JP2008057831A - Air conditioning control system - Google Patents

Air conditioning control system Download PDF

Info

Publication number
JP2008057831A
JP2008057831A JP2006233844A JP2006233844A JP2008057831A JP 2008057831 A JP2008057831 A JP 2008057831A JP 2006233844 A JP2006233844 A JP 2006233844A JP 2006233844 A JP2006233844 A JP 2006233844A JP 2008057831 A JP2008057831 A JP 2008057831A
Authority
JP
Japan
Prior art keywords
solar radiation
radiation amount
amount
building
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006233844A
Other languages
Japanese (ja)
Inventor
Yasuharu Iwakura
康晴 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006233844A priority Critical patent/JP2008057831A/en
Publication of JP2008057831A publication Critical patent/JP2008057831A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the accuracy of a comfortability index value "PMV" to achieve comfort air conditioning by computing the radiation temperature using much actual measurement data by using estimated amount of solar radiation obtained by estimated operation when a solar radiation meter is in the shade, and using the measured amount of solar radiation obtained by the solar radiation meter in the other cases. <P>SOLUTION: When a ratio of a measured amount of solar radiation "I<SB>m</SB>(t)" obtained by the solar radiation meter 10 to the estimated amount solar radiation "I<SB>p</SB>(t)" obtained by a solar radiation amount estimating part 2 is under a preset measurement abnormality determination threshold value "H(t)", it is determined that the solar radiation meter 10 is in the shade due to an antenna installed on a rooftop of a building, and the estimated amount of solar radiation "I<SB>p</SB>(t)" obtained by the estimating operation is used to compute the comfortability index value "PMV". In the other cases, the measured amount of solar radiation "I<SB>m</SB>(t)" obtained by the solar radiation meter 10 is used to compute it. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、快適性指標値PMVを使用して空調を制御する空調制御システムに関する。   The present invention relates to an air conditioning control system that controls air conditioning using a comfort index value PMV.

快適性指標値PMVを用いた空調制御装置に関する技術として、従来、特許第3049266号、第3361017号などが知られている。   Conventionally, as a technique related to an air conditioning control device using the comfort index value PMV, Patent Nos. 3049266 and 3361017 are known.

これら特許第3049266号、第3361017号では、快適性指標値PMVに影響を与える変数入力として、温度、湿度、輻射温度、気流速度、着衣量、活動量などが使用される。   In these Patent Nos. 3049266 and 3361617, temperature, humidity, radiation temperature, air velocity, clothing amount, activity amount, etc. are used as variable inputs that affect the comfort index value PMV.

この際、これら温度、湿度、輻射温度、気流速度、着衣量、活動量のいずれかが測定できない場合、例えば平均輻射温度計が無い場合、建物外表面に入射する日射量と、外気温度と、室内温度とを使用して、壁温変化を予測するとともに、この予測結果に基づいて、輻射温度を計算し、快適性指標値PMVを求めている。   At this time, if any of these temperatures, humidity, radiation temperature, airflow velocity, clothing amount, activity amount can not be measured, for example, if there is no average radiation thermometer, the amount of solar radiation incident on the building outer surface, the outside air temperature, The indoor temperature is used to predict the wall temperature change, and based on the prediction result, the radiation temperature is calculated to obtain the comfort index value PMV.

しかしながら、多くの建物では、日射量計も設置されていない事が多く、また日射量計を設置していても、設置場所によりアンテナ、タンク等の陰になって、正確な日射量を測定できないことが多い。   However, in many buildings, the solar radiation meter is often not installed, and even if the solar radiation meter is installed, it cannot be measured accurately because it is behind the antenna, tank, etc. depending on the installation location. There are many cases.

このため、屋外に日射量計を設置していない状態で、快適性指標値PMVを求める方法として、日時と建物位置(緯度、経度)と、前日の天気予報を元に、手動で入力された午前/午後の天気(晴/曇/雨)情報から雲量を演算して、日射量を算出し、快適性指標値PMVを求める方法も提案されている。   For this reason, as a method for obtaining the comfort index value PMV when no solar radiation meter is installed outdoors, it is manually input based on the date and time, the building position (latitude, longitude), and the previous day weather forecast. A method has also been proposed in which the amount of solar radiation is calculated from the morning / afternoon weather (sunny / cloudy / rainy) information, the amount of solar radiation is calculated, and the comfort index value PMV is obtained.

また、本発明者は、外気温度変化パターン、および外気湿度から雲量を推定させることにより、毎日の天気情報を入力させることなく、日射量を予測演算して、空調を制御する空調制御システムを提案している(図8参照)。   In addition, the present inventor proposed an air conditioning control system for controlling air conditioning by predicting and calculating solar radiation amount without inputting daily weather information by estimating the cloud amount from the outside temperature change pattern and outside air humidity. (See FIG. 8).

この空調制御システム101は、屋外温度計で得られた外気温度“T”の温度変化値を検出する温度変化検出部102と、雲量による標準温度変化情報が格納される温度情報データベース103と、カレンダICなどから出力されるカレンダ情報、温度情報データベース103に格納されている標準温度変化情報などに基づき、当日の標準温度変化値を演算する標準温度演算部104と、屋外湿度計で得られた外気湿度“H”、標準温度変化演算部104で得られた標準温度変化値、温度変化検出部102で得られた温度変化値などに基づき、雲量予測演算を行い雲量予測値“CC”を計算する雲量予測部105と、建物に関する建物パラメータ(建物の緯度、経度、外壁の方向、面積など)が格納される建物パラメータデータベース106と、カレンダICなどから出力されるカレンダ情報、建物パラメータデータベース106に格納されている建物パラメータなどに基づき、建物に対する全日射量予測値“I”を演算する全日射量予測部107と、全日射量予測部107で得られた全日射量予測値“I”、雲量予測部105で得られた雲量予測値“CC”などに基づき、次の(1)式に示す演算を行い、建物に対する日射量“I”を計算する日射量予測部108とを備えている。 The air conditioning control system 101 includes a temperature change detection unit 102 that detects a temperature change value of the outside air temperature “T” obtained by an outdoor thermometer, a temperature information database 103 that stores standard temperature change information according to cloud amount, and a calendar. Based on calendar information output from an IC or the like, standard temperature change information stored in the temperature information database 103, etc., a standard temperature calculation unit 104 that calculates a standard temperature change value of the day, and outside air obtained by an outdoor hygrometer Based on the humidity “H”, the standard temperature change value obtained by the standard temperature change calculation unit 104, the temperature change value obtained by the temperature change detection unit 102, etc., a cloud amount prediction calculation is performed to calculate a cloud amount prediction value “CC”. A cloud amount prediction unit 105 and a building parameter database 106 that stores building parameters (building latitude, longitude, direction of outer wall, area, etc.) relating to the building. , Calendar information output from such a calendar IC, based like the building parameters stored in the building parameter database 106, the total solar radiation amount prediction unit 107 for calculating the total solar radiation amount prediction value "I 0" for the building, the total solar radiation Based on the total solar radiation amount predicted value “I 0 ” obtained by the amount prediction unit 107, the cloud amount prediction value “CC” obtained by the cloud amount prediction unit 105, the calculation shown in the following equation (1) is performed, A solar radiation amount predicting unit 108 for calculating the solar radiation amount “I”.

