleak + Qcool obtained by the total required flow rate calculation means 62, and sums the discharge flow rate Ql of the low pressure pump mechanism 51 and the discharge flow rate Qh of the high pressure pump mechanism 50. The required rotational speed N1 of the electric motor 52 is determined so that the oil flow rate Ql + Qh becomes equal to the current total required flow rate Qleak + Qcool. Specifically, for example, a correlation map 2 between the total discharge flow rate Ql + Qh of the electric oil pump 32 and the required rotational speed N1 of the electric motor 52 as shown in FIG. 9 is stored in the storage unit of the controller 38, and Ql + Qh = Qleak + Qcool. As a result, the necessary rotational speed N1 corresponding to the total necessary flow rate calculation data Qleak + Qcool is obtained with reference to the correlation map 2. In this case, correlation data between the total discharge flow rate Ql + Qh and the necessary rotational speed N1 in the correlation map 2 is provided for each oil temperature (for example, every t1, t2, t3 (t1> t2> t3)), and the oil temperature sensor 37. The required rotational speed N1 is obtained using the correlation data corresponding to the detected temperature.

閾値モータ速度算出手段64は、リーク流量算出手段60で求めた回動操作機構11のリーク流量Qleakのデータを受け、高圧ポンプ機構部50の吐出流量Qhが回動操作機構11の現在のリーク流量Qleakと等しいときの電動モータ52の回転速度である閾値回転速度N2を求める。具体的には、例えば、図10に示すような高圧ポンプ機構部50の吐出流量Qhと電動モータ52の閾値回転速度N2の相関マップ3をコントローラ38の記憶部に記憶させておき、Qleak=Qhであるとして、リーク流量の算出データQleakに対応する閾値回転速度N2を、相関マップ3を参照して求める。この場合も、相関マップ3の吐出流量Qhと閾値回転速度N2の相関データはオイルの温度毎(例えばt1,t2,t3毎。(t1>t2>t3))に設けておき、油温センサ37による検出温度に対応する相関データを用いて閾値回転速度N2を求める。   The threshold motor speed calculation means 64 receives the leak flow rate Qleak data of the rotation operation mechanism 11 obtained by the leak flow calculation means 60, and the discharge flow rate Qh of the high pressure pump mechanism unit 50 is the current leak flow rate of the rotation operation mechanism 11. A threshold rotational speed N2 that is the rotational speed of the electric motor 52 when equal to Qleak is obtained. Specifically, for example, the correlation map 3 between the discharge flow rate Qh of the high-pressure pump mechanism 50 and the threshold rotational speed N2 of the electric motor 52 as shown in FIG. 10 is stored in the storage unit of the controller 38, and Qleak = Qh As a result, the threshold rotational speed N2 corresponding to the leak flow rate calculation data Qleak is obtained with reference to the correlation map 3. Also in this case, correlation data between the discharge flow rate Qh and the threshold rotation speed N2 in the correlation map 3 is provided for each oil temperature (for example, every t1, t2, t3 (t1> t2> t3)), and the oil temperature sensor 37. The threshold rotation speed N2 is obtained using the correlation data corresponding to the detected temperature.

駆動制御手段65は、必要モータ速度算出手段63の算出データN1と閾値モータ速度算出手段64の算出データN2の大小を比較し、N1≧N2のとき、つまり、必要回転速度N1で電動モータ52を駆動したときに回動操作機構11のリーク流量Qleakを補うのに不足が生じない場合には、電動モータ52の駆動速度を必要回転速度N1に制御し、N1<N2のとき、つまり、必要回転速度N1で電動モータ52を駆動したときに回動操作機構11のリーク流量Qleakを補うのに不足が生じる場合には、電動モータ52の駆動速度を閾値回転速度N2以上の設定回転速度、例えば、閾値回転速度N2と同回転速度に制御する。以下では、設定回転速度は閾値回転速度N2と同回転速度であるものとして説明する。   The drive control means 65 compares the calculated data N1 of the necessary motor speed calculating means 63 with the calculated data N2 of the threshold motor speed calculating means 64, and when N1 ≧ N2, that is, the electric motor 52 is driven at the required rotational speed N1. If there is no shortage in compensating for the leakage flow rate Qleak of the rotation operation mechanism 11 when driven, the drive speed of the electric motor 52 is controlled to the required rotation speed N1, and when N1 <N2, that is, the required rotation When the electric motor 52 is driven at the speed N1, if there is a shortage in compensating for the leakage flow rate Qleak of the rotation operation mechanism 11, the driving speed of the electric motor 52 is set to a set rotational speed equal to or higher than the threshold rotational speed N2, for example, Control is made to the same rotational speed as the threshold rotational speed N2. In the following description, it is assumed that the set rotational speed is the same rotational speed as the threshold rotational speed N2.

