JP2008063194A - METHOD FOR PRODUCING Si BULK POLYCRYSTAL - Google Patents

METHOD FOR PRODUCING Si BULK POLYCRYSTAL Download PDF

Info

Publication number
JP2008063194A
JP2008063194A JP2006244013A JP2006244013A JP2008063194A JP 2008063194 A JP2008063194 A JP 2008063194A JP 2006244013 A JP2006244013 A JP 2006244013A JP 2006244013 A JP2006244013 A JP 2006244013A JP 2008063194 A JP2008063194 A JP 2008063194A
Authority
JP
Japan
Prior art keywords
melt
crucible
bulk
growth
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006244013A
Other languages
Japanese (ja)
Other versions
JP4923253B2 (en
Inventor
Kozo Fujiwara
航三 藤原
Kazuo Nakajima
一雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2006244013A priority Critical patent/JP4923253B2/en
Publication of JP2008063194A publication Critical patent/JP2008063194A/en
Application granted granted Critical
Publication of JP4923253B2 publication Critical patent/JP4923253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple method for producing a Si bulk polycrystal, by which the orientations of crystal grains in the Si bulk polycrystal can be made to be only ä110} plane in a cast growth method. <P>SOLUTION: The method for producing the Si bulk polycrystal having a uniform crystal grain orientation comprises developing a dendrite crystal extending in the <112> direction along the bottom surface of a crucible at an initial growth stage by adding Ge into a Si melt so as to make the upper surface of the dendrite crystal to be ä110} plane in the melt growth of the Si bulk polycrystal using the crucible, and then growing the Si bulk polycrystal on the upper surface of the dendrite crystal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、太陽電池等に使用されるSiバルク多結晶の作製方法に関するものである。   The present invention relates to a method for producing Si bulk polycrystal used for solar cells and the like.

地球温暖化の対策として、環境にやさしいクリーンエネルギーを利用できる太陽電池を本格的に普及させるためには、高効率の太陽電池を、豊富に存在する安全なSi資源を用いて、低コストで生産できる技術開発が必要である。現在国内外において、Si融液からキャスト法を用いて大口径のバルク多結晶を成長し、薄板に切り出して太陽電池にデバイス化する方法が、実用技術として主流を占めている。しかし、キャスト成長法で成長したSiバルク多結晶の最大の課題は、多くの結晶粒の結晶方位がバラバラであるか、{111}面近傍に揃ってしまい、結晶粒界が高密度かつランダムに配置されていることである。   As a measure against global warming, high-efficiency solar cells are produced at low cost using abundant and safe Si resources in order to fully promote the use of environmentally friendly solar cells. Technology development that can be done is necessary. Currently, a method of growing large-diameter bulk polycrystals from Si melt using a cast method, cutting it into a thin plate, and making it into a solar cell has become the mainstream in practical use in Japan and overseas. However, the biggest problem of Si bulk polycrystals grown by the cast growth method is that the crystal orientations of many crystal grains are scattered or are aligned in the vicinity of the {111} plane, and the grain boundaries are dense and random. It is arranged.

結晶方位がランダムであったり{111}面近傍に揃ってしまうと、バルク単結晶太陽電池のように、結晶表面に化学エッチングによりテクスチャー構造を作れないため、太陽光の一部が反射し、十分に吸収できずに、変換効率が上がらない。また、結晶粒界密度が大きいため、結晶粒界でキャリアが再結合し、特性の低下を招く。これらの問題を解決するためには、表面の面方位が{111}面以外の一つの方位に揃い、結晶粒サイズが数センチメートル以上であることが重要である。   If the crystal orientation is random or aligned in the vicinity of the {111} plane, a texture structure cannot be created on the crystal surface by chemical etching like a bulk single crystal solar cell, so that part of the sunlight is reflected and sufficient Cannot be absorbed, and conversion efficiency does not increase. In addition, since the crystal grain boundary density is high, carriers are recombined at the crystal grain boundary, leading to deterioration of characteristics. In order to solve these problems, it is important that the surface orientation is aligned to one orientation other than the {111} plane and the crystal grain size is several centimeters or more.