I=(1−CC)・I/10 …(1)
さらに、空調制御システム101は、日射量予測部で108得られた日射量“I”、屋外温度計で得られた外気温度“T”、建物パラメータデータベース106に格納されている建物パラメータ、屋内に設けられた室内温度計で得られた室内温度などに基づき、建物の輻射温度を演算する輻射温度演算部109と、建物に対する気流情報(気流パラメータ)が格納される気流パラメータデータベース110と、気流パラメータデータベース110に格納されている気流パラメータ、輻射温度演算部109で得られた輻射温度、屋内に設けられた室内温度計で得られた室内温度、屋内に設けられた室内湿度計で得られる室内湿度、キーボード111などから入力された着衣量、活動量などに基づき、快適性指標値“PMV”を演算するPMV演算部112と、PMV演算部112で得られた快適性指標値“PMV”に基づき、設定温度を演算して、空調装置を制御し、室内温度を調整する設定温度演算部113とを備えている。
I = (1-CC) · I 0/10 ... (1)
Further, the air conditioning control system 101 includes the solar radiation amount “I” obtained by the solar radiation amount prediction unit 108, the outdoor air temperature “T” obtained by the outdoor thermometer, the building parameters stored in the building parameter database 106, and indoors. A radiation temperature calculation unit 109 that calculates the radiation temperature of the building based on the indoor temperature obtained by the provided indoor thermometer, an airflow parameter database 110 that stores airflow information (airflow parameters) for the building, and airflow parameters Airflow parameters stored in the database 110, radiation temperature obtained by the radiation temperature calculation unit 109, room temperature obtained by an indoor thermometer provided indoors, room humidity obtained by an indoor hygrometer provided indoors PMV performance that calculates the comfort index value “PMV” based on the amount of clothing and activity input from the keyboard 111, etc. Unit 112 and a set temperature calculation unit 113 that calculates the set temperature based on the comfort index value “PMV” obtained by the PMV calculation unit 112, controls the air conditioner, and adjusts the indoor temperature. .

そして、建物の屋上などに設置された屋外温度計、屋外湿度計で得られた外気温度“T”、外気湿度“H”、カレンダICなどで得られたカレンダ情報、温度情報データベース103に格納されている標準温度変化情報などに基づき、雲量予測値“CC”を予測し、この雲量予測値“CC”、カレンダICなどから出力されるカレンダ情報、建物パラメータデータベース106に格納されている建物パラメータなどに基づき、建物に対する日射量“I”を計算する。   Then, it is stored in an outdoor thermometer installed on the rooftop of the building, the outdoor air temperature “T” obtained by the outdoor hygrometer, the outdoor air humidity “H”, the calendar information obtained by the calendar IC, and the temperature information database 103. The predicted cloud amount “CC” is predicted based on the standard temperature change information, the cloud amount predicted value “CC”, calendar information output from the calendar IC, the building parameters stored in the building parameter database 106, and the like. Based on the above, the solar radiation amount “I” for the building is calculated.

次いで、建物の屋上などに設置された屋外温度計で得られた外気温度“T”、室内温度計で得られた室内温度、建物パラメータデータベース103に格納されている建物パラメータなどに基づき、建物の輻射温度を演算し、この演算処理で得られた輻射温度、屋内に設けられた室内温度計で得られた室内温度、屋内に設けられた室内湿度計で得られる室内湿度、キーボード111などから入力された着衣量、活動量などに基づき、快適性指標値“PMV”を演算して、設定温度を演算し、室内温度を調整する。   Next, based on the outdoor temperature “T” obtained by the outdoor thermometer installed on the rooftop of the building, the indoor temperature obtained by the indoor thermometer, the building parameters stored in the building parameter database 103, etc., Calculates radiation temperature, radiation temperature obtained by this calculation process, room temperature obtained by indoor thermometer installed indoors, room humidity obtained by indoor hygrometer installed indoors, input from keyboard 111, etc. The comfort index value “PMV” is calculated based on the amount of clothes and activity, and the set temperature is calculated to adjust the room temperature.

これにより、屋外に日射量計が設置されてない場合でも、快適性指標値“PMV”を計算して、最適な設定温度を計算し、室内の温度を調整させることができる。
特許第3049266号 特許第3361017号 東芝レビューVol.59No.4(2004)P.40-43
Thereby, even when the solar radiation meter is not installed outdoors, the comfort index value “PMV” can be calculated, the optimum set temperature can be calculated, and the indoor temperature can be adjusted.
Japanese Patent No. 3049266 Japanese Patent No. 331017 Toshiba Review Vol.59No.4 (2004) P.40-43

ところで、上述した従来の空調制御システムのうち、日時と建物位置(緯度、経度)と、前日の天気予報を元に、手動で入力された午前/午後の天気(晴/曇/雨)情報から雲量を演算して、日射量を予測し、快適性指標値“PMV”を求める方法では、人が毎日、天気情報を入力しなければならず、その手間が大変であるという問題があった。   By the way, in the conventional air conditioning control system described above, from the manually input morning / afternoon weather (sunny / cloudy / rainy) information based on the date and time, the building position (latitude, longitude) and the previous day weather forecast. In the method of calculating the cloud amount, predicting the amount of solar radiation, and obtaining the comfort index value “PMV”, there is a problem that a person has to input weather information every day, which is troublesome.

また、建物の屋上などに設置された屋外温度計、屋外湿度計で得られた外気温度“T”、外気湿度“H”、カレンダICなどで得られたカレンダ情報、温度情報データベース103に格納されている標準温度変化情報、建物パラメータデータベース106に格納されている建物パラメータなどを用いて、輻射温度を演算する方法では、屋外に日射量計が設置されていない場合にも、快適性指標値“PMV”を計算して、室内の温度を最適化することができるという利点がある。   In addition, the outdoor temperature meter installed on the rooftop of the building, the outdoor temperature “T” obtained by the outdoor hygrometer, the outdoor humidity “H”, the calendar information obtained by the calendar IC, etc. are stored in the temperature information database 103. In the method of calculating the radiation temperature using the standard temperature change information stored in the building, the building parameter stored in the building parameter database 106, etc., even when the solar radiation meter is not installed outdoors, the comfort index value “ There is an advantage that the temperature in the room can be optimized by calculating PMV ″.

しかし、屋外に日射量計が設置され、設置場所によりアンテナ、タンク等の陰になって、正確な日射量を測定できない場合には、屋外に設置された日射量計を有効に活用して、より正確な快適性指標値“PMV”を計算し、室内の温度を最適化して欲しいという要求があった。   However, if a solar radiation meter is installed outdoors, and it is in the shade of the antenna, tank, etc. depending on the installation location, and accurate solar radiation cannot be measured, the solar radiation meter installed outdoors can be used effectively. There was a demand for calculating a more accurate comfort index value “PMV” and optimizing the indoor temperature.

本発明は上記の事情に鑑み、快適性指標値“PMV”の精度を大幅に向上させて快適な空調を実現することができる空調制御システムを提供することを目的としている。   In view of the above circumstances, an object of the present invention is to provide an air conditioning control system capable of realizing a comfortable air conditioning by greatly improving the accuracy of the comfort index value “PMV”.

上記の目的を達成するために本発明は、請求項1では、建物の所定場所、または建物の近傍に配置された日射量計によって得られる計測日射量を使用して快適性指標値PMVを計算するとともに、この快適性指標値PMVに基づき、前記建物の空調を制御する空調制御システムにおいて、予め設定されている予測演算を行って予測日射量を計算する日射量予測部と、この日射量予測部で得られた予測日射量と前記日射量計で得られた計測日射量との関係が予め設定されている条件を満たしているとき、前記日射量計で得られた計測日射量を選択し、また前記条件を満たしていないとき、前記日射量予測部で得られた予測日射量を選択する日射量推定部と、この日射量推定部で選択された計測日射量、または予測日射量を使用して、快適性指標値PMVを計算するPMV演算部とを備えたことを特徴としている。   In order to achieve the above object, according to the present invention, in claim 1, the comfort index value PMV is calculated using a measured solar radiation amount obtained by a solar radiation meter placed in a predetermined place of the building or in the vicinity of the building. In addition, in the air conditioning control system that controls the air conditioning of the building based on the comfort index value PMV, a solar radiation amount predicting unit that calculates a predicted solar radiation amount by performing a preset prediction calculation, and the solar radiation amount prediction When the relationship between the predicted amount of solar radiation obtained by the unit and the amount of solar radiation measured by the solar radiation meter satisfies a preset condition, select the amount of solar radiation measured by the solar radiation meter. In addition, when the above conditions are not satisfied, the solar radiation amount estimating unit that selects the predicted solar radiation amount obtained by the solar radiation amount predicting unit, and the measured solar radiation amount or the predicted solar radiation amount selected by the solar radiation amount estimating unit are used. Comfort index It is characterized in that a PMV calculating unit for calculating the PMV.

また、請求項2では、建物の所定場所、または建物の近傍に配置された日射量計によって得られる計測日射量を使用して快適性指標値PMVを計算するとともに、この快適性指標値PMVに基づき、前記建物の空調を制御する空調制御システムにおいて、予め設定されている予測演算を行って予測日射量を計算する日射量予測部と、前記日射量計に対する障害物情報に基づき、日射遮断時間帯を計算し、障害物によって、前記日射量計が日陰になっている間、前記日射量予測部で得られた予測日射量を選択し、それ以外のときには、前記日射量計で得られた計測日射量を選択する日射量推定部と、この日射量推定部で選択された計測日射量、または予測日射量を使用して、快適性指標値PMVを計算するPMV演算部とを備えたことを特徴としている。   Further, in claim 2, the comfort index value PMV is calculated using the measured solar radiation amount obtained by a solar radiation meter arranged in a predetermined place of the building or in the vicinity of the building, and the comfort index value PMV is calculated. In the air conditioning control system for controlling the air conditioning of the building, the solar radiation blocking time based on the solar radiation amount predicting unit that calculates a predicted solar radiation amount by performing a preset prediction calculation, and the obstacle information for the solar radiation meter Calculate the band, select the predicted solar radiation amount obtained by the solar radiation amount prediction unit while the solar radiation meter is shaded by an obstacle, otherwise obtained by the solar radiation meter A solar radiation amount estimating unit for selecting the measured solar radiation amount, and a PMV calculation unit for calculating the comfort index value PMV using the measured solar radiation amount or the predicted solar radiation amount selected by the solar radiation amount estimating unit With features To have.

本発明による空調制御システムによれば、障害物などによって日射量計が日陰になっているかどうかを判定し、日射量計が日陰になっているとき、予測演算で得られた予測日射量を使用し、それ以外のとき、日射量計で得られた計測日射量を使用し、実測データを多用した輻射温度演算を行うことによって快適性指標値“PMV”の精度を大幅に向上させて快適な空調を実現することができる。   According to the air conditioning control system according to the present invention, it is determined whether the solar radiation meter is shaded by an obstacle or the like, and when the solar radiation meter is shaded, the predicted solar radiation amount obtained by the prediction calculation is used. In other cases, the accuracy of the comfort index value “PMV” is greatly improved by using the measured solar radiation obtained with the solar radiation meter and performing radiation temperature calculation using a lot of measured data. Air conditioning can be realized.

