JP2008053636A - Vapor deposition system, and compound semiconductor film and growth method therefor - Google Patents

Vapor deposition system, and compound semiconductor film and growth method therefor Download PDF

Info

Publication number
JP2008053636A
JP2008053636A JP2006230922A JP2006230922A JP2008053636A JP 2008053636 A JP2008053636 A JP 2008053636A JP 2006230922 A JP2006230922 A JP 2006230922A JP 2006230922 A JP2006230922 A JP 2006230922A JP 2008053636 A JP2008053636 A JP 2008053636A
Authority
JP
Japan
Prior art keywords
reaction tube
gas
source gas
supply pipe
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006230922A
Other languages
Japanese (ja)
Other versions
JP5045032B2 (en
Inventor
Eiryo Takasuka
英良 高須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006230922A priority Critical patent/JP5045032B2/en
Publication of JP2008053636A publication Critical patent/JP2008053636A/en
Application granted granted Critical
Publication of JP5045032B2 publication Critical patent/JP5045032B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor deposition system which has high availability efficiency for a material gas and can inhibit the introduction of defects into a grown film, a compound semiconductor film which has only a few defects, and its growth method. <P>SOLUTION: In the vapor deposition system 10, a material gas G2, supplied from a second feed inlet 30 flows close to a first feed inlet 28 without residence by a gas flow adjuster 32 and reacts with a material gas G1. As a result, the material gas G1 and the material gas G2 react with a substrate W each other. That is, in the vapor deposition system 10, improvement in the availability efficiency of the material gases G1, G2 can be carried out. Moreover, since the film formation is less apt to be held at positions other than on the substrate W, the situation where defects are introduced into the compound semiconductor film M is controlled significantly. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、気相成長装置、化合物半導体膜及びその成長方法に関する。   The present invention relates to a vapor phase growth apparatus, a compound semiconductor film, and a growth method thereof.

窒化アルミニウム(AlN)、窒化ガリウム(GaN)、ガリウム砒素(GaAs)、インジウム燐(InP)等の化合物半導体は、発光素子、高速電子デバイスに好適に用いられている。このような化合物半導体からなる結晶は、通常、有機金属気相成長法(MOCVD法)やハイドライド気相成長法(HVPE法)を用いて基板上に成長される。特に、HVPE法を用いると、高速でこれらの単結晶を成長することができる。   Compound semiconductors such as aluminum nitride (AlN), gallium nitride (GaN), gallium arsenide (GaAs), and indium phosphide (InP) are suitably used for light-emitting elements and high-speed electronic devices. A crystal made of such a compound semiconductor is usually grown on a substrate using a metal organic chemical vapor deposition method (MOCVD method) or a hydride vapor phase epitaxy method (HVPE method). In particular, when the HVPE method is used, these single crystals can be grown at a high speed.

HVPE法を行うための気相成長装置としては、例えば非特許文献1に記載されたものが挙げられる。このような気相成長装置は、AlN単結晶を成長するときにも用いられ、反応管にアンモニア(NH)を導入するNHガス導入管と、反応管に三塩化アルミニウム(AlCl)を導入するAlClガス導入管と、基板支持台とを備えている。このような気相成長装置を用いたAlNの成長は、以下の手順によっておこなわれる。
(1)反応管にキャリアガス(水素ガス、窒素ガス)を導入し、基板支持台が1200℃程度になるまで昇温する。
(2)NHガス導入管からNHを導入し、基板支持台の温度が安定するまで保持する。
(3)AlClガス導入管からAlClを導入し、基板上にAlN結晶膜が所定厚さになるまで成長させる。このとき、反応管内の基板上ではNHとAlClが反応しAlN膜が成長する。
(4)AlN膜が所定厚さになったら、AlClの導入を停止しキャリアガスを流しながら、ヒーターを停止し、反応管が室温になるまで降温させる。温度が十分に低下したら容器内の表面にAlN膜が成長した基板を取り出す。
T.Goto他、JOURNAL OF MATERIAL SCIENCE 27(1992)p.247
Examples of the vapor phase growth apparatus for performing the HVPE method include those described in Non-Patent Document 1. Such a vapor phase growth apparatus is also used when growing an AlN single crystal. An NH 3 gas introduction tube for introducing ammonia (NH 3 ) into the reaction tube, and aluminum trichloride (AlCl 3 ) in the reaction tube. An AlCl 3 gas introduction pipe to be introduced and a substrate support are provided. The growth of AlN using such a vapor phase growth apparatus is performed by the following procedure.
(1) Carrier gas (hydrogen gas, nitrogen gas) is introduced into the reaction tube, and the temperature is raised until the substrate support is about 1200 ° C.
(2) NH 3 NH 3 was introduced from the gas inlet, the temperature of the substrate support is held to stabilize.
(3) Introduce AlCl 3 from the AlCl 3 gas introduction tube and grow the AlN crystal film on the substrate until it reaches a predetermined thickness. At this time, NH 3 and AlCl 3 react on the substrate in the reaction tube to grow an AlN film.
(4) When the AlN film reaches a predetermined thickness, the introduction of AlCl 3 is stopped, the carrier gas is allowed to flow, the heater is stopped, and the temperature of the reaction tube is lowered to room temperature. When the temperature is sufficiently lowered, the substrate on which the AlN film has grown on the surface inside the container is taken out.
T.A. Goto et al., JOURNAL OF MATERIAL SCIENCE 27 (1992) p. 247

しかしながら、上述の気相成長装置では、NHとAlClとの反応が、反応管の内壁付近やガス供給管の噴出口付近といった基板上以外の場所でも生じやすくなっており、基板上に効率よくAlN膜を成長することができなかった。その上、基板上以外の場所で成長したAlN膜が、剥離して基板上に付着する事態も生じやすく、この場合、AlN膜に欠陥が導入されるという不具合がある。 However, in the above-described vapor phase growth apparatus, the reaction between NH 3 and AlCl 3 is likely to occur in places other than the substrate, such as near the inner wall of the reaction tube or the jet outlet of the gas supply tube, and the efficiency is increased on the substrate. The AlN film could not be grown well. In addition, the AlN film grown at a place other than on the substrate is likely to peel off and adhere to the substrate. In this case, there is a problem that defects are introduced into the AlN film.

本発明は、上記事情に鑑みて為されたものであり、原料ガスの利用効率が高く、成長膜への欠陥導入を抑えることができる気相成長装置、欠陥の少ない化合物半導体膜及びその成長方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, a vapor phase growth apparatus capable of suppressing the introduction of defects into a growth film with high utilization efficiency of a source gas, a compound semiconductor film with few defects, and a growth method therefor The purpose is to provide.

上述の課題を解決するため、本発明の気相成長装置は、第1の原料ガスと第2の原料ガスとを混合し化合物半導体を成長するための反応管と、反応管内に挿入されており、第1の原料ガスを反応管内に供給するための第1の供給管と、反応管に接続されており、第2の原料ガスを反応管内に供給するための第2の供給管と、第1の供給管の反応管内に位置する端部に形成された第1の供給口の近くに基板を保持する基板ホルダとを備え、第1の供給管の外壁が反応管の内壁と対向する部分を有することによって、第1の供給管と反応管とが二重管構造を形成しており、第1の供給管の外壁と反応管の内壁との間に形成される空間が第2の原料ガスの流路となるように第2の供給管が反応管に接続されており、第1の供給管の反応管内に位置する端部には、第2の原料ガスの流路の断面積を減少させるように反応管の内壁に向かって膨らんだガス流調整部が設けられている。   In order to solve the above-described problems, a vapor phase growth apparatus according to the present invention is inserted into a reaction tube for growing a compound semiconductor by mixing a first source gas and a second source gas, and the reaction tube. A first supply tube for supplying the first source gas into the reaction tube, a second supply tube connected to the reaction tube and supplying the second source gas into the reaction tube, A substrate holder for holding a substrate near a first supply port formed at an end located in the reaction tube of the one supply tube, and a portion where the outer wall of the first supply tube faces the inner wall of the reaction tube The first supply pipe and the reaction tube form a double tube structure, and the space formed between the outer wall of the first supply pipe and the inner wall of the reaction tube is the second raw material. A second supply pipe is connected to the reaction tube so as to be a gas flow path, and is located in the reaction tube of the first supply pipe. At the end, the gas flow adjusting portion bulging toward the inner wall of the reaction tube so as to reduce the cross-sectional area of the flow path of the second raw material gas.

本発明の気相成長装置では、ガス流調整部により、第2の供給管から供給される第2の原料ガスが、滞留することなく第1の供給管の第1の供給口付近まで流れて、第1の原料ガスと反応する。そのため、第1の原料ガスと第2の原料ガスとは、その大部分が、第1の供給管の第1の供給口近くで基板ホルダに保持された基板上において反応する。従って、原料ガスの利用効率が高くなっている。また、反応管内壁など基板表面以外の場所での膜の堆積が多いと、成長中にこれらの膜が厚くなってはがれ、基板表面へ浮遊、落下し、成長膜へ欠陥が導入される事態が発生する場合があるが、本発明の気相成長装置では、反応管内壁などへの膜の成長が起こりにくくなっている。このため、成長膜への欠陥導入も有意に抑制されている。   In the vapor phase growth apparatus of the present invention, the gas flow adjusting unit causes the second source gas supplied from the second supply pipe to flow to the vicinity of the first supply port of the first supply pipe without stagnation. Reacts with the first source gas. Therefore, most of the first source gas and the second source gas react on the substrate held by the substrate holder near the first supply port of the first supply pipe. Therefore, the utilization efficiency of the source gas is increased. In addition, if there is a lot of film deposition on the wall other than the substrate surface such as the inner wall of the reaction tube, these films will become thick during the growth, float on the substrate surface, fall down, and defects may be introduced into the growth film. Although it may occur, in the vapor phase growth apparatus of the present invention, it is difficult for the film to grow on the inner wall of the reaction tube. For this reason, the introduction of defects into the growth film is also significantly suppressed.

また、ガス流調整部は、第1の供給口に向かって外周が広がる第1の部分と、第1の部分より第1の供給口側に位置し、第1の供給口に向かって外周が狭まる第2の部分とを有していることが好ましい。この場合、第1の供給管の外壁と反応管の内壁との間に形成される空間を第2の原料ガスが渦を発生せずに流れ、下流の流れを乱さない。   In addition, the gas flow adjusting unit is located on the first supply port side from the first portion, and the outer periphery extends toward the first supply port. It is preferable to have the 2nd part which narrows. In this case, the second source gas flows without generating vortices in the space formed between the outer wall of the first supply pipe and the inner wall of the reaction pipe, and the downstream flow is not disturbed.

また、上記気相成長装置は、第1の供給管内に挿入されており、第1の原料ガスを流すための第3の供給管を更に備え、第1の供給管と第3の供給管とが二重管構造を形成しており、第1及び第2の原料ガスと反応しないガスを反応管内に供給するための空間が、第3の供給管の外壁と第1の供給管の内壁との間に形成されていることが好ましい。この場合、第1及び第2の原料ガスと反応しないガスの存在により、第1の供給管の第1の供給口の位置において、第1の原料ガスと第2の原料ガスとが反応してしまう事態が抑制されるため、原料ガスの利用効率がより向上する。   The vapor phase growth apparatus is further inserted into the first supply pipe, and further includes a third supply pipe for flowing the first source gas, the first supply pipe, the third supply pipe, Form a double tube structure, and a space for supplying a gas that does not react with the first and second source gases into the reaction tube includes an outer wall of the third supply tube and an inner wall of the first supply tube. It is preferable that it is formed between. In this case, due to the presence of the gas that does not react with the first and second source gases, the first source gas and the second source gas react at the position of the first supply port of the first supply pipe. Therefore, the utilization efficiency of the raw material gas is further improved.

本発明の化合物半導体膜は本発明の気相成長装置を用いて成長させる。本発明の気相成長装置を用いることで成長膜への欠陥導入が抑えられるため、欠陥の少ない化合物半導体膜が得られる。そのため、それを用いて作製した半導体素子の構造上の欠陥形成が抑制され、素子の動作不良の発生が低減される。なお、本発明における「化合物半導体膜」には、基板上に成膜した化合物半導体膜の他に、その化合物半導体膜を厚くバルク成長させて切り出したもの(例えば、半導体基板など)も含まれるものとする。   The compound semiconductor film of the present invention is grown using the vapor phase growth apparatus of the present invention. Since the use of the vapor phase growth apparatus of the present invention can suppress the introduction of defects into the growth film, a compound semiconductor film with few defects can be obtained. Therefore, the formation of defects in the structure of a semiconductor element manufactured using the same is suppressed, and the occurrence of malfunction of the element is reduced. The “compound semiconductor film” in the present invention includes, in addition to the compound semiconductor film formed on the substrate, a compound semiconductor film cut out by thick bulk growth (for example, a semiconductor substrate). And

本発明の化合物半導体膜の成長方法では、本発明の気相成長装置を用いて化合物半導体膜を成長させる。この成長方法では、本発明の気相成長装置を用いるので、原料ガスの利用効率が高まり、成長膜への欠陥導入が抑えられる。   In the compound semiconductor film growth method of the present invention, the compound semiconductor film is grown using the vapor phase growth apparatus of the present invention. In this growth method, since the vapor phase growth apparatus of the present invention is used, the utilization efficiency of the source gas is increased and the introduction of defects into the growth film is suppressed.

本発明によれば、原料ガスの利用効率が高く、成長膜への欠陥導入を抑えることができる気相成長装置、欠陥の少ない化合物半導体膜及びその成長方法が提供される。   According to the present invention, there are provided a vapor phase growth apparatus, a compound semiconductor film with few defects, and a growth method therefor, which have high utilization efficiency of source gas and can suppress introduction of defects into a growth film.

以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面の説明において、同一又は同等の要素には同一符号を用い、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and duplicate descriptions are omitted.

(第1実施形態)
図1は、第1実施形態に係る気相成長装置を模式的に示す図である。図1に示される気相成長装置10は、ハイドライド気相成長装置(HVPE装置)であることが好ましいが、有機金属気相成長装置(MOCVD装置)であってもよい。気相成長装置10がHVPE装置であると、化合物半導体を高速で成長させることができる。成長される化合物半導体としては、III−V族化合物半導体(例えばGaAs、InP、AlN、GaN、InN、AlGaN、InGaN、AlInGaN等)やII−VI族化合物半導体(ZnSe、ZnO等)がある。
(First embodiment)
FIG. 1 is a diagram schematically showing a vapor phase growth apparatus according to the first embodiment. The vapor phase growth apparatus 10 shown in FIG. 1 is preferably a hydride vapor phase growth apparatus (HVPE apparatus), but may be a metal organic vapor phase growth apparatus (MOCVD apparatus). When the vapor phase growth apparatus 10 is an HVPE apparatus, a compound semiconductor can be grown at a high speed. As compound semiconductors to be grown, there are III-V compound semiconductors (for example, GaAs, InP, AlN, GaN, InN, AlGaN, InGaN, AlInGaN, etc.) and II-VI group compound semiconductors (ZnSe, ZnO, etc.).

気相成長装置10は、第1の原料ガスG1と第2の原料ガスG2とを混合することによって化合物半導体を成長するための略円筒形の反応管12を備える。原料ガスG1,G2は、生成される化合物半導体に応じて適宜選択される。原料ガスG1はGa、Al、In等のIII族元素を含むことが好ましく、原料ガスG2はAs、P、N等のV族元素を含むことが好ましい。また、これらの原料ガスG1,G2は、ガス流量を調整するために水素(H)、窒素(N)、アルゴン(Ar)などのキャリアガスで希釈されることがある。一実施例において、原料ガスG1はH希釈されたAlClであり、原料ガスG2はH希釈されたNHである。この場合、原料ガスG1と原料ガスG2とを混合させることによって、化合物半導体としてAlN単結晶が成長される。 The vapor phase growth apparatus 10 includes a substantially cylindrical reaction tube 12 for growing a compound semiconductor by mixing a first source gas G1 and a second source gas G2. The source gases G1 and G2 are appropriately selected according to the generated compound semiconductor. The source gas G1 preferably contains a group III element such as Ga, Al, In or the like, and the source gas G2 preferably contains a group V element such as As, P or N. These source gases G1 and G2 may be diluted with a carrier gas such as hydrogen (H 2 ), nitrogen (N 2 ), or argon (Ar) in order to adjust the gas flow rate. In one embodiment, the source gas G1 is H 2 diluted AlCl 3 and the source gas G2 is H 2 diluted NH 3 . In this case, an AlN single crystal is grown as a compound semiconductor by mixing the source gas G1 and the source gas G2.

反応管12の一端(上流側の端部)12aには、原料ガスG1を反応管12内に供給するための第1の供給管24と、原料ガスG2を反応管12内に供給するための第2の供給管16とが取り付けられている。供給管16,24は反応管12に接続されている。   At one end (upstream end) 12 a of the reaction tube 12, a first supply tube 24 for supplying the source gas G 1 into the reaction tube 12 and a source gas G 2 for supplying the source gas G 2 into the reaction tube 12 are provided. A second supply pipe 16 is attached. The supply pipes 16 and 24 are connected to the reaction pipe 12.

反応管12の他端(下流側の端部)12bには、反応管12内において基板Wを水平に保持する基板ホルダ14が取り付けられている。基板ホルダ14は、供給管24における反応管12内に位置する端部26に形成された第1の供給口28の近くに基板Wを保持する。基板Wは、反応管12内に収容されており、例えばシリコン(Si)基板、サファイア基板、シリコンカーバイド(SiC)基板、酸化亜鉛(ZnO)基板、又はGaAs基板などの半導体基板である。図1では一例として1個の基板Wが配置されているが、複数の基板Wが配置されてもよい。この場合、複数の基板Wを複数の基板ホルダ14にそれぞれ固定し、各基板ホルダ14を反応管12の内面に固定する。基板ホルダ14は、反応管12の管軸を取り囲むように円状に配置されることが好ましい。このような配置では、各基板間の成長速度の差が小さく、全ての基板に関して均一な膜が形成されやすい。複数の基板Wを配置すると、各基板W上に化合物半導体膜M(化合物半導体)を同時に成長させることができるので、生産性がより向上する。また、基板ホルダ14に回転機構を取り付け、成長中に基板を回転すれば、基板表面の成長速度の均一性は向上する。原料ガスG1と原料ガスG2との混合ガスG4が基板Wに到達すると、基板W上に化合物半導体膜Mが成長される。反応管12の他端12bには、基板Wよりも下流側に位置する排気口40が形成されている。   A substrate holder 14 that holds the substrate W horizontally in the reaction tube 12 is attached to the other end (downstream end) 12 b of the reaction tube 12. The substrate holder 14 holds the substrate W in the vicinity of the first supply port 28 formed at the end portion 26 located in the reaction tube 12 in the supply tube 24. The substrate W is accommodated in the reaction tube 12 and is, for example, a semiconductor substrate such as a silicon (Si) substrate, a sapphire substrate, a silicon carbide (SiC) substrate, a zinc oxide (ZnO) substrate, or a GaAs substrate. In FIG. 1, one substrate W is disposed as an example, but a plurality of substrates W may be disposed. In this case, the plurality of substrates W are respectively fixed to the plurality of substrate holders 14, and each substrate holder 14 is fixed to the inner surface of the reaction tube 12. The substrate holder 14 is preferably arranged in a circular shape so as to surround the tube axis of the reaction tube 12. In such an arrangement, the difference in growth rate between the substrates is small, and a uniform film is easily formed on all the substrates. When a plurality of substrates W are arranged, the compound semiconductor film M (compound semiconductor) can be grown on each substrate W at the same time, so that productivity is further improved. Further, if a rotation mechanism is attached to the substrate holder 14 and the substrate is rotated during growth, the uniformity of the growth rate on the substrate surface is improved. When the mixed gas G4 of the source gas G1 and the source gas G2 reaches the substrate W, the compound semiconductor film M is grown on the substrate W. At the other end 12 b of the reaction tube 12, an exhaust port 40 located on the downstream side of the substrate W is formed.

供給管24の一方の端部25は原料ガスG1を発生する供給装置23につながっている。供給管24の他方の端部26は、反応管12の中に位置する。供給管24は、原料ガスG1を反応管12内に供給するための第1の供給口28が形成された端部26と、端部26よりも上流側に位置する端部25とを有する。供給管24の内側形状は、端部26から端部25にわたって略ストレートな円管状となっており、流路断面積はほとんど変わらない。供給管24は、反応管12内に挿入されると共に反応管12と二重管構造を形成する。すなわち、供給管24の外壁が反応管12の内壁と対向する部分を有することによって、反応管12と供給管24とは二重管構造を形成する。供給口28よりも下流側の位置の供給口付近には基板Wが保持された基板ホルダ14が配置されている。基板W上で高い成長速度を得るためには、供給口28と基板Wとの距離(反応管12の管軸方向における供給口28と基板W表面の中心点との距離)d1は、反応管12の直径Lの0.2〜5倍であることが好ましい(図2参照)。   One end 25 of the supply pipe 24 is connected to a supply device 23 that generates the raw material gas G1. The other end 26 of the supply tube 24 is located in the reaction tube 12. The supply pipe 24 has an end portion 26 in which a first supply port 28 for supplying the source gas G <b> 1 into the reaction tube 12 is formed, and an end portion 25 located on the upstream side of the end portion 26. The inner shape of the supply pipe 24 is a substantially straight tubular shape from the end portion 26 to the end portion 25, and the flow passage cross-sectional area hardly changes. The supply tube 24 is inserted into the reaction tube 12 and forms a double tube structure with the reaction tube 12. That is, since the outer wall of the supply tube 24 has a portion facing the inner wall of the reaction tube 12, the reaction tube 12 and the supply tube 24 form a double tube structure. A substrate holder 14 holding the substrate W is disposed near the supply port at a position downstream of the supply port 28. In order to obtain a high growth rate on the substrate W, the distance between the supply port 28 and the substrate W (distance between the supply port 28 and the center point of the surface of the substrate W in the tube axis direction of the reaction tube 12) d1 It is preferably 0.2 to 5 times the diameter L of 12 (see FIG. 2).

原料ガスG1の供給は、反応管12の外で、固体AlClを気化させてAlClガスとしたのち、当該AlClガスを反応管12に導入してもよいし、別途ヒーター22aを設けた生成管21に、Alペレット等の原料を収容したソースボートを設置してもよい。生成管21内には、例えばAlペレットが収容されたソースボート20が設置されている。生成管21内には、導入管18を介してガスG3が導入される。生成管21内においてガスG3がソースボート20の中のAlペレットに接触することによって、原料ガスG1が生成される。例えば、ガスG3としてHで希釈した塩化水素(HCl)を用いて、ソースボート20にAlペレットを収容した場合、原料ガスG1としてHで希釈したAlClが生成される。また、ここでは生成管21は反応管12の外に配置されてあるが、生成管21を反応管12の中に設置した構造をとることもできる。 The source gas G1 may be supplied by evaporating solid AlCl 3 outside the reaction tube 12 to obtain an AlCl 3 gas, and then introducing the AlCl 3 gas into the reaction tube 12 or by providing a separate heater 22a. You may install the source boat which accommodated raw materials, such as Al pellet, in the production | generation pipe | tube 21. FIG. In the production tube 21, for example, a source boat 20 in which Al pellets are accommodated is installed. A gas G3 is introduced into the generation pipe 21 via the introduction pipe 18. When the gas G3 comes into contact with the Al pellets in the source boat 20 in the generation pipe 21, the source gas G1 is generated. For example, when hydrogen chloride (HCl) diluted with H 2 is used as the gas G3 and Al pellets are stored in the source boat 20, AlCl 3 diluted with H 2 is generated as the source gas G1. Here, the production tube 21 is disposed outside the reaction tube 12, but a structure in which the production tube 21 is installed in the reaction tube 12 can also be adopted.

供給管16の放出口29は、供給管24の供給口28よりも上流側に位置している。よって、供給管16の放出口29から放出される原料ガスG2は、供給管24の端部26と反応管12との間から基板Wの表面に供給される。すなわち、供給管16は、供給管24の外壁と反応管12の内壁との間に形成される空間SPが原料ガスG2の流路となるように反応管12に接続されている。これにより、供給管24の端部26と反応管12との間に、原料ガスG2を基板Wの表面に供給するための第2の供給口30が形成される。供給口30は、反応管12の管軸方向から見て供給口28を環状に取り囲む。   The discharge port 29 of the supply pipe 16 is located upstream of the supply port 28 of the supply pipe 24. Therefore, the source gas G <b> 2 discharged from the discharge port 29 of the supply pipe 16 is supplied to the surface of the substrate W from between the end portion 26 of the supply pipe 24 and the reaction tube 12. That is, the supply pipe 16 is connected to the reaction pipe 12 so that a space SP formed between the outer wall of the supply pipe 24 and the inner wall of the reaction pipe 12 serves as a flow path for the source gas G2. Thus, a second supply port 30 for supplying the source gas G2 to the surface of the substrate W is formed between the end portion 26 of the supply tube 24 and the reaction tube 12. The supply port 30 surrounds the supply port 28 in an annular shape when viewed from the tube axis direction of the reaction tube 12.

供給管24の端部26には、第2の供給口30の断面を狭めるように外側に膨らんだガス流調整部32が形成されている。すなわち、ガス流調整部32は、供給管24の供給口28の近くにおいて、原料ガスG2の流路の断面積を減少させるように反応管12の内壁に向かって膨らんでいる。このガス流調整部32は、供給口28に向かって(すなわち、供給管の延在方向に沿う方向の下流側に向かって)外周が広がる第1の部分32aと、供給口28に向かって外周が狭まる第2の部分32bとによって構成されているが、第1の部分32a及び第2の部分32bのいずれか一方を有していてもよい。第2の部分32bは第1の部分32aより供給口28側に隣り合って位置しており、ガス流調整部32全体としては紡錘形(若しくは流線形)をなしている。よって、原料ガスG2の流路断面積は、ガス流調整部32の位置においては、下流側に向かって一旦狭まり、その後に広がっている。第2の部分32bは、平坦な先端面24aを有している。図1ではガス流調整部32はその横断面形状が直線で形成されているものを示しているが、これらは曲線であっても良く、ガス流調整部32は流線形の形状を取りうる。   At the end portion 26 of the supply pipe 24, a gas flow adjusting portion 32 swelled outward is formed so as to narrow the cross section of the second supply port 30. That is, the gas flow adjusting unit 32 swells toward the inner wall of the reaction tube 12 in the vicinity of the supply port 28 of the supply tube 24 so as to reduce the cross-sectional area of the flow path of the source gas G2. The gas flow adjusting unit 32 has a first portion 32a having an outer periphery extending toward the supply port 28 (that is, toward a downstream side in a direction along the extending direction of the supply pipe), and an outer periphery toward the supply port 28. However, the second portion 32b may have either one of the first portion 32a and the second portion 32b. The second part 32b is located adjacent to the supply port 28 side from the first part 32a, and the gas flow adjusting part 32 as a whole has a spindle shape (or streamline). Therefore, the cross-sectional area of the flow path of the source gas G2 is once narrowed toward the downstream side at the position of the gas flow adjusting unit 32 and then widened thereafter. The second portion 32b has a flat tip surface 24a. In FIG. 1, the gas flow adjusting unit 32 has a cross-sectional shape formed in a straight line, but these may be curved, and the gas flow adjusting unit 32 may take a streamlined shape.

ここで、図2を用いて反応管12、ガス流調整部32、供給管24がほぼ回転対称の場合の、これらの好ましい形状に関して詳しく説明する。図2は、図1に示される気相成長装置の主要部を模式的に示す図である。供給口28の直径をx、反応管12の直径をL、ガス流調整部32の外周と反応管12の内壁との最短距離をd、供給口28の付近に形成されるガス流調整部32の先端面24aの径方向距離をy、外径が広がる第1の部分32aの流れ方向の長さをm、供給口28側に向かって外径が狭まる第2の部分32bの流れ方向の長さをlとする。これらのサイズの好ましい関係は以下のようになる。dはx/4以上20x以下が好ましい。yは0以上(L−x)/2未満が好ましい。lは0以上20x以下が好ましい。mは0以上20x以下が好ましい。ただし、l及びmの少なくとも一方はゼロでない。xは0.001L以上0.5L以下が好ましい。   Here, with reference to FIG. 2, these preferable shapes when the reaction tube 12, the gas flow adjusting unit 32, and the supply tube 24 are substantially rotationally symmetric will be described in detail. FIG. 2 is a diagram schematically showing the main part of the vapor phase growth apparatus shown in FIG. The diameter of the supply port 28 is x, the diameter of the reaction tube 12 is L, the shortest distance between the outer periphery of the gas flow adjusting unit 32 and the inner wall of the reaction tube 12 is d, and the gas flow adjusting unit 32 formed near the supply port 28. The length in the flow direction of the first portion 32a in which the outer diameter increases is y, the length in the flow direction of the first portion 32a in which the outer diameter widens is m, and the length in the flow direction of the second portion 32b whose outer diameter decreases toward the supply port 28. Let l be l. A preferable relationship between these sizes is as follows. d is preferably from x / 4 to 20x. y is preferably 0 or more and less than (Lx) / 2. l is preferably 0 or more and 20x or less. m is preferably 0 or more and 20x or less. However, at least one of l and m is not zero. x is preferably 0.001L or more and 0.5L or less.

反応管12の周囲には、反応管12の管軸方向に沿って延びるヒータ22bが設けられていることが好ましい。ヒータ22bは、ヒータ22aよりも下流側に位置する。ヒータ22aはソースボート20を加熱し、原料ガスG1の生成を促進させる。ヒータ22bは基板Wを加熱し、原料ガスG1と原料ガスG2との反応を促進させる。また、ヒータ22a、ヒータ22bの外周は、断熱材で覆われていることが好ましい。   It is preferable that a heater 22 b extending along the tube axis direction of the reaction tube 12 is provided around the reaction tube 12. The heater 22b is located downstream of the heater 22a. The heater 22a heats the source boat 20 and promotes the generation of the source gas G1. The heater 22b heats the substrate W and promotes the reaction between the source gas G1 and the source gas G2. Moreover, it is preferable that the outer periphery of the heater 22a and the heater 22b is covered with a heat insulating material.

ここで、気相成長装置10を用いて化合物半導体を成長させる方法の一例について説明する。まず、反応管12にキャリアガス(水素ガス、窒素ガスなど)を導入し、基板ホルダ14が例えば1100℃程度になるまで昇温する。次に、供給管16から原料ガスG2を反応管12内に供給し、基板ホルダ14の温度を安定させる。さらに、供給管24から原料ガスG1を反応管12内に供給し、基板W上に化合物半導体膜Mを所定膜厚となるまで成長させる。このとき、反応管12内の基板W上では原料ガスG1と原料ガスG2とが反応する。続いて、化合物半導体膜Mが所定膜厚となったら原料ガスG1の供給を停止し、キャリアガスを流しながら、ヒータを停止し、反応管12が室温になるまで降温させる。温度が十分に低下したら、化合物半導体膜Mが成長された基板Wを反応管12から取り出す。   Here, an example of a method for growing a compound semiconductor using the vapor phase growth apparatus 10 will be described. First, a carrier gas (hydrogen gas, nitrogen gas, etc.) is introduced into the reaction tube 12 and the temperature is raised until the substrate holder 14 reaches about 1100 ° C., for example. Next, the source gas G2 is supplied from the supply pipe 16 into the reaction pipe 12 to stabilize the temperature of the substrate holder 14. Further, the source gas G1 is supplied into the reaction tube 12 from the supply tube 24, and the compound semiconductor film M is grown on the substrate W until it reaches a predetermined thickness. At this time, the source gas G1 and the source gas G2 react on the substrate W in the reaction tube 12. Subsequently, when the compound semiconductor film M reaches a predetermined thickness, the supply of the raw material gas G1 is stopped, the carrier gas is supplied, the heater is stopped, and the temperature of the reaction tube 12 is lowered to room temperature. When the temperature is sufficiently lowered, the substrate W on which the compound semiconductor film M has been grown is taken out from the reaction tube 12.

本実施形態の気相成長装置10では、原料ガスG2と原料ガスG1との混合は供給口28付近でおこる。このとき、ガス流調整部32によって、供給管24の外周面における原料ガスG1,G2の滞留が有意に抑制されており、原料ガスG2と原料ガスG1とが反応する前に混合ガスが供給口28から流れ去る。そのため、原料ガスG1と原料ガスG2とが供給管24の端部26で反応して供給管24にAlN等の化合物半導体が堆積される事態が抑制されている。すなわち、原料ガスG1と原料ガスG2との反応は基板W上でおこりやすくなっており、基板W上において原料ガスG1,G2が効率よく化合物半導体膜(AlN膜)Mの成膜に利用される。その上、ガス流調整部32によって渦の発生が抑えられているため、供給口30から流れ出た原料ガスG2がエアカーテンの役割を成し、原料ガスG1が反応管12の内壁方向へ流れる事態が抑制され、内壁に化合物半導体膜(AlN膜)が堆積されにくくなっている。したがって、本実施形態の気相成長装置10では、原料ガスの利用効率を高くすることができ、成長膜への欠陥導入を抑えることができる。   In the vapor phase growth apparatus 10 of the present embodiment, the raw material gas G2 and the raw material gas G1 are mixed in the vicinity of the supply port 28. At this time, the gas flow adjusting unit 32 significantly suppresses the retention of the raw material gases G1 and G2 on the outer peripheral surface of the supply pipe 24, and the mixed gas is supplied to the supply port before the raw material gas G2 and the raw material gas G1 react with each other. Escape from 28. Therefore, a situation in which the source gas G1 and the source gas G2 react at the end portion 26 of the supply pipe 24 and a compound semiconductor such as AlN is deposited on the supply pipe 24 is suppressed. That is, the reaction between the source gas G1 and the source gas G2 easily occurs on the substrate W, and the source gases G1 and G2 are efficiently used for forming the compound semiconductor film (AlN film) M on the substrate W. . In addition, since the generation of vortex is suppressed by the gas flow adjusting unit 32, the source gas G2 flowing out from the supply port 30 serves as an air curtain, and the source gas G1 flows toward the inner wall of the reaction tube 12. Is suppressed, and the compound semiconductor film (AlN film) is hardly deposited on the inner wall. Therefore, in the vapor phase growth apparatus 10 of the present embodiment, the utilization efficiency of the source gas can be increased and the introduction of defects into the growth film can be suppressed.

また、ガス流調整部32が第1の部分32aと第2の部分32bとを有していると、原料ガスG2が空間SPを渦発生なしに流れるので、原料ガスの利用効率が高く、成長膜への欠陥導入を更に抑えることができる。   Further, when the gas flow adjusting unit 32 has the first portion 32a and the second portion 32b, the source gas G2 flows through the space SP without generating vortex, so that the use efficiency of the source gas is high and the growth is achieved. It is possible to further suppress the introduction of defects into the film.

図3は、好ましい形状のガス流調整部を備える第1実施形態に係る気相成長装置の変形例を模式的に示す図である。図3に示される気相成長装置10Aは、図1及び図2に示される気相成長装置10のガス流調整部32に代えて、y=2mmのガス流調整部32Aを備えること以外は気相成長装置10と同様の構成を有する。ガス流調整部32Aの第2の部分32bは、その外径が、供給口28の位置において供給口28の縁と等しくなるまで狭まっており、供給口28の口径と等しくなっている。すなわち、ガス流調整部32Aは、供給口28の位置において、傾斜面のみを有し、管軸方向に直交する平面は実質的に形成されていない。換言すると、供給管24の端部26は、ガス流調整部32Aによって、供給口28の位置において先鋭化された形状となっている。一方、図1に示す気相成長装置10のように、ガス流調整部32によって供給管24の端部26が先鋭化されていない(y>2mm)場合には、ガス流れ条件によっては、原料ガスG1,G2が滞留して、供給管24の先端面24aにおいて反応生成物が堆積する傾向にある。この反応生成物が剥離してパーティクル(微粒子)が生成されると、そのパーティクルが供給口28近くに配置された基板Wに付着し、基板W上に成長される化合物半導体膜Mに欠陥が導入される原因となる場合がある。   FIG. 3 is a diagram schematically showing a modification of the vapor phase growth apparatus according to the first embodiment provided with a gas flow adjusting unit having a preferable shape. The vapor phase growth apparatus 10A shown in FIG. 3 has a gas flow adjustment unit 32A of y = 2 mm instead of the gas flow adjustment unit 32 of the vapor phase growth apparatus 10 shown in FIGS. It has the same configuration as the phase growth apparatus 10. The second portion 32 b of the gas flow adjusting unit 32 A is narrowed until the outer diameter thereof becomes equal to the edge of the supply port 28 at the position of the supply port 28, and is equal to the diameter of the supply port 28. That is, the gas flow adjusting unit 32A has only an inclined surface at the position of the supply port 28, and a plane orthogonal to the tube axis direction is not substantially formed. In other words, the end portion 26 of the supply pipe 24 has a sharpened shape at the position of the supply port 28 by the gas flow adjusting portion 32A. On the other hand, when the end 26 of the supply pipe 24 is not sharpened by the gas flow adjusting unit 32 (y> 2 mm) as in the vapor phase growth apparatus 10 shown in FIG. The gases G1 and G2 stay and the reaction product tends to accumulate on the front end surface 24a of the supply pipe 24. When the reaction product is peeled off to generate particles (fine particles), the particles adhere to the substrate W disposed near the supply port 28, and defects are introduced into the compound semiconductor film M grown on the substrate W. May be caused.

本実施形態の気相成長装置10Aでは、原料ガスG2と原料ガスG1との混合は供給口28付近でおこる。このとき、供給管24がガス流調整部32Aによって先鋭化されているため、供給管24の外周面における原料ガスG1,G2の滞留が更に抑制されており、原料ガスG2と原料ガスG1とが反応する前に混合ガスが供給口28から流れ去る。そのため、原料ガスG1と原料ガスG2とが供給管24の端部26で反応して供給管24にAlN等の化合物半導体が堆積される事態が更に抑制されている。すなわち、原料ガスG1と原料ガスG2との反応は基板W上でおこりやすくなっており、基板W上において原料ガスG1,G2が効率よく化合物半導体膜(AlN膜)Mの成膜に利用される。その上、ガス流調整部32Aによって渦の発生が抑えられているため、供給口30から流れ出た原料ガスG2がエアカーテンの役割を成し、原料ガスG1が反応管12の内壁方向へ流れる事態が抑制され、内壁に化合物半導体膜(AlN膜)が堆積されにくくなっている。   In the vapor phase growth apparatus 10A of the present embodiment, the mixing of the source gas G2 and the source gas G1 occurs near the supply port 28. At this time, since the supply pipe 24 is sharpened by the gas flow adjusting portion 32A, the stagnation of the source gases G1 and G2 on the outer peripheral surface of the supply pipe 24 is further suppressed, and the source gas G2 and the source gas G1 are reduced. The mixed gas flows out from the supply port 28 before the reaction. Therefore, the situation where the source gas G1 and the source gas G2 react at the end portion 26 of the supply pipe 24 and a compound semiconductor such as AlN is deposited on the supply pipe 24 is further suppressed. That is, the reaction between the source gas G1 and the source gas G2 easily occurs on the substrate W, and the source gases G1 and G2 are efficiently used for forming the compound semiconductor film (AlN film) M on the substrate W. . In addition, since the generation of vortex is suppressed by the gas flow adjusting unit 32A, the source gas G2 flowing out from the supply port 30 serves as an air curtain, and the source gas G1 flows toward the inner wall of the reaction tube 12 Is suppressed, and the compound semiconductor film (AlN film) is hardly deposited on the inner wall.

以上で詳細に説明したとおり、本実施形態に係る気相成長装置10Aにおいては、ガス流調整部32Aにより、供給口30から供給される原料ガスG2は、滞留することなく供給口28付近まで流れて、原料ガスG1と反応する。そのため、原料ガスG1と原料ガスG2とは基板W上において反応する。すなわち、気相成長装置10Aでは、気相成長装置10に比べて、原料ガスG1,G2の利用効率の更なる向上が図られている。その上、基板W上以外の場所での膜成長が起こりにくくなっているため、化合物半導体膜Mへ欠陥が導入される事態も更に抑制されている。   As described in detail above, in the vapor phase growth apparatus 10A according to the present embodiment, the source gas G2 supplied from the supply port 30 flows to the vicinity of the supply port 28 without stagnation by the gas flow adjusting unit 32A. It reacts with the source gas G1. Therefore, the source gas G1 and the source gas G2 react on the substrate W. That is, in the vapor phase growth apparatus 10A, the utilization efficiency of the source gases G1 and G2 is further improved as compared with the vapor phase growth apparatus 10. In addition, since film growth at a place other than on the substrate W is difficult to occur, a situation in which defects are introduced into the compound semiconductor film M is further suppressed.

なお、供給管24の管軸に直交する方向の位置ズレが生じて、反応管12に対して偏りが生じると、原料ガスG2の流れのバランスが崩れてしまう。この場合、上述した原料ガスG2によるエアカーテンの効果が低減し、反応管12の内壁に多量の化合物半導体膜(AlN膜)が成膜されてしまう。このような事態を防止するため、ガス流調整部32Aの最大外径の部分と反応管12の内壁面との最短距離dを、想定される位置ズレよりもある程度大きく(例えば10倍以上に)設計することが好ましい。換言すると、ガス流調整部32Aの最大外径は、反応管12の内径に比べてある程度小さく設計することが好ましい。ただし、ガス流調整部32Aの膨らみが小さ過ぎると、原料ガスG2が基板中央に向かう流れが弱まって、基板上における成長速度の均一性が保たれなくなるため好ましくない。   In addition, when the position shift of the direction orthogonal to the tube axis of the supply pipe 24 arises, and the deviation arises with respect to the reaction tube 12, the balance of the flow of source gas G2 will be broken. In this case, the effect of the air curtain by the source gas G2 described above is reduced, and a large amount of compound semiconductor film (AlN film) is formed on the inner wall of the reaction tube 12. In order to prevent such a situation, the shortest distance d between the maximum outer diameter portion of the gas flow adjusting portion 32A and the inner wall surface of the reaction tube 12 is somewhat larger than an assumed positional deviation (for example, 10 times or more). It is preferable to design. In other words, the maximum outer diameter of the gas flow adjusting unit 32A is preferably designed to be somewhat smaller than the inner diameter of the reaction tube 12. However, if the bulge of the gas flow adjusting part 32A is too small, the flow of the source gas G2 toward the center of the substrate is weakened, and the uniformity of the growth rate on the substrate cannot be maintained, which is not preferable.

さらに、上述した実施形態において、原料ガスG1のAlClガスは、原料ガスG2のNHガスに比べて比重が高い。そのため、原料ガスG1の流れが重力方向(図1における上下方向)に曲がる傾向がある。そのため、原料ガスG1,G2の混合をより均一におこないたい場合には、反応管12及び供給管24を鉛直方向に延在させて原料ガスG1,G2の流れと重力方向とを一致させた縦型の装置にすることが好ましい。 Furthermore, in the above-described embodiment, the AlCl 3 gas of the source gas G1 has a higher specific gravity than the NH 3 gas of the source gas G2. Therefore, the flow of the source gas G1 tends to bend in the direction of gravity (vertical direction in FIG. 1). Therefore, in order to mix the source gases G1 and G2 more uniformly, the reaction tube 12 and the supply tube 24 are extended in the vertical direction so that the flow of the source gases G1 and G2 and the direction of gravity coincide with each other. It is preferable to use a mold type device.

(第2実施形態)
図4は、第2実施形態に係る気相成長装置を模式的に示す図である。図4に示される気相成長装置10Bは、供給装置23に代えて供給装置23Aを備えること以外は気相成長装置10と同様の構成を有する。この供給装置23Aは、第1の実施形態において示した生成管21及び供給管24に加えて、供給管24内に挿入されており、原料ガスG1を流すための内側供給管33(第3の供給管)と、反応管12外部から供給管24に原料ガスG1,G2と反応しないガスG5(例えば、Nガス)を供給する供給管34とを備えている。供給管24と内側供給管33とは二重管構造を形成している。内側供給管33の外壁と供給管24の内壁との間には、ガスG5を反応管12内に供給するための空間SPAが形成されている。
(Second Embodiment)
FIG. 4 is a diagram schematically showing a vapor phase growth apparatus according to the second embodiment. A vapor phase growth apparatus 10B shown in FIG. 4 has the same configuration as the vapor phase growth apparatus 10 except that a supply device 23A is provided instead of the supply device 23. The supply device 23A is inserted in the supply pipe 24 in addition to the generation pipe 21 and the supply pipe 24 shown in the first embodiment, and has an inner supply pipe 33 (a third supply pipe) for flowing the source gas G1. Supply pipe) and a supply pipe 34 for supplying gas G5 (for example, N 2 gas) that does not react with the source gases G1 and G2 from the outside of the reaction pipe 12 to the supply pipe 24. The supply pipe 24 and the inner supply pipe 33 form a double pipe structure. A space SPA for supplying the gas G5 into the reaction tube 12 is formed between the outer wall of the inner supply tube 33 and the inner wall of the supply tube 24.

内側供給管33は、生成管21の供給管24側の端部から供給管24の端部26まで供給管24の延在方向に沿って延びており、生成管21において生成される原料ガスG1を供給管24の供給口28まで送る。供給管34は、供給管24の端部25に連結されており、供給管24の内部、且つ、内側供給管33の外部にガスG5を送る。すなわち、供給管24と内側供給管33との間に形成された第3の供給口36から反応管12にガスG5が供給される。   The inner supply pipe 33 extends along the extending direction of the supply pipe 24 from the end of the production pipe 21 on the supply pipe 24 side to the end 26 of the supply pipe 24, and the source gas G1 produced in the production pipe 21 To the supply port 28 of the supply pipe 24. The supply pipe 34 is connected to the end 25 of the supply pipe 24, and sends the gas G <b> 5 to the inside of the supply pipe 24 and to the outside of the inner supply pipe 33. That is, the gas G5 is supplied to the reaction tube 12 from the third supply port 36 formed between the supply tube 24 and the inner supply tube 33.

この気相成長装置10Bにおいては、上述した気相成長装置10Aの効果に加えて、以下に示すような効果を奏する。すなわち、供給管24の供給口28においては、原料ガスG1を供給する内側供給管33の供給口38の周りに、ガスG5を供給する供給口36が設けられている。そのため、供給管24の供給口28の位置では、供給口28から供給されるガスG5が障壁となり、原料ガスG1と原料ガスG2との混合が抑えられている。そのため、原料ガスG1と原料ガスG2とは、より基板Wに近い位置において混ざり合って、基板W上に効率よく化合物半導体膜Mを成長する。すなわち、気相成長装置10Bでは、供給口36から供給されるガスG5により、供給口28の位置において、原料ガスG1と原料ガスG2とが反応してしまう事態が抑制されるため、原料ガスG1,G2の利用効率がより向上される。   In addition to the effects of the vapor phase growth apparatus 10A described above, the vapor phase growth apparatus 10B has the following effects. That is, the supply port 28 of the supply pipe 24 is provided with a supply port 36 for supplying the gas G5 around the supply port 38 of the inner supply pipe 33 for supplying the source gas G1. Therefore, at the position of the supply port 28 of the supply pipe 24, the gas G5 supplied from the supply port 28 becomes a barrier, and mixing of the source gas G1 and the source gas G2 is suppressed. Therefore, the source gas G1 and the source gas G2 are mixed at a position closer to the substrate W, and the compound semiconductor film M is efficiently grown on the substrate W. That is, in the vapor phase growth apparatus 10B, the gas G5 supplied from the supply port 36 suppresses a situation in which the source gas G1 and the source gas G2 react at the position of the supply port 28. Therefore, the source gas G1. , G2 utilization efficiency is further improved.

以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されない。上述した実施形態では反応管、供給管の形状はガス流れに垂直な断面が略円形の円筒管であるが、例えば、その断面が三角形、四角形など多角形の管であっても同様の効果が得られる。この場合でも、ガス流調整部のガス流れに平行な断面形状は上述の説明と同様であるが、ガス流れに垂直な断面形状に関しては、上記反応管及び供給管の断面形状に準じた形状となる。   As mentioned above, although preferred embodiment of this invention was described in detail, this invention is not limited to the said embodiment. In the embodiment described above, the shape of the reaction tube and the supply tube is a cylindrical tube having a substantially circular cross section perpendicular to the gas flow. For example, the same effect can be obtained even if the cross section is a polygonal tube such as a triangle or a rectangle. can get. Even in this case, the cross-sectional shape parallel to the gas flow of the gas flow adjusting unit is the same as described above, but the cross-sectional shape perpendicular to the gas flow is similar to the cross-sectional shape of the reaction tube and the supply tube. Become.

また、上記説明では基板表面がガス流れに平行になるように基板及び基板ホルダが配置されているが、基板表面がガス流れに垂直になるように基板及び基板ホルダが配置されていても同様の効果が得られる。この場合、基板を1枚配置する場合は、反応管の管軸上に基板の中心が来るように配置されることが好ましい。また、反応管の管軸を取り囲むように複数の基板を配置しても良い。   Further, in the above description, the substrate and the substrate holder are arranged so that the substrate surface is parallel to the gas flow, but the same is true even if the substrate and the substrate holder are arranged so that the substrate surface is perpendicular to the gas flow. An effect is obtained. In this case, when arranging one board | substrate, it is preferable to arrange | position so that the center of a board | substrate may come on the tube axis | shaft of a reaction tube. A plurality of substrates may be arranged so as to surround the tube axis of the reaction tube.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

以下、実施例1〜14及び比較例1,2について詳細に説明する。   Hereinafter, Examples 1 to 14 and Comparative Examples 1 and 2 will be described in detail.

(実施例1)
図1及び図2に示される気相成長装置10を用いて、SiC基板上にAlN膜を成長させた。気相成長装置10としては、xが10mm、Lが100mm、dが10mm、yが2mm、lが50mm、mが150mmのものを用いた(図2参照)。また、反応管12の管軸方向における供給口28とSiC基板表面の中心点との距離d1を約50mmとした。基板ホルダ14にSiC基板を設置した後、基板ホルダ14の温度を1100℃まで昇温した。Al原料としてはAlペレットを用いた。石英ボートに載せたAlペレットを500℃に加熱した状態でNガスで希釈したHClガスを流して、AlClガスを発生させた。一方、窒素原料としてNHガスを使用した。反応管12内での平均的なAlCl分圧が0.01atm、NH分圧が0.2atmとなるようにガス流量を調整した。HCl分圧は0.03atmであった。
(Example 1)
An AlN film was grown on the SiC substrate using the vapor phase growth apparatus 10 shown in FIGS. As the vapor phase growth apparatus 10, an apparatus having x of 10 mm, L of 100 mm, d of 10 mm, y of 2 mm, l of 50 mm, and m of 150 mm was used (see FIG. 2). The distance d1 between the supply port 28 in the tube axis direction of the reaction tube 12 and the center point of the SiC substrate surface was set to about 50 mm. After the SiC substrate was placed on the substrate holder 14, the temperature of the substrate holder 14 was raised to 1100 ° C. Al pellets were used as the Al raw material. While the Al pellets placed on the quartz boat were heated to 500 ° C., HCl gas diluted with N 2 gas was flowed to generate AlCl 3 gas. On the other hand, NH 3 gas was used as a nitrogen raw material. The gas flow rate was adjusted so that the average AlCl 3 partial pressure in the reaction tube 12 was 0.01 atm and the NH 3 partial pressure was 0.2 atm. The HCl partial pressure was 0.03 atm.

上述の条件下においてAlN結晶を30時間成長させた後、表面にAlN膜が成長したSiC基板を反応管12から取り出した。AlN膜の膜厚は1110μmであったことから、AlN結晶の成長速度は37μm/hrと見積もることができた。一方、供給口28には、膜厚約140μmのAlN膜が堆積していた。   After the AlN crystal was grown for 30 hours under the above-described conditions, the SiC substrate with the AlN film grown on the surface was taken out from the reaction tube 12. Since the thickness of the AlN film was 1110 μm, the growth rate of the AlN crystal could be estimated to be 37 μm / hr. On the other hand, an AlN film having a thickness of about 140 μm was deposited at the supply port 28.

(実施例2)
気相成長装置10のlを100mmとしたこと以外は実施例1と同様にしてAlN膜を成長させた。その結果、AlN膜の膜厚は1230μmであったことから、AlN結晶の成長速度は41μm/hrと見積もることができた。一方、供給口28には、膜厚約120μmのAlN膜が堆積していた。
(Example 2)
An AlN film was grown in the same manner as in Example 1 except that l of the vapor phase growth apparatus 10 was set to 100 mm. As a result, since the thickness of the AlN film was 1230 μm, the growth rate of the AlN crystal could be estimated to be 41 μm / hr. On the other hand, an AlN film having a thickness of about 120 μm was deposited at the supply port 28.

(実施例3)
図1及び図2に示される気相成長装置10を用いて、サファイア基板上にGaN膜を成長させた。気相成長装置10としては、xが10mm、Lが100mm、dが10mm、yが2mm、lが150mm、mが150mmのものを用いた(図2参照)。また、反応管12の管軸方向における供給口28と基板表面の中心点との距離d1を約50mmとした。基板ホルダ14にサファイア基板を設置した後、基板ホルダ14の温度を1050℃まで昇温した。Ga原料としてはGa融液を用いた。石英ボートに載せたGa融液を800℃に加熱した状態でHガスで希釈したHClガスを流して、GaClガスを発生させた。一方、窒素原料としてNHガスを使用した。反応管12内での平均的なGaCl分圧が0.01atm、NH分圧が0.2atmとなるようにガス流量を調整した。HCl分圧は0.01atmであった。
(Example 3)
A GaN film was grown on the sapphire substrate using the vapor phase growth apparatus 10 shown in FIGS. As the vapor phase growth apparatus 10, an apparatus having x of 10 mm, L of 100 mm, d of 10 mm, y of 2 mm, l of 150 mm, and m of 150 mm was used (see FIG. 2). The distance d1 between the supply port 28 in the tube axis direction of the reaction tube 12 and the center point of the substrate surface was about 50 mm. After the sapphire substrate was placed on the substrate holder 14, the temperature of the substrate holder 14 was raised to 1050 ° C. Ga melt was used as the Ga raw material. In a state where the Ga melt placed on the quartz boat was heated to 800 ° C., HCl gas diluted with H 2 gas was flowed to generate GaCl gas. On the other hand, NH 3 gas was used as a nitrogen raw material. The gas flow rate was adjusted so that the average partial pressure of GaCl in the reaction tube 12 was 0.01 atm and the NH 3 partial pressure was 0.2 atm. The HCl partial pressure was 0.01 atm.

上述の条件下においてGaN結晶を30時間成長させた後、表面にGaN膜が成長した基板を反応管12から取り出した。GaN膜の膜厚は2460μmであったことから、GaN結晶の成長速度は82μm/hrと見積もることができた。一方、供給口28には、膜厚約320μmのGaN膜が堆積していた。   After the GaN crystal was grown for 30 hours under the above conditions, the substrate on which the GaN film was grown was taken out from the reaction tube 12. Since the film thickness of the GaN film was 2460 μm, the growth rate of the GaN crystal could be estimated as 82 μm / hr. On the other hand, a GaN film having a thickness of about 320 μm was deposited at the supply port 28.

(実施例4)
気相成長装置10のlを150mmとしたこと以外は実施例1と同様にしてAlN膜を成長させた。その結果、AlN膜の膜厚は840μmであったことから、AlN結晶の成長速度は28μm/hrと見積もることができた。一方、供給口28には、膜厚約160μmのAlN膜が堆積していた。
Example 4
An AlN film was grown in the same manner as in Example 1 except that l of the vapor phase growth apparatus 10 was set to 150 mm. As a result, since the thickness of the AlN film was 840 μm, the growth rate of the AlN crystal could be estimated to be 28 μm / hr. On the other hand, an AlN film having a thickness of about 160 μm was deposited at the supply port 28.

(実施例5)
気相成長装置10のlを20mm、mを0mmとしたこと以外は実施例1と同様にしてAlN膜を成長させた。その結果、AlN膜の膜厚は1140μmであったことから、AlN結晶の成長速度は38μm/hrと見積もることができた。一方、供給口28には、膜厚約140μmのAlN膜が堆積していた。
(Example 5)
An AlN film was grown in the same manner as in Example 1 except that l of the vapor phase growth apparatus 10 was 20 mm and m was 0 mm. As a result, since the film thickness of the AlN film was 1140 μm, the growth rate of the AlN crystal could be estimated to be 38 μm / hr. On the other hand, an AlN film having a thickness of about 140 μm was deposited at the supply port 28.

(実施例6)
気相成長装置10のlを50mm、mを0mmとしたこと以外は実施例1と同様にしてAlN膜を成長させた。その結果、AlN膜の膜厚は840μmであったことから、AlN結晶の成長速度は28μm/hrと見積もることができた。一方、供給口28には、膜厚約160μmのAlN膜が堆積していた。
(Example 6)
An AlN film was grown in the same manner as in Example 1 except that l of the vapor phase growth apparatus 10 was 50 mm and m was 0 mm. As a result, since the thickness of the AlN film was 840 μm, the growth rate of the AlN crystal could be estimated to be 28 μm / hr. On the other hand, an AlN film having a thickness of about 160 μm was deposited at the supply port 28.

(実施例7)
気相成長装置10のlを100mm、mを0mmとしたこと以外は実施例1と同様にしてAlN膜を成長させた。その結果、AlN膜の膜厚は690μmであったことから、AlN結晶の成長速度は23μm/hrと見積もることができた。一方、供給口28には、膜厚約190μmのAlN膜が堆積していた。
(Example 7)
An AlN film was grown in the same manner as in Example 1 except that l of the vapor phase growth apparatus 10 was set to 100 mm and m was set to 0 mm. As a result, since the thickness of the AlN film was 690 μm, the growth rate of the AlN crystal could be estimated to be 23 μm / hr. On the other hand, an AlN film having a thickness of about 190 μm was deposited at the supply port 28.

(実施例8)
気相成長装置10のlを20mm、mを0mmとしたこと以外は実施例3と同様にしてGaN膜を成長させた。その結果、GaN膜の膜厚は1950μmであったことから、GaN結晶の成長速度は65μm/hrと見積もることができた。一方、供給口28には、膜厚約450μmのGaN膜が堆積していた。
(Example 8)
A GaN film was grown in the same manner as in Example 3 except that l of the vapor phase growth apparatus 10 was 20 mm and m was 0 mm. As a result, since the film thickness of the GaN film was 1950 μm, the growth rate of the GaN crystal could be estimated to be 65 μm / hr. On the other hand, a GaN film having a thickness of about 450 μm was deposited at the supply port 28.

(実施例9)
気相成長装置10のlを20mm、mを50mmとしたこと以外は実施例3と同様にしてGaN膜を成長させた。その結果、GaN膜の膜厚は3600μmであったことから、GaN結晶の成長速度は120μm/hrと見積もることができた。一方、供給口28には、膜厚約110μmのGaN膜が堆積していた。
Example 9
A GaN film was grown in the same manner as in Example 3 except that l of the vapor phase growth apparatus 10 was 20 mm and m was 50 mm. As a result, since the film thickness of the GaN film was 3600 μm, the growth rate of the GaN crystal could be estimated to be 120 μm / hr. On the other hand, a GaN film having a thickness of about 110 μm was deposited at the supply port 28.

(実施例10)
気相成長装置10のlを100mm、mを0mmとしたこと以外は実施例1と同様にしてAlN膜を成長させた。その結果、AlN膜の膜厚は810μmであったことから、AlN結晶の成長速度は27μm/hrと見積もることができた。一方、供給口28には、膜厚約160μmのAlN膜が堆積していた。
(Example 10)
An AlN film was grown in the same manner as in Example 1 except that l of the vapor phase growth apparatus 10 was set to 100 mm and m was set to 0 mm. As a result, since the thickness of the AlN film was 810 μm, the growth rate of the AlN crystal could be estimated to be 27 μm / hr. On the other hand, an AlN film having a thickness of about 160 μm was deposited at the supply port 28.

(実施例11)
気相成長装置10のlを0mm、mを100mmとしたこと以外は実施例1と同様にしてAlN膜を成長させた。その結果、AlN膜の膜厚は1080μmであったことから、AlN結晶の成長速度は36μm/hrと見積もることができた。一方、供給口28には、膜厚約130μmのAlN膜が堆積していた。
(Example 11)
An AlN film was grown in the same manner as in Example 1 except that l of the vapor phase growth apparatus 10 was set to 0 mm and m was set to 100 mm. As a result, since the thickness of the AlN film was 1080 μm, the growth rate of the AlN crystal could be estimated to be 36 μm / hr. On the other hand, an AlN film having a thickness of about 130 μm was deposited at the supply port 28.

(実施例12)
気相成長装置10のlを0mm、mを100mmとしたこと以外は実施例3と同様にしてGaN膜を成長させた。その結果、GaN膜の膜厚は2160μmであったことから、GaN結晶の成長速度は72μm/hrと見積もることができた。一方、供給口28には、膜厚約340μmのGaN膜が堆積していた。
Example 12
A GaN film was grown in the same manner as in Example 3 except that l of the vapor phase growth apparatus 10 was 0 mm and m was 100 mm. As a result, since the film thickness of the GaN film was 2160 μm, the growth rate of the GaN crystal could be estimated as 72 μm / hr. On the other hand, a GaN film having a thickness of about 340 μm was deposited at the supply port 28.

(実施例13)
気相成長装置10のyを10mm、lを100mm、mを100mmとしたこと以外は実施例1と同様にしてAlN膜を成長させた。その結果、AlN膜の膜厚は1080μmであったことから、AlN結晶の成長速度は36μm/hrと見積もることができた。一方、供給口28には、膜厚約140μmのAlN膜が堆積していた。
(Example 13)
An AlN film was grown in the same manner as in Example 1 except that y of the vapor phase growth apparatus 10 was 10 mm, l was 100 mm, and m was 100 mm. As a result, since the thickness of the AlN film was 1080 μm, the growth rate of the AlN crystal could be estimated to be 36 μm / hr. On the other hand, an AlN film having a thickness of about 140 μm was deposited at the supply port 28.

(実施例14)
気相成長装置10のyを20mm、lを100mm、mを100mmとしたこと以外は実施例1と同様にしてAlN膜を成長させた。その結果、AlN膜の膜厚は1050μmであったことから、AlN結晶の成長速度は35μm/hrと見積もることができた。一方、供給口28には、膜厚約130μmのAlN膜が堆積していた。
(Example 14)
An AlN film was grown in the same manner as in Example 1 except that y of the vapor phase growth apparatus 10 was 20 mm, l was 100 mm, and m was 100 mm. As a result, since the thickness of the AlN film was 1050 μm, the growth rate of the AlN crystal could be estimated to be 35 μm / hr. On the other hand, an AlN film having a thickness of about 130 μm was deposited at the supply port 28.

(比較例1)
気相成長装置のdを45mm、lを0mm、mを0mmとしたこと以外は実施例1と同様にしてAlN膜を成長させた。成長した膜には、直径が50〜300μm程度のAlNとみられる膜状の破片が百個程度観察できた。また、AlN膜の膜厚は294μmであったことから、AlN結晶の成長速度は9.8μm/hrと見積もることができた。一方、供給口には、膜厚約680μmのAlN膜が堆積していた。成長膜の破片の周りには高欠陥領域が形成されており、TEMを用いて成長膜を確認したところ、高欠陥領域以外の領域では2×10/cm程度の低い転位密度であったのに対し、高欠陥領域では5×10/cmもの高い転位密度になっていた。AlN膜に観察された破片は、膜の成長中にガス供給口に堆積したAlN膜が剥がれ落ち、それが成長膜に付着したものと考えられる。そのために、成長膜の破片周辺に高欠陥領域が発生したものと考えられる。
(Comparative Example 1)
An AlN film was grown in the same manner as in Example 1 except that d of the vapor phase growth apparatus was 45 mm, l was 0 mm, and m was 0 mm. In the grown film, about 100 pieces of film-like fragments considered to be AlN having a diameter of about 50 to 300 μm were observed. Further, since the thickness of the AlN film was 294 μm, the growth rate of the AlN crystal could be estimated to be 9.8 μm / hr. On the other hand, an AlN film having a thickness of about 680 μm was deposited at the supply port. A high defect region is formed around the fragments of the growth film. When the growth film was confirmed using TEM, the dislocation density was as low as about 2 × 10 6 / cm 2 in the region other than the high defect region. On the other hand, in the high defect region, the dislocation density was as high as 5 × 10 7 / cm 2 . It is considered that the fragments observed in the AlN film peel off the AlN film deposited on the gas supply port during the film growth and adhere to the growth film. For this reason, it is considered that a high defect area has occurred around the fragments of the growth film.

(比較例2)
気相成長装置のdを45mm、lを0mm、mを0mmとしたこと以外は実施例3と同様にしてGaN膜を成長させた。GaN膜の膜厚は516μmであったことから、GaN結晶の成長速度は17.2μm/hrと見積もることができた。一方、供給口には、膜厚約1350μmのGaN膜が堆積していた。GaN膜の表面あるいは内部には、直径が50〜300μm程度のGaNとみられる膜状の破片が約5個/cmの密度で観察できた。得られた結晶を研磨した後、カソードルミネッセンス(CL)で観察したところ、破片の周りには高欠陥領域が形成されており、高欠陥領域以外の領域では4×10/cm以下の転位密度であったのに対し、高欠陥領域(破片から300μmの領域)では転位密度が1×10/cmと倍以上に増加していた。GaN膜に観察された破片はガス供給口に堆積したGaN膜が剥がれ落ちてきたものと考えられる。
(Comparative Example 2)
A GaN film was grown in the same manner as in Example 3 except that d of the vapor phase growth apparatus was 45 mm, l was 0 mm, and m was 0 mm. Since the film thickness of the GaN film was 516 μm, the growth rate of the GaN crystal could be estimated to be 17.2 μm / hr. On the other hand, a GaN film having a thickness of about 1350 μm was deposited at the supply port. On the surface or inside of the GaN film, film-like fragments considered to be GaN having a diameter of about 50 to 300 μm were observed at a density of about 5 pieces / cm 2 . When the obtained crystal was polished and observed by cathodoluminescence (CL), a high defect region was formed around the fragments, and dislocations of 4 × 10 6 / cm 2 or less were formed in regions other than the high defect region. In contrast to the density, the dislocation density increased to 1 × 10 7 / cm 2 or more in the high defect region (region 300 μm from the fragment). The debris observed in the GaN film is thought to be due to the GaN film deposited at the gas supply port being peeled off.

一方、実施例1〜14においては、基板上に成長させた膜の表面あるいは内部には、比較例で観察された膜状の破片は実質的に観察されず、いずれの結晶膜の転位密度も1×10/cm台以下と良好であった。すなわち、本発明に係る実施例1〜14においては、結晶欠陥の少ない良好な化合物半導体膜が得られい、このような化合物半導体膜を用いて半導体素子を作製した場合には、素子の欠陥起因の動作不良が有意に低減される。 On the other hand, in Examples 1 to 14, the film-like fragments observed in the comparative example are not substantially observed on the surface or inside of the film grown on the substrate, and the dislocation density of any crystal film is 1 × 10 6 / cm 2 or less was favorable. That is, in Examples 1 to 14 according to the present invention, a good compound semiconductor film with few crystal defects cannot be obtained. When a semiconductor element is manufactured using such a compound semiconductor film, the defect of the element is caused. The malfunction of is significantly reduced.

第1実施形態に係る気相成長装置を模式的に示す図である。It is a figure which shows typically the vapor phase growth apparatus which concerns on 1st Embodiment. 図1に示される気相成長装置の主要部を模式的に示す図である。It is a figure which shows typically the principal part of the vapor phase growth apparatus shown by FIG. 好ましい形状のガス流調整部を備える第1実施形態に係る気相成長装置の変形例を模式的に示す図である。It is a figure which shows typically the modification of the vapor phase growth apparatus which concerns on 1st Embodiment provided with the gas flow adjustment part of a preferable shape. 第2実施形態に係る気相成長装置を模式的に示す図である。It is a figure which shows typically the vapor phase growth apparatus which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

10,10A,10B…気相成長装置、12…反応管、14…基板ホルダ、16…第2の供給管、24…第1の供給管、26…第1の供給管の端部、28…第1の供給口、30…第2の供給口、32,32A…ガス流調整部、32a…第1の部分、32b…第2の部分、33…内側供給管(第3の供給管)、36…第3の供給口、G1…第1の原料ガス、G2…第2の原料ガス、G5…ガス、M…化合物半導体膜(化合物半導体)、W…基板。
DESCRIPTION OF SYMBOLS 10,10A, 10B ... Vapor phase growth apparatus, 12 ... Reaction tube, 14 ... Substrate holder, 16 ... Second supply tube, 24 ... First supply tube, 26 ... End of first supply tube, 28 ... 1st supply port, 30 ... 2nd supply port, 32, 32A ... Gas flow control part, 32a ... 1st part, 32b ... 2nd part, 33 ... Inner supply pipe (3rd supply pipe), 36 ... 3rd supply port, G1 ... 1st source gas, G2 ... 2nd source gas, G5 ... gas, M ... Compound semiconductor film (compound semiconductor), W ... Substrate.

Claims (5)

第1の原料ガスと第2の原料ガスとを混合し化合物半導体を成長するための反応管と、 前記反応管内に挿入されており、前記第1の原料ガスを前記反応管内に供給するための第1の供給管と、
前記反応管に接続されており、前記第2の原料ガスを前記反応管内に供給するための第2の供給管と、
前記第1の供給管の前記反応管内に位置する端部に形成された第1の供給口の近くに基板を保持する基板ホルダと
を備え、
前記第1の供給管の外壁が前記反応管の内壁と対向する部分を有することによって、前記第1の供給管と前記反応管とが二重管構造を形成しており、
前記第1の供給管の外壁と前記反応管の内壁との間に形成される空間が前記第2の原料ガスの流路となるように前記第2の供給管が前記反応管に接続されており、
前記第1の供給管の前記反応管内に位置する前記端部には、前記第2の原料ガスの前記流路の断面積を減少させるように前記反応管の内壁に向かって膨らんだガス流調整部が設けられている、気相成長装置。
A reaction tube for growing a compound semiconductor by mixing a first source gas and a second source gas; and inserted into the reaction tube, for supplying the first source gas into the reaction tube A first supply pipe;
A second supply pipe connected to the reaction pipe for supplying the second source gas into the reaction pipe;
A substrate holder for holding a substrate near a first supply port formed at an end portion of the first supply tube located in the reaction tube;
The first supply pipe and the reaction tube form a double tube structure by having the outer wall of the first supply pipe facing the inner wall of the reaction tube,
The second supply pipe is connected to the reaction tube so that a space formed between the outer wall of the first supply pipe and the inner wall of the reaction tube becomes a flow path for the second source gas. And
The end of the first supply pipe located in the reaction tube has a gas flow adjustment that swells toward the inner wall of the reaction tube so as to reduce the cross-sectional area of the flow path of the second source gas. A vapor phase growth apparatus provided with a section.
前記ガス流調整部は、前記第1の供給口に向かって外周が広がる第1の部分と、前記第1の部分より前記第1の供給口側に位置し、前記第1の供給口に向かって外周が狭まる第2の部分とを有している、請求項1に記載の気相成長装置。   The gas flow adjusting portion is positioned on the first supply port side from the first portion, the first portion having an outer periphery extending toward the first supply port, and toward the first supply port. The vapor phase growth apparatus according to claim 1, further comprising a second portion whose outer periphery is narrowed. 前記第1の供給管内に挿入されており、前記第1の原料ガスを流すための第3の供給管を更に備え、
前記第1の供給管と前記第3の供給管とが二重管構造を形成しており、
前記第1及び第2の原料ガスと反応しないガスを前記反応管内に供給するための空間が、前記第3の供給管の外壁と前記第1の供給管の内壁との間に形成されている、請求項1又は2に記載の気相成長装置。
A third supply pipe inserted into the first supply pipe for flowing the first source gas;
The first supply pipe and the third supply pipe form a double pipe structure;
A space for supplying a gas that does not react with the first and second source gases into the reaction tube is formed between the outer wall of the third supply tube and the inner wall of the first supply tube. The vapor phase growth apparatus according to claim 1 or 2.
請求項1〜3のいずれか一項に記載の気相成長装置を用いて成長させた、化合物半導体膜。   A compound semiconductor film grown using the vapor phase growth apparatus according to claim 1. 請求項1〜3のいずれか一項に記載の気相成長装置を用いて化合物半導体膜を成長させる、化合物半導体膜の成長方法。
A method for growing a compound semiconductor film, comprising growing a compound semiconductor film using the vapor phase growth apparatus according to claim 1.
JP2006230922A 2006-08-28 2006-08-28 Vapor phase growth apparatus and compound semiconductor film growth method Expired - Fee Related JP5045032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230922A JP5045032B2 (en) 2006-08-28 2006-08-28 Vapor phase growth apparatus and compound semiconductor film growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230922A JP5045032B2 (en) 2006-08-28 2006-08-28 Vapor phase growth apparatus and compound semiconductor film growth method

Publications (2)

Publication Number Publication Date
JP2008053636A true JP2008053636A (en) 2008-03-06
JP5045032B2 JP5045032B2 (en) 2012-10-10

Family

ID=39237357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230922A Expired - Fee Related JP5045032B2 (en) 2006-08-28 2006-08-28 Vapor phase growth apparatus and compound semiconductor film growth method

Country Status (1)

Country Link
JP (1) JP5045032B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060340A (en) * 2011-09-14 2013-04-04 Tokuyama Corp Apparatus for hydride vapor phase epitaxy, and method of producing aluminum-based group-iii nitride single crystal
JP2014051410A (en) * 2012-09-07 2014-03-20 Tokuyama Corp Method for producing aluminum halide gas
JP2014240331A (en) * 2013-06-11 2014-12-25 株式会社トクヤマ Production method of aluminum-based group iii nitride single crystal
JP2015191956A (en) * 2014-03-27 2015-11-02 株式会社トクヤマ crystal growth apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229861B2 (en) 2017-04-13 2022-01-25 Airrat Pty Ltd Sludge harvester improvements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111323A (en) * 1982-12-16 1984-06-27 Matsushita Electric Ind Co Ltd Vapor phase growth device
JPH04146618A (en) * 1990-10-09 1992-05-20 Nec Corp Vapor phase growth system
JPH04164898A (en) * 1990-10-26 1992-06-10 Sumitomo Electric Ind Ltd Apparatus for vapor growth of iron-doped compound semiconductor
WO1999023693A1 (en) * 1997-10-30 1999-05-14 Sumitomo Electric Industries, Ltd. GaN SINGLE CRYSTALLINE SUBSTRATE AND METHOD OF PRODUCING THE SAME
JP2002542142A (en) * 1999-04-16 2002-12-10 シービーエル テクノロジーズ インコーポレイテッド Composite gas introduction system and method
JP2006114845A (en) * 2004-10-18 2006-04-27 Tokyo Univ Of Agriculture & Technology Manufacturing method of aluminum-based group iii nitride

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111323A (en) * 1982-12-16 1984-06-27 Matsushita Electric Ind Co Ltd Vapor phase growth device
JPH04146618A (en) * 1990-10-09 1992-05-20 Nec Corp Vapor phase growth system
JPH04164898A (en) * 1990-10-26 1992-06-10 Sumitomo Electric Ind Ltd Apparatus for vapor growth of iron-doped compound semiconductor
WO1999023693A1 (en) * 1997-10-30 1999-05-14 Sumitomo Electric Industries, Ltd. GaN SINGLE CRYSTALLINE SUBSTRATE AND METHOD OF PRODUCING THE SAME
JP2002542142A (en) * 1999-04-16 2002-12-10 シービーエル テクノロジーズ インコーポレイテッド Composite gas introduction system and method
JP2006114845A (en) * 2004-10-18 2006-04-27 Tokyo Univ Of Agriculture & Technology Manufacturing method of aluminum-based group iii nitride

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060340A (en) * 2011-09-14 2013-04-04 Tokuyama Corp Apparatus for hydride vapor phase epitaxy, and method of producing aluminum-based group-iii nitride single crystal
JP2014051410A (en) * 2012-09-07 2014-03-20 Tokuyama Corp Method for producing aluminum halide gas
JP2014240331A (en) * 2013-06-11 2014-12-25 株式会社トクヤマ Production method of aluminum-based group iii nitride single crystal
JP2015191956A (en) * 2014-03-27 2015-11-02 株式会社トクヤマ crystal growth apparatus

Also Published As

Publication number Publication date
JP5045032B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
US8507304B2 (en) Method of forming a group III-nitride crystalline film on a patterned substrate by hydride vapor phase epitaxy (HVPE)
CN101410950B (en) Growth method using nanostructure compliant layers and HVPE for producing high quality compound semiconductor materials
JP4797793B2 (en) Method for manufacturing nitride semiconductor crystal
US8716049B2 (en) Growth of group III-V material layers by spatially confined epitaxy
JP7255817B2 (en) GaN crystal manufacturing method
JP2008066490A (en) Vapor phase growing device
JP2009167053A (en) Method for growing group iii nitride crystal
JP2007204359A (en) Process for producing free-standing iii-n layer, and free-standing iii-n substrate
JP5045032B2 (en) Vapor phase growth apparatus and compound semiconductor film growth method
JP2005252248A (en) Method for growing aluminum nitride epitaxial layer and vapor growth apparatus
KR20160130396A (en) Process for producing group iii nitride crystal and apparatus for producing group iii nitride crystal
JP4565042B1 (en) Method for manufacturing group III nitride crystal substrate
JP6704386B2 (en) Nitride semiconductor template, manufacturing method thereof, and epitaxial wafer
JP2006114845A (en) Manufacturing method of aluminum-based group iii nitride
JP5045033B2 (en) Vapor phase growth apparatus and compound semiconductor film growth method
JP5045955B2 (en) Group III nitride semiconductor free-standing substrate
US8992684B1 (en) Epitaxy reactor internal component geometries for the growth of superior quality group III-nitride materials
JP5195613B2 (en) Manufacturing method of nitride semiconductor free-standing substrate
JP7164332B2 (en) Vapor deposition equipment
JP6158564B2 (en) Semiconductor device manufacturing method and hydride vapor phase growth apparatus
JP2015122364A (en) Semiconductor layer surface treatment method and semiconductor substrate
JP4961888B2 (en) Vapor phase growth apparatus and compound semiconductor film growth method
JP2005235845A (en) Vapor phase epitaxial growth system and method
JP2011195388A (en) Group iii nitride semiconductor crystal, method for producing the same, and ground substrate for growing group iii nitride semiconductor crystal
JP2010265178A (en) Vapor growth apparatus for epitaxial layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees