JP2008053996A - One core two-way optical communication method and apparatus - Google Patents

One core two-way optical communication method and apparatus Download PDF

Info

Publication number
JP2008053996A
JP2008053996A JP2006227422A JP2006227422A JP2008053996A JP 2008053996 A JP2008053996 A JP 2008053996A JP 2006227422 A JP2006227422 A JP 2006227422A JP 2006227422 A JP2006227422 A JP 2006227422A JP 2008053996 A JP2008053996 A JP 2008053996A
Authority
JP
Japan
Prior art keywords
optical
wavelength
optical transmission
transmission device
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006227422A
Other languages
Japanese (ja)
Inventor
Tomoaki Yoshida
智暁 吉田
Shunji Kimura
俊二 木村
Katsumi Iwatsuki
岩月  勝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006227422A priority Critical patent/JP2008053996A/en
Publication of JP2008053996A publication Critical patent/JP2008053996A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method performing high-speed optical signal transmission in wavelength multiplex using a direct modulation semiconductor laser, by use of an existing one core optical fiber as it is. <P>SOLUTION: When wavelength multiplex communication is performed between a pair of optical transmission apparatuses 10A and 10B connected using a one core optical fiber, the receiving attenuation amount Is (dB) at a wavelength range of an optical signal emitted by one of the pair of apparatuses 10A, 10B is established so that an equation "Is≥Po+X-Pmin-R" is satisfied. Wherein, Pmin (dBm) is the minimum photosensitivity of the one optical transmission apparatus, X (dB) is a signal power ratio which does not affect reception sensitivity even if an optical signal of a wavelength different from the one to be received by the one optical transmission apparatus, mixes in the one optical transmission apparatus, Po (dBm) is the maximum transmission light power of the other optical transmission apparatus, and R (dB) is the maximum reflection attenuation amount of the optical fiber. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、1芯の光ファイバを用いて接続した対の光伝送装置間で波長多重通信を行う1芯双方向光通信方法および装置に関するものである。   The present invention relates to a single-core bidirectional optical communication method and apparatus for performing wavelength multiplexing communication between a pair of optical transmission apparatuses connected using a single-core optical fiber.

インターネットの普及に伴って、通信サービスの多様化が進んでいる。光ファイバを用いた光アクセスサービスは、光ファイバの広帯域という特性を活用できるため、ビットレートの上昇に対応できる高速アクセスサービスとして注目されている。特に、1芯の光ファイバで双方向通信を行う光通信システムは、光ファイバの敷設コスト、管理コストを低減することが可能なシステムとして用いられている。   With the spread of the Internet, communication services are diversifying. An optical access service using an optical fiber is attracting attention as a high-speed access service that can cope with an increase in the bit rate because it can utilize the characteristics of a broadband optical fiber. In particular, an optical communication system that performs two-way communication using a single-core optical fiber is used as a system that can reduce the installation cost and management cost of the optical fiber.

ここで用いられる1芯双方向光通信装置は、1芯の光ファイバで双方向通信を実現するために、非特許文献1に示されるような、通信方向によって異なる波長の光信号を使用する波長多重技術が用いられている。図7に波長多重1芯双方向光通信に用いる光伝送装置10の構成例を示す。送信電気信号は、送信側のLDドライバ11に入力して増幅され、レーザダイオード(LD)12により電気信号から第1の波長の光信号に変換され、波長フィルタ13を経由して光ファイバ20に送信される。また、光ファイバ20から受信した第1の波長とは異なる第2の波長の光信号は、波長フィルタ13を経由してホトダイオード(PD)14によって電気信号に変換され、プリアンプ15で増幅され、リミッタアンプ16でリミティングされて、受信電気信号として取り出される。このように、光ファイバ20に対しては、送信方向と受信方向に応じて異なる波長の光信号を選択的に通過させる波長フィルタ13が配置され、送信光信号と受信光信号の結合・分離を行っている。   The single-core bidirectional optical communication device used here is a wavelength that uses optical signals having different wavelengths depending on the communication direction, as shown in Non-Patent Document 1, in order to realize bidirectional communication with a single-core optical fiber. Multiple techniques are used. FIG. 7 shows a configuration example of the optical transmission apparatus 10 used for wavelength division multiplexing single-core bidirectional optical communication. The transmission electric signal is input to the LD driver 11 on the transmission side and amplified, converted from an electric signal to an optical signal of the first wavelength by a laser diode (LD) 12, and then passed through the wavelength filter 13 to the optical fiber 20. Sent. An optical signal having a second wavelength different from the first wavelength received from the optical fiber 20 is converted into an electric signal by a photodiode (PD) 14 via a wavelength filter 13, amplified by a preamplifier 15, and a limiter. It is limited by the amplifier 16 and is taken out as a received electrical signal. As described above, the optical fiber 20 is provided with the wavelength filter 13 that selectively passes optical signals having different wavelengths according to the transmission direction and the reception direction, and combines and separates the transmission optical signal and the reception optical signal. Is going.

一方、光ファイバ20の伝送路内にはコネクタなどによって生じるフレネル反射や光ファイバ20そのものがもつレイリー反射などのために、自送信器が発光した光が自受信器に戻ってくる戻り光によって、受信光信号と混信することにより受信感度が劣化するという問題がある。非特許文献1に記載される従来技術は、用いる波長を1.3μm帯と1.5μm帯とし、大きく離れた波長帯を用いることによって、波長フィルタ13の製作、実装における条件が緩和され、経済的な構成が可能となっている。   On the other hand, due to Fresnel reflection caused by a connector or the like within the transmission path of the optical fiber 20 or Rayleigh reflection of the optical fiber 20 itself, the light emitted from the own transmitter returns to the own receiver, There is a problem that reception sensitivity deteriorates due to interference with the received optical signal. In the prior art described in Non-Patent Document 1, the wavelengths used are 1.3 μm band and 1.5 μm band, and the use of wavelength bands that are far away from each other eases the conditions for manufacturing and mounting the wavelength filter 13, and is economical. Configuration is possible.