つづいて、回動操作機構11が非作動状態のときの電動オイルポンプ32の具体的な制御を、図11のフローチャートに沿って説明する。
まず、ステップS101において、回動操作機構11が作動状態であるかどうかを判定し、回動操作機構11が作動状態であるときには、この制御の処理を抜けて説明を省略を回動操作機構11を作動させるときの電動オイルポンプ32の制御を行い、回動操作機構11が非作動状態であるときには、ステップS102に進んで油温センサ67の検出データの読み込みを行う。
つづく、ステップS103においては、相関マップ1を参照して現在のオイルの温度に応じたリーク流量Qleakを求め、ステップS104においては、図示しないマップを参照して現在、潤滑・冷却通路34で必要とするオイルの流量Qcoolを求める。そして、次のステップS105においては、ステップS103とS104で求めたリーク流量Qleakと必要流量Qcoolを加算して総合必要流量Qleak+Qcoolを求める。
次のステップS106においては、相関マップ2を参照して現在の総合必要流量Qleak+Qcoolとオイルの温度に応じた電動モータ52の必要回転速度N1を求め、さらにつづくステップS107においては、相関マップ3を参照して現在のリーク流量Qleakとオイルの温度に応じた電動モータ52の閾値回転速度N2を求める。
そして、つづくステップS108においては、ステップS106で求めた電動モータ52の必要回転速度N1がステップS107で求めた閾値回転速度N2以上であるかどうかを判定し、必要回転速度N1が閾値回転速度N2以上であるときにはステップS109に進み、必要回転速度N1が閾値回転速度N2よりも小さい場合にはステップS110に進む。ステップS109に進んだ場合には、駆動回転速度が必要回転速度N1になるように電動モータ52の駆動を制御する。なお、このとき調圧弁39では、高圧ポンプ機構部50から吐出されたオイルの流量のうちの、回動操作機構11でのリーク流量Qleakを差し引いた流量のオイルが潤滑・冷却通路34に供給される。また、ステップS110に進んだ場合には、駆動回転速度が、閾値回転速度N2になるように電動モータ52の駆動を制御する。
Next, specific control of the electric oil pump 32 when the rotation operation mechanism 11 is in an inoperative state will be described with reference to the flowchart of FIG.
First, in step S101, it is determined whether or not the rotation operation mechanism 11 is in an operating state. When the rotation operation mechanism 11 is in an operation state, the control operation is skipped and the description is omitted. When the rotary operation mechanism 11 is in a non-operating state, the process proceeds to step S102, and the detection data of the oil temperature sensor 67 is read.
Subsequently, in step S103, the leak flow rate Qleak corresponding to the current oil temperature is obtained with reference to the correlation map 1, and in step S104, the current flow is required in the lubrication / cooling passage 34 with reference to a map (not shown). Determine the oil flow Qcool. In the next step S105, the total required flow rate Qleak + Qcool is obtained by adding the leak flow rate Qleak obtained in steps S103 and S104 and the necessary flow rate Qcool.
In the next step S106, the correlation map 2 is referred to obtain the required total rotational flow rate N1 of the electric motor 52 corresponding to the current total required flow rate Qleak + Qcool and the oil temperature, and in the subsequent step S107, the correlation map 3 is referred to. Then, the threshold rotational speed N2 of the electric motor 52 corresponding to the current leak flow rate Qleak and the oil temperature is obtained.
Then, in step S108, it is determined whether or not the required rotational speed N1 of the electric motor 52 obtained in step S106 is equal to or higher than the threshold rotational speed N2 obtained in step S107, and the required rotational speed N1 is equal to or higher than the threshold rotational speed N2. When the required rotational speed N1 is smaller than the threshold rotational speed N2, the process proceeds to step S110. When the process proceeds to step S109, the drive of the electric motor 52 is controlled so that the drive rotation speed becomes the necessary rotation speed N1. At this time, in the pressure regulating valve 39, the oil having a flow rate obtained by subtracting the leak flow rate Qleak in the rotation operation mechanism 11 out of the flow rate of oil discharged from the high pressure pump mechanism unit 50 is supplied to the lubrication / cooling passage 34. The When the process proceeds to step S110, the drive of the electric motor 52 is controlled so that the drive rotation speed becomes the threshold rotation speed N2.

