JP2008062164A - Adsorbent for organic compound - Google Patents

Adsorbent for organic compound Download PDF

Info

Publication number
JP2008062164A
JP2008062164A JP2006241837A JP2006241837A JP2008062164A JP 2008062164 A JP2008062164 A JP 2008062164A JP 2006241837 A JP2006241837 A JP 2006241837A JP 2006241837 A JP2006241837 A JP 2006241837A JP 2008062164 A JP2008062164 A JP 2008062164A
Authority
JP
Japan
Prior art keywords
group
silica
adsorbent
pore
macro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006241837A
Other languages
Japanese (ja)
Inventor
Akiyuki Yachi
明幸 谷地
Kanji Sakata
勘治 坂田
Naoki Mikami
直樹 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2006241837A priority Critical patent/JP2008062164A/en
Publication of JP2008062164A publication Critical patent/JP2008062164A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new adsorbent which is excellent in pore utilizing efficiency, can adsorb/remove a harmful organic compound such as VOCs to be mixed in a contaminated sample containing the harmful organic compound of not only ordinary concentration but also extremely low concentration in high efficiency particularly in a liquid phase system, and exhibits high treatment efficiency. <P>SOLUTION: The adsorbent for the organic compound is hydrophobic silica obtained by hydrophobizing binary porous silica having two types of pores simultaneously of a continuous pore (a macro through-hole) having a nanometer-sized pore diameter and another pore (a nanopore), which is connected directly to the macro through-hole and has a nanometer-sized pore diameter, so that the surface of the hydrophobized binary porous silica is modified to have an organic functional group without destroying a binary-porous structure. The average diameter of the nanopore of the hydrophobized binary porous silica is 2-15 nm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、揮発性有機物(VOCs)に代表される有機化合物を吸着するための新規な吸着剤に関する。詳しくは、マイクロメートル領域の細孔が連続したマクロ貫通孔とナノメートル領域のナノ細孔を併せ有するシリカの表面を有機官能基で修飾することにより得られた疎水性シリカよりなり、上記有機化合物の吸着特性に優れた吸着剤に関する。   The present invention relates to a novel adsorbent for adsorbing organic compounds typified by volatile organic substances (VOCs). Specifically, the organic compound is composed of hydrophobic silica obtained by modifying the surface of silica having both macro-through pores having continuous pores in the micrometer region and nanopores in the nanometer region with an organic functional group. The present invention relates to an adsorbent having excellent adsorption characteristics.

排水などを含む環境水や、土壌、大気といった環境試料中には、様々な有害性の高い有機化合物が含まれている。一般に大量の環境試料中における、これらの有機化合物の初期濃度は低い。ところが、環境試料中に長期に渡って存在する間に、生体内における濃縮などによって高濃度化し、生態系に大きな影響を与える。従って大量の環境試料中で低濃度状態であっても、これらを放置することは重大な問題となる。   Various environmentally harmful organic compounds are contained in environmental water including waste water and environmental samples such as soil and air. In general, the initial concentration of these organic compounds in a large volume of environmental samples is low. However, while it is present in the environmental sample for a long period of time, the concentration is increased by in-vivo concentration and the like, which greatly affects the ecosystem. Therefore, it is a serious problem to leave these in a large amount of environmental samples even in a low concentration state.

これらの有害性の高い有機化合物の内、各種の産業過程で大量に使用される、トリクロロエチレン等の揮発性有機化合物(VOCs)は、発ガン性の指摘される物質であり、工場排水から地下水あるいは土壌に浸出し、汚染の原因とされている。さらに、これらのVOCsの中には、その防腐効果により建設材料等にも使用されているものもあり、シックハウス症候群等、居住者への悪影響が問題となっている。また、ベンゾピレン等の多環芳香族炭化水素類は、家庭用あるいは産業用の各種燃焼装置からの排気ガス、特に自動車排気に含まれる発ガン性の指摘される物質で、環境大気中での高濃度での存在が問題視されている。これらの物質は人体への直接的な影響が重大であるため、その排出過程での除去、並びに環境中からの除去が必要である。   Among these highly harmful organic compounds, volatile organic compounds (VOCs) such as trichlorethylene, which are used in large quantities in various industrial processes, are substances that are pointed out to be carcinogenic. It has been leached into the soil, causing pollution. Furthermore, some of these VOCs are also used in construction materials and the like due to their antiseptic effects, and adverse effects on residents such as sick house syndrome are problematic. Polycyclic aromatic hydrocarbons such as benzopyrene are substances that are pointed out to be carcinogenic in exhaust gases from various combustion devices for household and industrial use, especially automobile exhaust. The presence of concentration is regarded as a problem. Since these substances have serious direct effects on the human body, they must be removed during the discharge process and removed from the environment.

一方、環境中に排出された生体由来の、あるいは合成されたステロイドホルモン類や化学物質の一部は、生体内に取り込まれるとホルモン類似作用を示すものがある。これらの化学物質は内分泌攪乱化学物質と呼ばれ、極めて微量であっても動物の生殖機能等に悪影響を及ぼすことがわかっており、水環境においては、ppb〜pptレベルの極微量で作用を及ぼすことが報告されている。   On the other hand, some of the steroid hormones and chemical substances derived from the living body or synthesized and discharged into the environment show a hormone-like action when taken into the living body. These chemical substances are called endocrine disrupting chemical substances and are known to have adverse effects on the reproductive function of animals even in extremely small amounts. In the water environment, they act at extremely small amounts of ppb to ppt levels. It has been reported.

これらのステロイドホルモン類やホルモン様作用物質類は、樹脂素材、可塑剤、界面活性剤、染料及びその原料、農薬などの広い領域で工業的に生産、使用されているもの、薬品製造工程やゴミ焼却などの過程で非意図的に発生するものなど、人為的な排出に由来する場合が多いため、これらの物質についても、排出処理過程において効率よく除去する必要がある。   These steroid hormones and hormone-like active substances are industrially produced and used in a wide range of resin materials, plasticizers, surfactants, dyes and their raw materials, agricultural chemicals, chemical manufacturing processes and garbage. Since these substances are often derived from artificial emissions such as those unintentionally generated in the process of incineration, it is necessary to efficiently remove these substances in the process of emission.

一般に、各種環境試料中の有害な有機化合物を吸着する吸着剤としては、ゼオライト、シリカゲルなどの無機系吸着剤や、活性炭に代表される炭素系吸着剤、合成高分子よりなる有機合成高分子系吸着剤などが用いられている。これらの吸着剤のうち、無機系吸着剤は、その化学的安定性や特徴的な細孔構造から、開発が盛んに行われている。中でも、シリカゲルは、吸着剤として着目され、これを疎水化して、前記用途に使用することが提案されている(特許文献1参照)。   Generally, adsorbents that adsorb harmful organic compounds in various environmental samples include inorganic adsorbents such as zeolite and silica gel, carbon adsorbents typified by activated carbon, and organic synthetic polymer systems composed of synthetic polymers. Adsorbents are used. Among these adsorbents, inorganic adsorbents have been actively developed because of their chemical stability and characteristic pore structure. Among these, silica gel has been attracting attention as an adsorbent, and it has been proposed to use it for the purpose described above by making it hydrophobic (see Patent Document 1).

上記疎水性シリカゲルを吸着剤として使用する場合、通常、吸着塔のような筒状容器内に充填し、有害な有機化合物が混在した水等の液体或いはガスよりなる試料(以下、汚染試料と表す。)を流通させて有害な有機化合物を吸着・除去する。   When the hydrophobic silica gel is used as an adsorbent, the sample is usually filled in a cylindrical container such as an adsorption tower and made of a liquid or gas such as water mixed with harmful organic compounds (hereinafter referred to as a contaminated sample). )) To adsorb and remove harmful organic compounds.

ところが、上記疎水性シリカゲルは、吸着サイトとなるナノメートル領域の細孔の容積が小さく、それに起因して、汚染試料の細孔内への拡散が遅く、細孔深部まで到達し難いため、極めて低濃度の汚染試料を処理する際、有害な有機化合物の細孔内での濃縮が十分に起こらず、そのため、処理装置に十分な吸着・除去性能を持たせるには大量の吸着剤が必要になり、吸着剤コストが嵩むという課題があった。   However, the hydrophobic silica gel has a small pore volume in the nanometer region that becomes an adsorption site, and as a result, the diffusion of the contaminated sample into the pore is slow and it is difficult to reach the deep part of the pore. When processing low-concentration contaminated samples, the concentration of harmful organic compounds in the pores does not occur sufficiently, so a large amount of adsorbent is required to give the processing equipment sufficient adsorption and removal performance. Thus, there is a problem that the adsorbent cost increases.

特開2004−197018号公報JP 2004 1970018 A

従って、本発明は、有機化合物が混在した水等の液体或いはガスよりなる汚染試料、特に、極めて低濃度の有機化合物を含有する汚染試料に対しても、その混在する有機化合物を高効率で吸着・除去できることの可能な吸着剤を提供することを目的とする。   Therefore, the present invention adsorbs the mixed organic compound with high efficiency even on a contaminated sample made of a liquid or gas such as water mixed with an organic compound, particularly a contaminated sample containing an extremely low concentration of an organic compound. An object is to provide an adsorbent that can be removed.

本発明者らは、上記課題を解決すべく鋭意研究を重ねてきた。その結果、マイクロメートル領域の細孔径を有する連続した細孔(マクロ貫通孔)と、そのマクロ貫通孔に直結したナノメートル領域の細孔径を有する細孔(ナノ細孔)との二種類のタイプの細孔を併せ有する二元細孔シリカ粒子に疎水化処理を施し、上記二元細孔構造を破壊することなくシリカ表面を有機官能基で修飾することによって得られる疎水性二元細孔シリカは、疎水化後のナノ細孔が2〜15nmの範囲内にある場合、汚染試料、特に、水を流体とする系の汚染試料中の前記有機化合物の吸着において極めて優れた性能を示すことを見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, there are two types of pores: continuous pores with a pore size in the micrometer region (macro-through holes) and pores with a nano-meter region pore diameter (nano-pores) directly connected to the macro-through holes Hydrophobic binary pore silica obtained by subjecting the binary pore silica particles having both pores to a hydrophobic treatment and modifying the silica surface with organic functional groups without destroying the binary pore structure. Shows that when the nanopore after hydrophobization is in the range of 2 to 15 nm, it exhibits extremely excellent performance in the adsorption of the organic compound in a contaminated sample, particularly a contaminated sample of a system using water as a fluid. The headline and the present invention were completed.

即ち、本発明は、マイクロメートル領域の細孔が連続したマクロ貫通孔とナノメートル領域のナノ細孔を併せ有するシリカの表面を有機官能基で修飾することにより疎水化した疎水性シリカであって、疎水化後の上記ナノ細孔の平均直径が2〜15nmであることを特徴とする有機化合物用吸着剤である。   That is, the present invention is a hydrophobic silica hydrophobized by modifying the surface of silica having both macro-through pores having continuous pores in the micrometer region and nanopores in the nanometer region with an organic functional group. The adsorbent for organic compounds is characterized in that the average diameter of the nanopores after hydrophobization is 2 to 15 nm.

また、本発明は、以下の態様の吸着剤をも提供する。   The present invention also provides an adsorbent of the following aspect.

1)前記疎水性シリカの疎水化度(M値)が30〜80の範囲内にある吸着剤。   1) An adsorbent in which the hydrophobic silica has a degree of hydrophobicity (M value) in the range of 30 to 80.

2)前記疎水性シリカのマクロ貫通孔が0.1μm〜100μmの範囲内にある吸着剤。   2) An adsorbent in which the macroscopic pores of the hydrophobic silica are in the range of 0.1 μm to 100 μm.

3)前記吸着剤の吸着対象であるが有機化合物が揮発性有機物(VOCs)である吸着剤
4)疎水化後のナノ細孔の容積が0.2cm/g〜1.5cm/g、マクロ貫通孔の容積が0.3cm/g〜1.5cm/gの範囲内にある吸着剤。
3) wherein is a suction subject adsorbent organic compound nanopores volume after adsorbent 4) hydrophobic volatile organics (VOCs) is 0.2cm 3 /g~1.5cm 3 / g, adsorbents that are within the volume of macro-holes is 0.3cm 3 /g~1.5cm 3 / g.

本発明の有機化合物用吸着剤は、マイクロメートル領域の細孔径を持つ連続した貫通孔(マクロ貫通孔)並びにそのマクロ貫通孔に直結したナノメートル領域の細孔径を持つ細孔(ナノ細孔)を有し、且つ、その表面が有機官能基で修飾され疎水化された、疎水性二元細孔シリカにより構成することにより、有機化合物の吸着において優れた吸着特性を発揮する。即ち、VOCs等の有害な有機化合物の吸着剤用途において、上記マクロ貫通孔が、被吸着物である有機化合物を含む流体のナノ細孔への拡散速度を上げ、吸着サイトである上記ナノ細孔での有機化合物の吸着を高効率で行うことができる。特に、流体が水等の液相系においては、有機化合物の濃度が極めて低濃度の汚染試料においても、その混在する有害な有機化合物を高効率で吸着・除去することが可能になる。   The adsorbent for organic compounds of the present invention has a continuous through hole (macro through hole) having a pore size in the micrometer region and a pore (nano pore) having a pore size in the nanometer region directly connected to the macro through hole. In addition, it exhibits excellent adsorption characteristics in adsorbing organic compounds by being composed of hydrophobic dual pore silica whose surface is modified with an organic functional group to be hydrophobized. That is, in the use of adsorbents of harmful organic compounds such as VOCs, the macro through-holes increase the diffusion rate of the fluid containing the organic compound as the adsorbed material into the nanopores, and the nanopores as the adsorption sites. Can adsorb organic compounds at high efficiency. In particular, in a liquid phase system in which the fluid is water or the like, even in a contaminated sample in which the concentration of the organic compound is extremely low, it is possible to adsorb and remove the mixed harmful organic compound with high efficiency.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

(有機化合物用吸着剤)
本発明の有機化合物用吸着剤は、特定のナノ細孔を有する疎水性の二元細孔シリカであり、原体である二元細孔シリカに起因するマクロ貫通孔とそのマクロ貫通孔に直結したナノ細孔とを併せ持つ構造を有する。
(Adsorbent for organic compounds)
The adsorbent for organic compounds of the present invention is a hydrophobic dual-pore silica having specific nanopores, and is directly connected to the macro through-hole caused by the original dual-pore silica and the macro through-hole. It has a structure that has both nanopores.

本発明の有機化合物用吸着剤において、疎水化された後のナノ細孔の平均直径は2〜15nm、好ましくは、5〜13μmの範囲であることが重要である。即ち、上記ナノ細孔の平均直径が2nm未満の場合、ナノ細孔が小さいため、疎水化処理が細孔深部まで均一に行えず、たとえ行えた場合でも、流体の浸入が困難となり吸着能が低下する。また、ナノ細孔の平均直径が15nmを超える場合、吸着に必要な表面積を十分に確保することができず、有機化合物の吸着性能の低下を招く。   In the adsorbent for organic compounds of the present invention, it is important that the average diameter of the nanopores after being hydrophobized is in the range of 2 to 15 nm, preferably 5 to 13 μm. That is, when the average diameter of the nanopores is less than 2 nm, the nanopores are small, so that the hydrophobization treatment cannot be performed uniformly to the depth of the pores. descend. Moreover, when the average diameter of nanopores exceeds 15 nm, a sufficient surface area for adsorption cannot be ensured, resulting in a decrease in the adsorption performance of the organic compound.

本発明の有機化合物用吸着剤において、その疎水化度は、後で詳細に定義されるM値によって表される。その概略を示せば、ガラス製のビーカーに、試料とメタノール/水混合液を入れ撹拌し、12時間静置した後に沈降分と液部を吸引して浮遊分を残し、分取した浮遊分を乾燥し、浮遊分の重量を測定する方法であり、上記メタノール/水の比を変えて浮遊量を調べ、試料が50%浮遊するところのメタノールの体積分率(%)を求め、これをM値とするものである。このM値は、数値が大きいほどその試料における疎水化度が高いことを示す。   In the adsorbent for organic compounds of the present invention, the degree of hydrophobicity is represented by the M value defined in detail later. Briefly, put the sample and methanol / water mixture in a glass beaker, stir, let stand for 12 hours, and then suck the sediment and liquid part to leave the suspended matter. This is a method of measuring the weight of the suspended matter after drying, changing the above methanol / water ratio, examining the amount of suspension, and determining the volume fraction (%) of methanol where the sample is 50% suspended. Value. This M value indicates that the larger the value, the higher the degree of hydrophobicity in the sample.

本発明の有機化合物用吸着剤において、疎水化度は特に制限されないが、M値が30〜80となるように疎水化されたものが好ましい。即ち、M値が30未満の場合、有機化合物との親和性が弱いため、有機化合物の吸着が不十分となる傾向がある。また、M値が80よりも高い場合、有機化合物との親和性は向上するが、例えば、汚染試料の流体が水の場合、ナノ細孔への汚染試料の拡散が不十分となり、有機化合物の吸着が不十分となる傾向がある。   In the adsorbent for organic compounds of the present invention, the degree of hydrophobicity is not particularly limited, but is preferably made hydrophobic so that the M value is 30 to 80. That is, when the M value is less than 30, since the affinity with the organic compound is weak, the adsorption of the organic compound tends to be insufficient. In addition, when the M value is higher than 80, the affinity with the organic compound is improved. For example, when the fluid of the contaminated sample is water, the diffusion of the contaminated sample into the nanopore becomes insufficient, and There is a tendency for adsorption to be insufficient.

本発明の有機化合物用吸着剤において、シリカを修飾する有機官能基は、疎水性を持つものであれば特に制限はなく、公知の如何なる基でもよい。有機官能基を具体的に例示すると、例えば、炭化水素基として、メチル基、エチル基、プロピル基、ヘキシル基、オクタデシル基等の直鎖又は分枝状アルキル基;シクロペンチル基、シクロヘキシル基等の環状アルキル基;ビニル基、アリル基、イソプロペニル基、オクタデシニル基等のアルケニル基;フェニル基、ナフチル基、トリル基、スチリル基、キシリル基、メシチル基等の置換又は非置換のアリール基;ベンジル基、フェネチル基等のアラルキル基等挙げられ、また、これら炭化水素基の水素がフッ素に任意に置換した、フッ化アルキル基なども挙げられる。   In the adsorbent for organic compounds of the present invention, the organic functional group for modifying silica is not particularly limited as long as it has hydrophobicity, and any known group may be used. Specific examples of the organic functional group include, for example, a linear or branched alkyl group such as a methyl group, an ethyl group, a propyl group, a hexyl group, and an octadecyl group; a cyclic group such as a cyclopentyl group and a cyclohexyl group. Alkyl group; alkenyl group such as vinyl group, allyl group, isopropenyl group, octadecynyl group; substituted or unsubstituted aryl group such as phenyl group, naphthyl group, tolyl group, styryl group, xylyl group, mesityl group; benzyl group, Examples thereof include an aralkyl group such as a phenethyl group, and a fluorinated alkyl group in which hydrogen of these hydrocarbon groups is optionally substituted with fluorine.

前記M値は、表面を修飾する有機官能基の選択、その量等によって任意に変えることができる。   The M value can be arbitrarily changed by selecting an organic functional group for modifying the surface, the amount thereof, and the like.

本発明の有機化合物用吸着剤を構成するシリカの有するマクロ貫通孔は、マイクロメートル領域の平均直径を持った連続した貫通孔であり、その平均直径は0.1〜100μmの範囲にあるものが好ましい。即ち、上記マクロ細孔の平均直径が0.1μm未満の場合、汚染試料を流通させる際の圧力損失が高くなり、前記ナノ細孔に汚染試料を十分拡散させることが困難となる傾向がある。また、マクロ貫通孔の平均直径が100μmを超えた場合、汚染試料がナノ細孔に拡散せず、パスする機会が増大し、吸着性能が低下する傾向がある。   The macro through-holes of silica constituting the adsorbent for organic compounds of the present invention are continuous through-holes having an average diameter in the micrometer region, and the average diameter is in the range of 0.1 to 100 μm. preferable. That is, when the average diameter of the macropores is less than 0.1 μm, the pressure loss when the contaminated sample is circulated increases, and it is difficult to sufficiently diffuse the contaminated sample into the nanopores. In addition, when the average diameter of the macro through-holes exceeds 100 μm, the contaminated sample does not diffuse into the nanopores, and the opportunity to pass increases, and the adsorption performance tends to decrease.