ところが、光信号が例えば10Gbit/s以上の高速信号になるにつれて、送信器内にこれまで使用してきた直接変調半導体レーザの、非特許文献2に示されるようなチャープ(波長揺らぎ)特性が問題となってくる。1.5μm帯の直接変調半導体レーザがもつチャープ特性で高速信号を伝送させる場合、非特許文献3で示されるような光ファイバ伝送路における分散の影響を受け、大きく波形が劣化するという問題が発生する。   However, as the optical signal becomes a high-speed signal of, for example, 10 Gbit / s or more, the chirp (wavelength fluctuation) characteristic as shown in Non-Patent Document 2 of the direct modulation semiconductor laser used so far in the transmitter becomes a problem. It becomes. When high-speed signals are transmitted with the chirp characteristics of a 1.5 μm band direct modulation semiconductor laser, there is a problem that the waveform deteriorates significantly due to the influence of dispersion in the optical fiber transmission line as shown in Non-Patent Document 3. To do.

そこで、これらの問題を回避するために、例えば非特許文献4に示されるような分散の影響を受けない光ファイバを応用することが考えられる。これは、分散シフトファイバと呼ばれ、使用する波長において分散値が0になるよう設計、製造された光ファイバである。これにより、チャープの影響を受けずに受信側に光信号を伝送することが可能である。   Therefore, in order to avoid these problems, it is conceivable to apply an optical fiber that is not affected by dispersion, as shown in Non-Patent Document 4, for example. This is an optical fiber called a dispersion-shifted fiber, designed and manufactured so that the dispersion value becomes 0 at the wavelength used. As a result, it is possible to transmit an optical signal to the receiving side without being affected by the chirp.

TS−1000、光加入者インターフェース−100Mbit/s一芯WDM方式、(社)情報通信技術委員会、6−15頁、2003年1月29日TS-1000, optical subscriber interface-100 Mbit / s single-core WDM system, Information and Communication Technology Committee, page 6-15, January 29, 2003 Amnon Yariv著、多田・神谷監訳、「電流変調された半導体レーザ中での利得制御と周波数チャープ」、光エレクトロニクス、325−335頁、丸善、平成14年4月25日Amnon Yariv, translated by Tada and Kamiya, “Gain control and frequency chirp in current-modulated semiconductor lasers”, Optoelectronics, pages 325-335, Maruzen, April 25, 2002 Govind P.Agrawal,"DISPERSION IN SINGLE-MODE FIBERS","SESITIVITY DEGRADATION", Fiber-Optic Communication Systems、John Wiley & Sons ,p39-47,p176-177,1997Govind P. Agrawal, "DISPERSION IN SINGLE-MODE FIBERS", "SESITIVITY DEGRADATION", Fiber-Optic Communication Systems, John Wiley & Sons, p39-47, p176-177,1997 保立、岡本、大越 著、「1.55μm帯零分散単一モード光ファイバ、広波長域低分散単一モード光ファイバ」、光ファイバ、オーム社、217−225頁、325頁、1989年1月20日Hotate, Okamoto, Ogoshi, “1.55μm band zero-dispersion single-mode optical fiber, wide-wavelength low-dispersion single-mode optical fiber”, optical fiber, Ohm, 217-225, 325, January 1989 20th "Spectral grids for WDM applications:CWDM wavelength grid" ITU-T Rec,G.694.2,12/2003"Spectral grids for WDM applications: CWDM wavelength grid" ITU-T Rec, G.694.2,12 / 2003

しかし、上記に示した1.3μm帯と1.5μm帯の波長の双方に対して分散値を0とする光ファイバ、さらには環境温度が変動することにより直接変調半導体レーザの発光波長が変動する影響も考慮して使用波長帯の分散値を0とする光ファイバを製造することは難しい。さらに、非特許文献4に示されるような広帯域で分散を小さく抑える光ファイバを実現しても、すでに敷設されているシングルモード光ファイバを取り替えてサービスを提供することは、光ファイバの取り替えに非常にコストがかかるという問題がある。   However, the optical fiber whose dispersion value is 0 for both the 1.3 μm band and the 1.5 μm band wavelengths described above, and the emission wavelength of the directly modulated semiconductor laser varies as the environmental temperature varies. Considering the influence, it is difficult to manufacture an optical fiber in which the dispersion value in the used wavelength band is zero. Furthermore, even if an optical fiber that has a wide bandwidth and suppresses dispersion as shown in Non-Patent Document 4 is realized, it is very difficult to replace an optical fiber by providing a service by replacing an already laid single mode optical fiber. There is a problem that it is expensive.

本発明の目的は、既設の1芯光ファイバをそのまま使用して、直接変調半導体レーザを用いた波長多重による高速光信号の伝送を実現可能とすることである。   An object of the present invention is to enable transmission of a high-speed optical signal by wavelength multiplexing using a directly modulated semiconductor laser by using an existing single-core optical fiber as it is.