以上のように、このオイル供給装置13においては、基本的に、低圧側と高圧側の総合必要流量Qleak+Qcoolが得られるように電動モータ52を必要回転速度N1で駆動し、必要回転速度N1が閾値回転速度N2よりも小さい場合にだけ、閾値回転速度N2で駆動するため、極めて簡単な構成でありながら、電動オイルポンプ32の動力損失を確実に抑制することができる。
特に、このオイル供給装置13では、必要回転速度N1が閾値回転速度N2以上である場合には、高圧ポンプ機構部50から吐出された余剰オイルが調圧弁39を介して潤滑・冷却通路34に導入され、ここで導入される流量と低圧ポンプ機構部51からの吐出流量が加算されたオイルの総流量が必要流量Qcoolを満たすように電動オイルポンプ32が駆動されるため、電動オイルポンプ32から吐出されたオイルの殆どを、高圧側と低圧側のいずれかで有効に利用することができる。
したがって、このオイル供給装置13によれば、電動モータ52の消費電力低減と製造コストの低減の両立を高レベルで図ることができる。
As described above, in this oil supply device 13, basically, the electric motor 52 is driven at the required rotational speed N1 so that the total required flow rate Qleak + Qcool on the low pressure side and the high pressure side is obtained, and the required rotational speed N1 is a threshold value. Since it is driven at the threshold rotational speed N2 only when the rotational speed is less than the rotational speed N2, the power loss of the electric oil pump 32 can be reliably suppressed with an extremely simple configuration.
In particular, in the oil supply device 13, when the required rotational speed N 1 is equal to or higher than the threshold rotational speed N 2, surplus oil discharged from the high-pressure pump mechanism 50 is introduced into the lubrication / cooling passage 34 via the pressure regulating valve 39. The electric oil pump 32 is driven so that the total flow rate of oil obtained by adding the flow rate introduced here and the discharge flow rate from the low-pressure pump mechanism 51 satisfies the required flow rate Qcool. Most of the oil produced can be used effectively on either the high pressure side or the low pressure side.
Therefore, according to this oil supply device 13, it is possible to achieve both a reduction in power consumption of the electric motor 52 and a reduction in manufacturing cost at a high level.

さらに、このオイル供給装置13においては、油温センサ67で高圧ポンプ機構部50から吐出されたオイルの温度を検出し、現在のオイルの温度状況を反映した回動操作機構11のリーク流量を求めるようにしているため、オイルの温度変化によるリーク流量Qleakの算出誤差を少なくすることができる。   Further, in the oil supply device 13, the oil temperature sensor 67 detects the temperature of the oil discharged from the high-pressure pump mechanism 50, and obtains the leak flow rate of the rotation operation mechanism 11 reflecting the current temperature state of the oil. Thus, the calculation error of the leak flow rate Qleak due to the oil temperature change can be reduced.