すでに、上記の目的のため、Siバルク多結晶のキャスト成長法において、成長初期に融液の過冷却度を制御して、ルツボ底面に沿ってデンドライト結晶を発現させ、このデンドライト結晶の上面にSiバルク多結晶を成長させて、結晶粒方位と結晶粒サイズを制御したSiバルク多結晶を作製する技術は報告されている(例えば、特許文献1参照 )。しかし、この方法では、ルツボ底面に沿ってデンドライト成長させておらず、成長融液中にその方向を制御させることなく伸ばしていたために、Siバルク多結晶の結晶粒方位は{111}面を中心に、その面の法線から30°以内の方位に揃った方位関係となっている。また、成長初期に形成された結晶粒の成長方向を制御していないため、結晶粒界がランダムに配置されている。   Already for the above purpose, in the cast growth method of Si bulk polycrystal, the degree of supercooling of the melt is controlled at the initial stage of growth, and a dendrite crystal is developed along the bottom surface of the crucible, and Si is formed on the upper surface of the dendrite crystal. A technique for growing bulk polycrystals to produce Si bulk polycrystals with controlled crystal grain orientation and crystal grain size has been reported (see, for example, Patent Document 1). However, in this method, dendrite growth was not performed along the bottom surface of the crucible, and the crystal grain orientation of the Si bulk polycrystal was centered on the {111} plane because the direction was not controlled in the growth melt. In addition, the orientation relationship is aligned in an orientation within 30 ° from the normal of the surface. Further, since the growth direction of crystal grains formed at the initial stage of growth is not controlled, crystal grain boundaries are randomly arranged.

通常、Siの最安定面は{111}面であるため、デンドライト成長を行わなくても、熱平衡条件に近い条件で成長すると、{111}面に揃えることができる。そのため、デンドライト結晶の上面からの成長を利用して、{111}面になったとは考えにくいし、{111}面に揃えるためにデンドライト成長を利用する意味は無い。しかも、化学エッチングで表面テクスチャー構造を作製する方法では、{111}面に揃った結晶であるため最適なテクスチャー構造が形成できない。   Usually, since the most stable surface of Si is the {111} plane, even if dendrite growth is not performed, it can be aligned with the {111} plane when grown under conditions close to thermal equilibrium conditions. For this reason, it is unlikely that the {111} plane has been obtained by using the growth from the upper surface of the dendrite crystal, and there is no point in using the dendrite growth to align the {111} plane. In addition, the method of producing the surface texture structure by chemical etching cannot form an optimal texture structure because the crystals are aligned on the {111} plane.

表面テクスチャー構造を化学エッチングで作製するためには、{111}面以外の面方位に結晶粒を揃える必要があり、そのような成長技術として、成長初期のデンドライト成長をルツボ底面に沿って成長させる方法が、本発明者らによって提案されている(特許文献2)。   In order to produce a surface texture structure by chemical etching, it is necessary to align crystal grains in a plane orientation other than the {111} plane. As such a growth technique, dendrite growth at the initial growth stage is grown along the bottom of the crucible. A method has been proposed by the present inventors (Patent Document 2).

この方法によれば、{112}面又は{110}面に方位を揃えることが可能となるが、方位を一方向のみに限定することは困難であった。したがって、簡便な手法で、方位を{110}面のみにSiバルク多結晶の方位を揃える技術が求められていた。
特開2005−132671号公報 特願2005−345042号
According to this method, it is possible to align the orientation to the {112} plane or the {110} plane, but it is difficult to limit the orientation to only one direction. Therefore, there has been a demand for a technique for aligning the orientation of the Si bulk polycrystal only in the {110} plane with a simple method.
JP-A-2005-132671 Japanese Patent Application No. 2005-345042

本発明は、キャスト成長法において、Siバルク多結晶の方位を{110}面のみに揃えることができる、簡便なSiバルク多結晶の作製方法を提供することを課題とする。   An object of the present invention is to provide a simple Si bulk polycrystal production method capable of aligning the orientation of the Si bulk polycrystal only to the {110} plane in the cast growth method.

課題を解決するための手段は、次のとおりである。
(1)ルツボを用いたSiバルク多結晶の融液成長において、Si融液にGeを添加し、成長初期にルツボ底面に沿って<112>方向に伸びるデンドライト結晶を発現させ、デンドライト結晶の上面を{110}面とした後、上記デンドライト結晶の上面にSiバルク多結晶を成長させることを特徴とする、結晶粒方位の揃ったSiバルク多結晶の作製方法。
(2)ルツボを用いたSiバルク多結晶の融液成長において、Si融液にGeを添加し、成長初期にルツボ底面に沿って<112>方向に伸びるデンドライト結晶を発現させ、デンドライト結晶の上面を{110}面とした後、上記デンドライト結晶の上面に、Siバルク多結晶を一方向に凝固成長させることを特徴とする、結晶粒方位の揃ったSiバルク多結晶の作製方法。
(3)Si融液の入ったルツボを、5℃/cm〜50℃/cmの範囲で制御した温度勾配中を、移動速度0.2mm/min〜2.0mm/minで低温側に移動させることにより、Siバルク多結晶を一方向に凝固成長させることを特徴とする、(2)の結晶粒方位の揃ったSiバルク多結晶の作製方法。
(4)ルツボを用いたSiバルク多結晶の融液成長において、Si融液にGeを添加し、Si融液の入ったルツボを、5℃/cm〜50℃/cmの範囲で制御した温度勾配中を、はじめに移動速度1mm/min〜10mm/minでルツボ底面の温度がSiの融点より2℃以上低い場所に移動させ、その場所で1分以上保持することによりルツボ底面に沿って<112>方向に伸びるデンドライト結晶を発現させルツボ底面直上の融液を結晶化させ、その後、移動速度0.2mm/min〜2.0mm/minで低温側に移動させることにより、Siバルク多結晶を一方向に凝固成長させることを特徴とする、結晶粒方位の揃ったSiバルク多結晶の作製方法。
(5)Si融液中へのGeの添加量を、0.1mol%〜1mol%の範囲とすることを特徴とする、(1)から(4)のいずれかの結晶粒方位の揃ったSiバルク多結晶の作製方法。
(6)バルク多結晶の成長用融液を入れる上記ルツボの材質を石英としたことを特徴とする、(1)から(5)のいずれかの結晶粒方位の揃ったSiバルク多結晶の作製方法。
Means for solving the problems are as follows.
(1) In melt growth of Si bulk polycrystal using a crucible, Ge is added to the Si melt, and a dendrite crystal extending in the <112> direction along the bottom surface of the crucible is expressed at the initial stage of growth. Is a {110} plane, and then a Si bulk polycrystal is grown on the upper surface of the dendrite crystal.
(2) In melt growth of Si bulk polycrystal using a crucible, Ge is added to the Si melt, and a dendrite crystal extending in the <112> direction along the bottom of the crucible is expressed at the initial stage of growth, and the upper surface of the dendrite crystal Is a {110} plane, and then the Si bulk polycrystal is solidified and grown in one direction on the upper surface of the dendrite crystal.
(3) The crucible containing the Si melt is moved to a low temperature side at a moving speed of 0.2 mm / min to 2.0 mm / min in a temperature gradient controlled in a range of 5 ° C./cm to 50 ° C./cm. (2) The method for producing a Si bulk polycrystal having a uniform crystal grain orientation, wherein the Si bulk polycrystal is solidified and grown in one direction.
(4) In melt growth of Si bulk polycrystal using a crucible, Ge was added to the Si melt, and the temperature of the crucible containing the Si melt was controlled in the range of 5 ° C / cm to 50 ° C / cm. First, the temperature of the bottom surface of the crucible is moved 2 ° C. or more lower than the melting point of Si at a moving speed of 1 mm / min to 10 mm / min in the gradient, and kept at that location for 1 minute or longer along the bottom surface of the crucible <112. > The dendrite crystal extending in the direction is developed to crystallize the melt immediately above the bottom of the crucible, and then moved to the low temperature side at a moving speed of 0.2 mm / min to 2.0 mm / min, thereby obtaining a single Si bulk polycrystal. A method for producing a Si bulk polycrystal having uniform crystal grain orientation, characterized by solidifying and growing in a direction.
(5) Si with uniform crystal grain orientation according to any one of (1) to (4), wherein the amount of Ge added to the Si melt is in the range of 0.1 mol% to 1 mol% Bulk polycrystalline production method.
(6) Production of Si bulk polycrystal with uniform crystal grain orientation according to any one of (1) to (5), characterized in that quartz is used as a material for the crucible containing a bulk polycrystal growth melt. Method.

本発明によれば、Geを微量添加することで、組成的過冷却の効果により、ルツボ底面をSiの融点よりわずかに低い温度においても、ルツボ底面に沿ってデンドライト成長が発現するようになる。この低過冷却融液から成長するデンドライト結晶の上面方位は{110}面に限定される。その後、融液全体の温度を融点以下に冷却し、成長初期の多結晶組織の上にエピタキシャルに成長させることによって、{110}面に方位が揃った高品質なSiバルク多結晶を得ることができる。   According to the present invention, the addition of a small amount of Ge allows dendrite growth to appear along the bottom surface of the crucible even at a temperature slightly lower than the melting point of Si due to the effect of compositional supercooling. The top surface orientation of the dendrite crystal grown from this low supercooled melt is limited to the {110} plane. After that, the temperature of the entire melt is cooled below the melting point, and epitaxial growth is performed on the polycrystalline structure at the initial stage of growth, thereby obtaining a high-quality Si bulk polycrystal having a uniform orientation on the {110} plane. it can.

本発明は、高効率太陽電池用結晶の本命技術であるキャスト成長法で、{111}面以外の面に方位が揃った高品質なSiバルク多結晶を成長するために、成長初期にルツボ底面に沿ってデンドライト成長させ、その際、微量のGeを添加することによって、デンドライト結晶の上面を{110}面とした後、その面上にエピタキシャルにSiバルク多結晶を成長させ、Siバルク多結晶の成長方位を{110}面だけに揃えることに特徴がある。   The present invention provides a high-efficiency solar cell crystal technology, the cast growth method. In order to grow a high-quality Si bulk polycrystal whose orientation is aligned on a plane other than the {111} plane, In this case, the upper surface of the dendrite crystal is made to be a {110} plane by adding a small amount of Ge, and then an Si bulk polycrystal is grown epitaxially on the surface. It is characterized in that the growth orientation of is aligned only on the {110} plane.

すなわちGeを微量添加することで、組成的過冷却の効果により、ルツボ底面をSiの融点(1414℃)よりわずかに低い温度においても、ルツボ底面に沿ってデンドライト成長が発現するようになる。この低過冷却融液から成長するデンドライト結晶の上面方位は{110}面に限定される。その後、融液全体の温度を融点以下に冷却し、成長初期の多結晶組織の上にエピタキシャルに成長させることによって、{110}面に方位が揃った高品質なSiバルク多結晶を得ることができる。   That is, by adding a small amount of Ge, dendrite growth appears along the bottom surface of the crucible even at a temperature slightly lower than the melting point of Si (1414 ° C.) due to the effect of compositional supercooling. The top surface orientation of the dendrite crystal grown from this low supercooled melt is limited to the {110} plane. After that, the temperature of the entire melt is cooled below the melting point, and epitaxial growth is performed on the polycrystalline structure at the initial stage of growth, thereby obtaining a high-quality Si bulk polycrystal having a uniform orientation on the {110} plane. it can.

まず、ルツボ底面に沿って、デンドライト結晶が成長する条件とデンドライト結晶の成長方向との関係を、融液成長過程の直接観察実験により調べた。石英ルツボに、原料SiとGeを、Ge濃度が0.5mol%になるように調整して入れ、1450℃で完全に融解し、このGeを0.5mol%添加したSi融液を5℃/minで冷却して結晶成長させた。比較のため純Si融液についても同じ条件で冷却し、結晶成長させた。   First, the relationship between the dendrite crystal growth condition and the dendrite crystal growth direction along the bottom surface of the crucible was examined by direct observation experiments of the melt growth process. In a quartz crucible, raw materials Si and Ge were adjusted so as to have a Ge concentration of 0.5 mol%, completely melted at 1450 ° C., and a Si melt containing 0.5 mol% of Ge was added at 5 ° C. / The crystal was grown by cooling at min. For comparison, the pure Si melt was also cooled under the same conditions to grow crystals.

図1は、Geを0.5mol%添加したSi融液(Si99.5Ge0.5融液)を5℃/minで冷却したときのデンドライト結晶成長の経時変化を示す写真である。図1に示すように、Si99.5Ge0.5融液ではデンドライト成長するのが認められる。 FIG. 1 is a photograph showing the change over time of dendrite crystal growth when a Si melt containing 0.5 mol% of Ge (Si 99.5 Ge 0.5 melt) is cooled at 5 ° C./min. As shown in FIG. 1, dendrite growth is observed in the Si 99.5 Ge 0.5 melt.

比較例として、5℃/minで冷却したときのSi融液の結晶成長の経時変化を示す写真を図2に示す。図2から、純Si融液ではデンドライト成長が発現していないことが分かる。このように、純Si融液では、冷却速度が遅い場合は、結晶成長開始時の過冷却度が小さいため、デンドライト成長しないが、Geを微量添加することにより、組成的過冷却の効果により、デンドライト成長が発現しやすくなる。EBSP法による方位解析の結果、このような低過冷却融液から成長するデンドライト結晶の上面の方位は{110}面に限定されることが判った。   As a comparative example, a photograph showing a change with time of crystal growth of the Si melt when cooled at 5 ° C./min is shown in FIG. It can be seen from FIG. 2 that dendrite growth does not occur in the pure Si melt. Thus, in the pure Si melt, when the cooling rate is slow, the degree of supercooling at the start of crystal growth is small, so dendritic growth does not occur, but by adding a small amount of Ge, due to the effect of compositional supercooling, Dendritic growth is likely to occur. As a result of orientation analysis by the EBSP method, it was found that the orientation of the upper surface of the dendrite crystal grown from such a low supercooled melt is limited to the {110} plane.

この知見を基にSiバルク多結晶のキャスト成長を行った。Si原料450gとGe原料3.3gを、内径80mmの石英製のルツボに挿入し、Ar雰囲気中で1450℃まで昇温して完全に溶解させて、Si融液を作製した。この融液のGe濃度は0.28mol%である。成長初期にルツボ底面の温度が1410℃の位置で40分間保持することによりルツボ底面に沿って<112>方向に伸びるデンドライト結晶を発現させ、デンドライト結晶の上面を{110}面とした後、ルツボを、20℃/cmの温度勾配中を0.3mm/minで移動させて、一方向に凝固成長させた。   Based on this knowledge, cast growth of Si bulk polycrystal was performed. Si raw material 450 g and Ge raw material 3.3 g were inserted into a quartz crucible having an inner diameter of 80 mm, and heated to 1450 ° C. in an Ar atmosphere to be completely dissolved, thereby preparing a Si melt. The Ge concentration of this melt is 0.28 mol%. A dendrite crystal extending in the <112> direction along the bottom of the crucible is developed by holding the temperature of the bottom of the crucible at a position of 1410 ° C. for 40 minutes in the initial stage of growth, and the upper surface of the dendrite crystal is set to the {110} plane, Was moved through a temperature gradient of 20 ° C./cm at a rate of 0.3 mm / min to solidify and grow in one direction.

図3は、キャスト成長したSi及びSiGe(Ge濃度;0.28mol%)バルク多結晶インゴット底部の方位解析結果を示す写真である。成長終了後、Geを添加したSiバルク多結晶の下部を切断・研磨し、EBSP法で方位解析した。比較のため同条件でSiバルク多結晶を成長し、同様の解析を行った。Geを添加しないSiバルク多結晶では、ランダムな方位分布をしているが(図3左)、Geを添加したSiバルク多結晶では、{110}面に約7割方位が揃った(図3右)。   FIG. 3 is a photograph showing the orientation analysis result of the cast-grown Si and SiGe (Ge concentration; 0.28 mol%) bulk polycrystalline ingot bottom. After the growth was completed, the lower part of the Si bulk polycrystal added with Ge was cut and polished, and the orientation was analyzed by the EBSP method. For comparison, Si bulk polycrystals were grown under the same conditions, and the same analysis was performed. The Si bulk polycrystal without addition of Ge has a random orientation distribution (FIG. 3 left), but the Si bulk polycrystal with addition of Ge has approximately 70% orientation on the {110} plane (FIG. 3). right).

図4は、キャスト成長したSiGe(Ge濃度;1.0mol%)バルク多結晶インゴット底部の方位解析結果を示す写真である。図3の場合と同様にGeを1.0mol%添加したSi多結晶を成長したところ、成長方向の方位が{110}面に7割以上揃った。これは、成長初期にルツボ底面に沿って成長したデンドライト上面の方位が、{110}面に限定されたためである。   FIG. 4 is a photograph showing the orientation analysis result of the bottom portion of the cast-grown SiGe (Ge concentration: 1.0 mol%) bulk polycrystalline ingot. As in the case of FIG. 3, when a Si polycrystal added with 1.0 mol% of Ge was grown, the orientation in the growth direction was 70% or more aligned on the {110} plane. This is because the orientation of the upper surface of the dendrite grown along the bottom surface of the crucible in the early stage of growth was limited to the {110} plane.

本発明によって成長したSiバルク多結晶では、{110}面に方位の揃ったバルク多結晶が得られた。図5にアルカリエッチングにより{110}表面及び通常のSi多結晶に多い{110}表面をテクスチャー化した後、それぞれ表面反射率を測定した結果を示す。
図5からも分かるように、{110}面をテクスチャー化することにより、表面反射率が減少するため、太陽電池の変換効率が向上する。
In the bulk Si polycrystal grown according to the present invention, a bulk polycrystal having a uniform orientation in the {110} plane was obtained. FIG. 5 shows the results of measuring the surface reflectivity after texturing the {110} surface and the {110} surface often found in normal Si polycrystals by alkali etching.
As can be seen from FIG. 5, by converting the {110} plane into a texture, the surface reflectance is reduced, so that the conversion efficiency of the solar cell is improved.

本発明により、柱状組織を有するSiバルク多結晶の結晶粒の<110>方位への整列が可能性になるため、この結晶から切り出したウェハーを用いて適切なテクスチャー構造を作製できる。このため、このテクスチャー構造を有するSi多結晶ウェハーを用いて作製した太陽電池では、その変換効率を大幅に高めることができる。しかもこれらのSiバルク多結晶の成長方法は、実用的で安価なキャスト成長法を用いて行うことができるため、Siバルク多結晶を用いた太陽電池の変換効率の大幅な向上とコストの低下を同時に実現できる効果が得られる。この発明により、従来から実現が渇望されていた、高効率で低コストの実用的な太陽電池を高品質Siバルク多結晶を用いて作製でき、太陽電池の普及に対して計り知れない効果が期待できる。   According to the present invention, it becomes possible to align the crystal grains of the Si bulk polycrystal having a columnar structure in the <110> orientation. Therefore, an appropriate texture structure can be produced using a wafer cut out from the crystal. For this reason, in the solar cell produced using the Si polycrystal wafer which has this texture structure, the conversion efficiency can be improved significantly. Moreover, since these Si bulk polycrystal growth methods can be performed using a practical and inexpensive cast growth method, the conversion efficiency of solar cells using Si bulk polycrystals can be greatly improved and the cost can be reduced. The effect which can be realized simultaneously is acquired. According to the present invention, a high-efficiency and low-cost practical solar cell, which has been eagerly desired to be realized, can be produced using high-quality Si bulk polycrystal, and an immense effect on the spread of solar cells is expected. it can.

本発明における重要ポイントは、GeのSi融液中への添加量にある。GeがSi結晶中に入ると、太陽電池を作製した場合開放電圧が下がることがあることはよく知られている。しかし、微量のGeの添加では、開放電圧はほとんど下がらず、太陽電池特性にはほとんど変化を与えない。このため、太陽電池特性を劣化させない程度のGe添加量が、本発明の重要ポイントとなる。   The important point in the present invention is the amount of Ge added to the Si melt. It is well known that when Ge enters the Si crystal, the open circuit voltage may drop when a solar cell is fabricated. However, when a small amount of Ge is added, the open-circuit voltage is hardly lowered and the solar cell characteristics are hardly changed. For this reason, the Ge addition amount which does not deteriorate the solar cell characteristics is an important point of the present invention.

Geの添加がデンドライト結晶の方位制御に役立たないほど微量では意味をなさない。すなわちGeの添加量が0.1mol%未満では、デンドライト結晶の方位制御に効果がない。Geの添加がデンドライト結晶の方位制御に役立つためには、GeのSi融液への添加量を0.1mol%以上とする必要がある。
またGeの添加量が1mol%を越えると結晶中に転位などの欠陥が増加するため、キャリアのライフタイムが低下するとともに太陽電池の開放電圧の低下の影響が現れ、太陽電池特性を劣化させる。
したがってSi融液中への最適なGe添加量は、0.1mol%〜1mol%の範囲である。
The addition of Ge is meaningless in such a small amount that it does not help the orientation control of the dendrite crystal. That is, when the amount of Ge added is less than 0.1 mol%, there is no effect on the orientation control of the dendrite crystal. In order for the addition of Ge to be useful for controlling the orientation of the dendrite crystal, the amount of Ge added to the Si melt needs to be 0.1 mol% or more.
On the other hand, when the Ge addition amount exceeds 1 mol%, defects such as dislocations increase in the crystal, so that the lifetime of the carrier is lowered and the effect of lowering the open circuit voltage of the solar cell appears, thereby deteriorating the solar cell characteristics.
Therefore, the optimum Ge addition amount in the Si melt is in the range of 0.1 mol% to 1 mol%.

次に実施例では、成長初期にルツボ底面の温度が1410℃の位置で40分間保持することによりルツボ底面に沿って<112>方向に伸びるデンドライト結晶を発現させているが、Si融液の入ったルツボを、5℃/cm〜50℃/cmの範囲で制御した温度勾配中を、はじめに移動速度1mm/min〜10mm/minでルツボ底面の温度がSiの融点より2℃以上低い場所に移動させ、その場所で1分以上保持することによりルツボ底面に沿って<112>方向に伸びるデンドライト結晶を発現させることもできる。   Next, in the examples, dendrite crystals extending in the <112> direction along the bottom of the crucible are expressed by holding the crucible bottom at a temperature of 1410 ° C. for 40 minutes in the initial stage of growth. The crucible is first moved in a temperature gradient controlled in the range of 5 ° C./cm to 50 ° C./cm to a place where the temperature at the bottom of the crucible is 2 ° C. lower than the melting point of Si at a moving speed of 1 mm / min to 10 mm / min. The dendrite crystals that extend in the <112> direction along the bottom surface of the crucible can be developed by holding at that location for 1 minute or longer.

また実施例では、ルツボを、20℃/cmの温度勾配中を0.3mm/minで移動させて、一方向に凝固成長させたが、温度勾配については、5℃/cm〜50℃/cmの範囲であればよい。
これは、温度勾配が5℃/cm未満ではデンドライト結晶が発現せず、また50℃/cmを超えると、デンドライト結晶がルツボ底面に揃わなくなるからである。
In the examples, the crucible was moved in a temperature gradient of 20 ° C./cm at 0.3 mm / min and solidified and grown in one direction. The temperature gradient was 5 ° C./cm to 50 ° C./cm. It may be in the range.
This is because dendrite crystals do not develop when the temperature gradient is less than 5 ° C./cm, and when the temperature gradient exceeds 50 ° C./cm, the dendrite crystals do not align with the bottom of the crucible.

さらにルツボの移動速度については、0.2mm/minより遅い場合には、工業的に生産性が悪くなり、2.0mm/minを超える速度では、得られる結晶の品質が劣化するので、移動速度は0.2〜2.0mm/minの範囲とする必要がある。   Furthermore, as for the moving speed of the crucible, when it is slower than 0.2 mm / min, the productivity is industrially deteriorated, and when the speed exceeds 2.0 mm / min, the quality of the obtained crystal is deteriorated. Needs to be in the range of 0.2 to 2.0 mm / min.

本発明は、安価なキャスト成長法を用いて、{110}面に方位の揃ったSiバルク多結晶を成長できるため、化学エッチングにより、表面テクスチャー構造を容易に形成でき、効率の高い太陽電池を実現できる。しかも、実用的なキャスト成長法をベースにしているため、企業化も容易であるというメリットを持つ。   Since the present invention can grow Si bulk polycrystals oriented in the {110} plane by using an inexpensive cast growth method, a surface texture structure can be easily formed by chemical etching, and a highly efficient solar cell can be obtained. realizable. Moreover, since it is based on a practical cast growth method, it has the advantage of being easy to commercialize.

5℃/minで冷却したときのGeを0.5mol%添加したSi融液(Si99.5Ge0.5融液)のデンドライト結晶成長の経時変化を示す写真である。The Ge of 5 ° C. upon cooling in / min is a photograph showing the time course of dendrite crystal growth of Si melt was added 0.5 mol% (Si 99.5 Ge 0.5 melt). 5℃/minで冷却したときのSi融液の結晶成長の経時変化を示す写真である。It is a photograph which shows a time-dependent change of the crystal growth of Si melt when it cools at 5 degrees C / min. キャスト成長したSi及びGeを添加したSi(Ge濃度;0.28mol%)バルク多結晶インゴット底部の方位解析結果を示す写真である。It is a photograph which shows the orientation analysis result of the Si (Ge density | concentration; 0.28 mol%) bulk polycrystal ingot which added Si and Ge which carried out the cast growth. キャスト成長したGeを添加したSi(Ge濃度;1.0mol%)バルク多結晶インゴット底部の方位解析結果を示す写真である。It is a photograph which shows the azimuth | direction analysis result of Si (Ge density | concentration; 1.0 mol%) bulk polycrystalline ingot which added Ge which carried out cast growth. {110}及び{111}表面テクスチャー形成後の表面反射率を示す図面である。It is drawing which shows the surface reflectance after {110} and {111} surface texture formation.

Claims (6)

ルツボを用いたSiバルク多結晶の融液成長において、Si融液にGeを添加し、成長初期にルツボ底面に沿って<112>方向に伸びるデンドライト結晶を発現させ、デンドライト結晶の上面を{110}面とした後、上記デンドライト結晶の上面にSiバルク多結晶を成長させることを特徴とする、結晶粒方位の揃ったSiバルク多結晶の作製方法。   In the melt growth of Si bulk polycrystal using a crucible, Ge is added to the Si melt, and a dendrite crystal extending in the <112> direction along the bottom of the crucible is expressed in the initial stage of growth, and the upper surface of the dendrite crystal is {110 }, A bulk Si crystal is grown on the upper surface of the dendrite crystal. ルツボを用いたSiバルク多結晶の融液成長において、Si融液にGeを添加し、成長初期にルツボ底面に沿って<112>方向に伸びるデンドライト結晶を発現させ、デンドライト結晶の上面を{110}面とした後、上記デンドライト結晶の上面に、Siバルク多結晶を一方向に凝固成長させることを特徴とする、結晶粒方位の揃ったSiバルク多結晶の作製方法。   In the melt growth of Si bulk polycrystal using a crucible, Ge is added to the Si melt, and a dendrite crystal extending in the <112> direction along the bottom of the crucible is expressed in the initial stage of growth, and the upper surface of the dendrite crystal is {110 }, A Si bulk polycrystal having a uniform crystal grain orientation is obtained by solidifying and growing the Si bulk polycrystal in one direction on the upper surface of the dendrite crystal. Si融液の入ったルツボを、5℃/cm〜50℃/cmの範囲で制御した温度勾配中を、移動速度0.2mm/min〜2.0mm/minで低温側に移動させることにより、Siバルク多結晶を一方向に凝固成長させることを特徴とする、請求項2に記載の結晶粒方位の揃ったSiバルク多結晶の作製方法。   By moving the crucible containing the Si melt in the temperature gradient controlled in the range of 5 ° C./cm to 50 ° C./cm to the low temperature side at a moving speed of 0.2 mm / min to 2.0 mm / min, The method for producing a Si bulk polycrystal with uniform crystal grain orientation according to claim 2, wherein the Si bulk polycrystal is solidified and grown in one direction. ルツボを用いたSiバルク多結晶の融液成長において、Si融液にGeを添加し、Si融液の入ったルツボを、5℃/cm〜50℃/cmの範囲で制御した温度勾配中を、はじめに移動速度1mm/min〜10mm/minでルツボ底面の温度がSiの融点より2℃以上低い場所に移動させ、その場所で1分以上保持することによりルツボ底面に沿って<112>方向に伸びるデンドライト結晶を発現させルツボ底面直上の融液を結晶化させ、その後、移動速度0.2mm/min〜2.0mm/minで低温側に移動させることにより、Siバルク多結晶を一方向に凝固成長させることを特徴とする、結晶粒方位の揃ったSiバルク多結晶の作製方法。   In the melt growth of Si bulk polycrystal using a crucible, Ge was added to the Si melt, and the temperature of the crucible containing the Si melt was controlled in the range of 5 ° C / cm to 50 ° C / cm. First, at a moving speed of 1 mm / min to 10 mm / min, the temperature of the bottom surface of the crucible is moved to a place lower than the melting point of Si by 2 ° C. or more, and held in that place for 1 minute or longer in the <112> direction along the bottom surface of the crucible. Si bulk polycrystals are solidified in one direction by developing an extended dendrite crystal and crystallizing the melt just above the bottom of the crucible, and then moving to a low temperature side at a moving speed of 0.2 mm / min to 2.0 mm / min. A method for producing a Si bulk polycrystal having a uniform crystal grain orientation, characterized by growing. Si融液中へのGeの添加量を、0.1mol%〜1mol%の範囲とすることを特徴とする、請求項1から4のいずれか1項に記載の結晶粒方位の揃ったSiバルク多結晶の作製方法。   The Si bulk with uniform crystal grain orientation according to any one of claims 1 to 4, wherein an addition amount of Ge in the Si melt is in a range of 0.1 mol% to 1 mol%. A method for producing a polycrystal. バルク多結晶の成長用融液を入れる上記ルツボの材質を石英としたことを特徴とする、請求項1から5のいずれか1項に記載の結晶粒方位の揃ったSiバルク多結晶の作製方法。   The method for producing a Si bulk polycrystal with uniform crystal grain orientation according to any one of claims 1 to 5, wherein the material of the crucible containing the melt for growing the bulk polycrystal is quartz. .
JP2006244013A 2006-09-08 2006-09-08 Method for producing Si bulk polycrystal Active JP4923253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006244013A JP4923253B2 (en) 2006-09-08 2006-09-08 Method for producing Si bulk polycrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244013A JP4923253B2 (en) 2006-09-08 2006-09-08 Method for producing Si bulk polycrystal

Publications (2)

Publication Number Publication Date
JP2008063194A true JP2008063194A (en) 2008-03-21
JP4923253B2 JP4923253B2 (en) 2012-04-25

Family

ID=39286212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244013A Active JP4923253B2 (en) 2006-09-08 2006-09-08 Method for producing Si bulk polycrystal

Country Status (1)

Country Link
JP (1) JP4923253B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493357B2 (en) 2011-11-28 2016-11-15 Sino-American Silicon Products Inc. Method of fabricating crystalline silicon ingot including nucleation promotion layer
CN109306509A (en) * 2018-11-27 2019-02-05 江苏拓正茂源新能源有限公司 A kind of solar battery mono-crystal silicon materials preparation process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493357B2 (en) 2011-11-28 2016-11-15 Sino-American Silicon Products Inc. Method of fabricating crystalline silicon ingot including nucleation promotion layer
US9637391B2 (en) 2011-11-28 2017-05-02 Sino-American Silicon Products Inc. Crystalline silicon ingot including nucleation promotion layer
CN109306509A (en) * 2018-11-27 2019-02-05 江苏拓正茂源新能源有限公司 A kind of solar battery mono-crystal silicon materials preparation process

Also Published As

Publication number Publication date
JP4923253B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4203603B2 (en) Method for producing semiconductor bulk polycrystal
JP4647525B2 (en) Method for producing group III nitride crystal
US8187563B2 (en) Method for producing Si bulk polycrystal ingot
Stokkan Relationship between dislocation density and nucleation of multicrystalline silicon
JPWO2007100146A1 (en) Method for producing ZnO single crystal by liquid phase growth method
JP4054873B2 (en) Method for producing Si-based crystal
CN107230737A (en) Group III-nitride substrate and the manufacture method of group III-nitride crystallization
JP4923253B2 (en) Method for producing Si bulk polycrystal
CN203474952U (en) Quartz crucible for ingot casting
JP2009173518A (en) Method for producing si crystal ingot
CN111910248B (en) Ingot casting single crystal seed crystal, cast single crystal silicon ingot and preparation method thereof, cast single crystal silicon slice and preparation method thereof
EP1485956B2 (en) Process of producing multicrystalline silicon substrate
JP4292300B2 (en) Method for producing semiconductor bulk crystal
JP2019218245A (en) MANUFACTURING METHOD OF Si INGOT CRYSTAL, AND MANUFACTURING APPARATUS THEREFOR
JP2002293686A (en) Method of growing compound semiconductor signal crystal and substrate cut out of the same
CN111876821B (en) Cast monocrystalline silicon ingot and preparation method thereof, cast monocrystalline silicon piece and preparation method thereof
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JP3855059B2 (en) Method for producing Ge-based crystal
JP5721207B2 (en) Si polycrystalline ingot manufacturing apparatus, Si polycrystalline ingot, and Si polycrystalline wafer
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2012224505A (en) METHOD FOR MANUFACTURING Si INGOT CRYSTAL
JP4529712B2 (en) Method for producing compound semiconductor single crystal
JP5688654B2 (en) Silicon crystal, method for producing silicon crystal, and method for producing silicon polycrystalline ingot
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JP2010269943A (en) Silicon polycrystal ingot and silicon polycrystal wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090623

A131 Notification of reasons for refusal

Effective date: 20110920

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150