上記目的を達成するために、請求項1にかかる発明の1芯双方向光通信方法は、1芯光ファイバを用いて接続した対の光伝送装置間で波長多重通信を行うとき、前記対の光伝送装置の内の一方の光伝送装置の最小受光感度をPmin(dBm)、該一方の光伝送装置が受信すべき波長と異なる波長の光信号が該一方の光伝送装置に混入しても受信感度に影響を及ぼさない信号電力比をX(dB)、他方の光伝送装置の最大送信光電力をPo(dBm)、前記光ファイバの最大反射減衰量をR(dB)としたとき、前記一方の光伝送装置において、前記一方の光伝送装置が発光する光信号の波長範囲の受信減衰量Is(dB)を、「Is≧Po+X−Pmin−R」となるよう設定することを特徴とする。
請求項2にかかる発明の1芯双方向光通信方法は、1芯光ファイバを用いて接続した複数対の光伝送装置間で波長多重通信を行うとき、前記対の光伝送装置の内の一方の光伝送装置の最小受光感度をPmin(dBm)、該一方の光伝送装置が受信すべき波長と異なる波長の光信号が該一方の光伝送装置に混入しても受信感度に影響を及ぼさない信号電力比をX(dB)、他方の光伝送装置の最大送信光電力をPo(dBm)、前記光ファイバの最大反射減衰量をR(dB)としたとき、前記一方の光伝送装置において、前記一方の光伝送装置の受信波長の片隣もしくは両隣の波長で発光する光信号の波長範囲の受信減衰量Is(dB)を、「Is≧Po+X−Pmin−R+3」となるように設定することを特徴とする。
請求項3にかかる発明は、請求項2又は3に記載の1芯双方向光通信方法において、前記光伝送装置内の送信器に使用する発光素子として直接変調半導体レーザを用い、前記光ファイバとしてシングルモード光ファイバを用い、前記直接変調半導体レーザの発光波長帯を1260nmから1360nmの間から選定したことを特徴とする。
請求項4にかかる発明は、1芯の光ファイバを用いて接続した対の光伝送装置間で波長多重通信を行う1芯双方向光通信装置において、前記対の光伝送装置の内の一方の光伝送装置の最小受光感度をPmin(dBm)、該一方の光伝送装置が受信すべき波長と異なる波長の光信号が該一方の光伝送装置に混入しても受信感度に影響を及ぼさない信号電力比をX(dB)、他方の光伝送装置の最大送信光電力をPo(dBm)、前記光ファイバの最大反射減衰量をR(dB)としたとき、前記一方の光伝送装置において、前記一方の光伝送装置が発光する光信号の波長範囲の受信減衰量Is(dB)を、「Is≧Po+X−Pmin−R」となるよう設定したことを特徴とする。
請求項5にかかる発明は、1芯の光ファイバを用いて接続した複数対の光伝送装置間で波長多重通信を行う1芯双方向光通信装置において、前記対の光伝送装置の内の一方の光伝送装置の最小受光感度をPmin(dBm)、該一方の光伝送装置が受信すべき波長と異なる波長の光信号が該一方の光伝送装置に混入しても受信感度に影響を及ぼさない信号電力比をX(dB)、他方の光伝送装置の最大送信光電力をPo(dBm)、前記光ファイバの最大反射減衰量をR(dB)としたとき、前記一方の光伝送装置において、前記一方の光伝送装置の受信波長の片隣もしくは両隣の波長で発光する光信号の波長範囲の受信減衰量Isを、「Is≧Po+X−Pmin−R+3」となるように設定したことを特徴とする。
請求項6にかかる発明は、請求項4又は5に記載の1芯双方向光通信装置において、前記光伝送装置内の送信器に使用する発光素子として直接変調半導体レーザを用い、前記光ファイバとしてシングルモード光ファイバを用い、前記直接変調半導体レーザの発光波長帯を1260nmから1360nmの間から選定したことを特徴とする。
In order to achieve the above object, the single-core bidirectional optical communication method according to the first aspect of the present invention is configured to perform wavelength multiplexing communication between a pair of optical transmission devices connected using a single-core optical fiber. The minimum light receiving sensitivity of one of the optical transmission devices is Pmin (dBm), and even if an optical signal having a wavelength different from the wavelength to be received by the one optical transmission device is mixed in the one optical transmission device. When the signal power ratio that does not affect the reception sensitivity is X (dB), the maximum transmission optical power of the other optical transmission device is Po (dBm), and the maximum return loss of the optical fiber is R (dB), In one optical transmission apparatus, the reception attenuation amount Is (dB) in the wavelength range of the optical signal emitted by the one optical transmission apparatus is set to satisfy “Is ≧ Po + X−Pmin−R”. .
In the single-core bidirectional optical communication method according to the second aspect of the present invention, when wavelength division multiplexing is performed between a plurality of pairs of optical transmission apparatuses connected using a single-core optical fiber, one of the pair of optical transmission apparatuses is selected. Even if an optical signal having a wavelength different from the wavelength to be received by the one optical transmission device is mixed in the one optical transmission device, the reception sensitivity is not affected. When the signal power ratio is X (dB), the maximum transmission optical power of the other optical transmission device is Po (dBm), and the maximum return loss of the optical fiber is R (dB), in the one optical transmission device, The reception attenuation amount Is (dB) in the wavelength range of the optical signal that emits light at one or both of the reception wavelengths of the one optical transmission device is set to be “Is ≧ Po + X−Pmin−R + 3”. It is characterized by.
According to a third aspect of the present invention, in the one-core bidirectional optical communication method according to the second or third aspect, a direct modulation semiconductor laser is used as a light emitting element used for a transmitter in the optical transmission device, and the optical fiber is used. A single mode optical fiber is used, and an emission wavelength band of the direct modulation semiconductor laser is selected from 1260 nm to 1360 nm.
According to a fourth aspect of the present invention, there is provided a single-core bidirectional optical communication apparatus that performs wavelength division multiplexing between a pair of optical transmission apparatuses connected using a single-core optical fiber, and one of the pair of optical transmission apparatuses. The minimum light receiving sensitivity of the optical transmission device is Pmin (dBm), and even if an optical signal having a wavelength different from the wavelength to be received by the one optical transmission device is mixed in the one optical transmission device, the signal does not affect the reception sensitivity. When the power ratio is X (dB), the maximum transmission optical power of the other optical transmission device is Po (dBm), and the maximum return loss of the optical fiber is R (dB), The reception attenuation amount Is (dB) in the wavelength range of the optical signal emitted by one of the optical transmission apparatuses is set to satisfy “Is ≧ Po + X−Pmin−R”.
According to a fifth aspect of the present invention, there is provided a single-core bidirectional optical communication apparatus that performs wavelength division multiplexing between a plurality of pairs of optical transmission apparatuses connected using a single-core optical fiber, and one of the pair of optical transmission apparatuses. Even if an optical signal having a wavelength different from the wavelength to be received by the one optical transmission device is mixed in the one optical transmission device, the reception sensitivity is not affected. When the signal power ratio is X (dB), the maximum transmission optical power of the other optical transmission device is Po (dBm), and the maximum return loss of the optical fiber is R (dB), in the one optical transmission device, The reception attenuation amount Is in a wavelength range of an optical signal emitted at one or both wavelengths of the reception wavelength of the one optical transmission device is set to satisfy “Is ≧ Po + X−Pmin−R + 3”. To do.
The invention according to claim 6 is the single-core bidirectional optical communication device according to claim 4 or 5, wherein a direct modulation semiconductor laser is used as a light emitting element used for a transmitter in the optical transmission device, and the optical fiber is used as the optical fiber. A single mode optical fiber is used, and an emission wavelength band of the direct modulation semiconductor laser is selected from 1260 nm to 1360 nm.

本発明によれば、すでに敷設されているシングルモード光ファイバの分散値がもともと小さい波長帯を効率的に使用できるため、新しくファイバを敷設するなどのコストが不要となるばかりか、直接変調半導体レーザを用いた波長多重による高速光信号の伝送が実現可能である。また、従来技術よりも使用する波長範囲が狭くできるために、波長フィルタを追加して別の波長帯を用いる光伝送装置を接続することで、1芯光ファイバに複数対の光伝送装置を接続することも可能になる。   According to the present invention, since a wavelength band in which the dispersion value of an already laid single mode optical fiber is originally small can be used efficiently, the cost of laying a new fiber becomes unnecessary, and a directly modulated semiconductor laser is used. It is possible to realize high-speed optical signal transmission by wavelength multiplexing using the. In addition, since the wavelength range to be used can be narrower than in the prior art, multiple pairs of optical transmission devices can be connected to a single-core optical fiber by connecting an optical transmission device that uses a different wavelength band by adding a wavelength filter. It is also possible to do.

電気通信事業を営む上では、収益やサービス向上に貢献するために、提供するネットワークをより経済的な構成とすることが求められる。そこで、光通信装置に用いられる送信用光源としては、送信電気信号を直接注入することによって送信光を明滅させる直接変調半導体レーザを用いることが望ましい。なぜなら、他の外部変調器を用いる方法では、信号を変調する部品が、発光源に加えて必要となるからである。また、部品の増加によって、送信器が複難で大きくなることから、送信器や装置の製造コストが増大するためである。   In order to operate the telecommunications business, it is necessary to make the network to be provided more economical in order to contribute to profits and service improvement. Therefore, as a light source for transmission used in an optical communication device, it is desirable to use a direct modulation semiconductor laser that blinks transmission light by directly injecting a transmission electric signal. This is because, in other methods using an external modulator, a signal modulating component is required in addition to the light source. Moreover, because the transmitter becomes difficult and large due to an increase in parts, the manufacturing cost of the transmitter and the device increases.

また、非特許文献5に示すような規格によって事前に定められた、区切られた波長帯の光信号を用いることにより、統一された規格を利用することで、部品の調達コストを低減することが可能となる。しかし、直接変調半導体レーザは、前述の通り非特許文献2に示されるようにチャープ特性を持ち、特に光通信で用いられる1.5μm帯の光信号においては、信号の伝送速度が高速になればなるほどシングルモード光ファイバの分散特性によって波形が大きくゆがんでしまい、受信感度が劣化する。   In addition, by using optical signals in a demarcated wavelength band determined in advance by a standard as shown in Non-Patent Document 5, it is possible to reduce the procurement cost of parts by using a unified standard. It becomes possible. However, as described above, the direct modulation semiconductor laser has a chirp characteristic as shown in Non-Patent Document 2, and particularly in a 1.5 μm band optical signal used in optical communication, if the signal transmission speed becomes high. The waveform is greatly distorted due to the dispersion characteristics of the single mode optical fiber, and the reception sensitivity is degraded.

そこで、シングルモード光ファイバの分散値が比較的小さい1.3μm帯の波長を用いることで、波形のゆがみを抑圧し、受信感度を劣化させずに通信が可能となる。よって、1芯双方向通信を実現するにあたり、この1.3μm帯から2つの波長の光信号を選定し、双方向に用いることが望ましい。一方で、その2つの波長は無作為に選定することはできない。それは自らが発光する送信光信号が光ファイバ内で反射されて、受信光信号に混入することにより雑音となって、受信感度を劣化させるからである。よって、反射の影響を受けないよう、十分の考慮された波長を以下のようにして選ぶ。   Therefore, by using a wavelength in the 1.3 μm band where the dispersion value of the single mode optical fiber is relatively small, it is possible to suppress the distortion of the waveform and perform communication without deteriorating the reception sensitivity. Therefore, when realizing single-core bidirectional communication, it is desirable to select optical signals having two wavelengths from the 1.3 μm band and use them in both directions. On the other hand, the two wavelengths cannot be selected randomly. This is because the transmission optical signal emitted by itself is reflected in the optical fiber and mixed with the reception optical signal, resulting in noise and deterioration in reception sensitivity. Therefore, a sufficiently considered wavelength is selected as follows so as not to be affected by reflection.

<第1の実施例>
図1に本発明の第1の実施例を示す。光伝送装置10Aと光伝送装置10Bがシングルモードの1芯の光ファイバ20で接続されている。光伝送装置10Aは波長LABの光信号を送信し、光伝送装置10Bは波長LBAの光信号を送信する。光伝送装置10Aの波長フィルタ13は波長LBAの光信号を、光伝送装置10Bの波長フィルタ13は波長LABの光信号を、それぞれ受信選択波長とする。波長LABとLBAは、シングルモード光ファイバ20の分散値が小さい範囲で選定し、具体的には1260nmから1360nmの間から選ぶことが望ましく、また、前述した経済性の観点から非特許文献5に記載の20nm間隔で区切られた波長グリッド(1271nm,1291nm,1311nm,133nm,1351nm)から選ぶことがさらに望ましい。図3に光伝送装置10B,10Aの波長フィルタ13の受信波長透過特性を示す。この図3では波長LABを短波長、波長LBAを長波長として記載しているが、相互に交換しても問題ない。
<First embodiment>
FIG. 1 shows a first embodiment of the present invention. The optical transmission device 10A and the optical transmission device 10B are connected by a single-mode single-core optical fiber 20. The optical transmission device 10A transmits an optical signal having a wavelength L AB , and the optical transmission device 10B transmits an optical signal having a wavelength L BA . The optical signal of the wavelength filter 13 is wavelength L BA of the optical transmission device 10A, the wavelength filter 13 of the optical transmission device 10B is the optical signal of the wavelength L AB, respectively and receive selected wavelength. The wavelengths L AB and L BA are selected in the range where the dispersion value of the single mode optical fiber 20 is small, specifically, it is desirable to select from 1260 nm to 1360 nm. It is further desirable to select from wavelength grids (1271 nm, 1291 nm, 1311 nm, 133 nm, 1351 nm) separated by 20 nm intervals described in 5. FIG. 3 shows the reception wavelength transmission characteristics of the wavelength filter 13 of the optical transmission apparatuses 10B and 10A. Although FIG. 3 shows the wavelength L AB as a short wavelength and the wavelength L BA as a long wavelength, there is no problem even if they are interchanged.

ここで、光伝送装置10Aの発光波長LABは温度変化などの周囲の環境によって変動するため、光伝送装置10Bの波長フィルタ13の受信波長透過帯域は、その波長LABの変動を考慮し、その変動範囲内でその透過率が高くなるよう製造され、且つその変動範囲外の波長については、長波長になるに従ってその透過率が減衰している。一方、光伝送装置10Aの波長フィルタ13の受信波長透過帯域は、光伝送装置10Bの発光波長LBAの変動を考慮して、その変動範囲内でその透過率が高くなるよう製造され、且つその変動範囲外の波長については、短波長になるに従ってその透過率が減衰している。このとき、光伝送装置10Bの受信波長透過帯域の最も長波長である波長LABmにおいて、光伝送装置10Bの受信波長透過率と光伝送装置10Aの受信波長透過率との比を受信アイソレーション(受信減衰量)Is(dB)とする。 Here, since the emission wavelength L AB of the optical transmission device 10A varies depending on the surrounding environment such as temperature change, the reception wavelength transmission band of the wavelength filter 13 of the optical transmission device 10B takes into account the variation of the wavelength L AB , It is manufactured so that the transmittance is high within the variation range, and the transmittance of the wavelength outside the variation range is attenuated as the wavelength becomes longer. On the other hand, the reception wavelength passband of the wavelength filter 13 of the optical transmission device 10A, in consideration of the variation in the emission wavelength L BA of the optical transmission device 10B, is manufactured to its transmittance is high within the fluctuation range, and the For wavelengths outside the fluctuation range, the transmittance decreases as the wavelength becomes shorter. At this time, at the wavelength L ABm which is the longest wavelength of the reception wavelength transmission band of the optical transmission device 10B, the ratio between the reception wavelength transmittance of the optical transmission device 10B and the reception wavelength transmittance of the optical transmission device 10A is received isolation ( (Reception attenuation) Is (dB).

光伝送装置の光信号の送信光電力はある範囲内の変動を許容するよう設計されるが、その最大送信光電力をPo(dBm)とする。また、最低限受光しなければならない受信光電力(最小受光感度)をPmin(dBm)とする。図2に示すような光ファイバ20上の点21に何らかの原因で、または光ファイバ20そのものの特性として、反射が生じ、光伝送装置10Aが送信した波長LABの光信号が光伝送装置10Aに戻る現象が発生する。このとき、本来受信すべき光伝送装置10Bから送られる受信波長LBAの光信号と送信波長LABの反射成分の光信号が同時に光伝送装置10Aの受信器に入力されることにより、反射成分が雑音となって光伝送装置10Aの受信感度を劣化させる。 The transmission optical power of the optical signal of the optical transmission apparatus is designed to allow fluctuation within a certain range, and the maximum transmission optical power is assumed to be Po (dBm). Further, the received light power (minimum light receiving sensitivity) that must be received at least is Pmin (dBm). For some reason at a point 21 on the optical fiber 20 as shown in FIG. 2, or the characteristics of the optical fiber 20 itself, reflection occurs, the light signal of wavelength L AB of the optical transmission device 10A is transmitted to the optical transmission device 10A The return phenomenon occurs. At this time, the optical signal of the reception wavelength L BA and the optical signal of the reflection component of the transmission wavelength L AB sent from the optical transmission apparatus 10B that should be received are input to the receiver of the optical transmission apparatus 10A at the same time, thereby reflecting the reflection component. Becomes noise and degrades the reception sensitivity of the optical transmission apparatus 10A.

しかし、図3で示した光伝送装置10Aの受信アイソレーションIsによって、波長LABの反射成分を十分に抑えることで、光伝送装置10Aの受信感度の劣化を抑圧することが出来る。このとき、最小受光感度が影響受けないために、どの程度最小受光感度から反射成分を抑圧すれば受信感度に影響しないかを示す、最小受光感度からの信号電力比をX(dB)、光ファイバ20が反射しうる最大反射減衰量をR(dB)とすれば、以下の関係式を満たす必要がある。
Pmin−X≧Po−R−Is (1)
よって、波長多重双方向通信を行うにあたり、光伝送装置10Aの発光波長LABはその波長変動範囲の最長波長LABmにおける受信アイソレーションIsを、
Is≧Po+X−Pmin−R (2)
となる条件を満たすよう選定し、光伝送装置10Bの発光波長LBAも同様に選定すれば、反射による影響を受けない1芯双方向光通信装置を構成することが可能になる。また、
Is=Po+X−Pmin−R (3)
となるよう波長LAB,LBAを選ぶことにより、反射による影響を受けずに両者の波長間隔を最小にすることができる。
However, by the receiving isolation Is of the optical transmission device 10A shown in FIG. 3, by suppressing the reflection component of the wavelength L AB enough, it is possible to suppress degradation of reception sensitivity of the optical transmission device 10A. At this time, since the minimum light receiving sensitivity is not affected, the signal power ratio from the minimum light receiving sensitivity is expressed as X (dB), which indicates how much the reflection component is suppressed from the minimum light receiving sensitivity, and does not affect the reception sensitivity. If the maximum return loss that 20 can reflect is R (dB), the following relational expression must be satisfied.
Pmin−X ≧ Po−R−Is (1)
Therefore, when performing wavelength division multiplexing bidirectional communication, the emission wavelength L AB of the optical transmission device 10A is the reception isolation Is at the longest wavelength L ABm in the wavelength variation range,
Is ≧ Po + X−Pmin−R (2)
And satisfy the condition selected becomes, if similarly selected emission wavelength L BA of the optical transmission device 10B, it is possible to configure the single-core bidirectional optical communication apparatus which is not affected by reflection. Also,
Is = Po + X-Pmin-R (3)
By selecting the wavelengths L AB and L BA so as to be, the wavelength interval between them can be minimized without being affected by reflection.