また、このオイル供給装置13では、油温センサ67で検出したオイルの温度に応じて、総合必要流量Qleak+Qcoolを得るための電動モータ52の必要回転速度N1と、電動モータ52の閾値回転速度N2を求めるようにしているため、オイルの温度変化による必要回転速度N1と閾値回転速度N2の算出誤差を少なくすることができる。   Further, in this oil supply device 13, the required rotational speed N1 of the electric motor 52 and the threshold rotational speed N2 of the electric motor 52 for obtaining the total required flow rate Qleak + Qcool are set according to the temperature of the oil detected by the oil temperature sensor 67. Therefore, the calculation error between the required rotational speed N1 and the threshold rotational speed N2 due to the change in oil temperature can be reduced.

また、この実施形態においては、上記のオイル供給装置13によって電動機1の回動操作機構11を制御するようにしているため、電動オイルポンプ32の電力消費の低減を図りつつ、電動機1の誘導起電圧定数を安定的に保持することができる。   Further, in this embodiment, the rotation operation mechanism 11 of the electric motor 1 is controlled by the oil supply device 13 described above, so that the electric oil pump 32 is reduced in power consumption and the induction of the electric motor 1 is induced. The voltage constant can be stably maintained.

なお、この発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば、上記の実施形態においては、オイル供給装置13のライン圧通路33に電動機1の回動操作機構11が接続されているが、ライン圧通路33を通してオイルを使用する油圧アクチュエータは電動機1以外の車両の種々の駆動機器等であっても良い。   In addition, this invention is not limited to said embodiment, A various design change is possible in the range which does not deviate from the summary. For example, in the above embodiment, the rotation operation mechanism 11 of the electric motor 1 is connected to the line pressure passage 33 of the oil supply device 13, but hydraulic actuators that use oil through the line pressure passage 33 are other than the electric motor 1. Various drive devices for vehicles may be used.

この発明の一実施形態で用いる電動機の要部断面図。1 is a cross-sectional view of a main part of an electric motor used in an embodiment of the present invention. 同実施形態の電動機の最遅角位置に制御されている回転子ユニットの一部部品を省略した側面図。The side view which abbreviate | omitted some components of the rotor unit controlled to the most retarded angle position of the electric motor of the embodiment. 同実施形態の電動機の回転子ユニットの分解斜視図。The disassembled perspective view of the rotor unit of the electric motor of the embodiment. 同実施形態の電動機の最進角位置に制御されている回転子ユニットの一部部品を省略した側面図。The side view which abbreviate | omitted some components of the rotor unit controlled to the most advanced angle position of the electric motor of the embodiment. 内周側回転子の永久磁石と外周側回転子の永久磁石とが同極配置された強め界磁状態を模式的に示す図(a)と、内周側回転子の永久磁石と外周側回転子の永久磁石とが異極配置された弱め界磁状態を模式的に示す図(b)を併せて記載した図。The figure (a) which shows typically the strong field state where the permanent magnet of the inner circumference side rotor and the permanent magnet of the outer circumference side rotor are arranged in the same polarity, and the permanent magnet and outer circumference side rotation of the inner circumference side rotor The figure which also described the figure (b) which shows typically the field-weakening state by which the permanent magnet of a child was arrange | positioned differently. 同実施形態のオイル供給装置の油圧回路図。The hydraulic circuit diagram of the oil supply apparatus of the embodiment. 同実施形態のオイル供給装置の機能ブロック図。The functional block diagram of the oil supply apparatus of the embodiment. 同実施形態で用いるリーク流量Qleak−油温tマップ。The leak flow rate Qleak-oil temperature t map used in the embodiment. 同実施形態で用いる必要回転速度N1−総合必要流量Ql+Qhマップ。Necessary rotational speed N1 used in the same embodiment-Total required flow rate Ql + Qh map. 同実施形態で用いる閾値回転速度N2−高圧側必要流量Qhマップ。The threshold rotational speed N2 used in the same embodiment-high pressure side required flow rate Qh map. 同実施形態のオイル供給装置のモータ駆動制御の流れを示すフローチャート。The flowchart which shows the flow of the motor drive control of the oil supply apparatus of the embodiment.

