JP2008053265A - Method of manufacturing single-crystal conjugate polymer nanostructure by surface-inducted self-assembly - Google Patents

Method of manufacturing single-crystal conjugate polymer nanostructure by surface-inducted self-assembly Download PDF

Info

Publication number
JP2008053265A
JP2008053265A JP2006225107A JP2006225107A JP2008053265A JP 2008053265 A JP2008053265 A JP 2008053265A JP 2006225107 A JP2006225107 A JP 2006225107A JP 2006225107 A JP2006225107 A JP 2006225107A JP 2008053265 A JP2008053265 A JP 2008053265A
Authority
JP
Japan
Prior art keywords
self
conjugated polymer
single crystal
supramolecular
polymer nanostructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006225107A
Other languages
Japanese (ja)
Inventor
Kilwon Cho
ギルウォン・チョ
Do Hwan Kim
ド・ファン・キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pohang University of Science and Technology Foundation POSTECH
Academy Industry Foundation of POSTECH
Original Assignee
Pohang University of Science and Technology Foundation POSTECH
Academy Industry Foundation of POSTECH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pohang University of Science and Technology Foundation POSTECH, Academy Industry Foundation of POSTECH filed Critical Pohang University of Science and Technology Foundation POSTECH
Priority to JP2006225107A priority Critical patent/JP2008053265A/en
Publication of JP2008053265A publication Critical patent/JP2008053265A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a single-crystal conjugate high polymer nanostructure, by self-seeding a self-assembly that can be arranged regularly in a large area through a surface-induced selective self-assembly process, and is useful for next-generation supramolecular organic electronic elements, such as high-performance and highly-integration supramolecular transistors, supramolecular light-emitting elements, supramolecular biosensors. <P>SOLUTION: The single-crystal conjugate polymer nanostructure that is grown by surface-induced self-assembly can be arranged regularly in a large area by a selective surface-induced self-assembly process. It exhibits a low electrical resistance and superior field effect, so that it can be applied usefully to next-generation supramolecular organic electronic elements, such as high-performance and high-integration supramolecular transistors, supramolecular light-emitting elements, supramolecular biosensors. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、表面誘導自己集合による単結晶共役高分子ナノ構造体の製造方法に関するものである。   The present invention relates to a method for producing a single crystal conjugated polymer nanostructure by surface-induced self-assembly.

共役高分子の表面誘導自己集合によるナノ構造体の製造及び分子微細構造の分析技術は、薄膜の多層構造からなる有機情報電子素子のより向上された特性を具現するために要求される核心技術である。   Nanostructure fabrication and molecular microstructure analysis technology by surface-induced self-assembly of conjugated polymers is a core technology required to realize more improved characteristics of organic information electronic devices consisting of thin film multilayer structures. is there.

従来、多様な共役分子の自己集合を通じて超分子構造体を製造する研究が活発に行われて来た。情報電子及びバイオ素子に応用されている共役高分子に関心が集まっている理由は、非共有結合力であるπ−π作用力が主になる自己集合によって容易に規則的な形態及びナノ或いはマイクロ大きさの構造体形成が可能であるためであり、(文献[J. P. Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Shimomura, K. Ito, T. Hashizume, N. Ishii, and T. Aida, Science, 304, 1481 (2004)参照]、先進国の多くの科学者が広範囲かつ体系的にこの分野の研究に邁進している。   In the past, research on producing supramolecular structures through self-assembly of various conjugated molecules has been actively conducted. The reason for the interest in conjugated polymers applied to information electronics and bio-devices is that they can be easily formed into regular forms and nano- or micro-structures by self-assembly mainly due to non-covalent π-π action force. This is because it is possible to form a structure with a size (reference [JP Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Shimomura, K. Ito, T. Hashizume, N. Ishii, and T. Aida, Science, 304, 1481 (2004)], many scientists in developed countries are making extensive and systematic research into this field.

その代表的な例として、典型的なディスコティック液晶(discotic liquid crystal)共役分子であるヘキサ−ペリ−ヘキサベンゾコロネン(hexa-peri-hexabenzocoronene, HBC)誘導体の自己集合によって製造された数十ナノ或いは数マイクロ大きさの一次元的なワイヤーが開発されている(文献[M. D. Watson, F. Jaekel, N. Severin, J. P. Rabe, and K. Muelen, J. Am. Chem. Soc., 126, 1402 (2004)参照)]。また、両親媒性(amphiphilic)誘導体を世界最初に合成して溶液中でπ−π作用力を調節した結果、数十ナノ大きさの自己集合された黒鉛チューブが開発された(文献[W. Jin, T. Fukushima, M. Niki, A. Kosaka, N. Ishii, and T. Aida, Proc. Natl. Acad. Sci. USA, 102, 10801 (2005)]参照)。   A typical example is the tens of nanometers produced by self-assembly of hexa-peri-hexabenzocoronene (HBC) derivatives, which are typical discotic liquid crystal conjugated molecules. A one-dimensional wire having a size of several micrometers has been developed (reference [MD Watson, F. Jaekel, N. Severin, JP Rabe, and K. Muelen, J. Am. Chem. Soc., 126, 1402 ( 2004))]]. In addition, as a result of synthesizing the world's first amphiphilic derivative and adjusting the π-π action force in a solution, a self-assembled graphite tube having a size of several tens of nanometers was developed (reference [W. Jin, T. Fukushima, M. Niki, A. Kosaka, N. Ishii, and T. Aida, Proc. Natl. Acad. Sci. USA, 102, 10801 (2005)]).

しかし、今まで進行されてきた大部分の研究は分子的欠陷がない単結晶共役分子の自己集合体を製造するのに限界があり、表面誘導自己集合を通せず、ただ溶液中における自己集合過程によるナノ結晶体であるため、電子素子に応用時に絶対的に要求される共役分子の選択的な配向を制御できないので、大面積の規則的な配列が得られ難いだけでなく、超分子電子素子に応用する場合、界面における安定性が問題となった。
J. P. Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Shimomura, K. Ito, T. Hashizume, N. Ishii, and T. Aida, Science, 304, 1481 (2004) M. D. Watson, F. Jaekel, N. Severin, J. P. Rabe, and K. Muelen, J. Am. Chem. Soc., 126, 1402 (2004) W. Jin, T. Fukushima, M. Niki, A. Kosaka, N. Ishii, and T. Aida, Proc. Natl. Acad. Sci. USA, 102, 10801 (2005)
However, most of the researches that have been carried out so far have limitations in producing self-assembly of single-crystal conjugated molecules without molecular defects and cannot pass through surface-induced self-assembly, but only in solution. Because it is a nanocrystal by the process, it cannot control the selective orientation of conjugated molecules that is absolutely required when applied to electronic devices. When applied to devices, stability at the interface has become a problem.
JP Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Shimomura, K. Ito, T. Hashizume, N. Ishii, and T. Aida, Science, 304, 1481 (2004) MD Watson, F. Jaekel, N. Severin, JP Rabe, and K. Muelen, J. Am. Chem. Soc., 126, 1402 (2004) W. Jin, T. Fukushima, M. Niki, A. Kosaka, N. Ishii, and T. Aida, Proc. Natl. Acad. Sci. USA, 102, 10801 (2005)

従って、本発明の目的は表面誘導された選択的な自己集合過程によって大面積にわたって規則的な配列の形成が可能であり、低い電気抵抗と優れた電界効果を有する、高性能、高集積化された超分子トランジスター、超分子発光素子及び超分子バイオセンサーなどの次世代超分子有機電子素子に有用な、自成核型(self−seeding)自己集合による単結晶共役高分子ナノ構造体の製造方法を提供することである。   Therefore, the object of the present invention is to form a regular array over a large area by a surface-induced selective self-assembly process, and to achieve high performance and high integration with low electric resistance and excellent electric field effect. Of single-crystal conjugated polymer nanostructures by self-assembly self-assembly, useful for next-generation supramolecular organic electronic devices such as supramolecular transistors, supramolecular light emitting devices and supramolecular biosensors Is to provide.

前記目的によって本発明では、i)(a)ポリ(3−ヘキシルチオフェン)を60℃〜70℃で有機溶媒に溶かした後、25℃〜40℃まで溶液の温度を急冷(quenching)し、(b)前記(a)で得た溶液を1時間以上その温度で保持してから5℃〜15℃まで急冷した後、10時間〜12時間攪拌して自成核型共役高分子溶液を得る段階、及びii)自成核型共役高分子溶液を、疎水性を示す超分子がコーティングされたナノテンプレートに塗布して表面誘導自己集合によって成長させる段階を含む単結晶共役高分子ナノ構造体の製造方法を提供する。   According to the present invention, according to the present invention, i) (a) poly (3-hexylthiophene) is dissolved in an organic solvent at 60 ° C. to 70 ° C., and then the temperature of the solution is quenched to 25 ° C. to 40 ° C. b) A step of holding the solution obtained in the above (a) at the temperature for 1 hour or more and then rapidly cooling to 5 ° C. to 15 ° C., followed by stirring for 10 hours to 12 hours to obtain a self-nucleated conjugated polymer solution And ii) applying a self-nucleated conjugated polymer solution to a nanotemplate coated with a hydrophobic supramolecule and growing by surface-induced self-assembly to produce a single crystal conjugated polymer nanostructure Provide a method.

本発明によって製造された単結晶共役高分子ナノ構造体は、表面誘導された自己集合過程によって大面積にわたる規則的な配列の形成が可能であり、前記単結晶ナノ構造体からなる超分子電子素子は低い電気抵抗と優れた電界効果を有するので、高性能、高集積化された超分子トランジスター、超分子発光素子及び超分子バイオセンサーなどの次世代超分子有機電子素子に有用に適用され得る。   The single-crystal conjugated polymer nanostructure manufactured according to the present invention can form a regular array over a large area by a surface-induced self-assembly process, and a supramolecular electronic device comprising the single-crystal nanostructure. Has a low electric resistance and an excellent electric field effect, and can be usefully applied to next-generation supramolecular organic electronic devices such as high-performance, highly integrated supramolecular transistors, supramolecular light emitting devices and supramolecular biosensors.

以下、本発明を詳しく説明すれば次の通りである。   Hereinafter, the present invention will be described in detail as follows.

本発明による単結晶共役高分子ナノ構造体の製造方法は、電気的特性を示す共役高分子を用いて自成核型(self−seeding)溶液を形成した後、これを、疎水性を示す超分子がコーティングされたナノテンプレート表面に塗布することを特徴にする。   The method for producing a single crystal conjugated polymer nanostructure according to the present invention comprises forming a self-seeding solution using a conjugated polymer exhibiting electrical properties, and then forming a super-hydrophobic polymer. It is characterized in that molecules are applied to the coated nanotemplate surface.

本発明によって製造された単結晶共役高分子ナノ構造体は表面誘導された選択的な自己集合過程によって大面積にわたる規則的な配列の形成が可能であり、低い電気抵抗と優れた電界効果を提供するので、高性能、高集積化された超分子トランジスター、超分子発光素子及び超分子バイオセンサーなどの次世代超分子有機電子素子に有用である。   Single crystal conjugated polymer nanostructures manufactured according to the present invention can form a regular array over a large area by a surface-induced selective self-assembly process, providing low electrical resistance and excellent field effect Therefore, it is useful for next-generation supramolecular organic electronic devices such as high performance, highly integrated supramolecular transistors, supramolecular light emitting devices and supramolecular biosensors.

(i)自成核型共役高分子溶液の製造
本発明の自成核型共役高分子溶液は(a)ポリ(3−ヘキシルチオフェン)を60℃〜70℃で有機溶媒に溶かした後、25℃〜40℃まで溶液の温度を急冷し、(b)前記(a)で得た溶液を1時間以上前記温度で保持してから5℃〜15℃まで急冷した後、10時間〜12時間攪拌させることによって得ることができる。
(I) Production of self-nucleating conjugated polymer solution The self-nucleating conjugated polymer solution of the present invention is obtained by dissolving (a) poly (3-hexylthiophene) in an organic solvent at 60 ° C. to 70 ° C. (B) The solution obtained in (a) above is kept at the temperature for 1 hour or more and then rapidly cooled to 5 to 15 ° C. and then stirred for 10 to 12 hours. Can be obtained.

本発明によって共役高分子であるポリ(3−ヘキシルチオフェン)(poly(3-hexylthiophene), P3HT)を自成核(seed)に形成させる際、2段階((a)及び(b)段階)にかけて温度を制御するのが望ましく、25〜40℃まで急冷する段階((a)段階)は自成核(seed)を成長させるために必要な高分子鎖のエントロピー的エネルギーを付加させるための段階であり、5〜15℃まで急冷する段階((b)段階)は最終的に自成核(seed)を形成する段階である。   When poly (3-hexylthiophene) (poly (3-hexylthiophene), P3HT) is formed into a self-generated nucleus according to the present invention, it is divided into two stages (stages (a) and (b)). It is desirable to control the temperature, and the step of rapidly cooling to 25 to 40 ° C. (step (a)) is a step for adding entropic energy of the polymer chain necessary for growing the self-generated nuclei (seeds). Yes, the step of rapidly cooling to 5 to 15 ° C. (step (b)) is the step of finally forming a seed nuclei.

段階(a)で、本発明で用いられるポリ(3−ヘキシルチオフェン)溶液の濃度は0.1〜0.3mg/mlが好ましく、前記範囲の濃度より濃い溶液を用いる場合、ポリチオフェン溶液の結晶成長時の単結晶構造体(例:マイクロワイヤー)が形成されずに、フィルムが形成され得る。   In step (a), the concentration of the poly (3-hexylthiophene) solution used in the present invention is preferably 0.1 to 0.3 mg / ml. When a solution having a concentration higher than the above range is used, the crystal growth of the polythiophene solution A film can be formed without forming a single crystal structure (eg, microwire).

本発明で用いられる有機溶媒はクロロホルム(CHCl3)、トルエン、キシレンが挙げられ、好ましくはクロロホルム(CHCl3)を用いる方が好ましい。 Examples of the organic solvent used in the present invention include chloroform (CHCl 3 ), toluene, and xylene, and it is preferable to use chloroform (CHCl 3 ).

本発明の段階(b)において、5℃〜15℃で10時間〜12時間攪拌することが好ましく、前記温度範囲を超過すれば自成核(seed)が形成されない場合もある。また、攪拌時間が10時間未満であれば、単結晶ナノ構造体を製造できるが、その密度が非常に低くなり、12時間を超過すれば、自成核(seed)密度が大きくなって単結晶粒子が形成されるので、単結晶マイクロワイヤーが形成しない場合もある。   In the step (b) of the present invention, it is preferable to stir at 5 ° C. to 15 ° C. for 10 hours to 12 hours. If the temperature range is exceeded, seeds may not be formed. Also, if the stirring time is less than 10 hours, a single crystal nanostructure can be produced, but its density becomes very low, and if it exceeds 12 hours, the seed density increases and the single crystal is increased. Since the particles are formed, the single crystal microwire may not be formed.

(ii)単結晶共役高分子ナノ構造体の製造
前記のように製造された自成核型共役高分子溶液を用いた本発明の表面誘導単結晶共役高分子ナノ構造体の製造方法は、添付した図1を参照して具体的に説明すれば次の通りである。
(Ii) Production of single crystal conjugated polymer nanostructure The method for producing the surface-induced single crystal conjugated polymer nanostructure of the present invention using the self-nucleated conjugated polymer solution produced as described above is attached. A detailed description will be given with reference to FIG.

まず、疎水性を示す有機超分子(organic supramolecule)であって、例えばオクタデシルトリクロロシラン(ODTS)、ドデシルトリクロロシラン(DDTS)又はヘキサデシルトリクロロシラン(HDTS)を、好ましくはオクタデシルトリクロロシラン(ODTS)を用いてシリコン基板を表面改質して疎水性が付与されたナノテンプレートを製造する(図1(a))。ここで、シリコン基板の表面改質は、該超分子を有機溶媒(例:トルエン)に溶かした溶液をシリコン基板に塗布して110℃〜120℃で縮合反応することによって達成され得る。   First, an organic supramolecule showing hydrophobicity, for example, octadecyltrichlorosilane (ODTS), dodecyltrichlorosilane (DDTS) or hexadecyltrichlorosilane (HDTS), preferably octadecyltrichlorosilane (ODTS). Using this, a silicon substrate is surface-modified to produce a nanotemplate with hydrophobicity (FIG. 1 (a)). Here, the surface modification of the silicon substrate can be achieved by applying a solution obtained by dissolving the supramolecules in an organic solvent (eg, toluene) to the silicon substrate and performing a condensation reaction at 110 ° C. to 120 ° C.

その後、溶液の蒸発速度を制御するためにAr雰囲気下の密閉された装置(closed jar)中で、前記疎水性を示す超分子をポリチオフェン溶液で置換されたナノテンプレート絶縁体表面に、滴下して塗布することによって、ポリチオフェン単結晶構造体を形成する(図1(b))。ここで、溶液滴下の際にテンプレートの温度を10℃〜50℃に制御し、単結晶構造体の長さを30nm〜200μm、厚さは20nm〜1μmまで成長させ得る。   Thereafter, in order to control the evaporation rate of the solution, the hydrophobic supramolecule is dropped on the surface of the nanotemplate insulator substituted with the polythiophene solution in a closed jar in an Ar atmosphere. By coating, a polythiophene single crystal structure is formed (FIG. 1B). Here, the temperature of the template is controlled to 10 ° C. to 50 ° C. during the dropping of the solution, and the length of the single crystal structure can be grown to 30 nm to 200 μm and the thickness can be grown to 20 nm to 1 μm.

(3)単結晶共役高分子ナノ構造体からなる超分子電子素子
本発明によって製造された単結晶共役高分子ナノ構造体を用いて通常の方法によって超分子素子を提供できる。例えば、図1(c)に示すように、本発明による単結晶共役高分子構造体に銅グリッド(grid)をシャドーマスク(shadow mask)として用いて付着した後、ここにソースとドレーン(drain)用Auを塗布して超分子電子素子を製作できる。
(3) Supramolecular electronic device comprising a single crystal conjugated polymer nanostructure A supramolecular device can be provided by an ordinary method using the single crystal conjugated polymer nanostructure produced by the present invention. For example, as shown in FIG. 1C, a copper grid is attached to a single crystal conjugated polymer structure according to the present invention using a shadow mask, and then a source and a drain are attached thereto. Supramolecular electronic devices can be manufactured by applying Au for coating.

このように、本発明によって電気伝導性ポリチオフェンの自己集合によって形成された単結晶共役高分子ナノ構造体は、表面誘導された自己集合過程によって大面積にわたって規則的な配列の形成が可能であり、低い電気抵抗と優れた電界効果を提供して、高性能、高集積化された超分子トランジスター、超分子発光素子及び超分子バイオセンサーなどの次世代超分子有機電子素子に有用である。   Thus, the single crystal conjugated polymer nanostructure formed by self-assembly of electrically conductive polythiophene according to the present invention can form a regular array over a large area by a surface-induced self-assembly process, It provides low electrical resistance and excellent electric field effect and is useful for next-generation supramolecular organic electronic devices such as high performance, highly integrated supramolecular transistors, supramolecular light emitting devices and supramolecular biosensors.

以下、下記実施例によって本発明をより詳細に説明する。但し、下記実施例は本発明をさらに詳細に説明するためのものであり、本発明の範囲を制限しない。   Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are for explaining the present invention in more detail, and do not limit the scope of the present invention.

[製造例]:自成核型P3HT溶液の製造
ポリ(3−ヘキシルチオフェン)(Rieke Matels Inc.)をクロロホルム(0.1mg/ml)に60℃〜70℃で溶かした後、前記溶液を30℃〜35℃まで急冷した。この溶液をその温度で1時間保持してから10℃〜15℃まで急冷して、10時間〜12時間攪拌して自成核が形成されたP3HT溶液を製造した。
[Production Example] Production of Self-nucleated P3HT Solution After dissolving poly (3-hexylthiophene) (Rieke Matels Inc.) in chloroform (0.1 mg / ml) at 60 ° C. to 70 ° C., 30% of the solution was prepared. It was rapidly cooled to from 35 ° C to 35 ° C. This solution was held at that temperature for 1 hour, then rapidly cooled to 10 ° C. to 15 ° C., and stirred for 10 hours to 12 hours to produce a P3HT solution in which self-nucleated nuclei were formed.

[実施例1]:P3HT単結晶構造体の製造
ODTS(オクタデシルトリクロロシラン)(Aldrich)超分子を塗布するためのSi基板をピラニア(piranha)溶液(H2SO4:H22=7:3)で予め洗浄した後、洗浄した基板に10mMのODTSトルエン溶液を塗布して110℃〜120℃で1時間縮合反応させた。この基板を120℃で乾燥焼成した後、ODTSがコーティングされたナノテンプレートを得た。前記ODTSがコーティングされたナノテンプレートを密閉型装置内(Ar雰囲気)に移した後、ナノテンプレート表面に製造例で得た自成核が形成されたP3HT溶液を10℃〜50℃で滴下塗布して長さ20μm〜200μm、厚さ500nm〜1μmである共役高分子単結晶構造体を製造した。
[Example 1]: Manufacture of P3HT single crystal structure Si substrate for coating ODTS (octadecyltrichlorosilane) (Aldrich) supramolecule was used as a piranha solution (H 2 SO 4 : H 2 O 2 = 7: After washing in advance in 3), a 10 mM ODTS toluene solution was applied to the washed substrate and subjected to a condensation reaction at 110 ° C. to 120 ° C. for 1 hour. After this substrate was dried and fired at 120 ° C., a nanotemplate coated with ODTS was obtained. After the nano template coated with the ODTS was transferred into a sealed device (Ar atmosphere), a P3HT solution in which the self-nucleated nuclei obtained in the production example were formed on the nano template surface was dropped at 10 ° C. to 50 ° C. Thus, a conjugated polymer single crystal structure having a length of 20 μm to 200 μm and a thickness of 500 nm to 1 μm was manufactured.

[検査例1]:共役高分子単結晶構造体の構造分析
実施例1で得たP3HT単結晶構造体の構造的特徴を調べるために、光学顕微鏡(a)、走査電子顕微鏡(SEM)(b)、透過電子顕微鏡(TEM)(c)、及び制限視野電子線回折(SAED:selected area electron diffraction)(d)を用いて構造を分析し、その結果をそれぞれ図2に示す。
[Test Example 1]: Structural analysis of conjugated polymer single crystal structure In order to investigate the structural characteristics of the P3HT single crystal structure obtained in Example 1, an optical microscope (a), a scanning electron microscope (SEM) (b ), Transmission electron microscope (TEM) (c), and selected area electron diffraction (SAED) (d), the structure was analyzed, and the results are shown in FIG.

図2(a)から分かるように、表面誘導自己集合された単結晶ナノ構造体が束(bundle)状に形成されることが確認でき、図2(b)のSEM写真を通じて本発明によるP3HT単結晶構造体はよく発達した小面(facet)を有するマイクロ水準のワイヤーであることが確認できた。また、図2(c)及び(d)から分かるように、この単結晶構造体が成長する方向は鎖が分子間のπ−π結合で重なる(stackingする)方向である、[010](b軸)であって、2次元的電荷移動方向と一致することが確認できた。   As can be seen from FIG. 2A, it can be confirmed that the surface-induced self-assembled single crystal nanostructures are formed in a bundle shape, and the P3HT single body according to the present invention is shown through the SEM photograph of FIG. It was confirmed that the crystal structure was a micro-level wire having well-developed facets. Further, as can be seen from FIGS. 2C and 2D, the direction in which this single crystal structure grows is the direction in which the chains overlap (stack) with π-π bonds between molecules [010] (b It was confirmed that it coincided with the two-dimensional charge transfer direction.

前記図2(c)及び図2(d)から、図3(a)に示すように、本発明による単結晶構造体の単位格子を決定でき(a軸:16.60Å、b軸:7.80Å、c軸:8.36Å)、これは図3(b)のように図式化できる。即ち、ポリチオフェン単結晶マイクロワイヤーは鎖の分子配向において結晶の成長方向とπ−π結合で重なる方向が一致する、1次元的単結晶P3HTマイクロワイヤーである。従って、本発明によるナノ構造体は有機電子素子に応用する際に高性能を示すことが確認できた。   From FIG. 2 (c) and FIG. 2 (d), as shown in FIG. 3 (a), the unit cell of the single crystal structure according to the present invention can be determined (a axis: 16.60Å, b axis: 7. 80Å, c-axis: 8.36Å), which can be diagrammed as shown in Fig. 3 (b). That is, the polythiophene single crystal microwire is a one-dimensional single crystal P3HT microwire in which the crystal growth direction coincides with the direction overlapping with the π-π bond in the molecular orientation of the chain. Therefore, it was confirmed that the nanostructure according to the present invention exhibits high performance when applied to an organic electronic device.

[実施例2]:超分子電子素子の製造
実施例1で得たポリチオフェン単結晶構造体に銅グリッド(grid)をシャドーマスク(shadow mask)として用いて付着した後、ここにソースとドレーン(drain)に用いるAuを塗布して、図1(c)及び図4(a)に示すような超分子電子素子を製作した。
[Example 2]: Production of supramolecular electronic device After a copper grid (grid) was attached to the polythiophene single crystal structure obtained in Example 1 as a shadow mask, a source and a drain were formed here. 1) was applied to produce a supramolecular electronic device as shown in FIG. 1 (c) and FIG. 4 (a).

[検査例2]:超分子電子素子の評価
実施例2で製作した超分子電子素子の光学顕微鏡のイメージを図4(b)に示す。
[Inspection Example 2]: Evaluation of Supramolecular Electronic Device An optical microscope image of the supramolecular electronic device manufactured in Example 2 is shown in FIG.

また、超分子電子素子から得られた、抵抗を示す電流/電圧の曲線を測定し、その結果を図5に示す。図5から分かるように、無機電子素子に匹敵する低い抵抗(0.5Mohm)(イ)及び高い電流特性(25A)(ロ)を示した((b)は(a)の部分拡大図である)。また、低電圧ではオーム(ohm)の法則によって電圧に比例するが、高電圧ではオームの法則を外れ、I〜Vn(n:1以上の数)、即ち、空間電荷制限電流(space-charge-limited current)挙動を見せることが確認できた。これは製造されたポリチオフェン電子素子が単結晶構造体に基づいていることを間接的に示すものである。 Further, a current / voltage curve indicating resistance obtained from the supramolecular electronic device was measured, and the result is shown in FIG. As can be seen from FIG. 5, low resistance (0.5 Mohm) (A) and high current characteristics (25 A) (B) comparable to inorganic electronic elements were shown ((b) is a partially enlarged view of (a). ). Further, although the low voltage proportional to the voltage by Ohm's law (ohm), out of the Ohm's law is at a high voltage, I~V n (n: 1 or more numbers), i.e., the space charge limited current (space-charge -limited current) It was confirmed to show behavior. This indirectly indicates that the manufactured polythiophene electronic device is based on a single crystal structure.

また、本発明の超分子素子に対して電界効果応答を調べるため、ゲート電極の電圧変化(−1.5V〜1.5V)によるソースとドレーンとの間に流れる電流を実時間で測定し、これに対する電流/電圧の曲線を図6に示す。図6の結果からゲート電極の電圧により電流が変わっているので、電界効果特性が非常に優れていることが確認できた。   Further, in order to investigate the field effect response to the supramolecular device of the present invention, the current flowing between the source and the drain due to the voltage change (−1.5 V to 1.5 V) of the gate electrode is measured in real time, The current / voltage curve for this is shown in FIG. From the results shown in FIG. 6, it was confirmed that the field effect characteristics were very excellent because the current varied depending on the voltage of the gate electrode.

本発明によって自己集合によって成長された単結晶共役高分子ナノ構造体の製造過程を示す模式図である。It is a schematic diagram showing a manufacturing process of a single crystal conjugated polymer nanostructure grown by self-assembly according to the present invention. 本発明によって製造された単結晶ポリ(3−ヘキシルチオフェン)ナノ構造体の光学顕微鏡写真(a)、走査電子顕微鏡(SEM)写真(b)、透過電子顕微鏡(TEM)写真(c)及び制限視野電子線回折(SAED)の結果(d)を示す。Optical micrograph (a), scanning electron microscope (SEM) photo (b), transmission electron microscope (TEM) photo (c) and restricted field of view of single crystal poly (3-hexylthiophene) nanostructures produced by the present invention The result (d) of electron beam diffraction (SAED) is shown. 本発明の単結晶ポリ(3−ヘキシルチオフェン)ナノ構造体の単位格子(a)及び内部構造(b)を示す模式図である。It is a schematic diagram which shows the unit cell (a) and internal structure (b) of the single crystal poly (3-hexyl thiophene) nanostructure of this invention. 本発明の単結晶ポリ(3−ヘキシルチオフェン)ナノ構造体からなる超分子電子素子の模式図(a)及び光学顕微鏡イメージ(b)を示す。The schematic diagram (a) and optical microscope image (b) of the supramolecular electronic device which consist of the single crystal poly (3-hexyl thiophene) nanostructure of this invention are shown. 図4の超分子電子素子から得た抵抗を示す電流/電圧の曲線を示す。Fig. 5 shows a current / voltage curve showing the resistance obtained from the supramolecular electronic device of Fig. 4; 図4の超分子電子素子から得た電界効果応答を示す電流/電圧の曲線を示す。5 shows a current / voltage curve showing the field effect response obtained from the supramolecular electronic device of FIG.

Claims (9)

i)(a)ポリ(3−ヘキシルチオフェン)を60℃〜70℃で有機溶媒に溶かした後、25℃〜40℃まで溶液の温度を急冷(quenching)し、(b)前記(a)で得た溶液をその温度で1時間以上保持してから5℃〜15℃まで急冷した後、10時間〜12時間攪拌して自成核型共役高分子溶液を得る段階、及びii)前記自成核型共役高分子溶液を疎水性超分子でコーティングされたナノテンプレートに塗布して前記ポリ(3−ヘキシルチオフェン)を表面誘導自己集合によって成長させる段階を含む、単結晶共役高分子ナノ構造体の製造方法。   i) (a) After poly (3-hexylthiophene) is dissolved in an organic solvent at 60 ° C. to 70 ° C., the temperature of the solution is quenched to 25 ° C. to 40 ° C., and (b) in (a) The obtained solution is kept at that temperature for 1 hour or more and then rapidly cooled to 5 ° C. to 15 ° C. and then stirred for 10 hours to 12 hours to obtain a self-nucleating conjugated polymer solution, and ii) the self-forming A single crystal conjugated polymer nanostructure comprising a step of applying a nucleated conjugated polymer solution to a nano-template coated with a hydrophobic supramolecule and growing the poly (3-hexylthiophene) by surface-induced self-assembly. Production method. 前記自成核型共役高分子溶液のポリ(3−ヘキシルチオフェン)の濃度が0.1〜0.3mg/mlであることを特徴とする、請求項1に記載の単結晶共役高分子ナノ構造体の製造方法。   2. The single crystal conjugated polymer nanostructure according to claim 1, wherein a concentration of poly (3-hexylthiophene) in the self-nucleated conjugated polymer solution is 0.1 to 0.3 mg / ml. Body manufacturing method. 前記有機溶媒がクロロホルム、トルエン、又はキシレンであることを特徴とする、請求項1に記載の単結晶共役高分子ナノ構造体の製造方法。   The method for producing a single crystal conjugated polymer nanostructure according to claim 1, wherein the organic solvent is chloroform, toluene, or xylene. 前記疎水性超分子がオクタデシルトリクロロシラン(ODTS)、ドデシルトリクロロシラン(DDTS)又はヘキサデシルトリクロロシラン(HDTS)であることを特徴とする、請求項1に記載の単結晶共役高分子ナノ構造体の製造方法。   The single crystalline conjugated polymer nanostructure according to claim 1, wherein the hydrophobic supramolecule is octadecyltrichlorosilane (ODTS), dodecyltrichlorosilane (DDTS) or hexadecyltrichlorosilane (HDTS). Production method. 前記段階ii)において、塗布時の前記テンプレートの温度が10℃〜50℃であることを特徴とする、請求項1に記載の単結晶共役高分子ナノ構造体の製造方法。   2. The method for producing a single crystal conjugated polymer nanostructure according to claim 1, wherein, in the step ii), the temperature of the template at the time of coating is 10 ° C. to 50 ° C. 3. 前記段階ii)がAr雰囲気下の密閉された装置内で行われることを特徴とする、請求項1に記載の単結晶共役高分子ナノ構造体の製造方法。   The method for producing a single crystal conjugated polymer nanostructure according to claim 1, wherein the step ii) is performed in a sealed apparatus under an Ar atmosphere. 請求項1〜請求項6のいずれか1項に記載の方法によって製造された、単結晶共役高分子ナノ構造体。   A single crystal conjugated polymer nanostructure produced by the method according to any one of claims 1 to 6. 前記単結晶ナノ構造体は、長さが30nm〜200μmであり、厚さが20nm〜1μmである、請求項7に記載の単結晶共役高分子ナノ構造体。   The single crystal conjugated polymer nanostructure according to claim 7, wherein the single crystal nanostructure has a length of 30 nm to 200 μm and a thickness of 20 nm to 1 μm. 請求項7に記載の単結晶共役高分子ナノ構造体を用いた超分子有機電子素子。   A supramolecular organic electronic device using the single crystal conjugated polymer nanostructure according to claim 7.
JP2006225107A 2006-08-22 2006-08-22 Method of manufacturing single-crystal conjugate polymer nanostructure by surface-inducted self-assembly Pending JP2008053265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006225107A JP2008053265A (en) 2006-08-22 2006-08-22 Method of manufacturing single-crystal conjugate polymer nanostructure by surface-inducted self-assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006225107A JP2008053265A (en) 2006-08-22 2006-08-22 Method of manufacturing single-crystal conjugate polymer nanostructure by surface-inducted self-assembly

Publications (1)

Publication Number Publication Date
JP2008053265A true JP2008053265A (en) 2008-03-06

Family

ID=39237069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006225107A Pending JP2008053265A (en) 2006-08-22 2006-08-22 Method of manufacturing single-crystal conjugate polymer nanostructure by surface-inducted self-assembly

Country Status (1)

Country Link
JP (1) JP2008053265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260346A (en) * 2008-04-11 2009-11-05 Xerox Corp Organic thin film transistor
JP2014529728A (en) * 2011-08-02 2014-11-13 アルマ・マテール・ストゥディオルム・ウニベルシータ・ディ・ボローニャAlma Mater Studiorum Universita Di Bologna Intrinsic direct detector of ionizing radiation and method of manufacturing the detector
CN110158152A (en) * 2019-04-23 2019-08-23 苏州大学 A kind of preparation method of organic single-crystal array film
WO2020171131A1 (en) * 2019-02-22 2020-08-27 国立大学法人東京大学 Organic semiconductor device, method for manufacturing organic semiconductor single-crystal film, and method for manufacturing organic semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192499A (en) * 2001-10-10 2003-07-09 Seiko Epson Corp Method of forming thin film and method of forming electronic device
JP2003238286A (en) * 2001-10-10 2003-08-27 Seiko Epson Corp Thin film forming method, solution used in the method and method of fabricating electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192499A (en) * 2001-10-10 2003-07-09 Seiko Epson Corp Method of forming thin film and method of forming electronic device
JP2003238286A (en) * 2001-10-10 2003-08-27 Seiko Epson Corp Thin film forming method, solution used in the method and method of fabricating electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260346A (en) * 2008-04-11 2009-11-05 Xerox Corp Organic thin film transistor
JP2014529728A (en) * 2011-08-02 2014-11-13 アルマ・マテール・ストゥディオルム・ウニベルシータ・ディ・ボローニャAlma Mater Studiorum Universita Di Bologna Intrinsic direct detector of ionizing radiation and method of manufacturing the detector
WO2020171131A1 (en) * 2019-02-22 2020-08-27 国立大学法人東京大学 Organic semiconductor device, method for manufacturing organic semiconductor single-crystal film, and method for manufacturing organic semiconductor device
CN113454800A (en) * 2019-02-22 2021-09-28 国立大学法人东京大学 Organic semiconductor device, method for manufacturing organic semiconductor single crystal film, and method for manufacturing organic semiconductor device
JP7399499B2 (en) 2019-02-22 2023-12-18 国立大学法人 東京大学 Organic semiconductor device, method for manufacturing an organic semiconductor single crystal film, and method for manufacturing an organic semiconductor device
CN110158152A (en) * 2019-04-23 2019-08-23 苏州大学 A kind of preparation method of organic single-crystal array film

Similar Documents

Publication Publication Date Title
Ahmad Organic semiconductors for device applications: current trends and future prospects
Huang et al. Ultralong, Well‐Aligned Single‐Walled Carbon Nanotube Architectureson Surfaces
Zhou et al. High‐performance organic field‐effect transistors from organic single‐crystal microribbons formed by a solution process
Cicoira et al. Organic light‐emitting transistors based on solution‐cast and vacuum‐sublimed films of a rigid core thiophene oligomer
US8951609B2 (en) CNT devices, low-temperature fabrication of CNT and CNT photo-resists
KR101706353B1 (en) Silicon nanowire comprising high density metal nanocluster and process for preparing the same
Li et al. Multi-level aggregation of conjugated small molecules and polymers: from morphology control to physical insights
US20110180140A1 (en) Supramolecular structures comprising at least partially conjugated polymers attached to carbon nanotubes or graphenes
US8962137B2 (en) Branched nanowire and method for fabrication of the same
Fu et al. ZnS nanodot film as defect passivation layer for Cu (In, Ga)(S, Se) 2 thin‐film solar cells deposited by spray‐ILGAR (ion‐layer gas reaction)
Bank-Srour et al. Physical vapor deposition of peptide nanostructures
CN107285298B (en) method for selectively separating single-walled carbon nanotubes with specific diameters and chiralities and application
Jiang et al. Molecular Crystal Lithography: A Facile and Low‐Cost Approach to Fabricate Nanogap Electrodes
JP2008053265A (en) Method of manufacturing single-crystal conjugate polymer nanostructure by surface-inducted self-assembly
He et al. Stability and protection of nanowire devices in air
Tzounis et al. Enhancement of P3HT: PCBM photovoltaic shells efficiency incorporating core-shell Au@ Ag plasmonic nanoparticles
Yu et al. Fabrication of one-dimensional organic nanomaterials and their optoelectronic applications
US20140072704A1 (en) Method of forming composite materials including conjugated materials attached to carbon nanotubes or graphenes
Flavel et al. Patterned polyaniline & carbon nanotube–polyaniline composites on silicon
US20170200895A1 (en) Solution Process for Fabricating High-performance Organic Thin-film Transistors
US20080041300A1 (en) Preparation of single-crystalline polyalkylthiophene structures by surface-induced self-assembly
KR100840499B1 (en) Preparation of single-crystalline conjugated polymer nanostructures by surface-induced self-assembly
KR101823523B1 (en) Graphene quantum-dot thin film, preparing method of the same, and thin film transistor using the same
Lee et al. Large‐Scale Assembly of Peptide‐Based Hierarchical Nanostructures and Their Antiferroelectric Properties
KR101548008B1 (en) Manufacturing method of polymer wrapped semiconducting carbon nanotube, polymer wrapped semiconducting carbon nanotube made by the same, and composition comprising polymer wrapped semiconducting carbon nanotube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911