信号電力比Xの数値例としては、反射光による波形の劣化を、受信信号の消光比の劣化と見なし、非特許文献3の177頁の図4.20に示されるようなパワーペナルティとして考えることができる。非特許文献3の177頁の式4.6.4に示される式に信号電力比Xを代入して、パワーペナルティPpenを計算すると、

Figure 2008053996
となる。図4にパワーペナルティPpenの計算例を示す。図4から分かるように、例えば、信号電力比Xを20(dB)とすることにより、受信感度のペナルティPpenが殆ど発生しないことがわかる。 As a numerical example of the signal power ratio X, the waveform deterioration due to the reflected light is regarded as the deterioration of the extinction ratio of the received signal and considered as a power penalty as shown in FIG. 4.20 on page 177 of Non-Patent Document 3. Can do. Substituting the signal power ratio X into the equation shown in Equation 4.6.4 on page 177 of Non-Patent Document 3 and calculating the power penalty P pen ,
Figure 2008053996
It becomes. FIG. 4 shows an example of calculating the power penalty P pen . As can be seen from FIG. 4, for example, when the signal power ratio X is set to 20 (dB), it is understood that the penalty P pen of the reception sensitivity hardly occurs.

また、光ファイバ20の最大反射減衰量Rの数値例としては、送信側直近での光ファイバの部分的な不連続によって生じるフレネル反射を反射光の最大値と考えることができる。そこで、光ファイバ断面が軸に垂直に破断していると仮定し、具体的な数値を非特許文献4の325頁の式12.5を参考に計算する。非特許文献4での反射率と本実施例での最大反射減衰量Rは定義が異なるため、計算式を以下に再掲する。光ファイバのコア、クラッドに一般的に用いられるガラスの屈折率nを1.48、空気の屈折率nを1.0とおき、以下の式

Figure 2008053996
から、最大反射減衰量Rは14.3(dB)と計算される。 Further, as a numerical example of the maximum return loss R of the optical fiber 20, Fresnel reflection caused by partial discontinuity of the optical fiber in the immediate vicinity of the transmission side can be considered as the maximum value of reflected light. Therefore, assuming that the cross section of the optical fiber is broken perpendicular to the axis, specific numerical values are calculated with reference to Equation 12.5 on page 325 of Non-Patent Document 4. Since the definition of the reflectance in Non-Patent Document 4 and the maximum return loss R in the present embodiment are different, the calculation formula is shown again below. The refractive index n 1 of glass generally used for the core and clad of the optical fiber is set to 1.48, and the refractive index n 0 of air is set to 1.0.
Figure 2008053996
Therefore, the maximum return loss R is calculated as 14.3 (dB).

<第2の実施例>
本発明の第2の実施例は、第1の実施例をさらに複数多重するネットワークである。すなわち、1芯双方向通信を構成する光伝送装置10Aと10Bの対、光伝送装置10Cと10Dの対を図5に示すようなネットワーク構成と図6に示すような波長フィルタの波長配置構成とすることで、直接変調半導体レーザを用いた経済的な送信器を搭載したより多くの光伝送装置を1芯の光ファイバ20に接続し、波長多重通信を行うことが可能になる。30,40は光合分波器である。
<Second embodiment>
The second embodiment of the present invention is a network in which a plurality of the first embodiments are further multiplexed. That is, a pair of optical transmission devices 10A and 10B and a pair of optical transmission devices 10C and 10D constituting a single-core bidirectional communication are configured as a network configuration as shown in FIG. 5 and a wavelength arrangement configuration of wavelength filters as shown in FIG. By doing so, it becomes possible to connect more optical transmission apparatuses equipped with an economical transmitter using a direct modulation semiconductor laser to the single-core optical fiber 20 and perform wavelength division multiplexing communication. 30 and 40 are optical multiplexers / demultiplexers.

このとき、例えば光伝送装置10Aに関して考えると、反射光が光伝送装置10Aでの受信に大きく影響を及ぼす波長は隣接する波長LABとLCDであり、この2つの反射光成分を抑圧することが必要となる。すなわち受信アイソレーションIsは実施例1に比較して3(dB)以上減衰量を多くする必要がある。よって、波長配置は以下の式を満たすように選定することによって、効率的により多くの光伝送装置を1芯の光ファイバ20に接続することが可能になる。
Is≧Po+X−Pmim−R+3 (6)
In this case, for example, think about the optical transmission device 10A, greatly affects wavelength reception in reflected light the optical transmission device 10A is adjacent wavelength L AB and L CD, suppressing the two reflection light component Is required. That is, it is necessary to increase the attenuation of the reception isolation Is by 3 (dB) or more as compared with the first embodiment. Therefore, by selecting the wavelength arrangement so as to satisfy the following expression, it becomes possible to efficiently connect more optical transmission apparatuses to the single-core optical fiber 20.
Is ≧ Po + X−Pmim−R + 3 (6)

本発明の第1の実施例の1芯双方向光通信装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the 1 core bidirectional | two-way optical communication apparatus of 1st Example of this invention. 第1の実施例の1芯双方向光通信装置における光ファイバでの反射の説明図である。It is explanatory drawing of the reflection in the optical fiber in the 1 core bidirectional | two-way optical communication apparatus of 1st Example. 第1の実施例の1芯双方向光通信装置における各光伝送装置の波長フィルタの受信波長透過特性の特性図である。It is a characteristic view of the reception wavelength transmission characteristic of the wavelength filter of each optical transmission device in the single-core bidirectional optical communication device of the first embodiment. 本来の受信波長と異なる波長信号が混入したときに受信感度に影響を及ぼさない電力比Xに対するパワーペナルティPpenの計算例の特性図である。It is a characteristic view of the example of calculation of the power penalty P pen with respect to the power ratio X which does not affect reception sensitivity when a wavelength signal different from the original reception wavelength is mixed. 本発明の第2の実施例の1芯双方向光通信装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the single core bidirectional | two-way optical communication apparatus of the 2nd Example of this invention. 第2の実施例の1芯双方向光通信装置における各光伝送装置の波長フィルタの受信波長透過特性の特性図である。It is a characteristic view of the reception wavelength transmission characteristic of the wavelength filter of each optical transmission device in the single-core bidirectional optical communication device of the second embodiment. 従来の1芯双方向光通信装置に使用する光伝送装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical transmission apparatus used for the conventional single core bidirectional | two-way optical communication apparatus.

符号の説明Explanation of symbols

10,10A,10B,10C,10D:光伝送装置
11:LDドライバ、12:レーザダイオード、13:波長フィルタ、14ホトダイオード、15:プリアンプ、16:リミッタアンプ
20:光ファイバ
30,40:光合分波器
10, 10A, 10B, 10C, 10D: Optical transmission device 11: LD driver, 12: Laser diode, 13: Wavelength filter, 14 photodiode, 15: Preamplifier, 16: Limiter amplifier 20: Optical fiber 30, 40: Optical multiplexing / demultiplexing vessel

Claims (6)

1芯光ファイバを用いて接続した対の光伝送装置間で波長多重通信を行うとき、
前記対の光伝送装置の内の一方の光伝送装置の最小受光感度をPmin(dBm)、該一方の光伝送装置が受信すべき波長と異なる波長の光信号が該一方の光伝送装置に混入しても受信感度に影響を及ぼさない信号電力比をX(dB)、他方の光伝送装置の最大送信光電力をPo(dBm)、前記光ファイバの最大反射減衰量をR(dB)としたとき、
前記一方の光伝送装置において、前記一方の光伝送装置が発光する光信号の波長範囲の受信減衰量Is(dB)を、
Is≧Po+X−Pmin−R
となるよう設定することを特徴とする1芯双方向光通信方法。
When performing wavelength division multiplexing between a pair of optical transmission devices connected using a single-core optical fiber,
The minimum light receiving sensitivity of one of the pair of optical transmission apparatuses is Pmin (dBm), and an optical signal having a wavelength different from the wavelength to be received by the one optical transmission apparatus is mixed into the one optical transmission apparatus. Even if the signal power ratio that does not affect the reception sensitivity is X (dB), the maximum transmission optical power of the other optical transmission device is Po (dBm), and the maximum return loss of the optical fiber is R (dB). When
In the one optical transmission device, a reception attenuation Is (dB) in a wavelength range of an optical signal emitted by the one optical transmission device is set as follows:
Is ≧ Po + X−Pmin−R
A single-core bidirectional optical communication method, characterized by:
1芯光ファイバを用いて接続した複数対の光伝送装置間で波長多重通信を行うとき、
前記対の光伝送装置の内の一方の光伝送装置の最小受光感度をPmin(dBm)、該一方の光伝送装置が受信すべき波長と異なる波長の光信号が該一方の光伝送装置に混入しても受信感度に影響を及ぼさない信号電力比をX(dB)、他方の光伝送装置の最大送信光電力をPo(dBm)、前記光ファイバの最大反射減衰量をR(dB)としたとき、
前記一方の光伝送装置において、前記一方の光伝送装置の受信波長の片隣もしくは両隣の波長で発光する光信号の波長範囲の受信減衰量Is(dB)を、
Is≧Po+X−Pmin−R+3
となるように設定することを特徴とする1芯双方向光通信方法。
When performing wavelength division multiplexing between a plurality of pairs of optical transmission devices connected using a single-core optical fiber,
The minimum light receiving sensitivity of one of the pair of optical transmission apparatuses is Pmin (dBm), and an optical signal having a wavelength different from the wavelength to be received by the one optical transmission apparatus is mixed into the one optical transmission apparatus. Even if the signal power ratio that does not affect the reception sensitivity is X (dB), the maximum transmission optical power of the other optical transmission device is Po (dBm), and the maximum return loss of the optical fiber is R (dB). When
In the one optical transmission device, the reception attenuation amount Is (dB) in the wavelength range of the optical signal that emits light at the wavelength adjacent to or both of the reception wavelengths of the one optical transmission device,
Is ≧ Po + X−Pmin−R + 3
A single-core bidirectional optical communication method, characterized in that setting is made so that
請求項2又は3に記載の1芯双方向光通信方法において、
前記光伝送装置内の送信器に使用する発光素子として直接変調半導体レーザを用い、前記光ファイバとしてシングルモード光ファイバを用い、前記直接変調半導体レーザの発光波長帯を1260nmから1360nmの間から選定したことを特徴とする1芯双方向光通信方法。
The single-core bidirectional optical communication method according to claim 2 or 3,
A direct modulation semiconductor laser is used as a light emitting element used for a transmitter in the optical transmission device, a single mode optical fiber is used as the optical fiber, and an emission wavelength band of the direct modulation semiconductor laser is selected from 1260 nm to 1360 nm. A single-core bidirectional optical communication method characterized by the above.
1芯の光ファイバを用いて接続した対の光伝送装置間で波長多重通信を行う1芯双方向光通信装置において、
前記対の光伝送装置の内の一方の光伝送装置の最小受光感度をPmin(dBm)、該一方の光伝送装置が受信すべき波長と異なる波長の光信号が該一方の光伝送装置に混入しても受信感度に影響を及ぼさない信号電力比をX(dB)、他方の光伝送装置の最大送信光電力をPo(dBm)、前記光ファイバの最大反射減衰量をR(dB)としたとき、
前記一方の光伝送装置において、前記一方の光伝送装置が発光する光信号の波長範囲の受信減衰量Is(dB)を、
Is≧Po+X−Pmin−R
となるよう設定したことを特徴とする1芯双方向光通信装置。
In a single-core bidirectional optical communication apparatus that performs wavelength division multiplexing between a pair of optical transmission apparatuses connected using a single-core optical fiber,
The minimum light receiving sensitivity of one of the pair of optical transmission apparatuses is Pmin (dBm), and an optical signal having a wavelength different from the wavelength to be received by the one optical transmission apparatus is mixed into the one optical transmission apparatus. Even if the signal power ratio that does not affect the reception sensitivity is X (dB), the maximum transmission optical power of the other optical transmission device is Po (dBm), and the maximum return loss of the optical fiber is R (dB). When
In the one optical transmission device, a reception attenuation Is (dB) in a wavelength range of an optical signal emitted by the one optical transmission device is set as follows:
Is ≧ Po + X−Pmin−R
A single-core bidirectional optical communication device, which is set to be
1芯の光ファイバを用いて接続した複数対の光伝送装置間で波長多重通信を行う1芯双方向光通信装置において、
前記対の光伝送装置の内の一方の光伝送装置の最小受光感度をPmin(dBm)、該一方の光伝送装置が受信すべき波長と異なる波長の光信号が該一方の光伝送装置に混入しても受信感度に影響を及ぼさない信号電力比をX(dB)、他方の光伝送装置の最大送信光電力をPo(dBm)、前記光ファイバの最大反射減衰量をR(dB)としたとき、
前記一方の光伝送装置において、前記一方の光伝送装置の受信波長の片隣もしくは両隣の波長で発光する光信号の波長範囲の受信減衰量Isを、
Is≧Po+X−Pmin−R+3
となるように設定したことを特徴とする1芯双方向光通信装置。
In a single-core bidirectional optical communication device that performs wavelength multiplexing communication between a plurality of pairs of optical transmission devices connected using a single-core optical fiber,
The minimum light receiving sensitivity of one of the pair of optical transmission apparatuses is Pmin (dBm), and an optical signal having a wavelength different from the wavelength to be received by the one optical transmission apparatus is mixed into the one optical transmission apparatus. Even if the signal power ratio that does not affect the reception sensitivity is X (dB), the maximum transmission optical power of the other optical transmission device is Po (dBm), and the maximum return loss of the optical fiber is R (dB). When
In the one optical transmission device, the reception attenuation amount Is in the wavelength range of the optical signal that emits light at a wavelength adjacent to or both of the reception wavelengths of the one optical transmission device,
Is ≧ Po + X−Pmin−R + 3
A single-core bidirectional optical communication device, which is set to be
請求項4又は5に記載の1芯双方向光通信装置において、
前記光伝送装置内の送信器に使用する発光素子として直接変調半導体レーザを用い、前記光ファイバとしてシングルモード光ファイバを用い、前記直接変調半導体レーザの発光波長帯を1260nmから1360nmの間から選定したことを特徴とする1芯双方向光通信装置。
The single-core bidirectional optical communication device according to claim 4 or 5,
A direct modulation semiconductor laser is used as a light emitting element used for a transmitter in the optical transmission device, a single mode optical fiber is used as the optical fiber, and an emission wavelength band of the direct modulation semiconductor laser is selected from 1260 nm to 1360 nm. A single-core bidirectional optical communication device characterized by the above.
JP2006227422A 2006-08-24 2006-08-24 One core two-way optical communication method and apparatus Withdrawn JP2008053996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227422A JP2008053996A (en) 2006-08-24 2006-08-24 One core two-way optical communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227422A JP2008053996A (en) 2006-08-24 2006-08-24 One core two-way optical communication method and apparatus

Publications (1)

Publication Number Publication Date
JP2008053996A true JP2008053996A (en) 2008-03-06

Family

ID=39237609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227422A Withdrawn JP2008053996A (en) 2006-08-24 2006-08-24 One core two-way optical communication method and apparatus

Country Status (1)

Country Link
JP (1) JP2008053996A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019513329A (en) * 2016-03-22 2019-05-23 フィニサー コーポレイション Two-way communication module
WO2023011444A1 (en) * 2021-08-05 2023-02-09 华为技术有限公司 Optical device, optical module, optical communication device and optical communication method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019513329A (en) * 2016-03-22 2019-05-23 フィニサー コーポレイション Two-way communication module
WO2023011444A1 (en) * 2021-08-05 2023-02-09 华为技术有限公司 Optical device, optical module, optical communication device and optical communication method

Similar Documents

Publication Publication Date Title
JP3929520B2 (en) Multi-channel optical fiber communication
CA2106942C (en) Optical communication system
Levinson et al. Coarse wavelength division multiplexing: technologies and applications
JPH10173597A (en) Optical equalizer
US10659186B2 (en) Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
JP5805126B2 (en) Method and apparatus for using distributed Raman amplification and remote pumping in a bidirectional optical communication network
US5966228A (en) Optical transmission system and optical repeater
KR20060009388A (en) Optical communication system with suppressed sbs
JPH11275020A (en) Wavelength multiplex optical transmission system, design method for loss difference compensation device for optical device used for the wavelength multiplex optical transmission system and buildup method for the wavelength multiplex optical transmission system
US9182550B1 (en) Dispersionless optical tap filter in bi-directional multimode fiber optic link
US20090047012A1 (en) Optical bypass method and architecture
JP2008053996A (en) One core two-way optical communication method and apparatus
JP2003021723A (en) Mode cut filter and optical transmitter-receiver
US6920277B2 (en) Optical bypass method and architecture
JP2004328138A (en) Optical transmission system
US6226425B1 (en) Flexible optical multiplexer
US20230246714A1 (en) Optical transceiver
US6697575B1 (en) System and method for increasing capacity of long-haul optical transmission systems
Araki et al. Extended optical fiber line testing system using new eight-channel L/U-band crossed optical waveguide coupler for L-band WDM transmission
JP2001215346A (en) Optical transmission line and system
KR20060016808A (en) Optical communication system with suppressed sbs
JP2002009707A (en) Optical transmission system and optical transmission method
KR20020095119A (en) Optical communication link
US7809227B2 (en) Optical fiber, and optical access network, local area network and optical parts for communication, which use the optical fiber
Giles et al. Bidirectional transmission to reduce fiber FWM penalty in WDM lightwave systems

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110