符号の説明Explanation of symbols

1…電動機
5…外周側回転子
6…内周側回転子
9…永久磁石
11…回動操作機構(油圧アクチュエータ,位相変更手段)
13…オイル供給装置
32…電動オイルポンプ
33…ライン圧通路
34…潤滑・冷却通路(低圧オイル通路)
35…調圧弁
50…高圧ポンプ機構部
51…低圧ポンプ機構部
52…電動モータ
60…リーク流量算出手段
61…低圧必要流量算出手段
62…総合必要流量算出手段
63…必要モータ速度算出手段
64…閾値モータ速度算出手段
65…駆動制御手段
67…温度センサ(温度検出手段)
DESCRIPTION OF SYMBOLS 1 ... Electric motor 5 ... Outer peripheral side rotor 6 ... Inner peripheral side rotor 9 ... Permanent magnet 11 ... Turning operation mechanism (hydraulic actuator, phase change means)
DESCRIPTION OF SYMBOLS 13 ... Oil supply apparatus 32 ... Electric oil pump 33 ... Line pressure passage 34 ... Lubrication / cooling passage (low pressure oil passage)
35 ... Pressure regulating valve 50 ... High pressure pump mechanism 51 ... Low pressure pump mechanism 52 ... Electric motor 60 ... Leak flow rate calculation means 61 ... Low pressure required flow rate calculation means 62 ... Total required flow rate calculation means 63 ... Required motor speed calculation means 64 ... Threshold Motor speed calculation means 65 ... drive control means 67 ... temperature sensor (temperature detection means)

Claims (6)

共通の電動モータで駆動される高圧ポンプ機構部と低圧ポンプ機構部を有する電動オイルポンプと、
前記高圧ポンプ機構部から吐出されたオイルを車両の油圧アクチュエータに供給するライン圧通路と、
前記低圧ポンプ機構部から吐出されたオイルを車両機器の低圧オイル利用部に供給する低圧オイル通路と、
前記高圧ポンプ機構部から吐出されて前記ライン圧通路に供給されるオイルを設定圧に調圧し、余剰オイルを前記低圧オイル通路に供給する調圧弁と、
前記油圧アクチュエータの非作動時に、同油圧アクチュエータからリークするオイルの流量を算出するリーク流量算出手段と、
前記低圧オイル通路で必要とするオイルの流量を算出する低圧必要流量算出手段と、
前記油圧アクチュエータの非作動時に、前記リーク流量算出手段と低圧必要流量算出手段の算出結果からオイルの総合必要流量を算出する総合必要流量算出手段と、
前記総合必要流量を得るための電動モータの必要回転速度を算出する必要モータ速度算出手段と、
前記高圧ポンプ機構部でのオイルの吐出流量が前記油圧アクチュエータからのオイルのリーク流量とほぼ同じになる電動モータの閾値回転速度を算出する閾値モータ速度算出手段と、
前記必要モータ速度算出手段と閾値モータ速度算出手段の算出結果に基づき、前記油圧アクチュエータの非作動時に、前記総合必要流量を得るための電動モータの必要回転速度が前記閾値回転速度以上の場合には、電動モータを前記必要回転速度で駆動し、前記総合必要流量を得るための電動モータの必要回転速度が前記閾値回転速度よりも小さい場合には、電動モータを前記閾値回転速度以上の設定速度で駆動する駆動制御手段と、
を備えたことを特徴とする車両のオイル供給装置。
An electric oil pump having a high pressure pump mechanism and a low pressure pump mechanism driven by a common electric motor;
A line pressure passage for supplying oil discharged from the high-pressure pump mechanism to a hydraulic actuator of a vehicle;
A low-pressure oil passage for supplying oil discharged from the low-pressure pump mechanism to a low-pressure oil utilization part of a vehicle device;
A pressure regulating valve that regulates oil discharged from the high-pressure pump mechanism and supplied to the line pressure passage to a set pressure, and supplies surplus oil to the low-pressure oil passage;
A leakage flow rate calculating means for calculating a flow rate of oil leaking from the hydraulic actuator when the hydraulic actuator is not operated;
A low pressure required flow rate calculating means for calculating a flow rate of oil required in the low pressure oil passage;
A total required flow rate calculating means for calculating a total required flow rate of oil from the calculation results of the leak flow rate calculating means and the low pressure required flow rate calculating means when the hydraulic actuator is not operated;
Required motor speed calculating means for calculating a required rotational speed of the electric motor for obtaining the total required flow rate;
Threshold motor speed calculation means for calculating a threshold rotation speed of the electric motor at which the oil discharge flow rate in the high-pressure pump mechanism is substantially the same as the oil leak flow rate from the hydraulic actuator;
Based on the calculation results of the necessary motor speed calculating means and the threshold motor speed calculating means, when the required rotational speed of the electric motor for obtaining the total required flow rate is not less than the threshold rotational speed when the hydraulic actuator is not operated. When the required rotation speed of the electric motor for driving the electric motor at the required rotation speed and obtaining the total required flow rate is smaller than the threshold rotation speed, the electric motor is driven at a set speed equal to or higher than the threshold rotation speed. Drive control means for driving;
An oil supply device for a vehicle, comprising:
前記調圧弁は、前記油圧アクチュエータの非作動時に電動モータを前記必要回転速度で駆動する場合に、前記高圧ポンプ機構部から吐出されたオイルの流量から前記油圧アクチュエータのリーク流量を差し引いた流量が前記低圧オイル通路に供給されるように設定されていることを特徴とする請求項1に記載の車両のオイル供給装置。   The pressure regulating valve has a flow rate obtained by subtracting a leak flow rate of the hydraulic actuator from a flow rate of oil discharged from the high-pressure pump mechanism when the electric motor is driven at the required rotational speed when the hydraulic actuator is not operated. 2. The vehicle oil supply device according to claim 1, wherein the vehicle oil supply device is set to be supplied to a low-pressure oil passage. 前記ライン圧通路に供給されたオイルは駆動機構の油圧アクチュエータの作動に用いられ、前記低圧オイル通路に供給されたオイルは車両機器の冷却と潤滑の少なくともいずれかに用いられることを特徴とする請求項1または2のいずれか1項に記載の車両のオイル供給装置。   The oil supplied to the line pressure passage is used for operation of a hydraulic actuator of a drive mechanism, and the oil supplied to the low pressure oil passage is used for at least one of cooling and lubrication of vehicle equipment. Item 3. The vehicle oil supply device according to any one of Items 1 and 2. 前記高圧ポンプ機構部から吐出されるオイルの温度を検出する温度検出手段を備え、
前記リーク流量算出手段は、前記温度検出手段での検出温度に基づいてリーク流量を算出することを特徴とする請求項1〜3のいずれか1項に記載の車両のオイル供給装置。
Temperature detecting means for detecting the temperature of oil discharged from the high-pressure pump mechanism,
The vehicle oil supply device according to any one of claims 1 to 3, wherein the leak flow rate calculation means calculates a leak flow rate based on a temperature detected by the temperature detection means.
前記高圧ポンプ機構部から吐出されるオイルの温度を検出する温度検出手段を備え、
前記必要モータ速度算出手段と閾値モータ速度算出手段は、前記温度検出手段での検出温度に基づいて電動モータの必要回転速度と閾値回転速度を算出することを特徴とする請求項1〜4のいずれか1項に記載の車両のオイル供給装置。
Temperature detecting means for detecting the temperature of oil discharged from the high-pressure pump mechanism,
The said required motor speed calculation means and a threshold motor speed calculation means calculate the required rotational speed and threshold rotational speed of an electric motor based on the temperature detected by the said temperature detection means, Any one of Claims 1-4 characterized by the above-mentioned. The vehicle oil supply device according to claim 1.
前記油圧アクチュエータは、円周方向に沿うように永久磁石が配設された内周側回転子と、この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿うように永久磁石が配設された外周側回転子と、油圧によって前記内周側回転子と外周側回転子を相対回動させて両者の相対的な位相を変更する位相変更手段とを備えた電動機の前記位相変更手段であることを特徴とする請求項1〜5のいずれか1項に記載の車両のオイル供給装置。   The hydraulic actuator is disposed on the outer circumferential side of the inner circumferential rotor on which a permanent magnet is disposed along the circumferential direction, and is coaxially and relatively rotatable on the outer circumferential side of the inner circumferential rotor, A phase change that changes the relative phase between the outer peripheral rotor on which the permanent magnets are arranged along the circumferential direction, and the inner peripheral rotor and the outer peripheral rotor are relatively rotated by hydraulic pressure. The vehicle oil supply device according to any one of claims 1 to 5, wherein the phase changing means of the electric motor is provided.
JP2006239502A 2006-09-04 2006-09-04 Vehicle oil supply device Expired - Fee Related JP4732281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239502A JP4732281B2 (en) 2006-09-04 2006-09-04 Vehicle oil supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239502A JP4732281B2 (en) 2006-09-04 2006-09-04 Vehicle oil supply device

