JP2008057448A - Turbine housing - Google Patents

Turbine housing Download PDF

Info

Publication number
JP2008057448A
JP2008057448A JP2006235818A JP2006235818A JP2008057448A JP 2008057448 A JP2008057448 A JP 2008057448A JP 2006235818 A JP2006235818 A JP 2006235818A JP 2006235818 A JP2006235818 A JP 2006235818A JP 2008057448 A JP2008057448 A JP 2008057448A
Authority
JP
Japan
Prior art keywords
pipe
turbine
bypass passage
turbine outlet
constituting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006235818A
Other languages
Japanese (ja)
Other versions
JP4835330B2 (en
Inventor
Masakazu Tabata
正和 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006235818A priority Critical patent/JP4835330B2/en
Publication of JP2008057448A publication Critical patent/JP2008057448A/en
Application granted granted Critical
Publication of JP4835330B2 publication Critical patent/JP4835330B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve durability of a bypass passage in a sheet metal turbine housing. <P>SOLUTION: The turbine housing 1 is provided with at least a scroll part 2 constructing a scroll shape exhaust gas passage, a turbine outlet construction pipe 7 provided with projecting from the scroll part 2 and constructing an outlet (turbine outlet 2b) of exhaust gas, a bypass passage construction pipe 6 provided with projecting from the scroll part 2 and provided separately from the turbine outlet construction pipe 7 in parallel for constructing a bypass passage 5 bypassing the scroll part 2 to an external exhaust gas passage, and turbine outlet flange 4 supported by the turbine outlet construction pipe 7 and the bypass passage construction pipe 6. Wall thickness of the bypass passage construction pipe 6 is formed thicker than wall thickness of the turbine outlet construction pipe 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、内燃機関の排気ガスのエネルギーを利用して内燃機関に対する過給圧を発生させるターボチャージャに採用される板金製のタービンハウジングに関し、更に詳しくは、バイパス通路の耐久性を向上することができるタービンハウジングに関する。   The present invention relates to a sheet metal turbine housing used in a turbocharger that generates supercharging pressure for an internal combustion engine using the energy of exhaust gas of the internal combustion engine, and more specifically, to improve the durability of a bypass passage. It is related with the turbine housing which can do.

従来、内燃機関から排出される排気ガスを駆動源として吸気マニホールド内に昇圧空気を供給することにより内燃機関の出力を向上するターボチャージャが知られている。   2. Description of the Related Art Conventionally, a turbocharger that improves the output of an internal combustion engine by supplying pressurized air into an intake manifold using exhaust gas discharged from the internal combustion engine as a drive source is known.

このターボチャージャを車載用内燃機関に装着して用いる場合は、軽量化に配慮する必要がある。特に近年では、燃費や運動性能の向上の観点から、車両搭載部品の軽量化が要求され、上記従来のターボチャージャについても許容される限りの軽量化が図られている。   When this turbocharger is used by being mounted on an in-vehicle internal combustion engine, it is necessary to consider weight reduction. In particular, in recent years, from the viewpoint of improving fuel efficiency and athletic performance, it is required to reduce the weight of vehicle-mounted components, and the above-described conventional turbocharger has also been reduced as much as allowed.

したがって、近年では、従来の鋳造製のタービンハウジングに代えて、板金製のタービンハウジングが使用されるようになっている。   Therefore, in recent years, instead of the conventional cast turbine housing, a sheet metal turbine housing has been used.

また、タービンハウジングは、高温の排気ガスに直接さらされることになり、熱変形の影響を大きく受けるため、耐熱性についても十分な配慮が要求される。   Further, since the turbine housing is directly exposed to high-temperature exhaust gas and is greatly affected by thermal deformation, sufficient consideration is required for heat resistance.

このような板金製の配管から構成されたタービンハウジングとして、以下のものが公知である。すなわち、少なくとも、渦状の排気ガス通路を構成するスクロール部と、このスクロール部から突設され、排気ガスの出口を構成するタービン出口構成配管と、スクロール部を外部の排気ガス通路とバイパスするために当該スクロール部から突設され、タービン出口構成配管と別体に並設されたバイパス通路構成配管と、タービン出口構成配管とバイパス通路構成配管とで支持されるタービン出口フランジとを備えたものである。   The following are known as turbine housings configured from such sheet metal pipes. That is, at least a scroll portion constituting a spiral exhaust gas passage, a turbine outlet constituting pipe projecting from the scroll portion and constituting an exhaust gas outlet, and a bypass for bypassing the scroll portion with an external exhaust gas passage. A bypass passage configuration pipe that protrudes from the scroll portion and is provided separately from the turbine outlet configuration pipe, and a turbine outlet flange that is supported by the turbine outlet configuration pipe and the bypass passage configuration pipe. .