また、請求項2の空調制御システムでは、日射量計に対する障害物の位置情報などに基づき、障害物などによって日射量計が日陰になっている時間帯を計算し、この計算結果に基づき、日射量計が日陰になっているとき、予測演算で得られた予測日射量を使用し、それ以外のとき、日射量計で得られた計測日射量を使用して、実測データを多用した輻射温度演算を行うことによって快適性指標値“PMV”の精度を大幅に向上させて快適な空調を実現することができる。   The air conditioning control system according to claim 2 calculates a time zone in which the solar radiation meter is shaded by the obstacle based on the position information of the obstacle with respect to the solar radiation meter, and based on the calculation result, When the meter is in the shade, use the predicted amount of solar radiation obtained by the prediction calculation, otherwise use the measured amount of solar radiation obtained by the solar radiation meter, and the radiation temperature using a lot of measured data By performing the calculation, it is possible to significantly improve the accuracy of the comfort index value “PMV” and realize comfortable air conditioning.

《第1実施形態》
図1は本発明による空調制御システムの第1実施形態を示すブロック図である。
<< First Embodiment >>
FIG. 1 is a block diagram showing a first embodiment of an air conditioning control system according to the present invention.

この図に示す空調制御システム1は、日射量予測部2と、日射量推定部3と、建物パラメータデータベース4と、輻射温度演算部5と、着衣量/活動量入力部6と、気流パラメータデータベース7と、PMV演算部8と、設定温度演算部9とを備えており、建物の屋上などに設置された日射量計10で得られた計測日射量“I(t)”と、日射量予測部2で得られた予測日射量“I”との比率が所定の条件を満たしているかどうかを判定して、計測日射量“I(t)”が正確な計測値であるかどうかを判断し、日射量計10で得られた計測日射量“I(t)”が正確であるとき、この計測日射量“I(t)”を使用して、輻射温度演算を行い、また屋上などに設けられたアンテナなどにより、日射量計10が日陰になり、日射量計10で得られた計測日射量“I(t)”が不正確になったとき、予測動作で得られた予測日射量“I”を使用して、輻射温度演算を行い、日射量計10が一時的に日陰になるような場合にも、正確な快適性指標値“PMV”を生成し、建物の空調を制御する。 The air conditioning control system 1 shown in this figure includes a solar radiation amount prediction unit 2, a solar radiation amount estimation unit 3, a building parameter database 4, a radiation temperature calculation unit 5, a clothing amount / activity amount input unit 6, and an airflow parameter database. 7, a PMV calculation unit 8, and a set temperature calculation unit 9. The measured solar radiation amount “I m (t)” obtained by the solar radiation meter 10 installed on the rooftop of the building, and the solar radiation amount It is determined whether the ratio of the predicted solar radiation amount “I p ” obtained by the prediction unit 2 satisfies a predetermined condition, and whether the measured solar radiation amount “I m (t)” is an accurate measured value. When the measured solar radiation amount “I m (t)” obtained by the solar radiation meter 10 is accurate, the measured solar radiation amount “I m (t)” is used to calculate the radiation temperature, Also, the solar radiation meter 10 is shaded by an antenna or the like provided on the rooftop, etc. When the measured solar radiation “I m (t)” becomes inaccurate, the predicted solar radiation “I p ” obtained by the prediction operation is used to calculate the radiation temperature, and the solar radiation meter 10 temporarily Even in the shaded area, an accurate comfort index value “PMV” is generated to control the air conditioning of the building.

日射量予測部2は、図2に示すように屋外温度計で得られた各時刻毎の外気温度“T(t)”の温度変化値を検出する温度変化検出部13と、雲量による標準温度変化情報が格納される温度情報データベース14と、カレンダICなどから出力されるカレンダ情報、温度情報データベース14に格納されている標準温度変化情報などに基づき、当日の標準温度変化値を演算する標準温度演算部15と、屋外湿度計で得られた各時刻毎の外気湿度“H(t)”、標準温度演算部15で得られた標準温度変化値、温度変化検出部13で得られた温度変化値などに基づき、雲量予測演算を行い各時刻毎の雲量予測値“CC(t)”を計算する雲量予測部16と、建物に関する建物パラメータ(建物の緯度、経度、外壁の方向、面積など)が格納される建物パラメータデータベース17と、カレンダICなどから出力されるカレンダ情報、建物パラメータデータベース17に格納されている建物パラメータなどに基づき、建物に対する各時刻毎の全日射量予測値“I(t)”を演算する全日射量演算部18と、全日射量演算部18で得られた全日射量予測値“I(t)”、雲量予測部16で得られた雲量予測値“CC(t)”などに基づき、次式に示す演算を行い、建物に対する各時刻毎の予測日射量“I(t)”を計算する日射量予測部19とを備えている。 As shown in FIG. 2, the solar radiation amount prediction unit 2 includes a temperature change detection unit 13 that detects a temperature change value of the outdoor air temperature “T (t)” obtained by an outdoor thermometer at each time, and a standard temperature based on cloud cover. Standard temperature for calculating the standard temperature change value of the day based on the temperature information database 14 storing the change information, the calendar information output from the calendar IC and the like, the standard temperature change information stored in the temperature information database 14, etc. The outside air humidity “H (t)” obtained by the calculation unit 15 and the outdoor hygrometer at each time, the standard temperature change value obtained by the standard temperature calculation unit 15, and the temperature change obtained by the temperature change detection unit 13 Cloud amount prediction unit 16 that calculates cloud amount prediction value “CC (t)” at each time by performing cloud amount prediction calculation based on the value and the like, and building parameters (building latitude, longitude, direction of outer wall, area, etc.) The building parameters that are stored Calculating a data database 17, the calendar information output from such a calendar IC, based like the building parameters stored in the building parameter database 17, the total solar radiation predicted value for each time point for building "I 0 (t)" to The total solar radiation amount calculation unit 18, the total solar radiation amount prediction value “I 0 (t)” obtained by the total solar radiation amount calculation unit 18, the cloud amount prediction value “CC (t)” obtained by the cloud amount prediction unit 16, etc. And a solar radiation amount predicting unit 19 that calculates the predicted solar radiation amount “I p (t)” for each time with respect to the building.

(t)=(1−CC(t))・I(t)/10 …(2)
そして、建物の屋上などに設置された屋外温度計、屋外湿度計で得られた外気温度“T(t)”、外気湿度“H(t)”、カレンダICなどで得られたカレンダ情報、温度情報データベース14に格納されている標準温度変化情報などに基づき、雲量予測値“CC(t)”を予測した後、この雲量予測値“CC(t)”、カレンダICなどから出力されるカレンダ情報、建物パラメータデータベース17に格納されている建物パラメータなどに基づき、建物に対する各時刻毎の予測日射量“I(t)”を計算し、日射量推定部3に供給する。
I p (t) = (1−CC (t)) · I 0 (t) / 10 (2)
And outdoor temperature meter installed on the rooftop of the building, outdoor air temperature “T (t)” obtained by outdoor hygrometer, outdoor air humidity “H (t)”, calendar information obtained by calendar IC, etc., temperature After predicting the cloud cover predicted value “CC (t)” based on the standard temperature change information stored in the information database 14, the cloud cover predicted value “CC (t)”, calendar information output from the calendar IC, etc. Based on the building parameters stored in the building parameter database 17, the predicted solar radiation amount “I p (t)” for each time for the building is calculated and supplied to the solar radiation amount estimating unit 3.

日射量推定部3は、日射量計10で得られた計測日射量“I(t)”と、日射量予測部2から供給される予測日射量“I(t)”と、予め設定されている計測異常判定しきい値“H”とを取り込み、次式を使用して、計測日射量“I(t)”と、予測日射量“I(t)”との比率が計測異常判定しきい値“H”以上であるかどうかを判定する。

Figure 2008057831
The solar radiation amount estimation unit 3 sets the measured solar radiation amount “I m (t)” obtained by the solar radiation meter 10 and the predicted solar radiation amount “I p (t)” supplied from the solar radiation amount prediction unit 2 in advance. The measured abnormality judgment threshold value “H” is taken in, and the ratio between the measured solar radiation amount “I m (t)” and the predicted solar radiation amount “I p (t)” is measured using the following formula: It is determined whether or not the abnormality determination threshold is “H” or more.
Figure 2008057831

そして、計測日射量“I(t)”と、予測日射量“I(t)”との比率が計測異常判定しきい値“H”以上であるとき、日射量計10で得られた計測日射量“I(t)”が正常であると判定して、計測日射量“I(t)”を選択し、また計測日射量“I(t)”と、予測日射量“I(t)”との比率が計測異常判定しきい値“H”未満であるとき、日射量計10で得られた計測日射量“I(t)”が異常であると判定して、予測日射量“I(t)”を選択し、選択した計測日射量“I(t)”、または予測日射量“I(t)”を日射量“I(t)”として、輻射温度演算部5に供給する。 When the ratio of the measured solar radiation amount “I m (t)” and the predicted solar radiation amount “I p (t)” is equal to or greater than the measurement abnormality determination threshold “H”, the solar radiation meter 10 obtained It is determined that the measured solar radiation amount “I m (t)” is normal, the measured solar radiation amount “I m (t)” is selected, and the measured solar radiation amount “I m (t)” and the predicted solar radiation amount “ When the ratio with “I p (t)” is less than the measurement abnormality determination threshold “H”, it is determined that the measured solar radiation amount “I m (t)” obtained by the solar radiation meter 10 is abnormal. The predicted solar radiation amount “I p (t)” is selected, and the selected measured solar radiation amount “I m (t)” or the predicted solar radiation amount “I p (t)” is set as the solar radiation amount “I a (t)”. The radiation temperature calculation unit 5 is supplied.

これにより、屋上などに設けられたアンテナなどで、日射量計10が日陰になる時間帯が生じる場合、例えば図3に示す如く“午前5時”から“午前8時”までの間と、“午前10時”とで、日射量計10で得られた計測日射量“I(t)”が不正確になり、“午前5時”から“午前8時”までの間と、“午前10時”とで、図4に示す如く日射量計10で得られた計測日射量“I(t)”と、日射量予測部2から供給される予測日射量“I(t)”とが乖離し、図5に示す如く計測日射量“I(t)”と、予測日射量“I(t)”との比率が計測異常判定しきい値“H”より下回っている間、日射量予測部2から供給される予測日射量“I(t)”が選択され、またそれ以外の時間帯では、日射量計10で得られた計測日射量“I”が選択され、図6に示す如く日射量計10で得られた各時刻毎の計測日射量“I(t)”のうち、“午前5時”から“午前8時”までの間と、“午前10時”の部分とが補正された各時刻毎の日射量“I(t)”が生成され、輻射温度演算部5に供給される。 As a result, when there is a time zone in which the solar radiation meter 10 is shaded with an antenna or the like provided on the rooftop or the like, for example, as shown in FIG. 3, between “5 am” and “8 am” At 10 am, the measured solar radiation “I m (t)” obtained by the solar radiation meter 10 becomes inaccurate, between “5 am” and “8 am” and “10 am As shown in FIG. 4, the measured solar radiation amount “I m (t)” obtained by the solar radiation meter 10 and the predicted solar radiation amount “I p (t)” supplied from the solar radiation amount prediction unit 2 As shown in FIG. 5, while the ratio of the measured solar radiation amount “I m (t)” and the predicted solar radiation amount “I p (t)” is lower than the measurement abnormality determination threshold value “H”, is selected predicted insolation "I p (t)" supplied from the solar radiation amount prediction unit 2, and in a time zone other than it, measures the amount of solar radiation was obtained by solar radiation meter 10 "I m" is selected Are, among as measured solar radiation amount for each time obtained in solar radiation meter 10 "I m (t)" shown in FIG. 6, and until "AM 8:00" to "5:00 am", "am A solar radiation amount “I a (t)” at each time in which the “10 o'clock” portion is corrected is generated and supplied to the radiation temperature calculation unit 5.

また、建物パラメータデータベース4は、建物に関するパラメータ(建物の緯度、経度、外壁の方向、面積などを示す建築パラメータ)が格納されており、輻射温度演算部5からの読み出し要求に応じて、格納している建築パラメータを読み出し、輻射温度演算部5に供給する。   The building parameter database 4 stores building-related parameters (building parameters indicating the latitude and longitude of the building, the direction of the outer wall, the area, etc.) and stores them in response to a read request from the radiation temperature calculation unit 5. The building parameters are read out and supplied to the radiation temperature calculator 5.

輻射温度演算部5は、日射量推定部3で得られた日射量“I(t)”、屋外温度計で得られた外気温度“T(t)”、建物パラメータデータベース4に格納されている建物パラメータ、屋内に設けられた室内温度計で得られた室内温度などを取り込み、予め設定されている演算式を用いて、建物の輻射温度を演算し、PMV演算部8に供給する。 The radiation temperature calculation unit 5 stores the solar radiation amount “I a (t)” obtained by the solar radiation amount estimation unit 3, the outside air temperature “T (t)” obtained by the outdoor thermometer, and the building parameter database 4. The building parameters, the indoor temperature obtained by the indoor thermometer provided indoors, and the like are taken in, the radiation temperature of the building is calculated using a preset arithmetic expression, and supplied to the PMV calculation unit 8.

また、着衣量/活動量入力部6は、キーボードなどを備えており、オペレータなどによって入力された建物内に居る人たちの着衣量、活動量などをPMV演算部6に供給する。   The clothing amount / activity amount input unit 6 includes a keyboard and the like, and supplies the PMV calculation unit 6 with the clothing amount, activity amount, and the like of people in the building input by an operator or the like.

また、気流パラメータデータベース7は、建物に対する気流情報(気流パラメータ)が格納されおり、PMV演算部8からの読み出し要求に応じて、格納している気流パラメータを読み出し、PMV演算部8に供給する。   The airflow parameter database 7 stores airflow information (airflow parameters) for the building, reads the stored airflow parameters in response to a read request from the PMV operation unit 8, and supplies the read airflow parameters to the PMV operation unit 8.

PMV演算部8は、気流パラメータデータベース7に格納されている気流パラメータ、輻射温度演算部5で得られた輻射温度、室内に設けられた屋内温度計で得られた室内温度、室内に設けられた湿度計で得られる室内湿度、着衣量/活動量入力部6から供給された着衣量、活動量などを取り込み、予め設定されている演算式を用いて、快適性指標値“PMV”を演算し、設定温度演算部9に供給する。   The PMV calculation unit 8 includes an air flow parameter stored in the air flow parameter database 7, a radiation temperature obtained by the radiation temperature calculation unit 5, an indoor temperature obtained by an indoor thermometer provided indoors, and provided indoors. The indoor humidity obtained by the hygrometer, the amount of clothing supplied from the clothing amount / activity amount input unit 6, the amount of activity, etc. are taken in, and the comfort index value “PMV” is calculated using a preset equation. , And supplied to the set temperature calculator 9.

設定温度演算部9は、PMV演算部8で得られた快適性指標値“PMV”を取り込み、予め設定されている演算式を用いて、設定温度を演算するとともに、この設定温度に応じて空調装置を制御し、室内温度を調整する。   The set temperature calculation unit 9 takes in the comfort index value “PMV” obtained by the PMV calculation unit 8, calculates the set temperature using a preset calculation formula, and performs air conditioning according to the set temperature. Control the equipment and adjust the room temperature.

このように、第1実施形態では、日射量計10で得られた計測日射量“I(t)”と、日射量予測部2から供給される予測日射量“I(t)”との比率が予め設定されている計測異常判定しきい値“H(t)”を下回っているとき、建物の屋上などに設置されたアンテナなどによって、日射量計10が日陰になっていると判断して、予測動作で得られた予測日射量“I(t)”を使用する。また、それ以外のときには、日射量計10で得られた計測日射量“I(t)”を使用して、快適性指標値“PMV”を演算するようにしている。これによって快適性指標値“PMV”の精度を大幅に向上させて、快適な空調を実現することができる。 Thus, in the first embodiment, the measured solar radiation amount “I m (t)” obtained by the solar radiation meter 10 and the predicted solar radiation amount “I p (t)” supplied from the solar radiation amount prediction unit 2 When the ratio is less than the preset measurement abnormality determination threshold “H (t)”, it is determined that the solar radiation meter 10 is shaded by an antenna installed on the rooftop of the building. Then, the predicted solar radiation amount “I p (t)” obtained by the prediction operation is used. In other cases, the comfort index value “PMV” is calculated using the measured solar radiation “I m (t)” obtained by the solar radiation meter 10. As a result, the accuracy of the comfort index value “PMV” can be greatly improved, and comfortable air conditioning can be realized.

《第2実施形態》
図7は本発明による空調制御システムの第2実施形態を示すブロック図である。なお、この図においては、図1の各部と対応する部分に同じ符号が付してある。
<< Second Embodiment >>
FIG. 7 is a block diagram showing a second embodiment of the air conditioning control system according to the present invention. In this figure, the same reference numerals are given to the parts corresponding to those in FIG.

この図に示す空調制御システム21が図1に示す空調制御システム1と異なる点は、計測異常判定しきい値“H”を用いて、日射量計10で得られた計測日射量“I(t)”が正常かどうかを判定する日射量推定部3に代えて、日射量計10に対する障害物の方位、角度など、設定された障害物条件に基づき、日射遮断時間帯を自動的に計算し、この計算結果に基づき、計測日射量“I(t)”、または予測日射量“I(t)”を組み合わせて、各時刻毎の日射量“I(t)”を生成する日射量推定部22を設けた点にある。 The air conditioning control system 21 shown in this figure is different from the air conditioning control system 1 shown in FIG. 1 in that the measured solar radiation amount “I m () obtained by the solar radiation meter 10 using the measurement abnormality determination threshold value“ H ”. t) Instead of the solar radiation amount estimation unit 3 for determining whether or not “normal”, the solar radiation cutoff time zone is automatically calculated based on the obstacle conditions such as the direction and angle of the obstacle with respect to the solar radiation meter 10. Based on the calculation result, the solar radiation amount “I a (t)” at each time is generated by combining the measured solar radiation amount “I m (t)” or the predicted solar radiation amount “I p (t)”. The solar radiation amount estimation unit 22 is provided.

すなわち、第2実施形態では、日射量計10に対する障害物の方位、角度など、設定された障害物条件に基づき、日射遮断時間帯を自動的に計算し、アンテナなどの障害物によって、日射量計10が日陰になっている間、予測動作で得られた予測日射量“I(t)”を使用して快適性指標値“PMV”を演算する。また、それ以外のときには、日射量計10で得られた計測日射量“I(t)”を使用して、快適性指標値“PMV”を演算するようにしている。 That is, in the second embodiment, the solar radiation blocking time zone is automatically calculated based on the obstacle conditions set such as the azimuth and angle of the obstacle with respect to the solar radiation meter 10, and the solar radiation amount is measured by the obstacle such as an antenna. While the total 10 is in the shade, the comfort index value “PMV” is calculated using the predicted solar radiation amount “I p (t)” obtained by the prediction operation. In other cases, the comfort index value “PMV” is calculated using the measured solar radiation “I m (t)” obtained by the solar radiation meter 10.

このため、快適性指標値“PMV”の精度を大幅に向上させることができ、快適な空調を実現することができる。   For this reason, the accuracy of the comfort index value “PMV” can be greatly improved, and comfortable air conditioning can be realized.

本発明による空調制御システムの第1実施形態を示すブロック図である。It is a block diagram which shows 1st Embodiment of the air-conditioning control system by this invention. 図1に示す日射量予測部の詳細な回路構成例を示すブロック図である。It is a block diagram which shows the detailed circuit structural example of the solar radiation amount estimation part shown in FIG. 図1に示す日射量推定部に入力される計測日射量“I(t)”の実例を示すグラフである。It is a graph which shows the actual example of the measurement solar radiation amount " Im (t)" input into the solar radiation amount estimation part shown in FIG. 図1に示す日射量推定部に入力される計測日射量“I(t)”、予測日射量“I(t)”の一例を示すグラフである。3 is a graph showing an example of a measured solar radiation amount “I m (t)” and a predicted solar radiation amount “I p (t)” input to the solar radiation amount estimating unit shown in FIG. 1. 図1に示す日射量推定部の判定動作例を示すグラフである。It is a graph which shows the example of a determination operation | movement of the solar radiation amount estimation part shown in FIG. 図1に示す日射量推定部に入力される計測日射量“I(t)”、予測日射量“I(t)”と、日射量推定部から出力される日射量“I(t)”とを示すグラフである。The measured solar radiation amount “I m (t)”, the predicted solar radiation amount “I p (t)” input to the solar radiation amount estimation unit shown in FIG. 1, and the solar radiation amount “I a (t ) ”. 本発明による空調制御システムの第2実施形態を示すブロック図である。It is a block diagram which shows 2nd Embodiment of the air-conditioning control system by this invention. 従来から知られている空調制御システムの一例を示すブロック図である。It is a block diagram which shows an example of the conventionally known air-conditioning control system.

符号の説明Explanation of symbols

1:空調制御システム
2:日射量予測部
3:日射量推定部
4:建物パラメータデータベース
5:輻射温度演算部
6:着衣量/活動量入力部
7:気流パラメータデータベース
8:PMV演算部
9:設定温度演算部
10:日射量計
13:温度変化検出部
14:温度情報データベース
15:標準温度演算部
16:雲量予測部
17:建物パラメータデータベース
18:全日射量演算部
19:日射量予測部
21:空調制御システム
22:日射量推定部
1: Air conditioning control system 2: Solar radiation amount prediction unit 3: Solar radiation amount estimation unit 4: Building parameter database 5: Radiation temperature calculation unit 6: Clothing amount / activity amount input unit 7: Airflow parameter database 8: PMV calculation unit 9: Setting Temperature calculation unit 10: Solar radiation meter 13: Temperature change detection unit 14: Temperature information database 15: Standard temperature calculation unit 16: Cloud amount prediction unit 17: Building parameter database 18: Total solar radiation amount calculation unit 19: Solar radiation amount prediction unit 21: Air conditioning control system 22: Solar radiation estimation unit

Claims (2)

建物の所定場所、または建物の近傍に配置された日射量計によって得られる計測日射量を使用して快適性指標値PMVを計算するとともに、この快適性指標値PMVに基づき、前記建物の空調を制御する空調制御システムにおいて、
予め設定されている予測演算を行って予測日射量を計算する日射量予測部と、
この日射量予測部で得られた予測日射量と前記日射量計で得られた計測日射量との関係が予め設定されている条件を満たしているとき、前記日射量計で得られた計測日射量を選択し、また前記条件を満たしていないとき、前記日射量予測部で得られた予測日射量を選択する日射量推定部と、
この日射量推定部で選択された計測日射量、または予測日射量を使用して快適性指標値PMVを計算するPMV演算部と、
を備えたことを特徴とする空調制御システム。
A comfort index value PMV is calculated using a measured solar radiation amount obtained by a solar radiation meter placed in a predetermined place of the building or in the vicinity of the building, and the air conditioning of the building is controlled based on the comfort index value PMV. In the air conditioning control system to control,
A solar radiation amount predicting unit that calculates a predicted solar radiation amount by performing a preset prediction calculation;
When the relationship between the predicted solar radiation amount obtained by the solar radiation amount prediction unit and the measured solar radiation amount obtained by the solar radiation meter satisfies a preset condition, the measured solar radiation amount obtained by the solar radiation meter A solar radiation amount estimating unit that selects a predicted solar radiation amount obtained by the solar radiation amount predicting unit when the amount is selected and the condition is not satisfied;
A PMV calculating unit that calculates the comfort index value PMV using the measured solar radiation amount or the predicted solar radiation amount selected by the solar radiation amount estimating unit;
An air conditioning control system characterized by comprising:
建物の所定場所、または建物の近傍に配置された日射量計によって得られる計測日射量を使用して快適性指標値PMVを計算するとともに、この快適性指標値PMVに基づき、前記建物の空調を制御する空調制御システムにおいて、
予め設定されている予測演算を行って予測日射量を計算する日射量予測部と、
前記日射量計に対する障害物情報に基づき、日射遮断時間帯を計算し、障害物によって、前記日射量計が日陰になっている間、前記日射量予測部で得られた予測日射量を選択し、それ以外のときには、前記日射量計で得られた計測日射量を選択する日射量推定部と、
この日射量推定部で選択された計測日射量、または予測日射量を使用して快適性指標値PMVを計算するPMV演算部と、
を備えたことを特徴とする空調制御システム。
A comfort index value PMV is calculated using a measured solar radiation amount obtained by a solar radiation meter placed in a predetermined place of the building or in the vicinity of the building, and the air conditioning of the building is controlled based on the comfort index value PMV. In the air conditioning control system to control,
A solar radiation amount predicting unit that calculates a predicted solar radiation amount by performing a preset prediction calculation;
Based on the obstacle information for the solar radiation meter, calculate the solar radiation blocking time zone, and select the predicted solar radiation amount obtained by the solar radiation amount prediction unit while the solar radiation meter is shaded by the obstacle. In other cases, a solar radiation amount estimating unit that selects the measured solar radiation amount obtained by the solar radiation meter,
A PMV calculating unit that calculates the comfort index value PMV using the measured solar radiation amount or the predicted solar radiation amount selected by the solar radiation amount estimating unit;
An air conditioning control system characterized by comprising:
JP2006233844A 2006-08-30 2006-08-30 Air conditioning control system Pending JP2008057831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233844A JP2008057831A (en) 2006-08-30 2006-08-30 Air conditioning control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233844A JP2008057831A (en) 2006-08-30 2006-08-30 Air conditioning control system

Publications (1)

Publication Number Publication Date
JP2008057831A true JP2008057831A (en) 2008-03-13

Family

ID=39240796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233844A Pending JP2008057831A (en) 2006-08-30 2006-08-30 Air conditioning control system

Country Status (1)

Country Link
JP (1) JP2008057831A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202877A (en) * 2010-03-25 2011-10-13 Takasago Thermal Eng Co Ltd Air-conditioning control system
CN102445010A (en) * 2010-10-08 2012-05-09 益科博能源科技(上海)有限公司 Temperature control method and device for heat collection system
JP2015507276A (en) * 2012-01-12 2015-03-05 ニューロバット エージー Improvement to temperature control unit for building heating system
KR101936136B1 (en) * 2017-01-11 2019-01-09 인하대학교 산학협력단 Apparatus for thermal environment prediction based on machine learning and method thereof
JP2021116937A (en) * 2020-01-22 2021-08-10 三菱電機株式会社 Air conditioning system control device
JPWO2021014500A1 (en) * 2019-07-19 2021-09-13 日立ジョンソンコントロールズ空調株式会社 Air conditioner, control device, and information processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202877A (en) * 2010-03-25 2011-10-13 Takasago Thermal Eng Co Ltd Air-conditioning control system
CN102445010A (en) * 2010-10-08 2012-05-09 益科博能源科技(上海)有限公司 Temperature control method and device for heat collection system
JP2015507276A (en) * 2012-01-12 2015-03-05 ニューロバット エージー Improvement to temperature control unit for building heating system
KR101936136B1 (en) * 2017-01-11 2019-01-09 인하대학교 산학협력단 Apparatus for thermal environment prediction based on machine learning and method thereof
JPWO2021014500A1 (en) * 2019-07-19 2021-09-13 日立ジョンソンコントロールズ空調株式会社 Air conditioner, control device, and information processing method
JP2021116937A (en) * 2020-01-22 2021-08-10 三菱電機株式会社 Air conditioning system control device
JP7531279B2 (en) 2020-01-22 2024-08-09 三菱電機株式会社 Air conditioning system control device

Similar Documents

Publication Publication Date Title
US10082313B2 (en) Instruction device, and air conditioning system
JP4461064B2 (en) Air conditioning controller
JP6052451B2 (en) Air conditioning controller
US20170211830A1 (en) Air-conditioning control system, air-conditioning planning device, and planning method
US8682492B2 (en) Setting value controlling method and device
KR101506215B1 (en) Prediction Method of Cooling and Heating Loads Using Predicted Solar Insolation
JP6235827B2 (en) Air conditioning control apparatus and method
US20160054018A1 (en) Air-conditioning system control apparatus
EP2944891B1 (en) Room temperature estimating device, program
US9243811B2 (en) Predicted mean vote estimating device and computer program product
US20150045967A1 (en) Air-conditioning unit control device and air-conditioning unit control program
JP2008057831A (en) Air conditioning control system
JP6880841B2 (en) Photovoltaic power generation output prediction device considering snow cover
US10823446B2 (en) System of adjusting load of air conditioning and method of adjusting the same
US20120089257A1 (en) Method And Device For Controlling The Temperature Of A Building
US20140365128A1 (en) Method for predicting hourly climatic data to estimate cooling/heating load
JP6605181B2 (en) Operation control device, air conditioning system, operation control method, and operation control program
JP2006207929A (en) Optimum operation control system and optimum operation control method for air conditioning system
JP2017110829A (en) Air conditioning parameter generation device, air conditioning operation evaluation device, air conditioning parameter generation method and program
EP3537051A1 (en) Method, apparatus and computer program product for controlling heating systems
US11466885B2 (en) Air-conditioning control device, air-conditioning system, and air-conditioning control method
US11248818B2 (en) Server, air conditioning control system, recording medium, and control method
Kummert et al. Simulation of a model-based optimal controller for heating systems under realistic hypothesis
JP2001082782A (en) Airconditioning controller
JP2015090232A (en) Air conditioning system, and program