本発明の有機化合物用吸着剤において、疎水化後のナノ細孔の容積は、0.2cm/g〜1.5cm/g、マクロ貫通孔の容積が0.3cm/g〜1.5cm/gであることが好ましい。即ち、ナノ細孔においては、容積が0.2cm/g未満である場合、単位重量当たりの吸着量が低くなり、吸着能が不十分となる傾向がある。一方、ナノ細孔の容積が1.5cm/gを超えた場合、吸着剤としての物理的強度が低下し、前記二元細孔構造が保持できなくなるおそれがある。 In the organic compound adsorbent for the present invention, the volume of nanopores after hydrophobization, 0.2cm 3 /g~1.5cm 3 / g, the volume of macro-through holes 0.3 cm 3 / g to 1. It is preferable that it is 5 cm < 3 > / g. That is, in the nanopore, when the volume is less than 0.2 cm 3 / g, the amount of adsorption per unit weight tends to be low, and the adsorption ability tends to be insufficient. On the other hand, when the volume of the nanopore exceeds 1.5 cm 3 / g, the physical strength as an adsorbent is lowered, and the binary pore structure may not be retained.

また、マクロ貫通孔においては、疎水化後の容積が0.3cm/g未満である場合、バイパスとしての機能が不十分となり、ナノ細孔への汚染試料の拡散が不十分となり、吸着効率が低下する傾向がある。一方、マクロ貫通孔の容積が0.5cm/gを超えると、吸着剤としての物理的強度が低下が生じる他、ナノ細孔をパスする汚染試料の割合が増加して、処理効率の低下を招く傾向がある。 Moreover, in the macro through-hole, when the volume after hydrophobization is less than 0.3 cm 3 / g, the function as a bypass becomes insufficient, the diffusion of the contaminated sample into the nanopore becomes insufficient, and the adsorption efficiency Tends to decrease. On the other hand, when the volume of the macro through-hole exceeds 0.5 cm 3 / g, the physical strength as an adsorbent is reduced, and the ratio of contaminated samples passing through the nanopores is increased, resulting in a reduction in processing efficiency. Tend to invite.

本発明の有機化合物用吸着剤の形態は、特に限定されるものではなく、粉状体、顆粒状体、粒状体、構造体等が挙げられる。また、形状としては、粉状体は、後述の方法で塊状のゲル体を生成せしめ、これを破砕して得られる場合が多く、不定形が一般的である。また、顆粒状体、粒状体については、不定形、球形等が一般的である。そのうち、形状としては、球形が特に好ましい。上記顆粒状体、粒状体の不定形粒子は、前記塊状のゲル体を粉砕して得ることができ、また、上記顆粒状体、粒状体の球状粒子、又は、構造体は、後述の方法により、上記形状となるようにゲル体を生成せしめることによって得ることができる。   The form of the adsorbent for organic compounds of the present invention is not particularly limited, and examples thereof include powdery bodies, granular bodies, granular bodies, and structural bodies. Moreover, as for the shape, the powdery body is often obtained by forming a lump-like gel body by the method described later and crushing it, and is generally indefinite. In addition, the granular body and the granular body are generally indefinite and spherical. Of these, a spherical shape is particularly preferable. The granular and granular amorphous particles can be obtained by pulverizing the massive gel, and the granular and granular spherical particles or structures can be obtained by the method described below. It can be obtained by generating a gel body to have the above shape.

(有機化合物用吸着剤の汚染試料の吸着への適用)
本発明の有機化合物用吸着剤は、疎水性物質、特に有害な有機化合物を効率よく吸着し、かつ容易に脱離する吸着剤である。従って、疎水性物質を吸着させる工程を含む全ての用途に有益に用いることができる。例えば、該充填剤の形状に応じて固定床式、移動床式、流動床式又は懸濁槽式処理装置に充填し、汚染試料と接触させることで、有害な有機化合物を除去することができる。
また、処理時の汚染試料の流通方法や流通条件は、装置の種類や、除去対象物の種類によって、適宜選択すればよい。但し、液相系においては吸着剤量に対する汚染試料の流量が、また、気相系においては処理温度及び装置内圧力が、吸着性能に強く影響するため、最適化が必要である。
一方、吸着剤の再生は、液相系においては、例えば、脱離溶媒としてジクロロメタン,ヘキサン,アセトン,トルエン,クロロホルム,メタノール,アセトニトリル,ポリ塩化トリフロロエチレン等の溶媒を用い、吸着した有害な有機化合物を脱離させる方法や、酸処理又はアルカリ処理を用いる方法、或いはこれらの方法のうちいくつかを併用する方法が挙げられる。また気相系においては、圧力を変える事で有害な有機化合物を脱離させる方法(圧力スイング吸着:PSA、等)を好適に用いることができる。
(Application of adsorbents for organic compounds to adsorption of contaminated samples)
The adsorbent for organic compounds of the present invention is an adsorbent that efficiently adsorbs hydrophobic substances, particularly harmful organic compounds, and easily desorbs them. Therefore, it can be beneficially used for all applications including a step of adsorbing a hydrophobic substance. For example, it is possible to remove harmful organic compounds by filling a fixed bed type, moving bed type, fluidized bed type or suspension tank type processing apparatus according to the shape of the filler and bringing it into contact with a contaminated sample. .
Moreover, the distribution method and distribution conditions of the contaminated sample at the time of processing may be appropriately selected depending on the type of apparatus and the type of the removal target. However, in the liquid phase system, the flow rate of the contaminated sample with respect to the amount of the adsorbent, and in the gas phase system, the treatment temperature and the pressure in the apparatus strongly affect the adsorption performance, so optimization is necessary.
On the other hand, the regeneration of the adsorbent is carried out in a liquid phase system by using, for example, a solvent such as dichloromethane, hexane, acetone, toluene, chloroform, methanol, acetonitrile, polychlorinated trifluoroethylene as a desorbing solvent. Examples thereof include a method for desorbing a compound, a method using acid treatment or alkali treatment, and a method using some of these methods in combination. In the gas phase system, a method of desorbing harmful organic compounds by changing the pressure (pressure swing adsorption: PSA, etc.) can be suitably used.

(有機化合物用吸着剤の製造方法)
本発明の有機化合物用吸着剤は、マイクロメートル領域の細孔径を有する連続した細孔(マクロ貫通孔)と、そのマクロ貫通孔に直結したナノメートル領域の細孔径を有する細孔(ナノ細孔)との二種類のタイプの細孔を併せ有する二元細孔シリカに疎水化処理を施し、二元細孔構造を破壊することなくシリカ表面を有機官能基で修飾することによって得ることができる。
(Method for producing adsorbent for organic compounds)
The adsorbent for organic compounds of the present invention has continuous pores (macro-through holes) having a pore size in the micrometer region, and pores (nano-pores) in the nanometer region directly connected to the macro through-holes. ) And the two types of pores can be obtained by subjecting the silica surface to modification with organic functional groups without destroying the binary pore structure. .

本発明の有機化合物用吸着剤である疎水性二元細孔シリカの製造方法は特に限定されないが、代表的には次の方法で製造することができる。   Although the manufacturing method of hydrophobic binary pore silica which is an adsorbent for organic compounds of the present invention is not particularly limited, it can be typically manufactured by the following method.

1.疎水化処理原体の調製方法
本発明においては、疎水化処理原体としてマイクロメートル領域の細孔径を有する連続した細孔(マクロ貫通孔)と、そのマクロ貫通孔に直結したナノメートル領域の細孔径を有する細孔(ナノ細孔)との二種類のタイプの細孔を有する二元細孔シリカを用いる。
1. Method for Preparing Hydrophobic Treatment Base In the present invention, as the hydrophobization treatment base, continuous pores (macro-through holes) having a pore diameter in the micrometer region and nanometer-region fine pores directly connected to the macro-through holes are used. Dual-pore silica having two types of pores, a pore having a pore size (nanopore), is used.

該原体である二元細孔シリカは相分離を利用した手法により、例えば、ケイ素アルコキシドを用いた、特開平3−8729号公報記載の方法や、水ガラスを用いた、WO2002/85785号公報記載の方法で作製することができる。   The binary porous silica which is the active ingredient is obtained by a method utilizing phase separation, for example, a method described in JP-A-3-8729 using silicon alkoxide, or WO2002 / 85785 using water glass. It can be produced by the method described.

具体的には、シリカ源、水溶性高分子及び酸触媒を含むゾル液を相分離の過渡構造においてゲル化させて固定することにより、シリカ骨格が絡み合った構造より成る、ナノ細孔及びマクロ細孔が形成されたゲル体を得、次いで、該ゲル体を必要に応じて塩基性溶媒中で熟成し、乾燥・焼成することによって製造することができる。   Specifically, a sol solution containing a silica source, a water-soluble polymer, and an acid catalyst is gelled and fixed in a phase-separation transient structure to thereby fix nanopores and macrofine cells having a structure in which the silica skeleton is intertwined. A gel body in which pores are formed can be obtained, and then the gel body can be produced by aging in a basic solvent as necessary, followed by drying and baking.

前記シリカ源としては、メトキシシラン、エトキシシラン等のケイ素アルコキシドや、水ガラスが特に制限なく用いられる。そのうち、水ガラスは、一般にはケイ酸アルカリ塩の濃厚水溶液であり、その種類や濃度は特に限定されないが、JIS規格の水ガラスであるケイ酸ナトリウムJIS3号またはそれと同等のものがシリカ源として取扱い易い。   As the silica source, silicon alkoxides such as methoxysilane and ethoxysilane, and water glass are used without particular limitation. Among them, water glass is generally a concentrated aqueous solution of alkali silicate, and the type and concentration thereof are not particularly limited, but JIS standard water glass sodium silicate JIS3 or equivalent is handled as a silica source. easy.

相分離とゲル化を同時に起こして湿潤状態のゲルを作製するためには、シリカ源を含む溶液に水溶性高分子および酸触媒を存在させてゲル化を進める手段が有効に利用される。   In order to produce a wet gel by causing phase separation and gelation at the same time, a means for promoting gelation in the presence of a water-soluble polymer and an acid catalyst in a solution containing a silica source is effectively used.

上記水溶性高分子は、水を溶媒としたとき適当な濃度の溶液を形成することができる有機高分子であって、シリカ源を含有する溶液中において均一に溶解することができるものが使用される。例えば、高分子金属塩であるポリスチレンスルホン酸のナトリウム塩またはカリウム塩、高分子酸であって解離してポリアニオンとなるポリアクリル酸、高分子塩基であってポリカチオンを生ずるポリアクリルアミンまたはポリエチレンイミン、中性高分子であって主鎖にエーテル結合を持つポリエチレンオキシド、側鎖にヒドロキシル基を有するポリビニルアルコール、もしくはカルボニル基を有するポリビニルピロリドン等が挙げられる。   The water-soluble polymer is an organic polymer that can form a solution having an appropriate concentration when water is used as a solvent, and can be dissolved uniformly in a solution containing a silica source. The For example, sodium or potassium salt of polystyrene sulfonic acid which is a polymer metal salt, polyacrylic acid which is a polymer acid and dissociates to become a polyanion, polyacrylamine or polyethyleneimine which is a polymer base and generates a polycation Polyethylene oxide which is a neutral polymer and has an ether bond in the main chain, polyvinyl alcohol having a hydroxyl group in the side chain, or polyvinyl pyrrolidone having a carbonyl group.

これらのうち、ポリアクリル酸およびポリビニルアルコールが、取扱いが容易であり好ましい。ポリアクリル酸は分子量15000〜300000、好ましくは20000〜150000のものが好適である。   Of these, polyacrylic acid and polyvinyl alcohol are preferred because they are easy to handle. Polyacrylic acid having a molecular weight of 15,000 to 300,000, preferably 20,000 to 150,000 is suitable.

また、酸触媒は、シリカ源の加水分解反応の触媒として働きゲル化を促進するために添加されるものであり、通常硫酸、塩酸、硝酸等の鉱酸または有機酸が使用される。かかる酸触媒の反応系における濃度は、0.1〜5モル/L、好ましくは1〜4モル/Lの範囲が好ましい。   The acid catalyst serves as a catalyst for the hydrolysis reaction of the silica source and is added to promote gelation. Usually, a mineral acid such as sulfuric acid, hydrochloric acid, nitric acid, or an organic acid is used. The concentration of the acid catalyst in the reaction system is in the range of 0.1 to 5 mol / L, preferably 1 to 4 mol / L.

該二元細孔シリカの製造方法において、ゾル液は、水等の極性溶媒を溶媒とし、これにシリカ源、水溶性高分子、酸触媒を所定量含有せしめることによって調製される。また、上記ゾル液を相分離の過渡構造をゲル化により固定させる方法は、該ゾル液を密閉容器などに入れ、0〜80℃で、好ましくは10〜30℃で10分〜1週間、さらに好ましくは1時間〜24時間放置することにより行うことができる。   In the method for producing the dual pore silica, the sol solution is prepared by using a polar solvent such as water as a solvent and containing a predetermined amount of a silica source, a water-soluble polymer, and an acid catalyst. Moreover, the method of fixing the transient structure of the phase separation of the sol solution by gelation is to put the sol solution in a closed container or the like, and at 0 to 80 ° C., preferably at 10 to 30 ° C. for 10 minutes to 1 week, Preferably, it can be carried out by leaving for 1 to 24 hours.

ここで、相分離は、上記ゾル液を放置することによって徐々に開始し、ここで、酸触媒の量、放置温度、放置時間を調整してゲル化時間を制御することによって、相分離が完全に起こる前の状態、即ち、相分離の過渡構造をゲル化により固定する。かかる過渡構造においては、シリカの重合体と溶媒相とが絡み合った状態で混在しており、これにより、シリカ骨格が絡み合った構造より成る、ナノ細孔及びマクロ細孔が形成されたゲル体が形成される。   Here, the phase separation starts gradually by allowing the sol solution to stand. Here, by controlling the gelation time by adjusting the amount of the acid catalyst, the standing temperature, and the standing time, the phase separation is completed. The transient state of the phase separation, that is, the transient structure of phase separation, is fixed by gelation. In such a transient structure, a silica polymer and a solvent phase are mixed together in an intertwined state, whereby a gel body having nanopores and macropores formed of a structure in which a silica skeleton is intertwined is formed. It is formed.

また、前記方法により調製された湿潤ゲルを、次いで、熟成処理を行うことでメソ細孔径を制御することが可能となる。この熟成処理は、洗浄が完了した湿潤ゲルに塩基性溶媒を含浸させて放置することにより行う。この熟成処理は、0.01〜10規定の塩基性水溶液中で0〜80℃の範囲において実施することが好ましい。また、熟成を行う場合の処理時間は、通常1時間〜3日の範囲において実施され、希望とするナノ細孔の平均細孔径を適宜選択することにより決定できる。   In addition, the mesopore diameter can be controlled by subjecting the wet gel prepared by the above method to aging treatment. This aging treatment is performed by impregnating the wet gel after washing with a basic solvent and leaving it to stand. This aging treatment is preferably performed in a basic aqueous solution of 0.01 to 10 N in a range of 0 to 80 ° C. The treatment time for aging is usually carried out in the range of 1 hour to 3 days, and can be determined by appropriately selecting the desired average pore diameter of the nanopores.

これら熟成処理の条件は、希望とするナノ細孔の平均細孔径が得られる時間を予め実験により求め、適宜選択して実施してやればよい。また、疎水化処理によりナノ細孔径が縮小することがあるため、縮小分を計算しシリカ原体のナノ細孔を調製しておくことで、疎水化後のナノ細孔径を制御することが可能となる。   The conditions for these aging treatments may be carried out by obtaining the time required for obtaining the desired average pore diameter of the nanopores by experiments in advance and selecting them appropriately. In addition, since the nanopore diameter may be reduced by hydrophobization treatment, it is possible to control the nanopore diameter after hydrophobization by calculating the reduced amount and preparing the nanopore of the silica raw material It becomes.

また、マクロ細孔径の制御も公知の方法に従って、適宜実施することができる。例えば、シリカ源の組成重量比を変える、または、ゾル液の放置温度を変えることにより制御が可能となる。   Further, the control of the macropore diameter can be appropriately performed according to a known method. For example, it can be controlled by changing the composition weight ratio of the silica source or changing the standing temperature of the sol solution.

尚、ゾル液からゲル体を得るための前記方法において、シリカ源として水ガラスを用いる場合は、作製された湿潤ゲルを乾燥する前に洗浄する必要がある。これは、水ガラスからの湿潤ゲルをそのまま乾燥させると乾燥が進むにつれてゲルの崩壊が進むからである。従って、乾燥の前に湿潤ゲル内のナトリウム等のアルカリ金属を除去するために洗浄を行い、アルカリ金属塩として取り除くことが必要である。   In the above method for obtaining a gel body from a sol solution, when water glass is used as the silica source, it is necessary to wash the prepared wet gel before drying. This is because when the wet gel from water glass is dried as it is, the gel collapses as the drying proceeds. Therefore, it is necessary to remove the alkali metal salt by washing to remove alkali metal such as sodium in the wet gel before drying.

洗浄は、ゲルを水に漬け、厚さが1cm程度あるゲルでは室温で12時間以上放置することにより行うが、ゲルの厚さがこれより薄ければより短時間で洗浄可能である。   Washing is performed by immersing the gel in water and allowing the gel having a thickness of about 1 cm to stand at room temperature for 12 hours or more. However, if the gel is thinner than this, the gel can be washed in a shorter time.

水洗後のゲルは、30〜80℃で数時間〜数十時間放置して乾燥を行う。乾燥後、有機物を除去し、なおかつマクロ貫通孔構造を維持するために焼成する。焼成温度は、500〜1100℃が好ましい。   The gel after washing with water is dried by leaving it at 30 to 80 ° C. for several hours to several tens of hours. After drying, firing is performed to remove organic substances and maintain the macro through-hole structure. The firing temperature is preferably 500 to 1100 ° C.

2.疎水化処理方法
本発明においては、前述の方法に基づいて調製した二元細孔シリカを、公知の処理剤で表面処理することで、シリカの表面が有機官能基で修飾され、疎水化された疎水性二元細孔シリカが得られる。表面処理により原体である二元細孔シリカシリカを疎水化する方法は特に制限されず、公知の表面処理方法を採用すればよい。具体的には、シランカップリング剤、チタネート系カップリング剤、シリコーンオイル、環状シロキサン、ヘキサアルキルジシラザンにより処理する方法、または前述の方法で得られた疎水化されたシリカに、さらにスチレン系やアクリル系に代表される架橋重合体等を被覆させる方法が挙げられる。
2. Hydrophobic treatment method In the present invention, the surface of the silica is modified with an organic functional group to be hydrophobized by subjecting the binary pore silica prepared based on the above-described method to a surface treatment with a known treatment agent. Hydrophobic binary porous silica is obtained. The method of hydrophobizing the two-pore silica silica that is the base material by the surface treatment is not particularly limited, and a known surface treatment method may be adopted. Specifically, a silane coupling agent, a titanate coupling agent, a method of treating with silicone oil, cyclic siloxane, hexaalkyldisilazane, or a hydrophobized silica obtained by the above-mentioned method, a styrenic or Examples thereof include a method of coating a cross-linked polymer typified by acrylic.

これらのなかでも、シランカップリング剤による処理が最も一般的である。代表的なシランカップリング剤を例示すると、メチル基、エチル基、プロピル基、ヘキシル基、オクタデシル基等の直鎖又は分枝状アルキル基;シクロペンチル基、シクロヘキシル基等の環状アルキル基;ビニル基、アリル基、イソプロペニル基、オクタデシニル基等のアルケニル基;フェニル基、ナフチル基、トリル基、スチリル基、キシリル基、メシチル基等の置換又は非置換のアリール基;ベンジル基、フェネチル基等のアラルキル基等といった炭化水素基や、また、これら炭化水素基の水素がフッ素に任意に置換した、フッ化アルキル基を有する、アルコキシシランまたはクロロシランが挙げられる。   Of these, treatment with a silane coupling agent is the most common. Examples of typical silane coupling agents include linear or branched alkyl groups such as methyl group, ethyl group, propyl group, hexyl group and octadecyl group; cyclic alkyl groups such as cyclopentyl group and cyclohexyl group; vinyl group, Alkenyl groups such as allyl group, isopropenyl group and octadecynyl group; substituted or unsubstituted aryl groups such as phenyl group, naphthyl group, tolyl group, styryl group, xylyl group and mesityl group; aralkyl groups such as benzyl group and phenethyl group And alkoxysilanes or chlorosilanes having a fluorinated alkyl group in which hydrogen of these hydrocarbon groups is optionally substituted with fluorine.

上記シランカップリング剤を用いて疎水化処理を行う場合には、特開2006−96641等に記載の方法を用いることが好ましい。該方法は、まず、反応容器内にシリカを投入し、予め120℃〜180℃で乾燥させた上で、容器内をNガス等の不活性ガスに置換し密閉する。続いて、Nガス等のキャリアガスで搬送されたシランカップリング剤のミストを撹拌状態や流動床のシリカへ流通させて接触させ、120℃〜300℃で、5分間〜3時間加熱する方法である
また、ヘキサアルキルジシラザンによる疎水化処理も広く知られている。処理に用いられるヘキサアルキルジシラザンを具体的に例示すると、下記一般式
When the hydrophobization treatment is performed using the silane coupling agent, it is preferable to use the method described in JP-A 2006-96641. In this method, first, silica is put into a reaction vessel, dried at 120 ° C. to 180 ° C. in advance, and the inside of the vessel is replaced with an inert gas such as N 2 gas and sealed. Subsequently, a silane coupling agent mist transported with a carrier gas such as N 2 gas is allowed to flow through and contact with silica in a stirred state or fluidized bed, and heated at 120 ° C. to 300 ° C. for 5 minutes to 3 hours. Moreover, the hydrophobization process by hexaalkyldisilazane is also known widely. Specific examples of hexaalkyldisilazane used in the treatment include the following general formula:

Figure 2008062164
Figure 2008062164

(上記式中、R、R、R、R、R及びRは各々独立に、炭素数1〜18のアルキル基である。)
で示されるものが挙げられる。上記式において、R〜Rとして示されるアルキル基としては、前記環状シロキサンにおけるRとして例示したものと同様の基が挙げられる。高い処理効率を得るためには、当該R〜Rとしては炭素数1〜3の直鎖アルキル基が好ましい。また、R〜Rは互いに異なっていても良いが、入手の容易さや表面処理効率の点からいずれも同一の基であることが好ましい。
(In the above formula, R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently an alkyl group having 1 to 18 carbon atoms.)
The thing shown by is mentioned. In the above formula, examples of the alkyl group represented by R 2 to R 7 include the same groups as those exemplified as R 1 in the cyclic siloxane. In order to obtain high processing efficiency, the R 2 to R 7 are preferably a linear alkyl group having 1 to 3 carbon atoms. R 2 to R 7 may be different from each other, but are preferably the same group from the standpoint of availability and surface treatment efficiency.

特に好ましいヘキサアルキルジシラザンを具体的に例示すると、ヘキサメチルジシラザン、ヘキサエチルジシラザン、ヘキサプロピルジシラザン等が挙げられる。   Specific examples of particularly preferred hexaalkyldisilazane include hexamethyldisilazane, hexaethyldisilazane, hexapropyldisilazane and the like.

ヘキサアルキルジシラザンによる処理を行う場合には、特許第2886037号公報や、前述の特許第2886105号公報等に記載の方法を採用すると好適である。該方法は、容器に無機粒子の粉末を導入し、容器を密閉して、200〜300℃程度の温度において、不活性ガスの雰囲気下、ヘキサメチルジシラザンを分圧25〜150kPa程度になるように導入し一定時間、好ましくは0.5〜2時間程度保持することにより行う。この時、容器内に水蒸気を分圧で30〜100kPa程度存在させ、さらには必要に応じてアンモニア等の塩基性ガスを分圧で10〜100kPa程度共存させる方法である。   When the treatment with hexaalkyldisilazane is performed, it is preferable to employ the methods described in Japanese Patent No. 2886037 and the above-mentioned Japanese Patent No. 2886105. In this method, powder of inorganic particles is introduced into a container, and the container is sealed so that the partial pressure of hexamethyldisilazane is about 25 to 150 kPa in an inert gas atmosphere at a temperature of about 200 to 300 ° C. And is maintained for a certain period of time, preferably about 0.5 to 2 hours. At this time, water vapor is present in the container at a partial pressure of about 30 to 100 kPa, and a basic gas such as ammonia is allowed to coexist at a partial pressure of about 10 to 100 kPa as necessary.

また、環状シロキサンにより疎水化処理することも可能である。用いられる環状シロキサンを具体的に例示すると、ひずみが大きく開裂しやすく、反応性が高いという点で、下記一般式   It is also possible to perform a hydrophobic treatment with a cyclic siloxane. Specific examples of the cyclic siloxane used include the following general formula in that the strain is large and the cleavage is easy and the reactivity is high.

Figure 2008062164
Figure 2008062164

(式中Rは炭素数1〜18の一価の炭化水素基、水素原子もしくは水酸基のいずれかであり、Meはメチル基であり、nは3から6の整数である)
で示される環状シロキサンで処理することが好ましい。
(Wherein R 1 is a monovalent hydrocarbon group having 1 to 18 carbon atoms, a hydrogen atom or a hydroxyl group, Me is a methyl group, and n is an integer of 3 to 6)
It is preferable to treat with a cyclic siloxane represented by

上記式において、Rは炭素数1〜18の炭化水素基である。当該炭化水素基は炭素数が1〜18であれば特に限定されず、公知の如何なる基でもよい。当該炭化水素基を具体的に例示すると、メチル基、エチル基、プロピル基、ヘキシル基、オクタデシル基等の炭素数1〜18の直鎖又は分枝状アルキル基、シクロペンチル基、シクロヘキシル基等の炭素数4〜6の環状アルキル基;ビニル基、アリル基、イソプロペニル基、オクタデシニル基等の炭素数2〜18のアルケニル基;フェニル基、ナフチル基、トリル基、スチリル基、キシリル基、メシチル基等の炭素数6〜18の置換又は非置換のアリール基;ベンジル基、フェネチル基等の炭素数7〜9のアラルキル基等が挙げられる。 In the above formula, R 1 is a hydrocarbon group having 1 to 18 carbon atoms. The hydrocarbon group is not particularly limited as long as it has 1 to 18 carbon atoms, and may be any known group. Specific examples of the hydrocarbon group include straight chain or branched alkyl groups having 1 to 18 carbon atoms such as a methyl group, an ethyl group, a propyl group, a hexyl group, and an octadecyl group, a carbon such as a cyclopentyl group and a cyclohexyl group. A cyclic alkyl group having 4 to 6 carbon atoms; an alkenyl group having 2 to 18 carbon atoms such as vinyl group, allyl group, isopropenyl group, and octadecynyl group; phenyl group, naphthyl group, tolyl group, styryl group, xylyl group, mesityl group, etc. A substituted or unsubstituted aryl group having 6 to 18 carbon atoms; an aralkyl group having 7 to 9 carbon atoms such as a benzyl group and a phenethyl group;

上記炭化水素基のなかでも、炭素数1〜3の直鎖アルキル基、フェニル基、フェネチル基が特に好ましい。また上記式においてnは3〜6であり、特に好ましくは3〜4である。   Among the hydrocarbon groups, a linear alkyl group having 1 to 3 carbon atoms, a phenyl group, and a phenethyl group are particularly preferable. Moreover, in said formula, n is 3-6, Most preferably, it is 3-4.

このような環状シロキサンを具体的に例示すると、オクタメチルシクロテトラシロキサン、ヘキサメチルシクロトリシロキサン、テトラメチルテトラフェニルシクロテトラシロキサン、トリメチルトリフェニルシクロトリシロキサン、テトラメチルテトラビニルシクロテトラシロキサン、トリメチルトリビニルシクロトリシロキサン、テトラメチルシクロテトラシロキサン、トリメチルシクロトリシロキサン等が挙げられる。   Specific examples of such cyclic siloxanes include octamethylcyclotetrasiloxane, hexamethylcyclotrisiloxane, tetramethyltetraphenylcyclotetrasiloxane, trimethyltriphenylcyclotrisiloxane, tetramethyltetravinylcyclotetrasiloxane, trimethyltrivinyl. Examples thereof include cyclotrisiloxane, tetramethylcyclotetrasiloxane, and trimethylcyclotrisiloxane.

環状シロキサンを用いて処理する方法は、例えば以下の方法が挙げられる。まず、窒素、アルゴン等の不活性ガス雰囲気中、ヘンシェルミキサー等の高速撹拌装置で粒子を攪拌しつつ、そこへ環状シロキサン等を気体状もしくは液状で加え、密閉された反応系にて所定の温度まで加熱することにより製造できる。環状シロキサン等を粒子に加える方法は、液状あるいはガス状のいずれでもよく、さらに液状で加える場合には、滴下によっても良いし、噴霧によって加えても良い。均一に処理することが可能な点ではガス状で加えることが特に好ましい。上記加熱温度は、環状シロキサン等によって粒子表面が疎水化できる範囲であれば、特に制限されるものではないが、一般には、用いる環状シロキサンの沸点以上であることが好ましく、通常100〜300℃程度である。また、攪拌の際の攪拌速度等も特に限定されるものではないが、撹拌速度が遅すぎると撹拌効率が低く、加熱ムラが生じる可能性があり、一方、撹拌速度が速すぎる場合、粒子同士の接触等により粒子が微粉砕され、二元細孔構造が破壊される可能性があるため、50〜500rpm程度が望ましい。   Examples of the method of treating with cyclic siloxane include the following methods. First, in an inert gas atmosphere such as nitrogen or argon, while stirring the particles with a high-speed stirring device such as a Henschel mixer, cyclic siloxane or the like is added in a gaseous or liquid state thereto, and a predetermined temperature is set in a sealed reaction system. It can manufacture by heating to. The method of adding cyclic siloxane or the like to the particles may be either liquid or gaseous, and when added in liquid form, it may be added dropwise or by spraying. It is particularly preferable to add it in the form of a gas from the viewpoint that it can be uniformly processed. The heating temperature is not particularly limited as long as the particle surface can be hydrophobized by cyclic siloxane or the like, but in general, it is preferably not less than the boiling point of the cyclic siloxane to be used, and usually about 100 to 300 ° C. It is. In addition, the stirring speed at the time of stirring is not particularly limited, but if the stirring speed is too slow, the stirring efficiency is low, and heating unevenness may occur. Since the particles may be finely pulverized by contact or the like, and the binary pore structure may be destroyed, about 50 to 500 rpm is desirable.

また、上記方法等で表面を疎水化したシリカに、疎水化度を向上させる目的で、スチレン系やアクリル系ポリマーに代表される重合性単量体に架橋性単量体および重合開始剤を任意の割合で混合した処理液をシリカ表面に吸着させ、加熱重合することで、架橋共重合体を表面に被覆することも可能である。   In addition, for the purpose of improving the degree of hydrophobicity to silica whose surface has been hydrophobized by the above method, a crosslinkable monomer and a polymerization initiator are arbitrarily added to a polymerizable monomer typified by a styrene-based or acrylic polymer. It is also possible to coat the surface of the crosslinked copolymer by adsorbing the treatment liquid mixed at a ratio of 1 to the silica surface and polymerizing it by heating.

用いることのできる重合性単量体、架橋性単量体、重合開始剤を具体的に例示すると、以下のものが挙げられる。   Specific examples of polymerizable monomers, crosslinkable monomers, and polymerization initiators that can be used include the following.

i)重合性単量体;スチレン、α−メチルスチレン、ビニルトルエン、2,4−ジメチルスチレン、p−tert−ブチルスチレン、クロロメチルスチレン、p−クロロスチレン、ビニルナフタレン等の単官能の芳香族ビニル系の単量体類。 (メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸トリトリデシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸2−エトキシエチル、ジアセトンメタクリルアミド、メタクリロニトリル、メタクリロレイン等の単官能の非フッ素系(メタ)アクリル系の単量体類。 (メタ)アクリル酸トリフロロメチル、(メタ)アクリル酸ペンタフロロエチル、(メタ)アクリル酸パーフロロブチル、(メタ)アクリル酸パーフロロ2−エチルヘキシル等の(メタ)アクリル酸のパーフロロアルキルエステル類。酢酸ビニル、メチルビニルケトン、ビニルピロリドン、エチルビニルエーテル、ジビニルスルホン、フタル酸ジアリル等。   i) Polymerizable monomer; monofunctional aromatic such as styrene, α-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, p-tert-butylstyrene, chloromethylstyrene, p-chlorostyrene, vinylnaphthalene Vinyl monomers. Methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tritridecyl (meth) acrylate, (meth) acrylic acid Benzyl, phenoxyethyl (meth) acrylate, glycidyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxy (meth) acrylate Monofunctional non-fluorine (meth) acrylic monomers such as ethyl, diacetone methacrylamide, methacrylonitrile, methacrylolein and the like. Perfluoroalkyl esters of (meth) acrylic acid such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, perfluorobutyl (meth) acrylate, and perfluoro-2-ethylhexyl (meth) acrylate. Vinyl acetate, methyl vinyl ketone, vinyl pyrrolidone, ethyl vinyl ether, divinyl sulfone, diallyl phthalate, etc.

ii)架橋性単量体;ジビニルベンゼン、ジビニルビフェニル、トリビニルベンゼン、ジビニルナフタレン等の多官能の芳香族ビニル化合物類等の芳香族ビニル系の単量体類。エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、メチレンビス(メタ)アクリルアミド、ヘキサメチレンジ(メタ)アクリルアミド等の多官能の非フッ素系(メタ)アクリル系の単量体類。   ii) Crosslinkable monomers; aromatic vinyl monomers such as polyfunctional aromatic vinyl compounds such as divinylbenzene, divinylbiphenyl, trivinylbenzene, and divinylnaphthalene. Ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylol methanetri (meta ) Polyfunctional non-fluorinated (meth) acrylic monomers such as acrylate, tetramethylolmethanetetra (meth) acrylate, methylenebis (meth) acrylamide, hexamethylenedi (meth) acrylamide and the like.

iii)重合開始剤;オクタノイルパーオキシド、ラウロイルパーオキシド、t−ブチルパーオキシ−2−エチルヘキサノエート、ベンゾイルパーオキシド、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシラウレート、t−ヘキシルパーオキシベンゾエート、ジ−t−ブチルパーオキシド等の有機過酸化物や、2,2,−アゾビスイソブチロニトリルや2,2,−アゾビス−(2,4,−ジメルバレロニトリル)等のアゾビス系重合開始剤等。   iii) polymerization initiator: octanoyl peroxide, lauroyl peroxide, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, t-butylperoxyisobutyrate, t-butylperoxylaurate, t -Organic peroxides such as hexyl peroxybenzoate and di-t-butyl peroxide, 2,2, -azobisisobutyronitrile and 2,2, -azobis- (2,4, -dimethylvaleronitrile Azobis-based polymerization initiators such as

架橋共重合体を表面に被覆する方法は、例えば、特開2005−60668号公報の方法を採用することが好適である。該方法は、反応容器内に疎水化されたシリカを投入し、予め120℃〜180℃で乾燥させた上で、容器内をNガス等の不活性ガスに置換し密閉する。続いて、Nガス等のキャリアガスで搬送された重合性単量体、架橋性単量体および重合開始剤を任意の割合で混合した処理液のミストを、撹拌状態や流動床の疎水性シリカへ任意量噴霧し、その表面に処理液を吸着させ、50℃〜180℃で、30分間〜3時間加熱する方法である。但し、本方法を用いた場合、処理液量が少量であっても、ナノ細孔を閉塞する可能性があるため、ナノ細孔が閉塞しない処理液量を予め実験により求め、処理を行うことが好ましい。 As a method for coating the surface with the cross-linked copolymer, for example, the method disclosed in JP-A-2005-60668 is preferably employed. In this method, hydrophobized silica is put into a reaction vessel, dried at 120 ° C. to 180 ° C. in advance, and the inside of the vessel is replaced with an inert gas such as N 2 gas and sealed. Subsequently, the mist of the treatment liquid in which the polymerizable monomer, the crosslinkable monomer, and the polymerization initiator, which are conveyed by a carrier gas such as N 2 gas, are mixed in an arbitrary ratio is mixed with the hydrophobic state of the fluidized bed. This is a method in which an arbitrary amount is sprayed onto silica, the treatment liquid is adsorbed on the surface, and the mixture is heated at 50 ° C. to 180 ° C. for 30 minutes to 3 hours. However, when this method is used, the nanopores may be clogged even if the amount of the treatment liquid is small. Is preferred.

なお、それぞれの処理方法は、繰り返し行ってもよく、また、表面処理層が熱等により変質しない限り、異なる処理方法を多段階で行っても良い。   Each treatment method may be repeated, and different treatment methods may be performed in multiple stages as long as the surface treatment layer is not altered by heat or the like.

以下、実施例を示して、本発明を更に具体的に示すが、本発明はこれら実施例によって何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is shown more concretely, this invention is not restrict | limited at all by these Examples.

(マクロ細孔の細孔径、ナノ細孔の細孔径、及び細孔容積の測定)
予め120℃、12時間乾燥させた測定用試料を、水銀圧入法(カンタクローム社製、POREMASTER−60)によりマクロ細孔の細孔径、ナノ細孔の細孔径、及び細孔容積を測定した。測定で得られた細孔径分布において、マイクロメートル領域に現れる最大ピークの孔径をマクロ細孔の細孔径とした。測定で得られた細孔径分布において、ナノメートル領域に現れる最大ピークの孔径をナノ細孔の細孔径とした。測定で得られた細孔径分布において、測定範囲で得られた細孔径に対する微分値を、全て積分することによって、細孔容積を決定した。
(Measurement of macropore size, nanopore size, and pore volume)
A measurement sample dried in advance at 120 ° C. for 12 hours was measured for the pore size of the macropores, the pore size of the nanopores, and the pore volume by mercury porosimetry (manufactured by Cantachrome, POREMASTER-60). In the pore size distribution obtained by measurement, the maximum peak pore size appearing in the micrometer region was defined as the macro pore size. In the pore size distribution obtained by measurement, the maximum peak pore size appearing in the nanometer region was defined as the pore size of the nanopore. In the pore size distribution obtained by the measurement, the pore volume was determined by integrating all the differential values with respect to the pore size obtained in the measurement range.

(疎水化度(M値)の測定)
ガラス製の200mlビーカーに、測定用試料0.5gとメタノール/水混合液100cmを入れ、長さ20mm、直径7mmの棒状テフロン(商品名:デュポン社製)コート撹拌子を用いるマグネティックスターラーにて回転速度500rpmで30分間撹拌し、10時間静置した後に沈降分と液部を吸引して浮遊分を残した。120℃で6時間乾燥し、浮遊分の重量を測定した。メタノール/水の比を変えて浮遊量を調べ、測定用試料が50%浮遊するところのメタノール濃度を求めた。この時のメタノールの体積分率(%)をM値とし、疎水化度を表す指標として用いた。
(Measurement of hydrophobicity (M value))
In a 200 ml beaker made of glass, 0.5 g of a sample for measurement and 100 cm 3 of a methanol / water mixed solution are put in a magnetic stirrer using a bar-shaped Teflon (trade name: manufactured by DuPont) coat stirrer having a length of 20 mm and a diameter of 7 mm. The mixture was stirred at a rotational speed of 500 rpm for 30 minutes and allowed to stand for 10 hours, and then the sediment and liquid part were sucked to leave a floating part. It dried at 120 degreeC for 6 hours, and measured the weight of the floating part. The amount of floating was examined by changing the methanol / water ratio, and the methanol concentration where the measurement sample floated 50% was determined. The volume fraction (%) of methanol at this time was taken as an M value and used as an index representing the degree of hydrophobicity.

(VOCs回収率の測定)
VOCsとしてクロロホルムを選択し、試料を吸着剤として用いて、その回収率を測定した。測定は以下の方法で行った。ガラス製クロマトグラフ管(直径20mm)に測定用試料を5g詰め、上下を石英ウールで固定した。そこに、所定の濃度のクロロホルム含有水を汚染試料として1000cm流通させた。その後、ガスクロマトグラフィー質量分析装置(GC/MS)により処理後の汚染試料のクロロホルム濃度を定量した。ここで、クロロホルムの回収率は以下の式で算出した。
(Measurement of VOCs recovery rate)
Chloroform was selected as VOCs, and the recovery rate was measured using the sample as an adsorbent. The measurement was performed by the following method. A glass chromatograph tube (diameter 20 mm) was filled with 5 g of a sample for measurement, and the top and bottom were fixed with quartz wool. Then, 1000 cm 3 of chloroform-containing water having a predetermined concentration was circulated as a contaminated sample. Thereafter, the chloroform concentration of the contaminated sample after treatment was quantified by a gas chromatography mass spectrometer (GC / MS). Here, the recovery rate of chloroform was calculated by the following formula.

Figure 2008062164
Figure 2008062164

(平均粒子径の測定)
試料の粒度はレーザー回折散乱法粒度分布計(コールター社製LS−230)により測定した。測定用の分散液の調製は「粒子計測技術」(粉体工学会編、1994年日刊工業社出版、23頁)に準じた。平均粒子径の算出については、ふるい下の重量積算分布50%となる粒子径を平均粒子径とした。
(Measurement of average particle size)
The particle size of the sample was measured with a laser diffraction / scattering particle size distribution analyzer (LS-230, manufactured by Coulter). The dispersion for measurement was prepared in accordance with “Particle Measurement Technology” (powder engineering society, 1994, published by Nikkan Kogyosha, page 23). For the calculation of the average particle diameter, the particle diameter at which the weight integrated distribution under the sieve is 50% was taken as the average particle diameter.

(炭素量測定)
疎水性シリカの炭素含有量は、微量炭素分析装置(堀場製作所製EMIA−511型)を用い、試料を酸素雰囲気中で1350℃に加熱して測定した。この測定により得られた炭素量を試料1g当たりに換算して示した。なお、被覆量測定のための前処理として、試料を80℃で加熱し、系内を減圧にすることによって空気中で吸着した水分等を除いた後、試料中の炭素含有量を求めた。
(Measurement of carbon content)
The carbon content of the hydrophobic silica was measured by heating the sample to 1350 ° C. in an oxygen atmosphere using a trace carbon analyzer (EMIA-511 type manufactured by Horiba, Ltd.). The amount of carbon obtained by this measurement is shown by converting per 1 g of the sample. As a pretreatment for measuring the coating amount, the sample was heated at 80 ° C. and the system was depressurized to remove moisture adsorbed in the air, and then the carbon content in the sample was determined.

実施例1
平均分子量25,000のポリアクリル酸(以下HPAAという)共存下、水ガラス(3号珪曹)より、二元細孔シリカを作製した。仕込み組成は、重量比で水:濃硝酸:HPAA:水ガラス=97:37:6.5:55とし、室温で攪拌し均一なゾル液とした。この時、ゾル液の比重は1.2であった。
Example 1
In the presence of polyacrylic acid having an average molecular weight of 25,000 (hereinafter referred to as HPAA), biporous silica was produced from water glass (No. 3 silica). The charged composition was water: concentrated nitric acid: HPAA: water glass = 97: 37: 6.5: 55 by weight ratio, and stirred at room temperature to obtain a uniform sol solution. At this time, the specific gravity of the sol solution was 1.2.

撹拌後、ゾル液を、プラスチック容器に移し、35℃、1日間、静置しゲル化させた。その後、該湿潤ゲルを、ナトリウムを除去するために水洗し、続いて、0.1規定のアンモニアに浸漬し、50℃、1日間、熟成した。その後、50℃で乾燥し、600℃で2時間焼成を行った。焼成後の試料を、乳鉢により粉砕し、ふるい分けして、二元細孔シリカ粉体を得た。   After stirring, the sol solution was transferred to a plastic container and allowed to stand at 35 ° C. for 1 day to gel. Thereafter, the wet gel was washed with water to remove sodium, then immersed in 0.1 N ammonia and aged at 50 ° C. for 1 day. Then, it dried at 50 degreeC and baked at 600 degreeC for 2 hours. The calcined sample was pulverized with a mortar and sieved to obtain a dual pore silica powder.

上記二元細孔シリカ粉体200gを容量1000cmのステンレス製オートクレーブに仕込んだ。オートクレーブ内を窒素ガスで内部ガス置換した後、オートク20gの1,3,5,7−オクタメチルシクロテトラシロキサン(以下、D4と表す)を二流体ノズルにて霧状にし、シリカ粉体に吹き付けた。その後オートクレーブを密閉し、280℃で1時間加熱した。続いて、加熱したまま系中を減圧し、未反応のD4を除去し、疎水性二元細孔シリカ粉体を得た。 200 g of the above-mentioned dual pore silica powder was charged into a stainless steel autoclave having a capacity of 1000 cm 3 . After the inside of the autoclave was replaced with nitrogen gas, 20 g of autoke, 1,3,5,7-octamethylcyclotetrasiloxane (hereinafter referred to as D4) was atomized with a two-fluid nozzle and sprayed onto the silica powder. It was. The autoclave was then sealed and heated at 280 ° C. for 1 hour. Subsequently, the system was depressurized while being heated, and unreacted D4 was removed to obtain a hydrophobic dual pore silica powder.

得られた疎水性二元細孔シリカ粉体のナノ細孔径は7.3nmであった。その他物性を、併せて表1に示す。また、水銀圧入法で測定した細孔分布を図1に示し、電子顕微鏡写真を図2に示す。また、前記「VOCs回収率の測定」により測定されたクロロホルムの回収率において、濃度1ppmのクロロホルム汚染試料を処理した際の結果を表2に、濃度100ppmのクロロホルム汚染試料を処理した際の結果を表3に示す。   The obtained hydrophobic binary porous silica powder had a nanopore diameter of 7.3 nm. Other physical properties are shown in Table 1. Moreover, the pore distribution measured by the mercury intrusion method is shown in FIG. 1, and an electron micrograph is shown in FIG. Table 2 shows the results of treating a chloroform-contaminated sample with a concentration of 1 ppm and the results of treating a chloroform-contaminated sample with a concentration of 100 ppm in the recovery rate of chloroform measured by the “measurement of recovery rate of VOCs”. Table 3 shows.

実施例2
ナノ細孔径を広げる目的で、熟成工程を1規定のアンモニアを用いて行った以外は、実施例1と同様の組成、方法で、疎水性二元細孔シリカ粉体を得た。
Example 2
Hydrophobic binary porous silica powder was obtained by the same composition and method as in Example 1 except that the aging step was performed using 1 N ammonia for the purpose of expanding the nanopore diameter.

得られた疎水性二元細孔シリカ粉体のナノ細孔径は12.1nmであった。その他物性を、併せて表1に示す。また、前記「VOCs回収率の測定」により測定されたクロロホルムの回収率を表2、表3に示す。   The obtained hydrophobic binary porous silica powder had a nanopore diameter of 12.1 nm. Other physical properties are shown in Table 1. Tables 2 and 3 show the chloroform recovery rates measured by the above-mentioned “Measurement of VOCs recovery rate”.

比較例1
疎水化処理を行わなかった以外は、実施例1と同様の組成、方法で、二元細孔シリカ粉体を得た。得られた二元細孔シリカ粉体の物性を表1に示す。また、水銀圧入法で測定した細孔分布を図1に示す。また、前記「VOCs回収率の測定」により測定されたクロロホルムの回収率を表2、表3に示す。
Comparative Example 1
A binary porous silica powder was obtained by the same composition and method as in Example 1 except that the hydrophobic treatment was not performed. Table 1 shows the physical properties of the obtained binary porous silica powder. Moreover, the pore distribution measured by the mercury intrusion method is shown in FIG. Tables 2 and 3 show the chloroform recovery rates measured by the above-mentioned “Measurement of VOCs recovery rate”.

比較例2
市販のシリカゲル(富士シリシア社製、商品名:CARiACT Q−10;以下、これをQ−10と表す)を用いた以外は実験例1と同様にして疎水化シリカ粉体を得た。得られた粉体の物性を表1に示す。また、前記「VOCs回収率の測定」により測定されたクロロホルムの回収率を表2、表3に示す。
Comparative Example 2
Hydrophobized silica powder was obtained in the same manner as in Experimental Example 1 except that a commercially available silica gel (manufactured by Fuji Silysia Co., Ltd., trade name: CARiACT Q-10; hereinafter referred to as Q-10) was used. Table 1 shows the physical properties of the obtained powder. Tables 2 and 3 show the chloroform recovery rates measured by the above-mentioned “Measurement of VOCs recovery rate”.

比較例3
測定用試料として、Q−10をそのまま用いた。Q−10の物性を表1に示す。また、前記「VOCs回収率の測定」により測定されたクロロホルムの回収率を表2、表3に示す。
Comparative Example 3
As a measurement sample, Q-10 was used as it was. Table 1 shows the physical properties of Q-10. Tables 2 and 3 show the chloroform recovery rates measured by the above-mentioned “Measurement of VOCs recovery rate”.

表1の炭素含有量並びに疎水化度から、表面処理を行うことで、シリカ表面が有機官能基で修飾され、疎水性を持つことが分かる。また、図1ならびに図3より、本発明で得られた疎水性二元細孔シリカはマイクロメートル領域の貫通孔(マクロ貫通孔)とナノメートル領域の細孔(ナノ細孔)を併せ持つ二元細孔構造を有していることが分かる。   From the carbon content and the degree of hydrophobicity in Table 1, it can be seen that the surface of the silica is modified with an organic functional group and has hydrophobicity by performing surface treatment. From FIG. 1 and FIG. 3, the hydrophobic dual pore silica obtained by the present invention is a binary having both a micrometer region through hole (macro through hole) and a nanometer region pore (nanopore). It turns out that it has a pore structure.

表2、表3の結果より、疎水化後のナノ細孔が数nm〜10数nmの疎水性二元細孔シリカ(実施例1,2)のクロロホルムの回収率が、親水的な試料(比較例1)に比べて、非常に高いことが分かる。また、疎水化された二元細孔シリカ(実施例1、2)は、疎水化された市販のシリカゲル(比較例2)と比較してクロロホルムの回収率が高く、特に表2に示される通り、低濃度な汚染試料においては、双方の回収率に顕著な差が見られた。よって、疎水性二元細孔シリカはVOCs等の有機化合物の吸着剤として非常に高い性能を有していることが分かる。これは疎水性表面と有機化合物の親和性が高く、吸着されやすい状態になっていることに加え、マクロ貫通孔の存在により、吸着サイトであるナノ細孔の利用効率が向上し、高い吸着能を発現したと考えられる。   From the results of Table 2 and Table 3, the recovery rate of chloroform of hydrophobic dual pore silica (Examples 1 and 2) having nanopores after hydrophobization of several nanometers to several tens of nanometers is shown as hydrophilic samples ( It can be seen that it is very high compared to Comparative Example 1). In addition, the hydrophobized binary pore silica (Examples 1 and 2) has a higher chloroform recovery rate than the commercially available hydrophobized silica gel (Comparative Example 2). In the low-concentration contaminated sample, a significant difference was observed in the recovery rates of both. Therefore, it can be seen that the hydrophobic dual pore silica has very high performance as an adsorbent for organic compounds such as VOCs. This is because the affinity between the hydrophobic surface and the organic compound is high and it is in a state of being easily adsorbed, and the presence of macro through-holes improves the utilization efficiency of nanopores, which are adsorption sites, and has high adsorption capacity. It is thought that was expressed.

Figure 2008062164
Figure 2008062164

Figure 2008062164
Figure 2008062164

Figure 2008062164
Figure 2008062164

疎水性二元細孔シリカおよび二元細孔シリカの細孔分布Hydrophobic binary pore silica and pore distribution in binary pore silica 疎水性二元細孔シリカの電子顕微鏡写真Electron micrograph of hydrophobic dual pore silica

Claims (5)

マイクロメートル領域の細孔が連続したマクロ貫通孔とナノメートル領域のナノ細孔を併せ有するシリカの表面を有機官能基で修飾することにより疎水化した疎水性シリカであって、疎水化後の上記ナノ細孔の平均直径が2〜15nmであることを特徴とする有機化合物用吸着剤。 Hydrophobic silica, which has been made hydrophobic by modifying the surface of silica having both macro-through pores with continuous micropores in the micrometer region and nanopores in the nanometer region with an organic functional group. An adsorbent for organic compounds, wherein the average diameter of the nanopores is 2 to 15 nm. 前記疎水性シリカの疎水化度(M値)が30〜80である請求項1記載の吸着剤。 The adsorbent according to claim 1, wherein the hydrophobic silica has a degree of hydrophobicity (M value) of 30 to 80. マクロ貫通孔が0.1μm〜100μmである請求項1記載の吸着剤。 The adsorbent according to claim 1, wherein the macro through-hole is 0.1 μm to 100 μm. 有機化合物が揮発性有機物(VOCs)である請求項1記載の吸着剤。 The adsorbent according to claim 1, wherein the organic compound is a volatile organic substance (VOCs). 疎水化後のナノ細孔の容積が0.2cm/g〜1.5cm/g、マクロ貫通孔の容積が0.3cm/g〜1.5cm/gである請求項1記載の吸着剤。
Nanopores volume 0.2cm 3 /g~1.5cm 3 / g after hydrophobization, the volume of macro-through hole according to claim 1, wherein a 0.3cm 3 /g~1.5cm 3 / g Adsorbent.
JP2006241837A 2006-09-06 2006-09-06 Adsorbent for organic compound Pending JP2008062164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006241837A JP2008062164A (en) 2006-09-06 2006-09-06 Adsorbent for organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006241837A JP2008062164A (en) 2006-09-06 2006-09-06 Adsorbent for organic compound

Publications (1)

Publication Number Publication Date
JP2008062164A true JP2008062164A (en) 2008-03-21

Family

ID=39285328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241837A Pending JP2008062164A (en) 2006-09-06 2006-09-06 Adsorbent for organic compound

Country Status (1)

Country Link
JP (1) JP2008062164A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144584A (en) * 2011-01-06 2012-08-02 Yasuhiro Takano Pyrolignous acid and method for producing the same
JP2013511389A (en) * 2009-11-23 2013-04-04 スリーエム イノベイティブ プロパティズ カンパニー Method for surface treatment of porous particles
JP2013208595A (en) * 2012-03-30 2013-10-10 Toshiba Corp Oil adsorbent and water treatment method
KR20150104454A (en) * 2014-03-05 2015-09-15 한국과학기술연구원 Hierarchically porous amine-silica monolith and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202095A (en) * 1997-01-28 1998-08-04 Tosoh Corp Silica-base adsorption separating agent, its production and filter using same
JP2004197018A (en) * 2002-12-20 2004-07-15 National Institute Of Advanced Industrial & Technology Spherical porous silica particle and method for producing the same
JP2006213558A (en) * 2005-02-02 2006-08-17 Chiba Univ Binary porous silica and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202095A (en) * 1997-01-28 1998-08-04 Tosoh Corp Silica-base adsorption separating agent, its production and filter using same
JP2004197018A (en) * 2002-12-20 2004-07-15 National Institute Of Advanced Industrial & Technology Spherical porous silica particle and method for producing the same
JP2006213558A (en) * 2005-02-02 2006-08-17 Chiba Univ Binary porous silica and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511389A (en) * 2009-11-23 2013-04-04 スリーエム イノベイティブ プロパティズ カンパニー Method for surface treatment of porous particles
JP2013511466A (en) * 2009-11-23 2013-04-04 スリーエム イノベイティブ プロパティズ カンパニー Processed porous particles and methods of making and using the same
JP2012144584A (en) * 2011-01-06 2012-08-02 Yasuhiro Takano Pyrolignous acid and method for producing the same
JP2013208595A (en) * 2012-03-30 2013-10-10 Toshiba Corp Oil adsorbent and water treatment method
KR20150104454A (en) * 2014-03-05 2015-09-15 한국과학기술연구원 Hierarchically porous amine-silica monolith and preparation method thereof
KR101597567B1 (en) * 2014-03-05 2016-02-25 한국과학기술연구원 Hierarchically porous amine-silica monolith and preparation method thereof

Similar Documents

Publication Publication Date Title
Mittal et al. Synthesis of co-polymer-grafted gum karaya and silica hybrid organic–inorganic hydrogel nanocomposite for the highly effective removal of methylene blue
He et al. Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture
Soltani et al. Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions
Matias et al. Silica-based aerogels as adsorbents for phenol-derivative compounds
Deng et al. Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers
Liu et al. Attapulgite/poly (acrylic acid) nanocomposite (ATP/PAA) hydrogels with multifunctionalized attapulgite (org-ATP) nanorods as unique cross-linker: preparation optimization and selective adsorption of Pb (II) Ion
Kruk et al. Grafting monodisperse polymer chains from concave surfaces of ordered mesoporous silicas
Idris et al. Adsorption equilibrium of malachite green dye onto rubber seed coat based activated carbon
Liu et al. Novel approach for attapulgite/poly (acrylic acid)(ATP/PAA) nanocomposite microgels as selective adsorbent for Pb (II) ion
Xie et al. Hollow imprinted polymer nanorods with a tunable shell using halloysite nanotubes as a sacrificial template for selective recognition and separation of chloramphenicol
Zhang et al. Preparation of polyacrylamide/silica composite capsules by inverse Pickering emulsion polymerization
Zhao et al. A novel microfluidic approach for preparing chitosan–silica core–shell hybrid microspheres with controlled structures and their catalytic performance
JP2008062164A (en) Adsorbent for organic compound
Zeng et al. Convenient synthesis of micron-sized macroporous polymers with dents on their surfaces and excellent adsorption performance for λ-cyhalothrin
Meng et al. Synthesis of novel ion-imprinted polymers by two different RAFT polymerization strategies for the removal of Cs (I) from aqueous solutions
JP2015044175A (en) Siloxane removing agent, and filter for removing siloxane by using the same
Kim et al. Functional hierarchical pores in polymer monoliths: macromolecular synthesis and selective removal of dyes
Kanamori Liquid-phase synthesis and application of monolithic porous materials based on organic–inorganic hybrid methylsiloxanes, crosslinked polymers and carbons
Mert et al. Adsorptive polyHIPE composites based on biosorbent immobilized nanoclay: effects of immobilization techniques
JP2008264732A (en) Porous ion exchanger and manufacturing method thereof
Singha et al. Adsorption behavior of potato starch-silica nanobiocomposite
Chen et al. Organic–inorganic hybrid mesoporous polymers fabricated by using (CTA) 2S2O8 as self-decomposed soft templates
Ren et al. Development of regular hydrophobic silica aerogel microspheres for efficient oil adsorption
Zhang et al. Effects of mesoporous silica particles on the emulsion polymerization of methyl methacrylate
CN102500341B (en) Three-dimensionally ordered macroporous material (3DOM) for adsorbing and separating organic molecules

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090218

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100915

A131 Notification of reasons for refusal

Effective date: 20100928

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A131 Notification of reasons for refusal

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110329

Free format text: JAPANESE INTERMEDIATE CODE: A02