なお、関連する従来技術として、タービン出口通路とバイパス通路をそれぞれ独立した管で構成したものが提案されている(たとえば、特許文献1参照)。   In addition, as a related prior art, a turbine outlet passage and a bypass passage configured by independent pipes have been proposed (for example, see Patent Document 1).

また、内管、外管および相手部材の少なくとも1つを耐熱材料にて形成した排気バイパス構造に関する技術が提案されている(たとえば、特許文献2参照)。   In addition, a technique related to an exhaust bypass structure in which at least one of an inner tube, an outer tube, and a mating member is formed of a heat-resistant material has been proposed (see, for example, Patent Document 2).

また、排気通路壁に、排気通路壁を形成する部材よりも熱膨張係数が小さい部材によって形成されるスリーブを嵌挿したものも提案されている(たとえば、特許文献3参照)。   In addition, there has also been proposed a sleeve formed by inserting a sleeve formed of a member having a smaller thermal expansion coefficient than a member forming the exhaust passage wall into the exhaust passage wall (see, for example, Patent Document 3).

特開2004−183651号公報JP 2004-183651 A 特開2001−303963号公報JP 2001-303963 A 実公平4−44819号公報Japanese Utility Model Publication No. 4-44819

上述したように、従来のタービンハウジングは、タービン出口構成配管とバイパス通路構成配管の2つの配管によって、鋳造品で比較的重量のあるタービン出口フランジを支持している。バイパス通路構成配管の径は、タービン出口構成配管の径よりも小さいため、バイパス通路構成配管側に応力が集中し易い。   As described above, the conventional turbine housing supports the turbine outlet flange having a relatively heavy weight as a cast product by the two pipes of the turbine outlet constituent pipe and the bypass passage constituent pipe. Since the diameter of the bypass passage constituent pipe is smaller than the diameter of the turbine outlet constituent pipe, the stress tends to concentrate on the bypass passage constituent pipe side.

また、排気ガスはタービンを通過することで膨張し温度が下がるため(たとえば、100℃程度)、タービン出口構成配管ではバイパス通路構成配管よりも雰囲気温度が低い。   Further, since the exhaust gas expands and decreases in temperature when it passes through the turbine (for example, about 100 ° C.), the atmosphere temperature is lower in the turbine outlet constituent pipe than in the bypass passage constituent pipe.

したがって、このような理由からバイパス通路構成配管に亀裂が発生する虞があり、上記板金製のタービンハウジングでは、耐久性の確保が難しいという課題があった。   Therefore, there is a possibility that cracks may occur in the bypass passage constituting pipe for such a reason, and there is a problem that it is difficult to ensure durability in the turbine housing made of sheet metal.

この発明は、上記に鑑みてなされたものであって、バイパス通路の耐久性を向上することができるタービンハウジングを提供することを目的とする。   The present invention has been made in view of the above, and an object thereof is to provide a turbine housing capable of improving the durability of the bypass passage.

上述した課題を解決し、目的を達成するために、この発明の請求項1に係るタービンハウジングは、少なくとも、渦状の排気ガス通路を構成するスクロール部と、前記スクロール部から突設され、排気ガスの出口を構成するタービン出口構成配管と、前記スクロール部を外部の排気ガス通路とバイパスするために前記スクロール部から突設され、前記タービン出口構成配管と別体に並設されたバイパス通路構成配管と、前記タービン出口構成配管と前記バイパス通路構成配管とで支持されるタービン出口フランジと、を備えたタービンハウジングにおいて、前記バイパス通路構成配管の板厚を前記タービン出口構成配管の板厚よりも厚く形成したことを特徴とするものである。   In order to solve the above-described problems and achieve the object, a turbine housing according to a first aspect of the present invention includes at least a scroll portion that forms a spiral exhaust gas passage, and a protruding portion that protrudes from the scroll portion. A turbine outlet constituting pipe constituting the outlet of the turbine, and a bypass passage constituting pipe protruding from the scroll portion so as to bypass the scroll portion with an external exhaust gas passage, and being arranged in parallel with the turbine outlet constituting pipe And a turbine outlet flange supported by the turbine outlet constituent pipe and the bypass passage constituent pipe, wherein the plate thickness of the bypass passage constituent pipe is larger than the plate thickness of the turbine outlet constituent pipe It is formed.

また、この発明の請求項2に係るタービンハウジングは、請求項1に記載の発明において、前記バイパス通路構成配管の材質を前記タービン出口構成配管の材質よりも熱膨張率の小さいものとしたことを特徴とするものである。   Moreover, in the turbine housing according to claim 2 of the present invention, in the invention according to claim 1, the material of the bypass passage constituting pipe is made to have a smaller coefficient of thermal expansion than the material of the turbine outlet constituting pipe. It is a feature.

また、この発明の請求項3に係るタービンハウジングは、請求項1または2に記載の発明において、前記バイパス通路構成配管の材質を前記タービン出口構成配管の材質よりも高温強度の高いものとしたことを特徴とするものである。   Moreover, in the turbine housing according to claim 3 of the present invention, in the invention according to claim 1 or 2, the material of the bypass passage constituting pipe is higher in strength than the material of the turbine outlet constituting pipe. It is characterized by.

この発明に係るタービンハウジング(請求項1)によれば、バイパス通路構成配管の板厚をタービン出口構成配管の板厚よりも厚くすることにより、タービン出口構成配管と同等の強度を確保することができるので、バイパス通路構成配管への亀裂の発生等を抑制して信頼性を高めることができる。   According to the turbine housing according to the present invention (Claim 1), by making the plate thickness of the bypass passage constituting pipe thicker than the plate thickness of the turbine outlet constituting pipe, it is possible to ensure the same strength as the turbine outlet constituting pipe. Therefore, it is possible to increase the reliability by suppressing the occurrence of cracks in the bypass passage constituting pipe.

また、この発明に係るタービンハウジング(請求項2)によれば、排気ガスの作用により雰囲気温度差が生じても、熱歪みの影響を低減することができる。   Further, according to the turbine housing according to the present invention (Claim 2), even if an atmospheric temperature difference is caused by the action of the exhaust gas, the influence of thermal distortion can be reduced.

また、この発明に係るタービンハウジング(請求項3)によれば、排気ガスの作用により雰囲気温度差が生じても、熱歪みの影響を低減することができる。   Further, according to the turbine housing according to the present invention (Claim 3), even if an atmospheric temperature difference is caused by the action of the exhaust gas, the influence of thermal distortion can be reduced.

以下に、この発明に係るタービンハウジングの実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of a turbine housing according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、この発明の実施例に係るタービンハウジングを示す側面図、図2は、タービンハウジングを示す正面図、図3は、図2のA−A断面を示す断面図であり、タービン出口径DTOを示したものである。   1 is a side view showing a turbine housing according to an embodiment of the present invention, FIG. 2 is a front view showing the turbine housing, and FIG. 3 is a cross-sectional view showing the AA cross section of FIG. DTO is shown.

また、図4は、図2のB−B断面を示す断面図であり、バイパス通路径DBを示したものである。図5は、タービン出口径DTOとバイパス通路径DBとの関係を示すグラフである。   FIG. 4 is a cross-sectional view showing a BB cross section of FIG. 2, showing a bypass passage diameter DB. FIG. 5 is a graph showing the relationship between the turbine outlet diameter DTO and the bypass passage diameter DB.

図1および図2に示すように、タービンハウジング1は、少なくとも、渦状の排気ガス通路を構成するスクロール部2と、スクロール部2から突設され、排気ガスの出口(タービン出口2b)を構成するタービン出口構成配管7と、スクロール部2を外部の排気ガス通路(図示せず)とバイパスするバイパス通路5を構成するためにスクロール部2から突設され、タービン出口構成配管7と別体に並設されたバイパス通路構成配管6と、タービン出口構成配管7とバイパス通路構成配管6とで支持されるタービン出口フランジ4とを備えている。なお、図中の符号2aはタービン入口を示し、符号3はタービン入口フランジを示している。   As shown in FIGS. 1 and 2, the turbine housing 1 is provided with at least a scroll portion 2 that forms a spiral exhaust gas passage, and protrudes from the scroll portion 2 to constitute an exhaust gas outlet (turbine outlet 2 b). A turbine outlet constituting pipe 7 and a bypass passage 5 for bypassing the scroll part 2 with an external exhaust gas passage (not shown) are provided so as to protrude from the scroll part 2 and are arranged separately from the turbine outlet constituting pipe 7. A bypass passage constituting pipe 6 provided, and a turbine outlet flange 4 supported by the turbine outlet constituting pipe 7 and the bypass passage constituting pipe 6 are provided. In addition, the code | symbol 2a in a figure has shown the turbine inlet, and the code | symbol 3 has shown the turbine inlet flange.

上述したように、タービンハウジング1は、タービン出口構成配管7とバイパス通路構成配管6の2つの配管によって、鋳造品で比較的重量のあるタービン出口フランジ4を支持している。   As described above, the turbine housing 1 supports the turbine outlet flange 4, which is a cast product and relatively heavy, by the two pipes of the turbine outlet constituent pipe 7 and the bypass passage constituent pipe 6.

図3〜図5に示すように、バイパス通路構成配管6の径DBは、タービン出口構成配管7の径DTOの約半分であり小さい。このため、バイパス通路構成配管6側に応力が集中し易い。   As shown in FIGS. 3 to 5, the diameter DB of the bypass passage constituting pipe 6 is about half the diameter DTO of the turbine outlet constituting pipe 7 and is small. For this reason, stress tends to concentrate on the bypass passage constituting pipe 6 side.

図5に示すように、他の体格のタービンハウジングについても、バイパス通路構成配管6の径DBは、タービン出口構成配管7の径DTOの約半分となる傾向が見られる。   As shown in FIG. 5, the diameter DB of the bypass passage constituting pipe 6 tends to be about half of the diameter DTO of the turbine outlet constituting pipe 7 also in the turbine housings of other physiques.

そこで、バイパス通路構成配管6の板厚t2をタービン出口構成配管7の板厚t1のほぼ2倍程度とし、タービン出口構成配管7とほぼ同等の強度を確保するようにしたものである。たとえば、バイパス通路構成配管6の板厚t2をタービン出口構成配管7の板厚t1の1.7〜2.3倍程度に形成するのが好適である。   In view of this, the plate thickness t2 of the bypass passage constituting pipe 6 is set to approximately twice the plate thickness t1 of the turbine outlet constituting pipe 7 so as to ensure substantially the same strength as the turbine outlet constituting pipe 7. For example, it is preferable to form the plate thickness t2 of the bypass passage constituting pipe 6 to be about 1.7 to 2.3 times the plate thickness t1 of the turbine outlet constituting pipe 7.

また、排気ガスはタービン(図示せず)を通過することで膨張し温度が下がるため(たとえば、100℃程度)、タービン出口構成配管7ではバイパス通路構成配管6よりも雰囲気温度が低いことが分かっている。   Further, since the exhaust gas expands and decreases in temperature when it passes through a turbine (not shown) (for example, about 100 ° C.), it is understood that the ambient temperature is lower in the turbine outlet constituent pipe 7 than in the bypass passage constituent pipe 6. ing.

そこで、バイパス通路構成配管6の材質をタービン出口構成配管7の材質よりも熱膨張率の小さいものとするとともに、バイパス通路構成配管6の材質をタービン出口構成配管7の材質よりも高温強度の高いものとし、雰囲気温度差による熱歪みの影響を低減するようにした。   Therefore, the material of the bypass passage constituent pipe 6 is made to have a smaller coefficient of thermal expansion than the material of the turbine outlet constituent pipe 7, and the material of the bypass passage constituent pipe 6 is higher in strength than the material of the turbine outlet constituent pipe 7. The effect of thermal distortion due to atmospheric temperature differences was reduced.

以上のように、この実施例に係るタービンハウジングによれば、バイパス通路構成配管6の機械的・熱的耐久性をタービン出口構成配管7とほぼ同等にすることができ、バイパス通路構成配管6への亀裂の発生等を抑制して信頼性を高めることができる。   As described above, according to the turbine housing according to this embodiment, the mechanical and thermal durability of the bypass passage constituting pipe 6 can be made substantially equal to that of the turbine outlet constituting pipe 7. It is possible to improve the reliability by suppressing the occurrence of cracks.