Publications (2)

Publication Number Publication Date
JP2008063947A true JP2008063947A (en) 2008-03-21
JP4732281B2 JP4732281B2 (en) 2011-07-27

Family

ID=39286889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239502A Expired - Fee Related JP4732281B2 (en) 2006-09-04 2006-09-04 Vehicle oil supply device

Country Status (1)

Country Link
JP (1) JP4732281B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086771A (en) * 2013-10-30 2015-05-07 ヤンマー株式会社 Hydraulic system
CN113090550A (en) * 2020-01-08 2021-07-09 广州汽车集团股份有限公司 Electronic pump control method and device and computer readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419374A (en) * 1990-05-11 1992-01-23 Nippondenso Co Ltd Hydraulic controlling device for air conditioning device of vehicle
JP2000027992A (en) * 1998-07-14 2000-01-25 Nissan Motor Co Ltd Number of revolutions of oil pump control device for automatic transmission
JP2002235675A (en) * 2001-02-13 2002-08-23 Toyota Motor Corp Hydraulic control device
JP2002235845A (en) * 2001-02-07 2002-08-23 Toyota Motor Corp Hydraulic controller for automatic transmission for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419374A (en) * 1990-05-11 1992-01-23 Nippondenso Co Ltd Hydraulic controlling device for air conditioning device of vehicle
JP2000027992A (en) * 1998-07-14 2000-01-25 Nissan Motor Co Ltd Number of revolutions of oil pump control device for automatic transmission
JP2002235845A (en) * 2001-02-07 2002-08-23 Toyota Motor Corp Hydraulic controller for automatic transmission for vehicle
JP2002235675A (en) * 2001-02-13 2002-08-23 Toyota Motor Corp Hydraulic control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086771A (en) * 2013-10-30 2015-05-07 ヤンマー株式会社 Hydraulic system
CN113090550A (en) * 2020-01-08 2021-07-09 广州汽车集团股份有限公司 Electronic pump control method and device and computer readable storage medium
CN113090550B (en) * 2020-01-08 2023-03-03 广汽埃安新能源汽车有限公司 Electronic pump control method and device and computer readable storage medium

Also Published As

Publication number Publication date
JP4732281B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
EP1881200B2 (en) Electric pump
JP4363479B2 (en) Rotating electric machine and driving device
EP2724450B1 (en) Cooling structure of rotary electric machine
JP6154602B2 (en) Cooling device for rotating electric machine
JP2008011592A (en) Motor
JP2009118712A (en) Dynamo-electric machine
JP2010273521A (en) Device for control of electric motor
EP1833147B1 (en) Electric motor
JP4732281B2 (en) Vehicle oil supply device
JP5124336B2 (en) Control device for electric vehicle
JP5300139B2 (en) Electric motor control device
JP4409555B2 (en) Vehicle torque control device
JP2009268269A (en) Electric motor
JP5031351B2 (en) Electric motor
JP5037063B2 (en) Electric motor for vehicle
JP4828392B2 (en) Variable motor characteristics system
JP2009118711A (en) Rotary electric machine
JP2019161950A (en) Dynamo-electric machine system and vehicle
JP4864686B2 (en) Motor control device
JP4499052B2 (en) Electric motor
JP4914868B2 (en) Control device for electric vehicle
JP2010273522A (en) Device for control of electric motor
JP2008259298A (en) Motor
JP2010178565A (en) Device for controlling electric motor
JP2007244041A (en) Motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees