JP2008056748A - Rubber material composition, rubber molded product and weather strip for automobile - Google Patents

Rubber material composition, rubber molded product and weather strip for automobile Download PDF

Info

Publication number
JP2008056748A
JP2008056748A JP2006232890A JP2006232890A JP2008056748A JP 2008056748 A JP2008056748 A JP 2008056748A JP 2006232890 A JP2006232890 A JP 2006232890A JP 2006232890 A JP2006232890 A JP 2006232890A JP 2008056748 A JP2008056748 A JP 2008056748A
Authority
JP
Japan
Prior art keywords
rubber
molded body
phr
rubber molded
material composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006232890A
Other languages
Japanese (ja)
Inventor
Masakazu Mannaka
将一 眞中
Yoshihiro Ito
喜洋 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinugawa Rubber Industrial Co Ltd
Original Assignee
Kinugawa Rubber Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinugawa Rubber Industrial Co Ltd filed Critical Kinugawa Rubber Industrial Co Ltd
Priority to JP2006232890A priority Critical patent/JP2008056748A/en
Publication of JP2008056748A publication Critical patent/JP2008056748A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber molded product which sufficiently exerts desired functions and retains lubricity, non-sticking property, etc., without deteriorating its productivity and resistance to permanent set in fatigue. <P>SOLUTION: The rubber material composition is obtained by compounding at least an ethylene-α-olefin-nonconjugated polyene copolymer, carbon black, a softener and a silicone compound and is used to form at least the surface side of an abutment site of a rubber molded product. The molded product has a polymer material such as the rubber material compounded therein and is obtained by extrusion molding and vulcanization. A small amount of relatively large-grained carbon black (arithmetic average grain size of ≥60 nm, 50-100 phr) is used as the carbon black, and a silicone compound with viscosity (25°C) of ≥1,000 cSt is used as the silicone compound. On the rubber molded product comprising the rubber material composition, a carbon-derived uneven surface 10c is formed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ゴム材料組成物,ゴム成形体,および自動車用ウェザーストリップに関するものであって、例えば自動車用のドアパネルやガラス等に適用されるものである。   The present invention relates to a rubber material composition, a rubber molded body, and a weather strip for automobiles, and is applied to, for example, automobile door panels and glass.

ゴム材料等の高分子材料が配合されたゴム材料組成物から成る加硫成形体(以下、ゴム成形体と称する)は、種々の用途に適用されており、その用途に応じた特性を満たすことができるように研究開発されている。例えば、前記のゴム成形体は、適用される対象(以下、被適用対象と称する;例えば、自動車用ウェザーストリップの場合にはドア部やトランク部等)に応じて、他の部材等(例えば、前記ドア部に用いられるウェザーストリップの場合はパネルやガラス、トランク部に用いられるウェザーストリップの場合はパネルに該当する;以下、当接対象と称する)に対して当接(圧接,摺接等)する部位(例えば、シールリップ等;以下、当接部位と称する)がある。この当接部位において滑性(例えば、ゴム成形体が当接対象に対して摺動するように用いられる場合には、スティックスリップによる低級音が発生しないようにする特性)や耐貼付性(例えば、ゴム成形体と当接対象との貼り付きによる該ゴム成形体の機能低下が起こらないようにする特性)が低い場合には、例えば高分子弾性材料から成る表面処理剤を該ゴム成形体の表面(少なくとも、諸特性を要する箇所(当接部位等)の表面)に対して塗布する手段が採られている。   Vulcanized moldings (hereinafter referred to as rubber moldings) composed of a rubber material composition in which a polymer material such as a rubber material is blended are applied to various uses and satisfy the characteristics according to the use. It has been researched and developed to be able to. For example, the rubber molded body is applied to another member (for example, in the case of a weather strip for an automobile, for example, a door portion or a trunk portion). In the case of a weather strip used for the door portion, it corresponds to a panel or glass, and in the case of a weather strip used for a trunk portion, it corresponds to a panel; hereinafter referred to as a contact target) (contact pressure, sliding contact, etc.) There are parts (for example, seal lips, etc .; hereinafter referred to as contact parts). In this contact portion, slipperiness (for example, a characteristic that prevents a low-pitched sound from being generated by stick-slip when a rubber molded body is slid with respect to the contact target) and anti-sticking property (for example, In the case where the property of preventing the rubber molded body from being deteriorated due to sticking between the rubber molded body and the contact target is low), for example, a surface treatment agent made of a polymer elastic material is used for the rubber molded body. A means for applying to the surface (at least the surface of a portion (contact portion or the like) that requires various characteristics) is employed.

例えば、自動車用ドア(ドアパネル)に用いられシール部(例えば、スポンジゴムから成るシール部)を構成したウェザーストリップの場合は、そのシール部に表面処理剤を塗布しておくことにより、ドア開閉時におけるシール部とドアパネルとの貼り付きを防止して該ドア開閉が困難にならないようにしている。また、前記のゴム成形体の表面がガラスやドアパネル等と摺動する用途の場合には、前記の表面処理剤により該ゴム成形体表面の滑性を高めてスティックスリップによる低級音の発生を防止している。   For example, in the case of a weather strip that is used for automobile doors (door panels) and that forms a sealing part (for example, a sealing part made of sponge rubber), a surface treatment agent is applied to the sealing part so that the door can be opened and closed. Is prevented from sticking between the seal portion and the door panel so that the opening and closing of the door does not become difficult. In addition, when the surface of the rubber molded body is used for sliding with glass, door panels, etc., the surface treatment agent increases the lubricity of the rubber molded body surface to prevent the generation of low-pitched sound due to stick slip. is doing.

前記の表面処理剤としては、例えば硬化性のポリウレタンにジオルガノポリシロキサンを添加して成るものが知られており、その表面処理剤を高分子成形体に塗布し滑性,耐貼付性等を向上させることが知られている。また、塗布された表面処理剤による層(以下、表面処理層と称する)は、当接対象との摩擦(例えば、局所的な摩擦)等に起因して時間経過と共に厚さが薄くなる可能性があるため、該表面処理層の厚さを十分に確保しておく手法が採られている。   As the surface treatment agent, for example, a material obtained by adding diorganopolysiloxane to curable polyurethane is known, and the surface treatment agent is applied to a polymer molded body to provide lubricity, anti-sticking property and the like. It is known to improve. In addition, the layer of the applied surface treatment agent (hereinafter referred to as the surface treatment layer) may become thinner with time due to friction with the contact target (for example, local friction). For this reason, a method of ensuring a sufficient thickness of the surface treatment layer is employed.

しかしながら、前記のようにゴム成形体に表面処理剤を塗布する場合には、その塗布条件(例えば、塗布する際の表面処理剤の温度,粘度等や、被塗布対象であるゴム成形体の温度等)に応じて塗布斑が生じたり(例えば、表面処理剤が均一に塗布されず塗布斑が生じたり)、その塗布された表面処理剤による層(以下、表面処理層と称する)の厚さが不十分になり易かった。また、表面処理層が厚い場合には、該表面処理層の弾性(伸張永久歪み性等)が十分でないと、ゴム成形体自体の弾性等の機能が低下してしまう恐れがある。   However, when the surface treatment agent is applied to the rubber molded body as described above, the application conditions (for example, the temperature and viscosity of the surface treatment agent at the time of application, the temperature of the rubber molded body to be coated) Etc.) depending on the thickness (for example, the surface treatment agent is not uniformly applied and the application spots are generated), or the thickness of the layer (hereinafter referred to as the surface treatment layer) by the applied surface treatment agent It was easy to become insufficient. Moreover, when the surface treatment layer is thick, if the surface treatment layer has insufficient elasticity (elongation permanent distortion, etc.), functions such as elasticity of the rubber molded body itself may be deteriorated.

このため、表面処理剤の塗布に応じて(例えば、表面処理層の厚さに応じて)目的とするゴム成形体の生産性(製品歩留まり等)が低下する恐れや、十分な滑性,耐貼付性等が得られずにゴム成形体の機能(例えば、ウェザーストリップの場合にはシール性等)等を発揮できない恐れがあった。   For this reason, depending on the application of the surface treatment agent (for example, depending on the thickness of the surface treatment layer), the productivity (product yield, etc.) of the target rubber molded product may be reduced, and sufficient lubricity, There is a possibility that the function of the rubber molded body (for example, sealability in the case of a weather strip) or the like cannot be exhibited without sticking properties and the like.

近年においては、前記のように表面処理剤を用いる替わりに、エチレン‐α‐オレフィン・非共役ポリエン共重合体にシリコーン化合物を配合し、該シリコーン化合物のブリードによりゴム成形体(特に、ブレーキカップ)に滑性等を付与する技術が知られている。前記のシリコーン化合物においては、粘度(25℃)1000Pa・s以上(約1×106cSt以上に相当)のものが適用されている(例えば、特許文献1等)。 In recent years, instead of using a surface treatment agent as described above, a silicone compound is blended with an ethylene-α-olefin / non-conjugated polyene copolymer, and rubber moldings (particularly brake cups) are produced by bleeding the silicone compound. Techniques for imparting lubricity and the like are known. As the silicone compound, one having a viscosity (25 ° C.) of 1000 Pa · s or more (corresponding to about 1 × 10 6 cSt or more) is used (for example, Patent Document 1).

しかしながら、前記のようにゴム成形体自体に対し単にシリコーン化合物を配合し滑性等を付与する技術は、耐貼付性等に関しては想定されておらず、該滑性等を長期間持続させることも想定されていなかった。
特許第3511899号公報。
However, as described above, the technology of simply blending a silicone compound with the rubber molded body itself to impart lubricity is not assumed with respect to sticking resistance and the like, and may maintain the lubricity for a long period of time. It was not supposed.
Japanese Patent No. 3511899.

以上示したようなことから、ゴム成形体において、表面処理剤を用いなくとも滑性,耐貼付性等を付与できると共に、それら滑性,耐貼付性等を長期間持続させ、該ゴム成形体の機能を十分に発揮させることが可能な技術が望まれていた。   As described above, the rubber molded body can be provided with slipperiness, sticking resistance, etc. without using a surface treatment agent, and the slipperiness, sticking resistance, etc. can be maintained for a long period of time. A technique capable of fully exerting the functions of has been desired.

本発明は、前記課題に基づいてなされたものであり、表面処理剤の塗布等を行わなくとも、生産性を損うことなくゴム成形体の滑性,耐貼付性等を高め、目的とするゴム成形体の機能を十分に発揮すると共に、それら滑性,耐貼付性等の物性が長期間持続するゴム材料組成物,ゴム成形体,および自動車用ウェザーストリップを提供することにある。   The present invention has been made on the basis of the above problems, and aims to improve the lubricity, sticking resistance, and the like of a rubber molded body without impairing productivity without performing application of a surface treatment agent or the like. An object of the present invention is to provide a rubber material composition, a rubber molded body, and a weather strip for automobiles that sufficiently exhibit the functions of the rubber molded body and that have physical properties such as slidability and adhesion resistance for a long period of time.

具体的には、請求項1記載の発明は、押出し成形加硫によるゴム成形体の当接部位のうち少なくとも表面側に用いられ、少なくとも、エチレン‐α‐オレフィン・非共役ポリエン共重合体100phrと、算術平均粒径60nm以上のカーボンブラック50phr〜100phrと、軟化剤100phr以下と、粘度(25℃)が1000cSt以上のシリコーン化合物と、を配合したゴム材料組成物であることを特徴とする。   Specifically, the invention according to claim 1 is used on at least the surface side of the contact portion of the rubber molded body by extrusion molding vulcanization, and includes at least 100 phr of an ethylene-α-olefin / non-conjugated polyene copolymer. A rubber material composition containing carbon black 50 phr to 100 phr having an arithmetic average particle size of 60 nm or more, a softening agent 100 phr or less, and a silicone compound having a viscosity (25 ° C.) of 1000 cSt or more.

請求項2記載の発明は、請求項1記載の発明において、発泡剤を配合したことを特徴とする。   The invention described in claim 2 is characterized in that, in the invention described in claim 1, a foaming agent is blended.

請求項3記載の発明は、請求項1または2記載のゴム材料組成物を押出し成形加硫して成るゴム成形体であって、前記ゴム成形体の当接部位のうち少なくとも表面側にカーボン由来凹凸面(すなわち、カーボンブラックの粒径,配合量等に起因する凹凸面)が形成され、比重が0.3以上であることを特徴とする。   The invention according to claim 3 is a rubber molded body obtained by extruding and vulcanizing the rubber material composition according to claim 1 or 2, wherein at least the surface side of the contact portion of the rubber molded body is derived from carbon. An uneven surface (that is, an uneven surface resulting from the particle size, blending amount, etc. of carbon black) is formed, and the specific gravity is 0.3 or more.

請求項4記載の発明は、請求項3記載の発明において、静摩擦持続指数Δμs,動摩擦持続指数Δμdがそれぞれ0.9以下,0.7以下、耐貼付持続指数ΔSが80以下であることを特徴とする。   The invention according to claim 4 is characterized in that, in the invention according to claim 3, the static friction duration index Δμs and the dynamic friction duration index Δμd are 0.9 or less and 0.7 or less, respectively, and the sticking resistance duration index ΔS is 80 or less. And

請求項5記載の発明は、請求項1または2のゴム材料組成物を押出し成形加硫して成る自動車用ウェザーストリップであって、前記ウェザーストリップの当接部位のうち少なくとも表面側にカーボン由来凹凸面が形成され、比重が0.3以上であることを特徴とする。   The invention according to claim 5 is an automotive weather strip formed by extrusion molding and vulcanizing the rubber material composition according to claim 1 or 2, wherein at least the surface of the contact portion of the weather strip has unevenness derived from carbon. A surface is formed, and the specific gravity is 0.3 or more.

請求項6記載の発明は、請求項5記載の発明において、静摩擦持続指数Δμs,動摩擦持続指数Δμdがそれぞれ0.9以下,0.7以下であり、耐貼付持続指数ΔSが80以下であることを特徴とする。   The invention according to claim 6 is the invention according to claim 5, wherein the static friction duration index Δμs and the dynamic friction duration index Δμd are 0.9 or less and 0.7 or less, respectively, and the anti-sticking duration index ΔS is 80 or less. It is characterized by.

前記のように、少なくとも、エチレン‐α‐オレフィン・非共役ポリエン共重合体100phrと、算術平均粒径60nm以上のカーボンブラック50phr〜100phrと、軟化剤100phr以下と、粘度(25℃)が1000cSt以上のシリコーン化合物と、を配合したゴム材料組成物により、表面処理剤等を塗布しないため、その塗布条件等を考慮する必要がなくなる。   As described above, at least 100 phr of ethylene-α-olefin / non-conjugated polyene copolymer, 50 phr to 100 phr of carbon black having an arithmetic average particle size of 60 nm or more, 100 phr or less of a softening agent, and a viscosity (25 ° C.) of 1000 cSt or more. Since the surface treatment agent or the like is not applied by the rubber material composition containing the silicone compound, it is not necessary to consider the application conditions.

また、前記のゴム材料組成物を押出し成形加硫して成るゴム成形体は、算術平均粒径60nm以上のカーボンブラック50phr〜100phr配合したことにより、前記のゴム成形体内において局所的にエチレン‐α‐オレフィン・非共役ポリエン共重合体成分の多い部分が形成され、その部分で収縮等を起こすため、該カーボンブラックの粒径,配合量等に起因する表面粗度のカーボン由来凹凸面が形成される。これにより、前記のゴム成形体と当接対象との接触面積は小さくなる。   In addition, a rubber molded body obtained by extrusion molding and vulcanizing the rubber material composition is blended with 50 phr to 100 phr of carbon black having an arithmetic average particle size of 60 nm or more, so that ethylene-α is locally contained in the rubber molded body. -Since a part with a large amount of olefin / non-conjugated polyene copolymer component is formed and shrinkage occurs at that part, a carbon-derived uneven surface with surface roughness due to the particle size, blending amount, etc. of the carbon black is formed. The Thereby, the contact area of the said rubber molded object and contact object becomes small.

前記のエチレン‐α‐オレフィン・非共役ポリエン共重合体,カーボンブラック,軟化剤,シリコーン化合物の配合量は、それぞれの配合量は目的とするゴム材料組成物やゴム成形体の特性を損わない程度とすることが好ましい。   The blending amount of the above-mentioned ethylene-α-olefin / non-conjugated polyene copolymer, carbon black, softening agent, and silicone compound does not impair the properties of the intended rubber material composition and rubber molding. It is preferable to set the degree.

例えば、前記のエチレン‐α‐オレフィン・非共役ポリエン共重合体,カーボンブラック,軟化剤,シリコーン化合物の配合量において、本発明に示す範囲外では、ゴム材料組成物の混練加工性,押出し成形性やゴム成形体の特性(滑性,耐貼り付き性等)が低下する可能性がある。   For example, if the blending amount of the above-mentioned ethylene-α-olefin / non-conjugated polyene copolymer, carbon black, softener, and silicone compound is outside the range shown in the present invention, the kneadability and extrudability of the rubber material composition In addition, the properties (sliding property, sticking resistance, etc.) of the rubber molded body may be deteriorated.

カーボンブラックの配合量において、過少の場合にはゴム材料組成物の混練加工性や押出成形性が損われ、過多の場合にはゴム成形体のカーボン由来凹凸面が形成されない可能性がある。   When the amount of carbon black is too small, the kneading processability and extrusion moldability of the rubber material composition are impaired, and when it is excessive, the carbon-derived uneven surface of the rubber molded body may not be formed.

前記のシリコーン化合物が過剰に配合されている場合には、前記のゴム成形体を溶融接着(例えば、熱可塑性エラストマーとの溶融接着や、ゴム部材と射出成形等する際の溶融接着)することが困難になる可能性がある。また、シリコーン化合物の粘度が低過ぎると、混練加工性等が損われる可能性がある。また、シリコーン化合物の粘度が過小(例えば、100cSt程度)であると、ゴム材料組成物の混練加工性等が損われる可能性がある。   When the silicone compound is excessively blended, the rubber molded body may be melt-bonded (for example, melt-bonding with a thermoplastic elastomer or melt-bonding when a rubber member is injection-molded). It can be difficult. If the viscosity of the silicone compound is too low, kneading processability and the like may be impaired. If the viscosity of the silicone compound is too low (for example, about 100 cSt), the kneading processability of the rubber material composition may be impaired.

軟化剤においては、該軟化剤が粘着性を有する場合、過剰に配合されるとゴム成形体の耐貼付性が損われる可能性がある。   In the softening agent, when the softening agent has adhesiveness, there is a possibility that the sticking resistance of the rubber molded body is impaired when it is excessively blended.

なお、発泡剤を配合する場合、該配合量が過剰であるとゴム成形体の比重が過小(例えば、一般的な自動車用ウェザーストリップ等のゴム成形体の比重と比較して過小)になる。このようにゴム成形体の比重が過小の場合、該ゴム成形体内部の発泡セルが多くなりシリコーン化合物のブリードを阻害し、ブリード速度が遅過ぎてしまう可能性がある。   When the foaming agent is blended, if the blending amount is excessive, the specific gravity of the rubber molded body becomes too small (for example, compared with the specific gravity of a rubber molded body such as a general automobile weather strip). When the specific gravity of the rubber molded body is too small as described above, the foamed cells inside the rubber molded body increase, which may inhibit the bleed of the silicone compound and the bleed speed may be too slow.

前記の静摩擦持続指数Δμs,動摩擦持続指数Δμdは、それぞれゴム成形体の熱加速劣化処理前後の静摩擦係数,動摩擦係数を比較(例えば、後述の(3)式に基づいて算出)することにより定められるものである。また、耐貼付持続指数ΔSは、ゴム成形体の熱加速劣化処理前後の耐貼り付き力を比較(例えば、後述の(2)式に基づいて算出)することにより定められるものである。   The static friction persistence index Δμs and the dynamic friction persistence index Δμd are determined by comparing the static friction coefficient and the dynamic friction coefficient before and after thermal acceleration deterioration treatment of the rubber molded body (for example, calculated based on the formula (3) described later). Is. Further, the sticking resistance index ΔS is determined by comparing the sticking resistance before and after the thermal accelerated deterioration treatment of the rubber molded body (for example, calculation based on the formula (2) described later).

前記の各材料の他に、例えば一般的な押出し成形加硫によるゴム成形体の技術分野で扱われている各種材料を適宜配合しても良いが、それぞれの配合量は目的とするゴム材料組成物やゴム成形体の特性を損わない程度とすることが好ましい。   In addition to the above-mentioned materials, for example, various materials used in the technical field of rubber moldings by general extrusion molding vulcanization may be appropriately blended. It is preferable that the properties of the article and the rubber molded body are not impaired.

例えば、加硫剤,加硫促進剤,加硫促進助剤等を用いる場合、それらの配合量が少なすぎると加硫進行が緩慢となり、該配合量が多すぎるとブルーム現象等を引き起こす可能性がある。   For example, when using vulcanizing agents, vulcanization accelerators, vulcanization accelerating aids, etc., if the blending amount is too small, the vulcanization progresses slowly, and if the blending amount is too large, the Bloom phenomenon may occur. There is.

請求項1,2記載の発明によれば、ゴム材料組成物の混練加工性,押出し成形性が良好であり、請求項3〜6記載の発明のようにゴム材料組成物の押出し成形加硫によって得られるゴム成形体においてカーボン由来粗面が形成され、該ゴム成形体表面と当接対象との接触面積が小さくなると共に、該カーボン由来凹凸面にブリード物が残存し、例えば表面処理剤の塗布等を行う必要がないため、生産性,耐へたり性(例えば、ウェザーストリップ等の場合にはシール性等)等を損うことなく十分良好な滑性,耐貼付性等の物性が持続する。これにより、目的とするゴム成形体の機能を十分に発揮できる。   According to the first and second aspects of the invention, the rubber material composition has good kneadability and extrudability, and the rubber material composition is extruded and vulcanized as in the third to sixth aspects of the invention. In the resulting rubber molded body, a carbon-derived rough surface is formed, the contact area between the surface of the rubber molded body and the contact object is reduced, and bleeds remain on the carbon-derived uneven surface, for example, application of a surface treatment agent Therefore, physical properties such as sufficient slipperiness and sticking resistance are maintained without impairing productivity and sag resistance (for example, sealability in the case of weather strips). . Thereby, the function of the target rubber molding can be fully exhibited.

また、請求項2記載の発明によれば、接触面積がより小さくなり、耐貼付性等の物性がより良好となる。   Further, according to the invention described in claim 2, the contact area becomes smaller, and physical properties such as sticking resistance become better.

さらに、請求項3,5記載の発明によれば、良好な滑性,耐貼付性等の物性がより安定して持続する。   Furthermore, according to invention of Claim 3, 5, physical properties, such as favorable lubricity and sticking resistance, remain more stably.

さらにまた、請求項4,6記載の発明によれば、少なくとも表面処理層を設けた場合と比較して同等以上の滑性,耐貼付性等の物性が得られる。   Furthermore, according to the fourth and sixth aspects of the invention, physical properties such as lubricity and sticking resistance equal to or higher than those obtained when at least a surface treatment layer is provided can be obtained.

以下、本発明の実施の形態におけるゴム材料組成物,ゴム成形体,自動車用ウェザーストリップを図面等に基づいて詳細に説明する。   Hereinafter, a rubber material composition, a rubber molded body, and an automobile weather strip in an embodiment of the present invention will be described in detail with reference to the drawings.

本実施形態は、ゴム材料(例えば、エチレン‐α‐オレフィン・非共役ポリエン共重合体)等の高分子材料を配合し押出し成形加硫によるゴム成形体に係るものであり、該ゴム成形体の当接部位のうち少なくとも表面側において、少なくとも前記の高分子材料,カーボンブラック,軟化剤,シリコーン化合物を配合し、前記のカーボンブラックには比較的粒径の大きいものを少量(一般的な押出し成形加硫によるゴム成形体の技術分野で扱われている量(例えば、140phr以上)よりも少量)用い、前記のシリコーン化合物には粘度(25℃)1000cSt以上のものを用いるものである。   The present embodiment relates to a rubber molded body obtained by blending a polymer material such as a rubber material (for example, ethylene-α-olefin / non-conjugated polyene copolymer) and extrusion molding vulcanization. At least the above-mentioned polymer material, carbon black, softening agent, and silicone compound are blended at least on the surface side of the contact part, and a small amount of the carbon black having a relatively large particle size (general extrusion molding) The amount of rubber molded body treated by vulcanization (for example, smaller than 140 phr or more) is used, and the silicone compound having a viscosity (25 ° C.) of 1000 cSt or more is used.

一般的な押出し成形加硫においては、ゴム材料組成物を押出し成形機のダイから吐出した後、その吐出物(押出し成形物)をフリーな状態(型成形とは異なり、吐出物に対する圧力が殆どかからない状態)にて架橋反応させることにより、目的とするゴム成形体を得るものである。例えば、一般的なゴム成形体(ゴム材料組成物を押出し成形加硫して成るゴム成形体)として、エチレン‐α‐オレフィン・非共役ポリエン共重合体に平均粒径60nm未満のカーボンブラックを配合した場合、または、60nm以上であっても100phrより多く配合した場合には、図1Aの構造モデル図に示すように、ゴム成形体10の表面(図中では符号10aで示す平坦面)は比較的平坦なものとなる。   In general extrusion molding vulcanization, after the rubber material composition is discharged from the die of the extrusion molding machine, the discharged product (extruded product) is in a free state (unlike mold molding, the pressure on the discharged product is almost The target rubber molding is obtained by carrying out a crosslinking reaction in a non-applying state. For example, carbon black with an average particle size of less than 60 nm is blended with an ethylene-α-olefin / non-conjugated polyene copolymer as a general rubber molded product (rubber molded product obtained by extrusion molding and vulcanizing a rubber material composition). When the blending amount is more than 100 phr even if it is 60 nm or more, as shown in the structural model diagram of FIG. 1A, the surface of the rubber molded body 10 (flat surface indicated by reference numeral 10a in the drawing) is compared. Flat.

図1Aに示すようなゴム成形体10においてシリコーン化合物が配合されている場合には、図1Bに示すように平坦面10aにシリコーン化合物がブリードし、そのブリード物(図中では符号10b)によって滑性,耐貼り付き性が得られるものの、例えばゴム成形体10の組み付け作業による拭き取られや被適用対象の当接対象との摺動等に起因して、該平坦面10aのブリード物10bが容易に除去される可能性がある。この場合には、シリコーン化合物のブリードが再度起こることにより滑性,耐貼付性等が得られるものの、該ブリードに至るまでに所定時間を要する。   When a silicone compound is blended in the rubber molded body 10 as shown in FIG. 1A, the silicone compound bleeds on the flat surface 10a as shown in FIG. 1B, and is slid by the bleed material (reference numeral 10b in the figure). The bleed material 10b on the flat surface 10a is caused by, for example, wiping by the assembling work of the rubber molded body 10 or sliding with the contact target of the application target. It can be easily removed. In this case, the bleed of the silicone compound occurs again to obtain lubricity, sticking resistance, etc., but it takes a predetermined time to reach the bleed.

一方、本実施形態のように、前記エチレン‐α‐オレフィン・非共役ポリエン共重合体に平均粒径60nm以上のカーボンブラックが100phr以下配合されたゴム材料組成物を押出し成形加硫して成るゴム成形体の場合には、図1C,図1D(図1Cの部分拡大図)の構造モデル図に示すように、ゴム成形体10の表面に対して表面粗度の小さいカーボン由来凹凸面10cが形成される。これは、粒径の大きなカーボンブラックの配合量が比較的少量であるため、前記のゴム成形体10内において局所的にエチレン‐α‐オレフィン・非共役ポリエン共重合体成分の多い部分が形成され、その部分で収縮等を起こし易くなるためと考えられる。   On the other hand, as in this embodiment, rubber formed by extrusion molding and vulcanizing a rubber material composition in which carbon black having an average particle size of 60 nm or more is blended in an amount of 100 phr or less in the ethylene-α-olefin / non-conjugated polyene copolymer. In the case of a molded body, as shown in the structural model diagrams of FIGS. 1C and 1D (partially enlarged view of FIG. 1C), a carbon-derived uneven surface 10c having a small surface roughness with respect to the surface of the rubber molded body 10 is formed. Is done. This is because the blended amount of carbon black having a large particle size is relatively small, so that a portion having a large amount of ethylene-α-olefin / non-conjugated polyene copolymer component is locally formed in the rubber molded body 10. This is thought to be due to the possibility of causing shrinkage or the like at that portion.

また、本実施の形態においては、図1Eに示すようにカーボン由来凹凸面10cにシリコーン化合物がブリードし、前記のブリード物は、例えばゴム成形体の組み付け作業による拭き取られや被適用対象における当接対象との摺動等が行われた場合、図1Fに示すように該カーボン由来凹凸面10cの特に外周側(特に、カーボン由来凹凸面10aのうち凸部の外周側)のブリード物10bは除去され易い可能性があるが、該カーボン由来凹凸面10cの特に内部側(特に、カーボン由来凹凸面10cのうち凹部)のブリード物は除去され難く残存する。   Further, in the present embodiment, as shown in FIG. 1E, the silicone compound bleeds on the carbon-derived uneven surface 10c, and the bleed material is wiped off by, for example, assembling work of a rubber molded body or applied to an object to be applied. When sliding with the contact target is performed, as shown in FIG. 1F, the bleed object 10b on the outer peripheral side of the carbon-derived uneven surface 10c (especially, the outer peripheral side of the convex portion of the carbon-derived uneven surface 10a) Although there is a possibility of being easily removed, the bleed material on the inner side (particularly, the concave portion of the carbon-derived uneven surface 10c) of the carbon-derived uneven surface 10c remains difficult to be removed.

図1Fのようにカーボン由来凹凸面10cのうちブリード物10bが除去された領域(以下、除去領域と称する)10dが存在する場合、残存したブリード物(少なくとも、一部のブリード物)が該除去領域に移動する。また、カーボン由来凹凸面10cのうち特に凹部においては、残存したブリード物10bにさらに経時変化によりブリード物10bストック増量され、この結果前記除去領域10dへのブリード物10bの移動が起こり易くなる。   As shown in FIG. 1F, when there is a region 10d from which the bleed material 10b is removed (hereinafter referred to as a removal region) in the uneven surface 10c derived from carbon, the remaining bleed material (at least a part of the bleed material) is removed. Move to the area. Further, in the concave portion 10c derived from carbon, particularly in the concave portion, the amount of the bleed material 10b is further increased due to a change with time in the remaining bleed material 10b, and as a result, the bleed material 10b easily moves to the removal region 10d.

したがって、本実施形態によれば、たとえカーボン由来凹凸面10cに除去領域10dのようにブリード物10bが除去されて図1Fに示すような状態になっても、図1E(G)に示すような状態に戻り易く、滑性,耐貼付性等が長期間安定して持続する。   Therefore, according to this embodiment, even if the bleed material 10b is removed on the carbon-derived uneven surface 10c as in the removal region 10d and the state shown in FIG. 1F is obtained, as shown in FIG. 1E (G). It is easy to return to the state, and the slipperiness and sticking resistance etc. are stably maintained for a long time.

本実施形態のゴム材料組成物およびゴム成形体においては、以下に示すようなエチレン‐α‐オレフィン・非共役ポリエン共重合体,カーボンブラック,軟化剤,シリコーン化合物だけでなく、例えば使用目的に応じて発泡剤,加硫剤,加硫促進助剤,加硫促進助剤,加工助剤,無機充填剤等の各種添加剤が適宜配合されたものであっても良い。   In the rubber material composition and rubber molded body of the present embodiment, not only the ethylene-α-olefin / non-conjugated polyene copolymer, carbon black, softener, and silicone compound as shown below, Various additives such as a foaming agent, a vulcanizing agent, a vulcanization accelerating aid, a vulcanization accelerating aid, a processing aid, and an inorganic filler may be appropriately blended.

[エチレン‐α‐オレフィン・非共役ポリエン共重合体]
エチレン‐α‐オレフィン・非共役ポリエン共重合体においては、α‐オレフィンとして、例えばプロピレン、1‐ブテン、1‐ペンテン、1‐ヘキセン、4‐メチル‐1‐ペンテン、1‐オクテン、1‐デセン等が挙げられ、好ましくはプロピレンとする。もちろん、前記のα‐オレフィン群のなかから複数のものを選択し、例えばプロピレンと1‐ブテンの如く組み合わせて使用しても良い。
[Ethylene-α-olefin / non-conjugated polyene copolymer]
In the ethylene-α-olefin / non-conjugated polyene copolymer, as the α-olefin, for example, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene Etc., preferably propylene. Of course, a plurality of these α-olefin groups may be selected and used in combination, for example, propylene and 1-butene.

また、ポリエン共重合体が5‐エチリデン‐2‐ノルボルネン、ジシクロペンタジエン、5‐ビニル‐2‐ノルボルネン、ノルボルナジエン、メチルテトラヒドロインデン等の環状の非共役ポリエンであるものや、1,4ヘキサジエン、7‐メチル‐1,6‐オクタジエン、4‐エチリデン‐8‐メチル‐1,7‐ノナジエン、4‐エチリデン‐1,7ウンデカジエン、4,8‐ジメチル‐1,4,8‐デカトリエン等の鎖状の非共役ポリエンであるものが挙げられる。これら各非共役ポリエンは、単独、または2種類以上組み合わせたものでも良く、その構成単位(エチレン‐α‐オレフィン・非共役ポリエン共重合体における非共役ポリエンの含有比率)は例えば1wt%〜20wt%とし、好ましくは1wt%〜15wt%、より好ましくは5wt%〜11wt%である。このようなエチレン‐α‐オレフィン・非共役ポリエン共重合体としては、例えばDSM・Elastomers社製のKeltan7341Aを適用することができる。   In addition, the polyene copolymer is a cyclic non-conjugated polyene such as 5-ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, norbornadiene, methyltetrahydroindene, 1,4 hexadiene, 7 -Methyl-1,6-octadiene, 4-ethylidene-8-methyl-1,7-nonadiene, 4-ethylidene-1,7undecadiene, 4,8-dimethyl-1,4,8-decatriene, etc. Those that are non-conjugated polyenes. Each of these non-conjugated polyenes may be used alone or in combination of two or more, and the constitutional unit (content ratio of non-conjugated polyene in the ethylene-α-olefin / non-conjugated polyene copolymer) is, for example, 1 wt% to 20 wt%. And preferably 1 wt% to 15 wt%, more preferably 5 wt% to 11 wt%. As such an ethylene-α-olefin / non-conjugated polyene copolymer, for example, Keltan 7341A manufactured by DSM Elastomers can be applied.

[カーボンブラック]
前記のカーボンブラックにおいては、例えばゴム成形体の技術分野で適用されているもので、平均粒径(算術平均粒径)60nm以上、好ましくは60nm〜90nmのものを用いる。また、このカーボンブラックの配合量は、50phr未満であると混練加工が困難となるため、50phr以上〜120phr以下、好ましくは50phr以上〜100phr以下とする。このようなカーボンブラックとしては、例えば旭カーボン社製の旭カーボンブラック・旭♯50や旭カーボンブラック・旭♯55において算術平均粒径60nm以上のロットを選定して適用することができる。
[Carbon black]
The carbon black is applied, for example, in the technical field of rubber moldings, and has an average particle diameter (arithmetic average particle diameter) of 60 nm or more, preferably 60 nm to 90 nm. Moreover, since the kneading | mixing process will become difficult when the compounding quantity of this carbon black is less than 50 phr, it is 50 phr or more and 120 phr or less, Preferably it is 50 phr or more and 100 phr or less. As such carbon black, for example, Asahi Carbon Black / Asahi # 50 or Asahi Carbon Black / Asahi # 55 manufactured by Asahi Carbon Co., Ltd., a lot having an arithmetic average particle diameter of 60 nm or more can be selected and applied.

[軟化剤]
前記の軟化剤としては、例えばプロセスオイル,パラフィン系オイル,潤滑油,流動パラフィン,石油アスファルト,ワセリン等の石油系軟化剤や、コールタール,コールタールピッチ等のコールタール系軟化剤や、ヒマシ油,アマニ油,ナタネ油,ヤシ油等の脂肪油系軟化剤が挙げられる。これら各軟化剤のうち、好ましくは石油系軟化剤が挙げられ、より好ましくはパラフィン系オイルが挙げられる。また、前記のような軟化剤は、目的とするゴム材料組成物やゴム成形体の特性を損わない程度の配合量で用い、例えば100phr以下とする。
[Softener]
Examples of the softener include petroleum softeners such as process oil, paraffinic oil, lubricating oil, liquid paraffin, petroleum asphalt, and petroleum jelly, coal tar softeners such as coal tar and coal tar pitch, and castor oil. , Fatty oil softeners such as linseed oil, rapeseed oil and coconut oil. Of these softeners, petroleum softeners are preferable, and paraffin oil is more preferable. The softening agent as described above is used in a blending amount that does not impair the properties of the intended rubber material composition or rubber molded body, and is, for example, 100 phr or less.

[シリコーン化合物]
前記のシリコーン化合物としては、粘度が1000cSt(25℃)以上であるものを用いることができる。具体的には、ジメチルシリコーンオイル,メチルフェニルシリコーンオイル,シリコーンゲル(いわゆるガム状シリコーン)等のシリコーンオイルが挙げられる。より具体的には、例えば信越化学社製のKF96,KF50,KE76BSや、GE東芝シリコーン社製のTSF451,TSF456,TSF3051等が挙げられるが、その他一般的に販売されているシリコーン化合物であっても、それぞれ好適に用いることができる。また、前記の各シリコーン化合物は、何れか1種類を用いても良く、複数の種類のものを組み合わせて用いても良い。さらに、前記のようなシリコーン化合物は、目的とするゴム材料組成物やゴム成形体の特性を損わない程度の配合量で用いることが好ましい。より好ましくは1〜30phr、さらに好ましくは2〜15phrである。
[Silicone compound]
As said silicone compound, what has a viscosity of 1000 cSt (25 degreeC) or more can be used. Specific examples include silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and silicone gel (so-called gummy silicone). More specifically, for example, KF96, KF50, KE76BS manufactured by Shin-Etsu Chemical Co., Ltd., TSF451, TSF456, TSF3051 manufactured by GE Toshiba Silicone, etc. may be mentioned. , Can be preferably used. Moreover, each said silicone compound may use any 1 type, and may use it combining several types of things. Furthermore, it is preferable to use the silicone compound as described above in such a blending amount that does not impair the properties of the intended rubber material composition or rubber molded body. More preferably, it is 1-30 phr, More preferably, it is 2-15 phr.

[発泡剤]
前記の発泡剤としては、有機系発泡剤や熱膨張カプセル等を適宜適用することができる。有機系発泡剤の具体例としては、4,4‐オキシビスベンゼンスルフォニルヒドラジド(OBSH)、アゾジカルボンアミド(ADCA)、ジニトロソペンタメチレンテトラミン(DPT)、アゾビスイソブチロニトリル(AIBN)、パラトルエンスルホニルヒドラジド(TSH)、ヒドラゾジカルボンアミド(HDCA)、バリウムアゾカルボキシレート等が挙げられる。この有機系発泡剤は、目的とするゴム材料組成物やゴム成形体の特性を損わない程度(例えば、0〜10phr)に用いることが好ましい。また、前記のような有機系発泡剤と共に、尿素系誘導体,サリチル酸,フタル酸,ステアリン酸等の発泡助剤を用いても良い。
[Foaming agent]
As said foaming agent, an organic type foaming agent, a thermal expansion capsule, etc. can be applied suitably. Specific examples of the organic foaming agent include 4,4-oxybisbenzenesulfonyl hydrazide (OBSH), azodicarbonamide (ADCA), dinitrosopentamethylenetetramine (DPT), azobisisobutyronitrile (AIBN), para Examples include toluenesulfonyl hydrazide (TSH), hydrazodicarbonamide (HDCA), and barium azocarboxylate. This organic foaming agent is preferably used to such an extent that it does not impair the properties of the intended rubber material composition or rubber molding (for example, 0 to 10 phr). In addition to the above organic foaming agents, foaming aids such as urea derivatives, salicylic acid, phthalic acid, and stearic acid may be used.

熱膨張カプセルの具体例としては、例えば加熱により気体を発生し得る液体(例えば、低沸点の炭化水素,塩素化炭化水素)を熱可塑性樹脂の殻壁(例えば、球状の殻壁)内に充填したもの(熱膨張性の熱可塑性樹脂粒子)であって、真比重0.1以下,粒径(メディアン径)5μm〜100μmとし、その液体が膨張開始温度(例えば、120℃〜150℃)以上の温度の加熱(例えば、加硫温度での加熱)により膨張し、目的とするゴム成形体内にて熱膨張セル(例えば30μm〜300μmの熱膨張セル)を形成する液体封入熱可塑性樹脂粒子が挙げられる。   As a specific example of the thermally expanded capsule, for example, a liquid (for example, low boiling point hydrocarbon or chlorinated hydrocarbon) capable of generating a gas by heating is filled in a shell wall (for example, spherical shell wall) of a thermoplastic resin. (Thermally expandable thermoplastic resin particles) having a true specific gravity of 0.1 or less, a particle size (median diameter) of 5 μm to 100 μm, and the liquid is not less than the expansion start temperature (for example, 120 ° C. to 150 ° C.) Liquid-encapsulated thermoplastic resin particles that expand by heating at a temperature of (for example, heating at the vulcanization temperature) and form a thermal expansion cell (for example, a thermal expansion cell of 30 μm to 300 μm) in the target rubber molded body. It is done.

前記の熱膨張カプセルの膨張開始温度が目的とするゴム成形体の加硫温度よりも十分低い場合(例えば、加硫温度のピーク温度が170℃程度の場合、120℃〜150℃程度)には、該加硫工程時に熱膨張セルによる構造が形成された後、加硫されたゴム成形体が得られることから、たとえ生産工程上において生じ得る加硫温度のバラツキがあっても、該ゴム成形体の比重のバラツキが生じることは殆どない。換言すれば、安定した比重でスポンジゴムを生産することが可能となる。   When the expansion start temperature of the thermal expansion capsule is sufficiently lower than the vulcanization temperature of the target rubber molded body (for example, when the peak temperature of the vulcanization temperature is about 170 ° C., about 120 ° C. to 150 ° C.) Since a vulcanized rubber molded body is obtained after the structure by the thermal expansion cell is formed during the vulcanization process, even if there is a variation in vulcanization temperature that may occur in the production process, the rubber molding There is almost no variation in the specific gravity of the body. In other words, sponge rubber can be produced with a stable specific gravity.

また、前記の熱膨張カプセルの殻壁を構成する熱可塑性樹脂の成分として、好ましくは(メタ)アクリルニトリル重合体や、(メタ)アクリルニトリルを多く含有する重合体が挙げられ、それら重合体に対するモノマー(いわゆる相手側のモノマー;コモノマー)として、ハロゲン化ビニル,ハロゲン化ビニリデン,スチレン系モノマー,(メタ)アクリレート系モノマー,酢酸ビニル,ブタジエン,ビニルピリジン,クロロプレン等のモノマーが挙げられる。   Moreover, as a component of the thermoplastic resin which comprises the shell wall of the said thermal expansion capsule, Preferably a (meth) acrylonitrile polymer and a polymer containing many (meth) acrylonitrile are mentioned, Examples of monomers (so-called counterpart monomers; comonomers) include monomers such as vinyl halides, vinylidene halides, styrene monomers, (meth) acrylate monomers, vinyl acetate, butadiene, vinyl pyridine, and chloroprene.

なお、前記の殻壁は、未架橋であることが好ましいが、例えば一般的なジビニルベンゼン,エチレングリコールジ(メタ)アクリレート等の架橋剤により架橋されたものであっても良い。また、熱膨張カプセル内に充填される液体としては、例えばn‐ペンタン,イソペンタン,ネオペンタン,ブタン,イソブタン,ヘキサン,石油エーテル等の炭化水素類や、塩化メチル,ジクロロエチレン,トリクロロエタン,トリクロルエチレン等の塩素化炭化水素類が挙げられる。   The shell wall is preferably uncrosslinked, but may be crosslinked with a general crosslinking agent such as divinylbenzene or ethylene glycol di (meth) acrylate. Examples of the liquid filled in the thermally expanded capsule include hydrocarbons such as n-pentane, isopentane, neopentane, butane, isobutane, hexane, and petroleum ether, and chlorine such as methyl chloride, dichloroethylene, trichloroethane, and trichloroethylene. Hydrocarbons.

熱膨張カプセルの更なる具体例としては、大日精化工業社製のダイフォームH750Dの他、同シリーズであるH770D,H850D,M430を好適に使用することができる。また、例えば、松本油脂社製のマツモトマイクロスフェアーF80S−D,F85D,F100D,F105−D,F82−Dや、スウェーデン国・エクスパンセル社製のEXPANCEL091DU−80,092DU−120等を適用することもできる。熱膨張カプセルの配合量は、例えば1.0phr〜15phrが好ましい。   As a further specific example of the thermal expansion capsule, H770D, H850D, and M430, which are the same series, as well as Die Form H750D manufactured by Dainichi Seika Kogyo Co., Ltd. can be suitably used. Further, for example, Matsumoto Microspheres F80S-D, F85D, F100D, F105-D, F82-D manufactured by Matsumoto Yushi Co., Ltd., EXPANCEL091DU-80, 092DU-120 manufactured by EXPANSEL, Sweden, etc. are applied. You can also The amount of the thermally expanded capsule is preferably, for example, 1.0 phr to 15 phr.

このような熱膨張カプセルをエチレン‐α‐オレフィン・非共役ポリエン共重合体等の高分子材料に添加する場合、その熱膨張カプセルの飛散の防止や分散性の向上を図るために、あらかじめ他の使用材料(例えば、高分子弾性体.熱可塑性樹脂,軟化剤,無機充填材等の何れか、または複数のもの)と混合してから用いても良い。熱膨張カプセルを予め他の使用材料と混合してから用いる場合には、該発泡剤の混合比率を10wt%〜99wt%、好ましくは10wt%〜50wt%に調整する。また、前記のような熱膨張カプセルは何れか1種類を用いても良く、複数の種類のものを組み合わせて用いても良い。   When such a thermally expanded capsule is added to a polymer material such as an ethylene-α-olefin / non-conjugated polyene copolymer, in order to prevent scattering of the thermally expanded capsule and improve dispersibility, It may be used after being mixed with a material to be used (for example, polymer elastic body, thermoplastic resin, softener, inorganic filler or the like). When the thermally expanded capsule is used after previously mixed with other materials used, the mixing ratio of the foaming agent is adjusted to 10 wt% to 99 wt%, preferably 10 wt% to 50 wt%. Moreover, any one kind of the above-mentioned thermally expanded capsules may be used, or a plurality of kinds may be used in combination.

なお、発泡剤の配合量が多くなるに連れてゴム成形体の比重は低くなるが、該比重が過小であると、前記のシリコーン化合物のブリード速度が低くなる傾向を有するため、該配合量は適宜調整(例えば、比重0.3以上を確保できるように調整)することが好ましい。   As the blending amount of the foaming agent increases, the specific gravity of the rubber molded body decreases. However, if the specific gravity is too small, the bleed speed of the silicone compound tends to decrease, so the blending amount is It is preferable to adjust appropriately (for example, adjust so as to ensure a specific gravity of 0.3 or more).

[加硫剤]
前記の加硫剤としては、硫黄が挙げられ、目的とするゴム材料組成物やゴム成形体の特性を損わない程度の配合量で用い、好ましくは0.5phr〜2phr程度とする。
[Vulcanizing agent]
Examples of the vulcanizing agent include sulfur, and it is used in a blending amount that does not impair the properties of the intended rubber material composition or rubber molded body, and preferably about 0.5 phr to 2 phr.

[加硫促進剤]
前記の加硫促進剤としては、チアゾール系,チウラム系,スルフェンアミド系,グアニジン系,チオウレア系,ジチオカルバミン酸系のものが挙げられ、目的とするゴム材料組成物やゴム成形体の特性を損わない程度の配合量で用い、好ましくは2phr〜8phr程度とする。
[Vulcanization accelerator]
Examples of the vulcanization accelerator include thiazole type, thiuram type, sulfenamide type, guanidine type, thiourea type, and dithiocarbamic acid type, which impair the characteristics of the intended rubber material composition and rubber molding. It is used in a blending amount that is not excessive, preferably about 2 phr to 8 phr.

[加硫促進助剤]
前記の加硫促進助剤としては、酸化亜鉛(亜鉛華),炭酸亜鉛,酸化マグネシウム,水酸化カルシウム,一酸化亜鉛等が挙げられ、好ましくは酸化亜鉛,酸化マグネシウムが挙げられる。これら加硫促進助剤は、目的とするゴム材料組成物やゴム成形体の特性を損わない程度の配合量で用い、好ましくは5phr程度とする。
[Vulcanization acceleration aid]
Examples of the vulcanization acceleration aid include zinc oxide (zinc white), zinc carbonate, magnesium oxide, calcium hydroxide, zinc monoxide and the like, preferably zinc oxide and magnesium oxide. These vulcanization accelerating aids are used in a blending amount that does not impair the properties of the intended rubber material composition or rubber molded body, and preferably about 5 phr.

[加工助剤]
前記の加工助剤としては、ステアリン酸,リシノール酸,パルミチン酸,ラウリン酸等の高級脂肪酸や、その高級脂肪酸のエステル類や、ステアリン酸等の高級脂肪酸の塩が挙げられ、その他のゴム成形体の技術分野で加工助剤として扱われている化合物を用いても良い。これら加工助剤は、目的とするゴム材料組成物やゴム成形体の特性を損わない程度の配合量で用い、好ましくは5phr程度とし、より好ましくは3phr以下とする。
[Processing aid]
Examples of the processing aid include higher fatty acids such as stearic acid, ricinoleic acid, palmitic acid and lauric acid, esters of the higher fatty acids, salts of higher fatty acids such as stearic acid, and other rubber moldings. A compound that is treated as a processing aid in the technical field may be used. These processing aids are used in an amount so as not to impair the properties of the intended rubber material composition and rubber molded body, preferably about 5 phr, more preferably 3 phr or less.

[無機充填剤]
前記の無機充填剤としては、炭酸カルシウム,クレー,シリカ,ケイ酸カルシウム,炭酸マグネシウム,水酸化マグネシウム,酸化アルミニウム,カオリン,マイカ,ゼオライト等が挙げられ、何れか1種類を用いても良く、複数の種類のものを組み合わせて用いても良い。また、前記のような無機充填剤は、目的とするゴム材料組成物やゴム成形体の特性を損わない程度の配合量で用い、例えば0〜100phr程度とする。
[Inorganic filler]
Examples of the inorganic filler include calcium carbonate, clay, silica, calcium silicate, magnesium carbonate, magnesium hydroxide, aluminum oxide, kaolin, mica, zeolite, and the like. These types may be used in combination. The inorganic filler as described above is used in a blending amount that does not impair the properties of the target rubber material composition or rubber molded body, and is, for example, about 0 to 100 phr.

[その他の添加剤]
前記の各種添加剤の他には、脱水剤,酸化防止剤,老化防止剤,熱安定剤,光安定剤,紫外線吸収剤,中和剤,滑剤,防雲剤,アンチブロッキング剤,スリップ剤,分散剤,難燃剤,帯電防止剤,導電性付与剤,粘着付与剤,架橋剤,架橋助剤,金属不活性剤,分子量調整剤,防菌・防黴剤,蛍光増白剤,摺動性向上剤,着色剤(酸化チタン等),金属粉末(フェライト等),ガラス繊維,無機繊維(金属繊維等),炭素繊維,有機繊維(アラミド繊維等),複合繊維,ガラスバルーン,ガラスフレーク,グラファイト,カーボンナノチューブ,フラーレン,硫酸バリウム,フッ素樹脂,充填剤ポリオレフィンワックス(ポリマービーズ等),セルロースパウダー,ゴム紛,再生ゴム等が挙げられ、何れか1種類または複数の種類のものを組み合わせ、目的とするゴム材料組成物やゴム成形体に応じて適宜使用して良い。
[Other additives]
In addition to the above-mentioned various additives, dehydrating agents, antioxidants, anti-aging agents, heat stabilizers, light stabilizers, UV absorbers, neutralizers, lubricants, anti-clouding agents, anti-blocking agents, slip agents, Dispersant, flame retardant, antistatic agent, conductivity imparting agent, tackifier, crosslinking agent, crosslinking aid, metal deactivator, molecular weight regulator, antibacterial / antifungal agent, fluorescent whitening agent, sliding property Improving agent, colorant (such as titanium oxide), metal powder (such as ferrite), glass fiber, inorganic fiber (such as metal fiber), carbon fiber, organic fiber (such as aramid fiber), composite fiber, glass balloon, glass flake, graphite , Carbon nanotube, fullerene, barium sulfate, fluororesin, filler polyolefin wax (polymer beads, etc.), cellulose powder, rubber powder, recycled rubber, etc. Combined, it may be used as appropriate according to the rubber material composition and rubber molded article of interest.

[製法]
前記のエチレン‐α‐オレフィン・非共役ポリエン共重合体,カーボンブラック,軟化剤,シリコーン化合物や、各種添加剤等を混練して目的とするゴム材料組成物を得る場合、例えば接線式ミキサー,噛み合い式ミキサー,ニーダー等の各種密閉式混練機や、連続式の二軸押出混練機やオープンロール等を適宜適用できる。また、前記のゴム材料組成物を押出し成形加硫(例えば、200±40℃の押出し成形加硫)して目的とするゴム成形体を得る場合には、例えば連続熱風加硫装置(HAV),高周波加硫装置(UHF)や、その他の一般的な加硫装置を適用することができる。また、前記の各種機器を必要に応じて組み合わせ(例えば、連続熱風加硫と高周波加硫とを組み合わせ)適用しても良い。
[Production method]
When the desired rubber material composition is obtained by kneading the ethylene-α-olefin / non-conjugated polyene copolymer, carbon black, softener, silicone compound and various additives, for example, a tangential mixer, meshing Various closed kneaders such as a mixer and a kneader, a continuous twin-screw extrusion kneader, an open roll, and the like can be appropriately applied. When the rubber material composition is subjected to extrusion molding vulcanization (for example, extrusion molding vulcanization at 200 ± 40 ° C.) to obtain a target rubber molding, for example, a continuous hot air vulcanizer (HAV), A high frequency vulcanizer (UHF) and other general vulcanizers can be applied. Moreover, you may apply the said various apparatuses as needed (for example, combining a combination of continuous hot air vulcanization and high frequency vulcanization).

次に、本実施形態に基づいて種々のゴム材料組成物(後述のゴム配合物S1〜S12(実施例),P1〜P14(比較例))を作製し、それらゴム材料組成物の加工性およびゴム成形体(後述の試料GS1〜GS12(実施例),GP1〜GP14(比較例))の物性等を調べた。   Next, various rubber material compositions (rubber compounds S1 to S12 (Examples) and P1 to P14 (Comparative Examples) described later) are prepared based on the present embodiment, and the processability of these rubber material compositions and The physical properties and the like of rubber molded bodies (samples GS1 to GS12 (examples) and GP1 to GP14 (comparative examples) described later) were examined.

まず、高分子材料としてエチレン‐プロピレン‐5‐エチリデン‐2‐ノルボルネン(DSM・Elastomers社製のKeltan7341A)を100phr用い、密閉式ミキサーにて素練した。その後、前記の素練物に対し、算術平均粒径が80nm,60nm,45nmのカーボンブラック(以下、それぞれカーボン80nm,60nm,45nmと称する)のうち1種類を45phr〜140phr、軟化剤(粘着性を有する軟化剤(JOMO社製のプロセスオイルP−300))を80phr〜110phr、粘度(25℃)が100cSt,1000cSt,100000cStのシリコーン化合物(信越化学社製のジメチルシリコーンオイルKF96)のうち1種類を0〜5phr加え、所定時間混練した。   First, 100 phr of ethylene-propylene-5-ethylidene-2-norbornene (DSM, Elastomers, Keltan 7341A) was used as a polymer material and masticated with a closed mixer. Thereafter, one type of carbon black having an arithmetic average particle size of 80 nm, 60 nm, and 45 nm (hereinafter referred to as carbon 80 nm, 60 nm, and 45 nm, respectively) is added to 45 phr to 140 phr and a softening agent (adhesive property). One kind of silicone compound (dimethyl silicone oil KF96 manufactured by Shin-Etsu Chemical Co., Ltd.) having a softening agent (process oil P-300 manufactured by JOMO) of 80 phr to 110 phr and a viscosity (25 ° C.) of 100 cSt, 1000 cSt, 100000 cSt. 0 to 5 phr was added and kneaded for a predetermined time.

なお、本実施例においては、前記のカーボン80nm,60nm,45nmとして、旭カーボン社製の旭カーボンブラック・旭♯50,旭♯55,♯60の材料ロットから、それぞれ算術平均粒径80nm,60nm,45nmに該当するものを選定して用いた。また、前記の各種材料の他に、加工助剤としてステアリン酸を1phr,ポリエチレングリコールを1phr、無機充填剤として炭酸カルシウムを30phr、無機加硫促進助剤として活性亜鉛華を3phr,脱水剤として酸化カルシウムを5phr加えてから、5L密閉式混練機で5分間混練した。   In the present embodiment, the above-mentioned carbon 80 nm, 60 nm, and 45 nm are obtained from the material lots of Asahi Carbon Black, Asahi # 50, Asahi # 55, and # 60 manufactured by Asahi Carbon Co., respectively. , 45 nm was selected and used. In addition to the above materials, 1 phr of stearic acid as processing aid, 1 phr of polyethylene glycol, 30 phr of calcium carbonate as inorganic filler, 3 phr of active zinc white as inorganic vulcanization accelerating aid, and oxidation as dehydrating agent After adding 5 phr of calcium, the mixture was kneaded with a 5 L hermetic kneader for 5 minutes.

その後、前記の密閉式混練機で得た混練物を取り出し、オープンロール機で混練しながら、発泡剤として熱膨張カプセル(大日精化工業社製のダイフォームH750D)を0〜15phr、有機系発泡剤(永和化成工業社製のネオセルボンN♯1000SW)として4,4‐オキシビスベンゼンスルフォニルヒドラジド系のものを0〜7phr、加硫促進剤としてチアゾール系,チウラム系,スルフェンアミド系のものを合わせて5phr、加硫剤として硫黄を1phr加え(混練物をロールに巻きつけてから加え)、所定時間混合(ブレンド)することにより、後述の表1に示すように種々の組成のゴム配合物(リボン状で未加硫のゴム配合物)S1〜S12,P1〜P14をそれぞれ得た。   Thereafter, the kneaded product obtained with the above-mentioned closed kneader is taken out and kneaded with an open roll machine, and 0 to 15 phr of thermal expansion capsule (Daifoam H750D manufactured by Dainichi Seika Kogyo Co., Ltd.) as the foaming agent, organic foaming 0 to 7 phr of 4,4-oxybisbenzenesulfonyl hydrazide type as neocelbon N # 1000SW manufactured by Eiwa Kasei Kogyo Co., Ltd., and thiazole type, thiuram type and sulfenamide type as vulcanization accelerators 5 phr, 1 phr of sulfur as a vulcanizing agent (added after the kneaded material is wound on a roll), and mixing (blending) for a predetermined time, rubber compositions having various compositions as shown in Table 1 described later ( Ribbon-like unvulcanized rubber compounds) S1 to S12 and P1 to P14 were obtained.

Figure 2008056748
Figure 2008056748

次に、前記の各ゴム配合物S1〜S12,P1〜P14において、それぞれゴム成形体用の押出成形機を用いて押出成形(後述の図2に示す成形体が得られるような口金形状を有し押出成形機で、スクリュー回転数を調整して押出成形)した後、その押出成形物を連続熱風加硫装置にて加硫(温度200℃,10分間で加硫)することにより、図2に示すように略平板状の基部(厚さ2mm,幅25mmの基部)21に対し横断面略円状のチューブ部(肉厚2mmのチューブ)22が設けられたゴム成形体(高さ20mmのゴム成形体)の試料GS1〜GS12,GP1〜GP14(図中では符号20)をそれぞれ作製した。   Next, in each of the rubber compounds S1 to S12 and P1 to P14, extrusion molding is performed using an extrusion molding machine for a rubber molded body (having a die shape such that a molded body shown in FIG. 2 described later is obtained). 2 by adjusting the screw rotation speed with an extrusion extruder, and then vulcanizing the extruded product with a continuous hot-air vulcanizer (at a temperature of 200 ° C. for 10 minutes). As shown in FIG. 2, a rubber molded body (having a height of 20 mm) provided with a tube portion (tube with a thickness of 2 mm) 22 having a substantially circular cross section with respect to a substantially flat base portion (a base portion with a thickness of 2 mm and a width of 25 mm) 21. Rubber molded bodies) samples GS1 to GS12 and GP1 to GP14 (reference numeral 20 in the figure) were prepared.

なお、前記の試料GP2〜GP4の表面には、ウレタンポリオール85phr,ポリイソシアネート15phr,ジオルガノシロキサン40phr,硬化性シリコーンオイル40phr,触媒4phr,つや消し剤15phr,溶剤1500phrを配合して成る表面処理剤を塗布したものとする。   A surface treatment agent comprising 85 phr of urethane polyol, 15 phr of polyisocyanate, 40 phr of diorganosiloxane, 40 phr of curable silicone oil, 4 phr of catalyst, 15 phr of matting agent, and 1500 phr of solvent is applied to the surfaces of the above samples GP2 to GP4. It shall be applied.

前記のように作製した各ゴム配合物S1〜S12,P1〜P14の加工性(混練加工性,押出成形性)、および各試料GS1〜GS12,GP1〜GP14の比重,耐へたり性(伸張永久歪み率),耐貼付性(貼り付き力,耐貼付持続指数),滑性(摩擦係数,摩擦持続指数)を、それぞれ以下に示す方法により測定し、それら各測定結果を後述の表2に示した。なお、後述の表2の総合評価の項目において、記号「◎」,「○」,「△」,「×」は、それぞれ自動車用ウェザーストリップ等のゴム成形体として良好に適用できる場合,十分適用できる場合,適用できる可能性はある場合,適用困難な場合を示すものとする。   Processability (kneading processability, extrusion moldability) of each rubber compound S1 to S12, P1 to P14 produced as described above, and specific gravity and sag resistance (extension permanent) of each sample GS1 to GS12, GP1 to GP14 Strain rate), resistance to sticking (sticking force, sticking resistance index), and slipperiness (friction coefficient, frictional index) are measured by the following methods, respectively, and the measurement results are shown in Table 2 below. It was. In addition, in the items of comprehensive evaluation in Table 2 to be described later, the symbols “◎”, “○”, “△”, and “×” are sufficiently applicable if they can be applied satisfactorily as rubber molded articles such as weather strips for automobiles. When possible, indicate the possibility of application, and the case where application is difficult.

[混練加工性]
前記の各ゴム配合物において、14インチロールを備え各ロール間の距離が5mmに設定されたオープンロール機によりそれぞれ混練し、前記の各ロールに対するゴム配合物の巻き付き性を観測した。なお、後述の表2の混練加工性の項目において、記号「◎」はゴム配合物が各ロール間へ容易に浸入し該ロールに密着するように巻き付いた場合を示し、記号「×」はゴム配合物が各ロールに密着せずに垂れ下がったり途中で切断された場合を示すものとする。また、記号「○」は記号「◎」の場合よりもゴム配合物が各ロール間へ浸入し難いが、時間経過と共に該ロールに密着するように巻き付いた場合を示す。
[Kneading processability]
Each rubber compound was kneaded with an open roll machine having a 14-inch roll and a distance between the rolls set to 5 mm, and the wrapping property of the rubber compound with respect to each roll was observed. In addition, in the kneading processability item of Table 2 described later, the symbol “記号” indicates a case where the rubber compound easily enters between the rolls and is wound so as to be in close contact with the rolls, and the symbol “×” indicates the rubber. The case where the compound hangs down without being in close contact with each roll or is cut in the middle is shown. In addition, the symbol “◯” indicates that the rubber compound is less likely to enter between the rolls than the symbol “」 ”, but the rubber compound is wound so as to be in close contact with the roll over time.

[押出成形性]
直径75mmの押出機で、回転数が15rpmに設定された押出成形機により、前記の各ゴム配合物(押出成形時の温度60±5℃に調整されたゴム配合物)において1分間の押出成形を行い、図2に示した形状のゴム成形体(試料20)をそれぞれ得た。
[Extrudability]
Extrusion for 1 minute in each rubber compound (rubber compound adjusted to a temperature of 60 ± 5 ° C. at the time of extrusion) by an extruder with a diameter of 75 mm and a rotation speed set to 15 rpm. The rubber molded bodies (samples 20) having the shapes shown in FIG. 2 were obtained.

この押出成形を各ゴム配合物毎に100回繰り返し、その押出成形毎に押出成形機から吐出された押出成形物(未加硫物)の質量(g)をそれぞれ吐出量として秤量した。そして、各ゴム配合物毎に、吐出量のばらつき(%)を下記(1)式により算出した。   This extrusion molding was repeated 100 times for each rubber compound, and the mass (g) of the extruded product (unvulcanized product) discharged from the extruder for each extrusion molding was weighed as a discharge amount. And the dispersion | variation (%) of discharge amount was computed by the following (1) formula for every rubber compound.

吐出量のばらつき(%)=((「最大吐出量」−「最小吐出量」)/平均吐出量)×100 …… (1)。   Discharge amount variation (%) = ((“maximum discharge amount” − “minimum discharge amount”) / average discharge amount) × 100 (1).

[比重]
比重については、前記の試料20から厚さtが2mmで20×20mmの大きさの試料片を作製し、表面をアルコールで拭いて汚れを除去した。その後、25℃の雰囲気下で、自動比重計(東洋精機製作所製)を用いて空気中と純水中の質量差から比重を計算して求めた。なお、前記の自動比重計は、JIS K6220に準拠したものである。
[specific gravity]
Regarding the specific gravity, a sample piece having a thickness t of 2 mm and a size of 20 × 20 mm was prepared from the sample 20, and the surface was wiped with alcohol to remove dirt. Thereafter, the specific gravity was calculated from the mass difference between air and pure water using an automatic hydrometer (manufactured by Toyo Seiki Seisakusho) in an atmosphere at 25 ° C. The automatic hydrometer is based on JIS K6220.

[耐へたり性(伸張永久歪み性)]
耐へたり性の代用評価試験を行うため、まず前記のゴム配合物の加硫成形シートを用いて、図3に示すようなJIS規格のダンベル3号型(厚さ2mm)の試料片(試料片の中央部には、間隔L0(20mm)を隔てて2本の標線30a,30bが記されているものとする)30をそれぞれ作成した。
[Sagging resistance (elongation set)]
In order to conduct a substitute evaluation test for sag resistance, a JIS standard dumbbell No. 3 type (thickness 2 mm) sample piece (sample 2) as shown in FIG. (It is assumed that two mark lines 30a and 30b are written at a central portion of the piece with an interval L 0 (20 mm) therebetween).

次に、前記試料片30を伸長率50%(30mm)で伸長(図3中矢印A,B方向に伸長)させて治具に固定し、温度80℃の雰囲気下で48時間の加熱処理してから、その伸長させた状態で室温下にて3時間放置した。その後、前記の治具から試料片30を取り外して伸長を解放し、該伸長率における各標線間の長さL1をそれぞれ測定した。 Next, the sample piece 30 is stretched at a stretch rate of 50% (30 mm) (stretched in the directions of arrows A and B in FIG. 3), fixed to a jig, and heated for 48 hours in an atmosphere at a temperature of 80 ° C. After that, the stretched state was left at room temperature for 3 hours. Thereafter, the sample piece 30 was removed from the jig to release the extension, and the length L 1 between each marked line at the extension rate was measured.

そして、下記(2)式により算出される前記成形体の長さ変化率(%)を伸張永久歪み率として、該試料片30の耐へたり性の評価をそれぞれ行った。なお、下記(2)式において、L0は治具に固定する前(伸長させる前)における試料片30の各標線30a,30b間の長さを示し、L2は伸長時における試料片30の各標線30a,30b間の長さを示すものである。 Then, the length change rate (%) of the molded body calculated by the following formula (2) was used as the elongation set rate, and the sag resistance of the sample piece 30 was evaluated. In the following formula (2), L 0 indicates the length between the marked lines 30a and 30b of the sample piece 30 before being fixed to the jig (before extension), and L 2 is the sample piece 30 at the time of extension. It shows the length between the respective marked lines 30a, 30b.

「耐へたり性(伸張永久歪み率(%))」=((L1−L0)/(L2−L0))×100……(2)。 “Sag resistance (elongation set (%))” = ((L 1 −L 0 ) / (L 2 −L 0 )) × 100 (2).

[耐貼付性]
図4A(平面図),B(側面図),C(動作図)に示すように、前記の試料20を矩形平板状(5mm×50mm×2mm)に打ち抜いて2個の試料片40を作製し、それら各試料片40の表面の汚れをエタノールで清浄(拭き取り)した後、矩形平板状(2mm×110mm×70mm)のステンレス板(SUS板)41上に対しそれぞれ60mm隔てて接着剤により固定(5mm×50mmの面を固定)した。
[Attachment resistance]
As shown in FIGS. 4A (plan view), B (side view), and C (operation diagram), the sample 20 is punched into a rectangular flat plate shape (5 mm × 50 mm × 2 mm) to produce two sample pieces 40. The surface of each of the sample pieces 40 was cleaned (wiped off) with ethanol, and then fixed with an adhesive on a rectangular flat plate (2 mm × 110 mm × 70 mm) stainless steel plate (SUS plate) 41 at a distance of 60 mm. A surface of 5 mm × 50 mm was fixed).

さらに、前記の各試料片40を覆うように、該試料片40上に矩形平板状(ステンレス板41と同様の形状で、厚さ1.0mm〜1.5mm)の白色メラミン塗装板42を載置し、その塗装板42上に計49Nの錘部材43を載置して荷重を加えながら(塗装板42における試料片40が位置する部分に荷重を加えながら)、80℃雰囲気下中にて24時間放置した。   Further, a white melamine coating plate 42 having a rectangular flat plate shape (similar to the stainless steel plate 41 and having a thickness of 1.0 mm to 1.5 mm) is placed on the sample piece 40 so as to cover each sample piece 40. Place a weight member 43 of a total of 49N on the coated plate 42 and apply a load (while applying a load to the portion of the painted plate 42 where the sample piece 40 is located) in an atmosphere of 80 ° C. Left for 24 hours.

その後、前記の錘部材43を取り除き(測定直前に取り除き)、ステンレス板41と塗装板42との間(および各試料片40間)に対し縦断面略L字状の治具44を介在させ、その治具44の内角側を塗装板42の端部に係合させると共に前記のステンレス板41を固定した状態で、テンシロン引張り試験機によって治具44を水平方向(固定された各試料片40の長手方向;図示矢印方向)に対して速度50mm/分で引張る(すなわち、治具44を介して塗装板42を引張る)ことにより、その塗装板42と試料片40とが完全に剥離した際に生じる最大荷重(単位;N/5cm2)を貼り付き力(以下、初期貼り付き力と称する)として測定し、耐貼付性を調べた。 Thereafter, the weight member 43 is removed (removed immediately before the measurement), and a jig 44 having a substantially L-shaped longitudinal section is interposed between the stainless steel plate 41 and the coating plate 42 (and between each sample piece 40), With the inner corner side of the jig 44 engaged with the end of the coating plate 42 and the stainless steel plate 41 fixed, the jig 44 is moved in the horizontal direction (for each of the fixed specimen pieces 40). When the coated plate 42 and the sample piece 40 are completely peeled by pulling at a speed of 50 mm / min with respect to the longitudinal direction (arrow direction shown in the drawing) (that is, by pulling the coated plate 42 through the jig 44). The maximum load (unit: N / 5 cm 2 ) generated was measured as sticking force (hereinafter referred to as initial sticking force), and the sticking resistance was examined.

また、前記のように各試料片40を覆うように塗装板42を載置し錘部材43により荷重を加えながらギヤオーブン内(80℃)にて計200時間放置することにより、該試料片40を熱加速劣化処理した後、初期貼り付き力同様の方法により塗装板42と試料片40とが完全に剥離した際に生じる最大荷重(単位;N/5cm2)を貼り付き力(以下、劣化後貼り付き力と称する)として測定した。 Further, as described above, the coating plate 42 is placed so as to cover each sample piece 40, and the sample piece 40 is left in the gear oven (80 ° C.) for a total of 200 hours while applying a load by the weight member 43. After the thermal acceleration deterioration treatment, the maximum load (unit: N / 5 cm 2 ) generated when the coating plate 42 and the sample piece 40 are completely peeled off by the same method as the initial sticking force is used. This was measured as a post-sticking force.

そして、前記の初期貼り付き力,劣化後貼り付き力を用い下記(3)式により耐貼付持続指数ΔSを算出し、耐貼付性の持続性(以下、耐貼付持続性と称する)を調べた。   Then, using the initial sticking force and the post-deteriorating sticking force, the sticking resistance index ΔS was calculated by the following equation (3), and the sticking resistance persistence (hereinafter referred to as sticking resistance resistance) was examined. .

「耐貼付持続指数ΔS」=「劣化後貼り付き力」−「初期貼り付き力」 …… (3)。   “Attachment resistance index ΔS” = “sticking force after deterioration” − “initial sticking force” (3).

なお、ここで使用したN/5cm2は、2個の試料片40の総接触面積に対する剥離荷重を数値化するために発明者が規定した単位である。また、「耐貼付持続指数ΔS」,「劣化後貼り付き力」は、80℃,20時間の熱加速劣化処理を10回繰り返した場合(すなわち、熱加速劣化処理時間の合計が200時間(アレニウスの法則に基づいて経過年数を約5年加速させたことに相当))の結果である。さらに、前記の10回の熱加速劣化処理毎に、塗装板42をエタノールで清浄する工程(特に、両者の接触面を清浄する工程)と、試料片40の表面をクレシア社製のキムワイプ(キムワイプS−200)で清浄する工程(エタノールを含んだキムワイプが試料片40に対して0.98Nの荷重で圧接するように、該試料片40表面を一方向に掃引して清浄する工程)を行ったものとする。 The N / 5 cm 2 used here is a unit specified by the inventor in order to quantify the peel load with respect to the total contact area of the two sample pieces 40. The “anti-sticking duration index ΔS” and “post-degradation sticking force” are obtained when the heat accelerated deterioration treatment at 80 ° C. for 20 hours is repeated 10 times (that is, the total heat accelerated deterioration treatment time is 200 hours (Arrhenius). This is equivalent to accelerating the number of years elapsed by about 5 years based on the above law))). Furthermore, after each of the 10 thermal accelerated deterioration processes, the process of cleaning the coated plate 42 with ethanol (particularly the process of cleaning the contact surfaces of both), and the surface of the sample piece 40 are made of Crecia Kimwipe (Kimwipe). S-200) to perform a cleaning step (a step of cleaning the surface of the sample piece 40 in one direction so that the Kimwipe containing ethanol is pressed against the sample piece 40 with a load of 0.98 N) Shall be.

[滑性,滑持続性]
図5A(概略図),B(変化特性図)に示すように、前記の試料20を矩形平板状(5mm×100mm×2mm)に打ち抜いて試料片50を作製し、その試料片50の表面の汚れをエタノールで拭き取った後、摩擦係数測定機(新東科学製のHEIDON−14D)の支持台(試験台)51上に載置した。その後、R50球面ガラスを構成し0.98Nの荷重が加えられた錘部材52を、前記の試料片50上に載置(R50球面側を載置)し、その錘部材52を水平方向(試料片50の長手方向;図示矢印方向)に対して速度1000mm/分で摺動(試料片50に接触しながら摺動)させることにより、例えば図5Bに示すような経過時間(摺動時間の経過)に対する摩擦係数変化特性を得て、静摩擦係数(以下、初期静摩擦係数と称する),動摩擦係数(以下、初期動摩擦係数)を測定した。
[Lubricity, smoothness]
As shown in FIGS. 5A (schematic diagram) and B (variation characteristic diagram), the sample 20 is punched into a rectangular flat plate (5 mm × 100 mm × 2 mm) to produce a sample piece 50. The dirt was wiped off with ethanol and then placed on a support (test stand) 51 of a friction coefficient measuring machine (HEIDON-14D manufactured by Shinto Kagaku). Thereafter, the weight member 52 that is composed of R50 spherical glass and applied with a load of 0.98 N is placed on the sample piece 50 (the R50 spherical surface is placed), and the weight member 52 is placed in the horizontal direction (sample By sliding at a speed of 1000 mm / min with respect to the longitudinal direction of the piece 50 (in the direction of the arrow shown) (sliding while contacting the sample piece 50), for example, an elapsed time as shown in FIG. ) Was obtained, and a static friction coefficient (hereinafter referred to as initial static friction coefficient) and a dynamic friction coefficient (hereinafter referred to as initial dynamic friction coefficient) were measured.

また、前記の試料片50をギヤオーブン内(80℃)にて計200時間放置することにより、該試料片50を熱加速劣化処理した後、初期静摩擦係数,初期動摩擦係数と同様の方法により、経過時間に対する摩擦係数変化特性を得て、静摩擦係数(以下、劣化後静摩擦係数と称する),動摩擦係数(以下、劣化後動摩擦係数)を測定し、滑性を調べた。   In addition, by leaving the sample piece 50 in a gear oven (80 ° C.) for a total of 200 hours, the sample piece 50 was subjected to thermal accelerated deterioration treatment, and then the same method as the initial static friction coefficient and initial dynamic friction coefficient, Friction coefficient change characteristics with respect to elapsed time were obtained, and a static friction coefficient (hereinafter referred to as a post-deterioration static friction coefficient) and a dynamic friction coefficient (hereinafter referred to as a post-degradation dynamic friction coefficient) were measured to examine the slipperiness.

そして、前記の初期静摩擦係数,劣化後静摩擦係数(または、初期動摩擦係数,劣化後動摩擦係数)を用い下記(4)式により静摩擦持続指数Δμs(または動摩擦持続指数Δμd)を算出し、滑性の持続性(以下、滑持続性とし、それぞれを静滑持続性,動滑持続性と称する)を調べた。   Then, using the initial static friction coefficient and the post-deterioration static friction coefficient (or the initial dynamic friction coefficient and the post-deterioration dynamic friction coefficient), the static friction persistence index Δμs (or the dynamic friction persistence index Δμd) is calculated according to the following equation (4). Sustainability (hereinafter referred to as “sliding sustainability”, which was referred to as “sliding sustainability” and “sliding sustainability”) was examined.

「静摩擦持続指数Δμs(または動摩擦持続指数Δμd)」=「劣化後静摩擦係数(または劣化後動摩擦係数)」−「初期静摩擦係数(または初期動摩擦係数)」 …… (4)。   “Static friction duration index Δμs (or dynamic friction duration index Δμd)” = “deteriorated static friction coefficient (or degraded dynamic friction coefficient)” − “initial static friction coefficient (or initial dynamic friction coefficient)” (4).

なお、「静摩擦持続指数Δμs」,「動摩擦持続指数,Δμd」,「劣化後静摩擦係数」,「劣化後動摩擦係数」は、80℃,20時間の熱加速劣化処理を10回繰り返した場合(すなわち、熱加速劣化処理時間の合計が200時間(アレニウスの法則に基づいて経過年数を約5年加速させたことに相当))の結果である。また、前記の10回の熱加速劣化処理毎に、試料片50の表面をクレシア社製のキムワイプ(キムワイプS−200)で清浄する工程(エタノールを含んだキムワイプが試料片50に対して0.98Nの荷重で圧接するように、該試料片50表面を一方向に掃引して清浄する工程)を行ったものとする。   The “static friction duration index Δμs”, “dynamic friction duration index, Δμd”, “post-deterioration static friction coefficient”, and “post-deterioration dynamic friction coefficient” are obtained when the thermal acceleration degradation process at 80 ° C. for 20 hours is repeated 10 times (that is, The result of the heat accelerated deterioration treatment time is 200 hours (equivalent to accelerating the elapsed years by about 5 years based on Arrhenius law). Moreover, the process of cleaning the surface of the sample piece 50 with Crecia Kimwipe (Kimwipe S-200) after every 10 thermal accelerated deterioration processes (Kimwipe containing ethanol is less than 0. 0 with respect to the sample piece 50). It is assumed that the process of cleaning the surface of the sample piece 50 by sweeping in one direction so as to be pressed with a load of 98 N is performed.

Figure 2008056748
Figure 2008056748

前記の表2に示す結果から、以下に示すことが判明した。   From the results shown in Table 2 above, the following were found.

<ゴム配合物P1〜P4,試料GP1〜GP4>
一般的な配合(カーボン80nmを140phr配合)のゴム配合物P1〜P4は,それぞれ混練加工性,押出成形性が良好であるものの、該ゴム配合物P1〜P4から成るゴム成形体の試料GP1〜GP4は、表面処理層が無い(試料GP1)または厚さが薄い(試料GP2)と、滑性,耐貼付性が低くなることを読み取れる。また、前記の表面処理層が厚過ぎる(特に試料GP4)と、十分な滑性,耐貼付性(および滑持続性,耐貼付持続性)が得られ易いものの、伸張永久歪み率は低くゴム成形体自体の耐へたり性が悪化することを読み取れる。さらに、表面処理層が一般的な厚さ(試料GP3)であっても、塗布斑や塗布だれ等が生じ易いことから、生産性が悪化してしまう恐れがある。
<Rubber compounds P1 to P4, samples GP1 to GP4>
The rubber compounds P1 to P4 having a general composition (80 nm of carbon and 140 phr) have good kneadability and extrusion moldability, respectively, but samples GP1 to GP1 of the rubber molded body composed of the rubber compounds P1 to P4. When GP4 has no surface treatment layer (sample GP1) or has a small thickness (sample GP2), it can be read that the slipperiness and the sticking resistance are low. If the surface treatment layer is too thick (especially sample GP4), sufficient slipping and sticking resistance (and sliding durability and sticking resistance) can be easily obtained, but the elongation set rate is low and rubber molding is performed. It can be seen that the sag resistance of the body itself deteriorates. Furthermore, even if the surface treatment layer has a general thickness (sample GP3), since application spots and application dripping easily occur, productivity may be deteriorated.

<シリコーン化合物を配合しないゴム配合物P5〜P7,試料GP5〜GP7>
一般的な配合で2種類の発泡剤を配合したゴム配合物P5、カーボン80nmの配合量が比較的少量のゴム配合物P6、カーボン80nmの配合量が比較的少量で発泡剤を配合しないゴム配合物P7は、それぞれ混練加工性,押出成形性が良好であった。
<Rubber compounds P5 to P7 not containing a silicone compound, samples GP5 to GP7>
A rubber compound P5 in which two types of foaming agents are blended in a general blend, a rubber compound P6 in which the blending amount of carbon 80 nm is relatively small, and a rubber blend in which the blending amount of carbon 80 nm is relatively small and no foaming agent is blended The product P7 had good kneadability and extrusion moldability, respectively.

しかしながら、ゴム配合物P5,P6から成る試料GP5,GP6は、耐貼付性は十分であるものの、滑性および滑持続性は低かった。また、ゴム配合物P7から成る試料GP7は、滑性,耐貼付性の両方が共に低く、耐貼付持続性も低かった。   However, the samples GP5 and GP6 composed of the rubber compounds P5 and P6 had sufficient anti-sticking properties but had low sliding properties and sliding durability. Further, the sample GP7 made of the rubber compound P7 had both low lubricity and anti-sticking property, and low anti-sticking durability.

この結果から、ゴム配合物P5〜P7のような配合物の場合、発泡剤を配合することにより、ゴム成形体において表面処理層が無くても十分な耐貼付性が得られるものの、滑性は低く、滑持続性も低いことが読み取れる。   From this result, in the case of compounds such as rubber compounds P5 to P7, by adding a foaming agent, sufficient sticking resistance can be obtained without a surface treatment layer in the rubber molded body, but the lubricity is It can be seen that it is low and has low sliding durability.

<シリコーン化合物を配合したゴム配合物P8〜P14,試料GP8〜GP14>
粘度100cStのシリコーン化合物を配合したゴム配合物P8は混練加工性が低く、カーボン80nmの配合量が極めて少ないゴム配合物P9は混練加工性,押出成形性の両方が共に低かった。一方、一般的な配合のゴム配合物P10,カーボン45nmを配合したゴム配合物P11、カーボン80nmの配合量が比較的少量のゴム配合物P13,P14は、それぞれ混練加工性,押出成形性が良好であった。
<Rubber compounds P8 to P14 compounded with silicone compounds, samples GP8 to GP14>
The rubber compound P8 blended with a silicone compound having a viscosity of 100 cSt has low kneading processability, and the rubber compound P9 having a very small amount of carbon 80 nm has both low kneading processability and extrusion processability. On the other hand, the rubber compound P10 having a general compounding, the rubber compound P11 compounding 45 nm of carbon, and the rubber compounds P13 and P14 having a relatively small compounding amount of carbon 80 nm have good kneadability and extrudability, respectively. Met.

しかしながら、ゴム配合物P10,P11から成る試料GP10,GP11は、耐貼付性は十分であるものの、滑性は低く、滑持続性,耐貼付持続性も低かった。また、ゴム配合物P12から成る試料GP12は、滑性,耐貼付性の両方が共に低く、滑持続性も低かった。さらに、ゴム配合物P13,P14から成る試料GP13,GP14は、極めて低比重であって、他の試料GP1〜GP12と比較すると、滑性,耐貼付性は十分であるものの、滑持続性,耐貼付持続性は不十分であった。   However, the samples GP10 and GP11 composed of the rubber compounds P10 and P11 had sufficient anti-sticking properties, but had low sliding properties and low sliding and anti-sticking properties. In addition, the sample GP12 made of the rubber compound P12 had both low lubricity and sticking resistance, and low sliding durability. Further, the samples GP13 and GP14 made of the rubber compounds P13 and P14 have a very low specific gravity, and compared with the other samples GP1 to GP12, the slipperiness and resistance to sticking are sufficient. Sticking persistence was insufficient.

この結果から、ゴム配合物P8〜P14のような配合物において、たとえシリコーン化合物が配合されていても、カーボンブラックの配合量が過少の場合には、配合物の纏まり性が低くなり、その配合物の混練加工性や押出成形性が低下すること(ロールに対する巻き付き性の低下や吐出のバラツキが発生等)が読み取れる。   From this result, in the blends such as the rubber blends P8 to P14, even if the silicone compound is blended, if the blending amount of the carbon black is too small, the composition of the blend becomes low, and the blend It can be read that the kneadability of the product and the extrusion moldability are lowered (decrease in winding property with respect to rolls, occurrence of variation in discharge, etc.).

また、シリコーン化合物の粘度が過小の場合には、該配合物の混練加工性や押出成形性が同様に低くなり、該シリコーン化合物におけるゴム成形体内での運動性が大きいため(ブリード速度が速過ぎてしまうため)、滑持続性,耐貼付持続性が低くなってしまうことを読み取れる。   In addition, when the viscosity of the silicone compound is too low, the kneading processability and extrusion moldability of the compound are similarly lowered, and the mobility in the rubber molded body of the silicone compound is large (the bleed speed is too high). Therefore, it can be read that the sliding durability and the sticking durability are low.

また、カーボンブラックの算術平均粒径が過小の場合には、ゴム成形体においてカーボン由来凹凸面が形成されないため、当接対象との接触面積が大きくなってしまうと共に、ブリード物が除去され易いことを読み取れる。   In addition, when the arithmetic average particle size of carbon black is too small, the carbon-derived uneven surface is not formed in the rubber molded body, so that the contact area with the contact target becomes large and the bleed material is easily removed. Can be read.

さらに、ゴム成形体の比重が過小の場合(特に、発泡セルが過多の場合)には、シリコーン化合物のブリード速度が遅くなる傾向を有することが読み取れる。   Furthermore, it can be seen that when the specific gravity of the rubber molded body is too small (particularly when the foamed cells are excessive), the bleed speed of the silicone compound tends to be slow.

加えて、粘着性を有する軟化剤の配合量が過多(例えば、100phr超)の場合には、耐貼付性が低下する傾向を有することが読み取れる。   In addition, it can be read that when the blending amount of the softening agent having adhesiveness is excessive (for example, more than 100 phr), the sticking resistance tends to decrease.

<ゴム配合物S1〜S12,試料GS1〜GS12>
ゴム配合物S1〜S12は、それぞれ混練加工性,押出成形性が良好であった。また、ゴム配合物S1〜S12から成る試料GS1〜GS12は、良好な滑性,耐貼付性,滑持続性,耐貼付持続性,耐へたり性が得られた。
<Rubber compounds S1 to S12, samples GS1 to GS12>
The rubber compounds S1 to S12 each had good kneading processability and extrusion moldability. Samples GS1 to GS12 composed of the rubber compounds S1 to S12 exhibited good lubricity, sticking resistance, sliding durability, sticking resistance, and sag resistance.

この結果から、ゴム配合物S1〜S12のように、算術平均粒径60nm以上のカーボンブラックを50phr〜100phr,粘度1000cSt以上のシリコーン化合物を配合した配合物においては、十分な纏まり性を有することが読み取れる。また、該配合物から成るゴム成形体においては、カーボン由来凹凸面が形成され、当接対象との接触面積が小さくなると共に、カーボン由来凹凸面にシリコーン化合物のブリード物が残存し易いことから、良好な滑性,耐貼付性が持続することを読み取れる。さらに、軟化剤の配合量が100phr以下であれば、耐貼付性の低下は殆どないことが読み取れる。   From this result, a compound in which a carbon compound having an arithmetic average particle diameter of 60 nm or more and a silicone compound having a viscosity of 1000 cSt or more is compounded with a carbon compound having an arithmetic average particle diameter of 60 nm or more, such as rubber compounds S1 to S12, has sufficient cohesiveness. I can read. In addition, in the rubber molded body made of the compound, a carbon-derived uneven surface is formed, the contact area with the contact target is reduced, and the bleed material of the silicone compound tends to remain on the carbon-derived uneven surface, It can be seen that good lubricity and sticking resistance persist. Furthermore, it can be seen that when the blending amount of the softening agent is 100 phr or less, there is almost no reduction in sticking resistance.

また、発泡剤を配合しなくとも、複数種の発泡剤を選択的に一つ以上配合しても、それぞれ同様の物性が得られることを読み取れる。さらにまた、ゴム成形体の比重が過小であっても、該比重が0.3以上であれば、シリコーン化合物のブリード速度が十分となり、良好な滑性,耐貼付性がより安定して持続することを読み取れる。   Moreover, even if it does not mix | blend a foaming agent, even if it mix | blends one or more types of multiple types of foaming agents selectively, it can read that the same physical property is obtained, respectively. Furthermore, even if the specific gravity of the rubber molded body is too small, if the specific gravity is 0.3 or more, the bleed speed of the silicone compound is sufficient, and good lubricity and resistance to sticking are more stably maintained. I can read that.

ここで、下記表3および図6A(静摩擦係数),B(動摩擦係数)は、前記の試料GP1,GP3,GS5における各熱加速劣化処理毎(熱加速劣化処理時間)に測定した劣化後静摩擦係数,劣化後動摩擦係数の結果を示すものである。   Here, Table 3 below and FIGS. 6A (static friction coefficient) and B (dynamic friction coefficient) are the post-deterioration static friction coefficients measured for each thermal acceleration degradation process (thermal acceleration degradation process time) in the samples GP1, GP3, and GS5. Figure 3 shows the results of post-degradation dynamic friction coefficients.

Figure 2008056748
Figure 2008056748

この表3および図6に示す結果において、試料GP3は、各劣化後静摩擦係数,各劣化後動摩擦係数が試料GP1と比較して小さいため滑性(特に、初期の滑性)が良好であるものの、各係数は熱加速劣化処理毎に上昇する傾向を有することから、滑持続性は低いことを読み取れる。   In the results shown in Table 3 and FIG. 6, the sample GP3 has good slipperiness (especially, initial slipperiness) because the static friction coefficient after each deterioration and the dynamic friction coefficient after each deterioration are smaller than those of the sample GP1. Since each coefficient has a tendency to increase for each thermal acceleration deterioration process, it can be read that the sliding durability is low.

一方、試料GS5においては、試料GP3と同様に各係数が小さく良好な滑性を有すると共に、且つ各係数が略一定または下降していることから滑持続性(静滑持続性,動滑持続性)が高いことを読み取れる。   On the other hand, in the sample GS5, as in the sample GP3, each coefficient is small and has a good sliding property, and since each coefficient is substantially constant or descending, the sliding durability (static sliding durability, sliding durability) ) Is high.

なお、前記のゴム配合物S1〜S12と同様に、少なくとも他の高分子弾性体ポリマー,カーボンブラック,軟化剤,シリコーン化合物を配合したゴム配合物であって、該カーボンブラックの算術平均粒径が60nm以上(例えば、カーボン60nm,80nm)で配合量が50phr〜100phr,該軟化剤の配合量が100phr以下,シリコーン化合物の粘度(25℃)が1000cSt以上であれば十分な混練加工性,押出し成形性が得られ、そのゴム配合物を用いて成る試料の滑性,耐貼付性,滑持続性,耐貼付持続性,耐へたり性が十分良好であったことを確認した。   It is to be noted that, similarly to the rubber compounds S1 to S12, a rubber compound containing at least another polymer elastic body polymer, carbon black, softener, and silicone compound, and the arithmetic average particle size of the carbon black is Sufficient kneadability and extrusion molding if 60 nm or more (for example, carbon 60 nm, 80 nm), blending amount is 50 phr to 100 phr, blending amount of the softener is 100 phr or less, and viscosity (25 ° C.) of the silicone compound is 1000 cSt or more. It was confirmed that the samples using the rubber compound had sufficiently good slipping properties, sticking resistance, sliding durability, sticking durability, and sag resistance.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

ゴム材料組成物を押出し成形加硫して成るゴム成形体の構造モデルを示す説明図。Explanatory drawing which shows the structural model of the rubber molded object formed by extrusion-molding and vulcanizing a rubber material composition. 実施例で用いたゴム成形体の試料(GS1〜GS12,GP1〜GP14)の概略説明図。The schematic explanatory drawing of the sample (GS1-GS12, GP1-GP14) of the rubber molding used in the Example. 実施例における耐へたり性の測定方法を示す説明図。Explanatory drawing which shows the measuring method of sag resistance in an Example. 実施例における耐貼り付き性の測定方法を示す説明図。Explanatory drawing which shows the measuring method of sticking-proof property in an Example. 実施例における摩擦係数の測定方法を示す説明図。Explanatory drawing which shows the measuring method of the friction coefficient in an Example. 試料GP1,GP3,GS5における各熱加速劣化処理毎の劣化後静摩擦係数,劣化後動摩擦係数の測定結果の説明図。Explanatory drawing of the measurement result of the after-deterioration static friction coefficient for every thermal acceleration degradation process in samples GP1, GP3, and GS5, and a dynamic friction coefficient after degradation.

符号の説明Explanation of symbols

10…ゴム成形体
10a…平坦面
10b…ブリード物
10c…カーボン由来凹凸面
10d…除去領域
20…試料
30,40,50…試料片
DESCRIPTION OF SYMBOLS 10 ... Rubber molded object 10a ... Flat surface 10b ... Bleed thing 10c ... Carbon-derived uneven surface 10d ... Removal area 20 ... Sample 30,40,50 ... Sample piece

Claims (6)

押出し成形加硫によるゴム成形体の当接部位のうち少なくとも表面側に用いられ、
少なくとも、エチレン‐α‐オレフィン・非共役ポリエン共重合体100phrと、算術平均粒径60nm以上のカーボンブラック50phr〜100phrと、軟化剤100phr以下と、粘度(25℃)が1000cSt以上のシリコーン化合物と、を配合したことを特徴とするゴム材料組成物。
Used at least on the surface side of the contact part of the rubber molded body by extrusion molding vulcanization,
At least 100 phr of an ethylene-α-olefin / nonconjugated polyene copolymer, 50 phr to 100 phr of carbon black having an arithmetic average particle size of 60 nm or more, a silicone compound having a viscosity (25 ° C.) of 1000 cSt or more, and a viscosity (25 ° C.) of 1000 cSt or more, A rubber material composition comprising:
発泡剤を配合したことを特徴とする請求項1記載のゴム材料組成物。   2. The rubber material composition according to claim 1, wherein a foaming agent is blended. 請求項1または2のゴム材料組成物を押出し成形加硫して成るゴム成形体であって、
前記ゴム成形体の当接部位のうち少なくとも表面側にカーボン由来凹凸面が形成され、
比重が0.3以上であることを特徴とするゴム成形体。
A rubber molded body obtained by extruding and vulcanizing the rubber material composition according to claim 1,
A carbon-derived uneven surface is formed on at least the surface side of the contact portion of the rubber molded body,
A rubber molded body having a specific gravity of 0.3 or more.
静摩擦持続指数Δμs,動摩擦持続指数Δμdがそれぞれ0.9以下,0.7以下、耐貼付持続指数ΔSが80以下であることを特徴とする請求項3記載のゴム成形体。   4. The rubber molded article according to claim 3, wherein the static friction duration index [Delta] [mu] s and the dynamic friction duration index [Delta] [mu] d are 0.9 or less and 0.7 or less, respectively, and the sticking resistance duration index [Delta] S is 80 or less. 請求項1または2のゴム材料組成物を押出し成形加硫して成る自動車用ウェザーストリップであって、
前記ウェザーストリップの当接部位のうち少なくとも表面側にカーボン由来凹凸面が形成され、
比重が0.3以上であることを特徴とする自動車用ウェザーストリップ。
A weather strip for automobiles obtained by extruding and vulcanizing the rubber material composition according to claim 1,
A carbon-derived uneven surface is formed on at least the surface side of the contact portion of the weather strip,
A weather strip for automobiles having a specific gravity of 0.3 or more.
静摩擦持続指数Δμs,動摩擦持続指数Δμdがそれぞれ0.9以下,0.7以下であり、耐貼付持続指数ΔSが80以下であることを特徴とする請求項5記載の自動車用ウェザーストリップ。   6. The automobile weather strip according to claim 5, wherein the static friction duration index [Delta] [mu] s and the dynamic friction duration index [Delta] [mu] d are 0.9 or less and 0.7 or less, respectively, and the anti-sticking duration index [Delta] S is 80 or less.
JP2006232890A 2006-08-30 2006-08-30 Rubber material composition, rubber molded product and weather strip for automobile Pending JP2008056748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006232890A JP2008056748A (en) 2006-08-30 2006-08-30 Rubber material composition, rubber molded product and weather strip for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006232890A JP2008056748A (en) 2006-08-30 2006-08-30 Rubber material composition, rubber molded product and weather strip for automobile

Publications (1)

Publication Number Publication Date
JP2008056748A true JP2008056748A (en) 2008-03-13

Family

ID=39239886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006232890A Pending JP2008056748A (en) 2006-08-30 2006-08-30 Rubber material composition, rubber molded product and weather strip for automobile

Country Status (1)

Country Link
JP (1) JP2008056748A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024310A (en) * 2008-07-17 2010-02-04 Kinugawa Rubber Ind Co Ltd Sliding composition and sliding product
JP2011256223A (en) * 2010-06-07 2011-12-22 Toyoda Gosei Co Ltd Foamed rubber molded article and method for producing the same
JP7449922B2 (en) 2018-08-29 2024-03-14 ダウ グローバル テクノロジーズ エルエルシー Silicone-reinforced ethylene/alpha-olefin interpolymer for improved balance of stiffness and toughness

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688442A (en) * 1979-12-21 1981-07-17 Shin Etsu Polymer Co Ltd Electrically conductive rubber composition
JPH03221548A (en) * 1990-01-26 1991-09-30 Japan Synthetic Rubber Co Ltd Rubber composition for weatherstrip
JPH08231774A (en) * 1995-02-22 1996-09-10 Kinugawa Rubber Ind Co Ltd Rubber composition
JP2000007841A (en) * 1998-06-25 2000-01-11 Toyoda Gosei Co Ltd Rubber composition for sliding member
JP2000095900A (en) * 1998-07-21 2000-04-04 Mitsui Chemicals Inc Resin composition for facing member and laminate containing the same
JP2001040129A (en) * 1999-07-27 2001-02-13 Kinugawa Rubber Ind Co Ltd Sponge rubber composition
JP2005120335A (en) * 2003-09-26 2005-05-12 Sumitomo Chemical Co Ltd Hollow sponge and automobile sealing material
JP2005220273A (en) * 2004-02-09 2005-08-18 Kinugawa Rubber Ind Co Ltd Rubber composition and weather strip for automobile using the same
JP2006176577A (en) * 2004-12-21 2006-07-06 Denki Kagaku Kogyo Kk Rubber composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688442A (en) * 1979-12-21 1981-07-17 Shin Etsu Polymer Co Ltd Electrically conductive rubber composition
JPH03221548A (en) * 1990-01-26 1991-09-30 Japan Synthetic Rubber Co Ltd Rubber composition for weatherstrip
JPH08231774A (en) * 1995-02-22 1996-09-10 Kinugawa Rubber Ind Co Ltd Rubber composition
JP2000007841A (en) * 1998-06-25 2000-01-11 Toyoda Gosei Co Ltd Rubber composition for sliding member
JP2000095900A (en) * 1998-07-21 2000-04-04 Mitsui Chemicals Inc Resin composition for facing member and laminate containing the same
JP2001040129A (en) * 1999-07-27 2001-02-13 Kinugawa Rubber Ind Co Ltd Sponge rubber composition
JP2005120335A (en) * 2003-09-26 2005-05-12 Sumitomo Chemical Co Ltd Hollow sponge and automobile sealing material
JP2005220273A (en) * 2004-02-09 2005-08-18 Kinugawa Rubber Ind Co Ltd Rubber composition and weather strip for automobile using the same
JP2006176577A (en) * 2004-12-21 2006-07-06 Denki Kagaku Kogyo Kk Rubber composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024310A (en) * 2008-07-17 2010-02-04 Kinugawa Rubber Ind Co Ltd Sliding composition and sliding product
JP2011256223A (en) * 2010-06-07 2011-12-22 Toyoda Gosei Co Ltd Foamed rubber molded article and method for producing the same
JP7449922B2 (en) 2018-08-29 2024-03-14 ダウ グローバル テクノロジーズ エルエルシー Silicone-reinforced ethylene/alpha-olefin interpolymer for improved balance of stiffness and toughness

Similar Documents

Publication Publication Date Title
JP4866560B2 (en) Polymer moldings and automotive weatherstrips
JP4728735B2 (en) Olefinic thermoplastic elastomer composition and foam thereof
JP5919140B2 (en) Ethylene / propylene / diene rubber foam and sealing material
JP5913000B2 (en) Ethylene / propylene / diene rubber foam, method for producing the same, and sealing material
JP4972364B2 (en) Weather strip for automobile and method for producing weather strip for automobile
WO2011153203A1 (en) Method of formulating low gravity sponge rubber for automotive weatherstrips
WO2014148297A1 (en) Foam laminate
WO2017068893A1 (en) Rubber composition, and crosslinked rubber product and method for producing same
JP4887043B2 (en) Automotive weatherstrip
JP2008056748A (en) Rubber material composition, rubber molded product and weather strip for automobile
JP3945248B2 (en) Olefinic foam laminates and applications
JP5554511B2 (en) Rubber molded body and method for producing rubber molded body
KR100419849B1 (en) Expanded material for wiper blade and preparation method of thereof
JP2008069310A (en) Rubber material composition and rubber molded article
JP2004099867A (en) Olefinic thermoplastic elastomer foam and olefinic thermoplastic elastomer composition for foam
JP4904685B2 (en) Composition for improving surface properties of resin moldings
JP6076162B2 (en) Ethylene / propylene / diene rubber foam and sealing material
JP3588293B2 (en) Rubber foam
US9598568B2 (en) Rubber composition for weather strip glass run channel
JPH11166065A (en) Production of foamed seal member
WO2017002957A1 (en) Ethylene-propylene-diene rubber foam and sealing material
JP2014180817A (en) Foam laminate
KR102440703B1 (en) Weather strip composition having low density
JPH08156154A (en) Thermoplastic elastomer laminate
JP2002309026A (en) Waterproof epdm foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129