なお、上記実施例においては、バイパス通路構成配管6の板厚t2をタービン出口構成配管7の板厚t1のほぼ2倍程度とするのに加え、バイパス通路構成配管6の材質をタービン出口構成配管7の材質よりも熱膨張率の小さいものとし、更に、バイパス通路構成配管6の材質をタービン出口構成配管7の材質よりも高温強度の高いものにする、として説明したが、これに限定されない。   In addition, in the said Example, in addition to making plate | board thickness t2 of bypass passage structure piping 6 into about 2 times the plate thickness t1 of turbine outlet structure piping 7, the material of bypass passage structure piping 6 is turbine outlet structure piping. Although it has been described that the coefficient of thermal expansion is smaller than that of the material 7 and the material of the bypass passage constituting pipe 6 is higher in strength than the material of the turbine outlet constituting pipe 7, the present invention is not limited to this.

たとえば、バイパス通路構成配管6の板厚t2を調整することで所望の耐久性を確保できる場合には、バイパス通路構成配管6の材質を、熱膨張率の小さい材質または高温強度の高い材質のいずれか一方にするだけでもよい。   For example, when the desired durability can be ensured by adjusting the thickness t2 of the bypass passage constituting pipe 6, the material of the bypass passage constituting pipe 6 is either a material having a low coefficient of thermal expansion or a material having a high temperature strength. You can just use either.

以上のように、この発明に係るタービンハウジングは、ターボチャージャに採用される板金製のタービンハウジングに有用であり、特に、バイパス通路の耐久性を向上することを目指すタービンハウジングに適している。   As described above, the turbine housing according to the present invention is useful for a sheet metal turbine housing employed in a turbocharger, and is particularly suitable for a turbine housing that aims to improve the durability of a bypass passage.

この発明の実施例に係るタービンハウジングを示す側面図である。It is a side view which shows the turbine housing which concerns on the Example of this invention. タービンハウジングを示す正面図である。It is a front view which shows a turbine housing. 図2のA−A断面を示す断面図である。It is sectional drawing which shows the AA cross section of FIG. 図2のB−B断面を示す断面図である。It is sectional drawing which shows the BB cross section of FIG. タービン出口径DTOとバイパス通路径DBとの関係を示すグラフである。It is a graph which shows the relationship between turbine exit diameter DTO and bypass passage diameter DB.

符号の説明Explanation of symbols

1 タービンハウジング
2 スクロール部
2a タービン入口
2b タービン出口
3 タービン入口フランジ
4 タービン出口フランジ
5 バイパス通路
6 バイパス通路構成配管
7 タービン出口構成配管
t2 バイパス通路構成配管の板厚
t1 タービン出口構成配管の板厚
DESCRIPTION OF SYMBOLS 1 Turbine housing 2 Scroll part 2a Turbine inlet 2b Turbine outlet 3 Turbine inlet flange 4 Turbine outlet flange 5 Bypass passage 6 Bypass passage constituent pipe 7 Turbine outlet constituent pipe t2 Thickness of bypass passage constituent pipe t1 Thickness of turbine outlet constituent pipe

Claims (3)

少なくとも、渦状の排気ガス通路を構成するスクロール部と、
前記スクロール部から突設され、排気ガスの出口を構成するタービン出口構成配管と、
前記スクロール部を外部の排気ガス通路とバイパスするために前記スクロール部から突設され、前記タービン出口構成配管と別体に並設されたバイパス通路構成配管と、
前記タービン出口構成配管と前記バイパス通路構成配管とで支持されるタービン出口フランジと、
を備えたタービンハウジングにおいて、
前記バイパス通路構成配管の板厚を前記タービン出口構成配管の板厚よりも厚く形成したことを特徴とするタービンハウジング。
At least a scroll part constituting a spiral exhaust gas passage;
A turbine outlet configuration pipe projecting from the scroll portion and constituting an outlet of exhaust gas;
A bypass passage configuration pipe projecting from the scroll portion for bypassing the scroll portion with an external exhaust gas passage, and being arranged separately from the turbine outlet configuration pipe;
A turbine outlet flange supported by the turbine outlet constituent pipe and the bypass passage constituent pipe;
In a turbine housing with
A turbine housing characterized in that a plate thickness of the bypass passage constituting pipe is thicker than a plate thickness of the turbine outlet constituting pipe.
前記バイパス通路構成配管の材質を前記タービン出口構成配管の材質よりも熱膨張率の小さいものとしたことを特徴とする請求項1に記載のタービンハウジング。   2. The turbine housing according to claim 1, wherein a material of the bypass passage constituting pipe has a smaller coefficient of thermal expansion than a material of the turbine outlet constituting pipe. 前記バイパス通路構成配管の材質を前記タービン出口構成配管の材質よりも高温強度の高いものとしたことを特徴とする請求項1または2に記載のタービンハウジング。   The turbine housing according to claim 1 or 2, wherein a material of the bypass passage constituting pipe is higher in strength at a higher temperature than a material of the turbine outlet constituting pipe.
JP2006235818A 2006-08-31 2006-08-31 Turbine housing Expired - Fee Related JP4835330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006235818A JP4835330B2 (en) 2006-08-31 2006-08-31 Turbine housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235818A JP4835330B2 (en) 2006-08-31 2006-08-31 Turbine housing

Publications (2)

Publication Number Publication Date
JP2008057448A true JP2008057448A (en) 2008-03-13
JP4835330B2 JP4835330B2 (en) 2011-12-14

Family

ID=39240498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006235818A Expired - Fee Related JP4835330B2 (en) 2006-08-31 2006-08-31 Turbine housing

Country Status (1)

Country Link
JP (1) JP4835330B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110318168A1 (en) * 2009-03-09 2011-12-29 Borgwarner Inc. Exhaust-gas turbocharger
WO2012105004A1 (en) 2011-02-02 2012-08-09 三菱重工業株式会社 Sheet metal turbine housing
JP2013024205A (en) * 2011-07-25 2013-02-04 Toyota Motor Corp Exhaust turbine supercharger, and internal combustion engine
CN103282619A (en) * 2010-12-28 2013-09-04 五十铃自动车株式会社 Multi-stage supercharging device
WO2013141380A1 (en) 2012-03-23 2013-09-26 三菱重工業株式会社 Turbine housing assembly
WO2013141379A1 (en) 2012-03-23 2013-09-26 三菱重工業株式会社 Turbine housing assembly and production method for turbine housing assembly
WO2015097872A1 (en) 2013-12-27 2015-07-02 三菱重工業株式会社 Turbine housing
US9194292B2 (en) 2009-12-21 2015-11-24 Mitsubishi Heavy Industries, Ltd. Turbine housing
JP2016156331A (en) * 2015-02-25 2016-09-01 カルソニックカンセイ株式会社 Turbine housing
CN105940203A (en) * 2014-02-28 2016-09-14 三菱重工业株式会社 Sheet metal turbine housing
US9581045B2 (en) 2010-02-01 2017-02-28 Mitsubishi Heavy Industries, Ltd. Sheet metal turbine housing
JP2019094904A (en) * 2019-02-22 2019-06-20 カルソニックカンセイ株式会社 Turbine housing
US10519806B2 (en) 2015-11-06 2019-12-31 Calsonic Kansei Corporation Turbine housing
US11421556B2 (en) * 2017-12-26 2022-08-23 Marelli Corporation Manufacturing method of turbine housing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011631A (en) * 1983-07-01 1985-01-21 Toyota Motor Corp Turbine housing for turbocharger
JP2001303963A (en) * 2000-04-19 2001-10-31 Aisin Takaoka Ltd Exhaust bypass structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011631A (en) * 1983-07-01 1985-01-21 Toyota Motor Corp Turbine housing for turbocharger
JP2001303963A (en) * 2000-04-19 2001-10-31 Aisin Takaoka Ltd Exhaust bypass structure

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110318168A1 (en) * 2009-03-09 2011-12-29 Borgwarner Inc. Exhaust-gas turbocharger
US8869526B2 (en) * 2009-03-09 2014-10-28 Borgwarner Inc. Exhaust-gas turbocharger
EP3260670A1 (en) 2009-12-21 2017-12-27 Mitsubishi Heavy Industries, Ltd. Turbine housing
US9194292B2 (en) 2009-12-21 2015-11-24 Mitsubishi Heavy Industries, Ltd. Turbine housing
US9581045B2 (en) 2010-02-01 2017-02-28 Mitsubishi Heavy Industries, Ltd. Sheet metal turbine housing
US20130269341A1 (en) * 2010-12-28 2013-10-17 Iori Kurata Multi-stage supercharging apparatus
CN103282619A (en) * 2010-12-28 2013-09-04 五十铃自动车株式会社 Multi-stage supercharging device
US9217394B2 (en) * 2010-12-28 2015-12-22 Isuzu Motors Limited Multi-stage supercharging apparatus
WO2012105004A1 (en) 2011-02-02 2012-08-09 三菱重工業株式会社 Sheet metal turbine housing
US9255485B2 (en) 2011-02-02 2016-02-09 Mitsubishi Heavy Industries, Ltd. Turbine housing made of sheet metal
JP2013024205A (en) * 2011-07-25 2013-02-04 Toyota Motor Corp Exhaust turbine supercharger, and internal combustion engine
CN104379898A (en) * 2012-03-23 2015-02-25 三菱重工业株式会社 Turbine housing assembly
US9708932B2 (en) 2012-03-23 2017-07-18 Mitsubishi Heavy Industries, Ltd. Turbine housing assembly
US9835165B2 (en) 2012-03-23 2017-12-05 Mitsubishi Heavy Industries, Ltd. Turbine housing assembly and manufacturing method of turbine housing assembly
EP2829703A4 (en) * 2012-03-23 2016-04-13 Mitsubishi Heavy Ind Ltd Turbine housing assembly and production method for turbine housing assembly
WO2013141380A1 (en) 2012-03-23 2013-09-26 三菱重工業株式会社 Turbine housing assembly
CN104379899B (en) * 2012-03-23 2017-03-15 三菱重工业株式会社 Turbine shroud component and the manufacture method of turbine shroud component
WO2013141379A1 (en) 2012-03-23 2013-09-26 三菱重工業株式会社 Turbine housing assembly and production method for turbine housing assembly
JP2013199863A (en) * 2012-03-23 2013-10-03 Mitsubishi Heavy Ind Ltd Turbine housing assembly and method for manufacturing turbine housing assembly
WO2015097872A1 (en) 2013-12-27 2015-07-02 三菱重工業株式会社 Turbine housing
US10145267B2 (en) 2013-12-27 2018-12-04 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine housing
CN105940203A (en) * 2014-02-28 2016-09-14 三菱重工业株式会社 Sheet metal turbine housing
CN105940203B (en) * 2014-02-28 2019-08-06 三菱重工发动机和增压器株式会社 Metal plate turbine shroud
US10400617B2 (en) 2014-02-28 2019-09-03 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Sheet-metal turbine housing
JP2016156331A (en) * 2015-02-25 2016-09-01 カルソニックカンセイ株式会社 Turbine housing
US10519806B2 (en) 2015-11-06 2019-12-31 Calsonic Kansei Corporation Turbine housing
US11421556B2 (en) * 2017-12-26 2022-08-23 Marelli Corporation Manufacturing method of turbine housing
JP2019094904A (en) * 2019-02-22 2019-06-20 カルソニックカンセイ株式会社 Turbine housing

Also Published As

Publication number Publication date
JP4835330B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4835330B2 (en) Turbine housing
KR101639345B1 (en) Exhaust-Gas Turbocharger
EP1916399A3 (en) Heat exchanger assembly for a gas turbine engine
CN104334835B (en) High pressure silencing apparatus
US7857576B2 (en) Seal system for an interturbine duct within a gas turbine engine
WO2009114568A3 (en) Exhaust manifold of an internal combustion engine
JP5390605B2 (en) Turbine housing for exhaust turbocharger of internal combustion engine
EP2239436A3 (en) Reverse flow ceramic matrix composite combustor
JP2013526673A (en) Exhaust gas turbocharger
CA2371691A1 (en) An air-cooled gas turbine exhaust casing
US8747066B2 (en) Gas turbine housing component
FI122852B (en) Pre-compression system in two stages
JP2011122594A (en) Exhaust manifold having baffle plate
JPWO2006101125A1 (en) Exhaust system parts
JP4779898B2 (en) Turbine housing
US20070051503A1 (en) Corrosion resistant charge air cooler and method of making same
KR20180099524A (en) Turbocharger
US7909569B2 (en) Turbine support case and method of manufacturing
JP2019203504A (en) Turbocharger, and drive system comprising fuel cell and turbocharger
JP5843757B2 (en) Turbocharger
EP2872751B1 (en) Exhaust module and reciprocating engine
JP5648221B2 (en) Engine turbocharge system
JP2005226470A (en) Turbocharger
EP2612005B1 (en) Exhaust module and internal combustion engine
JP2004116518A (en) Method and device for supporting high-temperature duct device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110630

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4835330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees