JP2008052014A - Electrophotographic photoreceptor, image forming apparatus, and process cartridge - Google Patents

Electrophotographic photoreceptor, image forming apparatus, and process cartridge Download PDF

Info

Publication number
JP2008052014A
JP2008052014A JP2006227576A JP2006227576A JP2008052014A JP 2008052014 A JP2008052014 A JP 2008052014A JP 2006227576 A JP2006227576 A JP 2006227576A JP 2006227576 A JP2006227576 A JP 2006227576A JP 2008052014 A JP2008052014 A JP 2008052014A
Authority
JP
Japan
Prior art keywords
group
photosensitive member
substituted
electrophotographic photosensitive
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006227576A
Other languages
Japanese (ja)
Other versions
JP4731426B2 (en
Inventor
Keisuke Shimoyama
啓介 下山
Eiji Kurimoto
鋭司 栗本
Shinichi Kawamura
慎一 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006227576A priority Critical patent/JP4731426B2/en
Priority to US11/736,919 priority patent/US8192905B2/en
Priority to CN2007101008373A priority patent/CN101059663B/en
Priority to EP07106588A priority patent/EP1847882A1/en
Publication of JP2008052014A publication Critical patent/JP2008052014A/en
Application granted granted Critical
Publication of JP4731426B2 publication Critical patent/JP4731426B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive charge type single layer photoreceptor having high sensitivity, excellent in charge stability and free of occurrence of abnormal images such as a residual image even after repeated use. <P>SOLUTION: The electrophotographic photoreceptor which is charged to positive polarity and used is obtained by disposing at least a photosensitive layer on a conductive support, wherein the photosensitive layer is a single layer containing at least a charge generating material, an electron transporting material expressed by general formula (1) and an organic sulfur-containing antioxidant. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、特定の電荷輸送材料と有機硫黄系酸化防止剤の組合せを単一感光層に含み繰返し使用しても残像などの異常画像の生じない正帯電型電子写真感光体、及び該感光体を用いた正帯電型画像形成装置及びプロセスカートリッジに関する。   The present invention relates to a positively charged electrophotographic photosensitive member in which a combination of a specific charge transporting material and an organic sulfur-based antioxidant is contained in a single photosensitive layer and an abnormal image such as an afterimage does not occur even when it is repeatedly used, and The present invention relates to a positively chargeable image forming apparatus and a process cartridge.

近年、電子写真方式を用いた情報処理システム機の発展は目覚ましいものがある。特に情報をデジタル信号に変換して、光によって情報記録を行なう光プリンタは、そのプリント品質、信頼性において向上が著しい。このデジタル記録技術は、プリンタのみならず通常の複写機にも応用され、いわゆるデジタル複写機が開発されている。また、従来からあるアナログ複写にこのデジタル記録技術を搭載した複写機は、種々様々な情報処理機能が付加されるため、今後その需要性が益々高まっていくと予想される。さらに、パーソナルコンピュータの普及、及び性能の向上にともない、画像及びドキュメントのカラー出力を行なうためのデジタルカラープリンタの進歩も急激に進んでいる。   In recent years, there has been a remarkable development of information processing system machines using electrophotography. In particular, an optical printer that converts information into a digital signal and records information by light has a remarkable improvement in print quality and reliability. This digital recording technology is applied not only to printers but also to ordinary copying machines, and so-called digital copying machines have been developed. In addition, since a variety of information processing functions are added to a conventional copying machine equipped with this digital recording technology for analog copying, it is expected that its demand will increase further in the future. In addition, with the spread of personal computers and the improvement in performance, the progress of digital color printers for performing color output of images and documents is rapidly progressing.

これらの画像形成装置に用いられる電子写真感光体は有機感光体と無機感光体に大別されるが、有機感光体は、従来の無機感光体に比べて製造が容易であり、コストが安く、電荷輸送材料、電荷発生材料、結着樹脂等の感光体材料の選択肢が多様で、機能設計の自由度が高いという利点を有することから、近年、広く用いられている。   Electrophotographic photoreceptors used in these image forming apparatuses are roughly classified into organic photoreceptors and inorganic photoreceptors, but organic photoreceptors are easier to manufacture and less expensive than conventional inorganic photoreceptors, In recent years, it has been widely used because it has the advantages of various choices of photoconductor materials such as charge transport materials, charge generation materials, and binder resins, and a high degree of freedom in functional design.

有機感光体には、電荷輸送材料(正孔輸送材料、電子輸送材料)を電荷発生材料とともに同一の感光層中に分散させた単層型感光体と、電荷発生材料を含有する電荷発生層と電荷輸送材料を含有する電荷輸送層とを積層した積層型感光体とがある。
積層感光体では、負帯電型のものがほとんどであり、正帯電型の積層型感光体は実用化には至っていない。その理由は、電子輸送能に優れ、毒性が少なく、バインダー樹脂との相溶性の高い電子輸送材料が実用化されていないためである。
The organic photoreceptor includes a single-layer photoreceptor in which a charge transport material (hole transport material, electron transport material) is dispersed in the same photosensitive layer together with a charge generation material, a charge generation layer containing the charge generation material, There is a laminated type photoreceptor in which a charge transport layer containing a charge transport material is laminated.
Most of the laminated photoreceptors are negatively charged, and the positively charged laminated photoreceptor has not been put into practical use. The reason is that an electron transport material having excellent electron transport ability, low toxicity, and high compatibility with the binder resin has not been put into practical use.

ところが負帯電型では、正帯電型に比べて帯電時に用いるコロナ放電が不安定であり、また、オゾンや窒素酸化物などを発生させるために、これらが感光体表面に吸着して、物理的、化学的劣化を引き起こしやすく、さらに、環境を悪化するという問題がある。このような点から、感光体としては負帯電型感光体よりも使用条件の自由度の大きい正帯電型感光体の方が、その適用範囲が広く有利である。   However, in the negatively charged type, corona discharge used for charging is unstable compared to the positively charged type, and in order to generate ozone, nitrogen oxides, etc., these are adsorbed on the surface of the photoconductor, There is a problem that it is easy to cause chemical deterioration and further deteriorates the environment. From this point of view, the positively charged type photoconductor having a greater degree of freedom of use conditions is more advantageous as the photoconductor than the negatively charged type photoconductor.

このような正帯電型感光体として単層感光体がある。単層感光体は電荷輸送材料として電子輸送材料と正孔輸送材料の両方を含むものが主流であり、このため正負両極性の感度を有する。しかし、電子輸送材料の電子輸送能が低いために正帯電の方が感度が良いことや、上述のような正帯電のメリットをいかすために、ほとんどが正帯電で使用されている。   There is a single layer photoreceptor as such a positively charged photoreceptor. Single-layer photoreceptors mainly include both an electron transport material and a hole transport material as charge transport materials, and therefore have both positive and negative sensitivity. However, since the electron transporting material has a low electron transport capability, the positive charge is more sensitive, and most of the positive charge is used to take advantage of the positive charge as described above.

これまでに提案されている単層感光体としては特許文献1〜5記載のもの等が挙げられるが、これら単層型有機感光体は、機能分離型の積層感光体に比べ、残留電位が高く、静電的繰り返し疲労による帯電電位、露光後電位の変化も大きいという単層特有の問題点を有している。   Examples of single-layer photoconductors proposed so far include those described in Patent Documents 1 to 5, but these single-layer organic photoconductors have a higher residual potential than function-separated multilayer photoconductors. In addition, there is a problem peculiar to a single layer that a change in charging potential and post-exposure potential due to electrostatic repeated fatigue is large.

このような単層型感光体の課題を解決するため、近年、新規電子輸送材料の開発が進められている。特に、特許文献6に開示されているようなテトラカルボン酸誘導体、ナフタレンカルボン酸誘導体は、優れた電子輸送能を有するため、従来の単層型感光体の課題を解決し静電特性を大きく向上させることが可能である。   In order to solve the problem of such a single layer type photoreceptor, development of a new electron transport material has been promoted in recent years. In particular, tetracarboxylic acid derivatives and naphthalenecarboxylic acid derivatives as disclosed in Patent Document 6 have excellent electron transporting ability, thus solving the problems of conventional single-layer photoreceptors and greatly improving electrostatic characteristics. It is possible to make it.

本発明に用いられる一般式(1)で表わされる電子輸送材料は前記特許文献6の範疇であるが、非常に優れた電子輸送能を有し、この電子輸送材料を用いた単層感光体は高感度であり、また繰り返し使用による感度低下なども少ない優れた単層感光体となる。しかしながら、これまでの単層感光体と同様に帯電性が低いという問題がある。また帯電安定性も低く、繰り返し使用により帯電電位が下がり、地汚れやかぶりなどの異常画像を生じやすくなってしまう。   The electron transport material represented by the general formula (1) used in the present invention is in the category of Patent Document 6, but has an excellent electron transport ability, and a single-layer photoreceptor using this electron transport material is An excellent single-layer photoconductor with high sensitivity and less sensitivity reduction due to repeated use. However, there is a problem that the charging property is low as in the conventional single-layer photoconductor. Further, the charging stability is low, and the charging potential is lowered by repeated use, and abnormal images such as background stains and fogging are likely to occur.

また、単層感光体においては残像(メモリー画像)を発生しやすいという問題もある。近年のデジタル型画像形成装置の主流である反転現像方式の場合には、感光体を帯電させ、画像部を露光し感光体表面電位が低い部分を感光体と同極性のトナーで現像し、転写工程で感光体とは逆極性のバイアスを印可しトナーを転写媒体に転写する。このように転写工程においては画像部の表面電位が低い状態で逆極性のバイアスが印可されるため、この部分の表面電位は感光体の主帯電極性とは逆極性に帯電されてしまう。単層感光体の場合は電子輸送材料と正孔輸送材料を含むことで正負両極性の感度を有するため、逆極性に帯電しても光除電によりある程度キャンセルすることはできるが、完全にはキャンセルすることはできずどうしても電位差が残ってしまう。感光体の帯電能力が十分にあれば、次の帯電工程で電位差を打ち消し均一な帯電が可能であるが、帯電能力が低い場合には次の帯電でも電位差を打ち消すことができず次の画像に前の画像の履歴が残ってしまう。単層感光体は帯電性安定性が低いため、特に繰り返し使用により残像が発生しやすい。
一般式(1)で表わされる電子輸送材料を用いた場合、単層型感光体の感度特性は飛躍的に向上するが、これまでの単層感光体と同様に帯電性に課題があり、繰り返し使用により残像が発生しやすいなど、満足な結果が得られていないのが現状である。
In addition, there is a problem that an afterimage (memory image) is easily generated in a single-layer photoconductor. In the case of the reversal development method, which is the mainstream of recent digital type image forming apparatuses, the photosensitive member is charged, the image portion is exposed, and the portion having a low surface potential of the photosensitive member is developed with toner having the same polarity as that of the photosensitive member. In the process, a bias having a polarity opposite to that of the photoconductor is applied to transfer the toner to a transfer medium. Thus, in the transfer process, a reverse polarity bias is applied in a state where the surface potential of the image portion is low, so that the surface potential of this portion is charged to a polarity opposite to the main charging polarity of the photoreceptor. In the case of a single-layer photoconductor, it has both positive and negative sensitivities by including an electron transport material and a hole transport material, so even if it is charged to the opposite polarity, it can be canceled to some extent by photostatic discharge, but it is completely canceled It cannot be done, and a potential difference remains. If the charging ability of the photoconductor is sufficient, the potential difference can be canceled and uniform charging can be performed in the next charging step, but if the charging capacity is low, the potential difference cannot be canceled even in the next charging and the next image is displayed. The history of the previous image remains. Since single-layer photoreceptors have low charge stability, afterimages are particularly likely to occur after repeated use.
When the electron transport material represented by the general formula (1) is used, the sensitivity characteristics of the single-layer type photoreceptor are dramatically improved. The present situation is that satisfactory results are not obtained, such as afterimages tend to occur due to use.

特開平8−328275号JP-A-8-328275 特開平7−64301号JP-A-7-64301 特開平9−281729号JP-A-9-281729 特開平6−130688号JP-A-6-130688 特開平9−151157号JP-A-9-151157 WO 2005/092901WO 2005/092901

本発明は、上記課題に鑑みてなされたものであり、高感度であり且つ帯電安定性に優れ、繰り返し使用しても残像などの異常画像の生じない正帯電型単層感光体を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a positively charged single-layer photoconductor that has high sensitivity, is excellent in charging stability, and does not cause abnormal images such as afterimages even when used repeatedly. With the goal.

上述のように、残像は転写工程において画像部が感光体の主帯電極性(プラス)と逆極性(マイナス)に帯電してしまい、その電位差を次の帯電工程でキャンセルしきれないために起こる。従って残像を防止するためには、感光体が転写工程で生じた電位差をキャンセルできるだけの十分な帯電能力を有していることが必要となる。本発明者らは一般式(1)で表わされる電子輸送材料を用いた単層感光体において、帯電性向上のための各種検討を行なった結果、プラスチック材料及びゴム材料に従来用いられていた酸化防止剤のうち、特定範囲の物質を添加することで帯電性が向上し、繰り返し使用しても残像の発生しないことを見い出し本発明に至った。   As described above, the afterimage occurs because the image portion is charged to the opposite polarity (minus) to the main charging polarity (plus) of the photosensitive member in the transfer process, and the potential difference cannot be canceled in the next charging process. Therefore, in order to prevent the afterimage, it is necessary that the photosensitive member has a sufficient charging capability to cancel the potential difference generated in the transfer process. As a result of various investigations for improving the chargeability in the single-layer photoreceptor using the electron transport material represented by the general formula (1), the present inventors have made an oxidation that has been conventionally used for plastic materials and rubber materials. Among the inhibitors, the addition of a specific range of substances has improved the chargeability, and it has been found that no afterimage is generated even after repeated use.

すなわち、上記課題は、以下に示す本発明の(1)〜(7)によって解決される。
(1)「プラス極性に帯電させて用いる電子写真感光体であって、該電子写真感光体が少なくとも導電性支持体上に感光層を設けて成り、該感光層が少なくとも電荷発生材料と下記一般式(1)で表わされる電子輸送材料と有機硫黄系酸化防止剤を含む単一の層からなることを特徴とする電子写真感光体;
That is, the said subject is solved by (1)-(7) of this invention shown below.
(1) “An electrophotographic photosensitive member used by being charged to a positive polarity, wherein the electrophotographic photosensitive member is provided with at least a photosensitive layer on a conductive support, and the photosensitive layer comprises at least a charge generating material and An electrophotographic photoreceptor comprising a single layer containing an electron transport material represented by formula (1) and an organic sulfur-based antioxidant;

Figure 2008052014
(式中、R1、R2は、それぞれ独立に水素原子、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表わし、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、水酸基、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表わし、nは繰り返し単位であり、0から100までの整数を表わす。)」、
(2)「前記有機硫黄系酸化防止剤が下記一般式(2)で表わされる化合物であることを特徴とする前記第(1)項に記載の電子写真感光体;
Figure 2008052014
Wherein R 1 and R 2 each independently represent a group selected from the group consisting of a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, and R 3 , R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14 are each independently a hydrogen atom, halogen atom, cyano group, nitro group, amino group, hydroxyl group, substituted or unsubstituted alkyl group Represents a group selected from the group consisting of a substituted or unsubstituted cycloalkyl group and a substituted or unsubstituted aralkyl group, and n is a repeating unit and represents an integer of 0 to 100).
(2) “The electrophotographic photoreceptor according to item (1), wherein the organic sulfur-based antioxidant is a compound represented by the following general formula (2);

Figure 2008052014
(式中nは8〜25の整数である。)」、
(3)「前記電荷発生材料がフタロシアニンであることを特徴とする前記第(1)項又は第(2)項に記載の電子写真感光体」、
(4)「前記フタロシアニンがCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さないことを特徴とする前記第(3)項に記載の電子写真感光体」、
(5)「前記第(1)項乃至第(4)項のいずれかに記載の電子写真感光体が搭載されたことを特徴とする画像形成装置」、
(6)「現像方式が反転現像方式であることを特徴とする前記第(5)項に記載の画像形成装置」、
(7)「装置本体に対して着脱可能であり、少なくとも電子写真感光体を有する画像形成装置用プロセスカートリッジであって、該電子写真感光体が前記第(1)項乃至第(4)項の何れかに記載の電子写真感光体であることを特徴とするプロセスカートリッジ」。
Figure 2008052014
(Where n is an integer from 8 to 25) ",
(3) "The electrophotographic photosensitive member according to item (1) or (2), wherein the charge generation material is phthalocyanine",
(4) “The phthalocyanine has a maximum diffraction peak at 27.2 ° as a diffraction peak (± 0.2 °) at a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542 mm) of CuKα. It has major peaks at 4 °, 9.6 ° and 24.0 °, and has a peak at 7.3 ° as the lowest diffraction peak, a peak at 7.3 ° and 9.4 °. The electrophotographic photosensitive member according to item (3), which has no peak between the peaks of
(5) "Image forming apparatus comprising the electrophotographic photosensitive member according to any one of (1) to (4)",
(6) “Image forming apparatus according to item (5), wherein the developing method is a reversal developing method”,
(7) “A process cartridge for an image forming apparatus that is detachable from the apparatus main body and has at least an electrophotographic photosensitive member, wherein the electrophotographic photosensitive member is the item (1) to (4). A process cartridge characterized by being an electrophotographic photosensitive member according to any one of the above.

本発明によれば、高感度であり且つ帯電安定性に優れ繰り返し使用しても残像などの異常画像の生じない正帯電型単層感光体が提供される。また、これを用いることで、高画質な画像形成を長期間にわたり行なうことのできる画像形成装置が提供される。また、取り扱い時の利便性が高いプロセスカートリッジが提供される。   According to the present invention, there is provided a positively charged single-layer photoreceptor that has high sensitivity and excellent charging stability and does not cause abnormal images such as afterimages even when used repeatedly. Also, by using this, an image forming apparatus capable of performing high-quality image formation over a long period of time is provided. In addition, a process cartridge with high convenience in handling is provided.

一般に感光層に酸化防止剤のような添加剤を添加した場合、帯電性は向上しても感度劣化や残留電位上昇などの副作用が生じてしまう。しかし、本発明の前記一般式(1)の電子輸送材料を用いた単層感光体において、有機硫黄系酸化防止剤を添加した場合には感度劣化や残留電位上昇などの副作用はほとんど無く、帯電性を向上させることができる。このため繰り返し使用によっても帯電性低下による異常画像(地汚れ、かぶり)や残像を防ぐことができる。   In general, when an additive such as an antioxidant is added to the photosensitive layer, side effects such as deterioration in sensitivity and increase in residual potential occur even if the charging property is improved. However, in the single-layer photoconductor using the electron transport material of the general formula (1) of the present invention, when an organic sulfur-based antioxidant is added, there are almost no side effects such as sensitivity deterioration and residual potential increase, Can be improved. For this reason, it is possible to prevent abnormal images (background stain, fogging) and afterimages due to a decrease in chargeability even by repeated use.

また有機硫黄系酸化防止剤を使用した場合の特異的な現象として、正帯電の帯電性が向上し、逆に負帯電の帯電性が大幅に劣化する(後述の評価例参照)。この理由は明らかになっていないが、負帯電性が大幅に劣化することで、転写工程において感光体がマイナスに帯電することが防止され、結果的に転写後の電位差が小さくなり、より残像の発生しにくい状況になるものと考えられる。   In addition, as a specific phenomenon when an organic sulfur-based antioxidant is used, the chargeability of positive charge is improved, and conversely, the chargeability of negative charge is greatly deteriorated (see the evaluation example described later). The reason for this is not clear, but the negative chargeability is greatly deteriorated, so that the photosensitive member is prevented from being negatively charged in the transfer process. As a result, the potential difference after transfer is reduced, and the afterimage is further reduced. It is thought that the situation will be difficult to occur.

前記一般式(1)で表わされる電子輸送材料は非常に優れた電子輸送能を有するため、本発明の感光体は、正負両極性において優れた感度を有する。従って画像形成装置が光除電工程を有する場合には、転写工程により生じた電位差を十分に小さくすることができ更に残像が発生しにくくなる。   Since the electron transport material represented by the general formula (1) has a very excellent electron transport ability, the photoreceptor of the present invention has excellent sensitivity in both positive and negative polarities. Therefore, when the image forming apparatus has a light static elimination process, the potential difference generated by the transfer process can be sufficiently reduced, and an afterimage is hardly generated.

また電荷発生材料としてフタロシアニンを用いることで更に感度が良く、残留電位が低く感光体の繰り返し使用による特性の劣化の少ない感光体とすることができる。その中でも特に中心金属としてチタンを有する下記構造式(1)に示すようなチタニルフタロシアニンとすることによって、特に感度が高い感光体とすることができる。   Further, by using phthalocyanine as a charge generation material, it is possible to obtain a photoconductor having further improved sensitivity, low residual potential, and little deterioration in characteristics due to repeated use of the photoconductor. Among them, particularly a titanyl phthalocyanine as shown in the following structural formula (1) having titanium as a central metal can provide a particularly sensitive photoreceptor.

Figure 2008052014
Figure 2008052014

チタニルフタロシアニンには種々の結晶型が知られているが、中でもブラッグ角2θの27.2°に最大回折ピークを有するチタニルフタロシアニンが特に優れた感度特性を示し、特に、特開2001−19871号公報に記載されている27.2°に最大回析ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回析ピークとして7.3°にピークを有し、該7.3゜のピークと9.4゜のピークの間にピークを有さないチタニルフタロシアニンを用いることで、非常に高感度で、繰り返し使用しても特性劣化の少ない安定した電子写真感光体を得ることができる。   Various crystal forms of titanyl phthalocyanine are known. Among them, titanyl phthalocyanine having a maximum diffraction peak at 27.2 ° with a Bragg angle 2θ exhibits particularly excellent sensitivity characteristics, and in particular, Japanese Patent Application Laid-Open No. 2001-19871. The maximum diffraction peak at 27.2 ° and the main peaks at 9.4 °, 9.6 °, 24.0 ° and the lowest diffraction peak By using titanyl phthalocyanine having a peak at 7.3 ° and having no peak between the 7.3 ° peak and the 9.4 ° peak, it is very sensitive and used repeatedly. In addition, it is possible to obtain a stable electrophotographic photosensitive member with little characteristic deterioration.

以下、図面に沿って本発明の電子写真感光体を詳しく説明する。
図7は、本発明の層構成を有する電子写真感光体の一例を模式的に示す断面図であり、導電性支持体(21)の上に感光層(22)が設けられている。
導電性支持体(21)としては、体積抵抗1010Ω・cm以下の導電性を示すもの、例えばアルミニウム、ニッケル、クロム、ニクロム、銅、銀、金、白金、鉄などの金属、酸化スズ、酸化インジウムなどの酸化物を、蒸着又はスパッタリングによりフィルム状又は円筒状のプラスチック、紙などに被覆したもの、或いはアルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板、及びそれらをDrawing Ironing法、Impact Ironing法、Extruded Ironing法、Extruded Drawing法、切削法等の工法により素管化後、切削、超仕上げ、研磨などにより表面処理した管などを使用することができる。
Hereinafter, the electrophotographic photosensitive member of the present invention will be described in detail with reference to the drawings.
FIG. 7 is a cross-sectional view schematically showing an example of an electrophotographic photosensitive member having the layer structure of the present invention, in which a photosensitive layer (22) is provided on a conductive support (21).
Examples of the conductive support (21) include those having a volume resistance of 10 10 Ω · cm or less, such as metals such as aluminum, nickel, chromium, nichrome, copper, silver, gold, platinum, iron, tin oxide, An oxide such as indium oxide coated with film or cylindrical plastic or paper by vapor deposition or sputtering, or a plate of aluminum, aluminum alloy, nickel, stainless steel, etc., and drawing ironing method or impact ironing method It is possible to use pipes that have been surface-treated by cutting, superfinishing, polishing, etc. after being made into raw pipes by methods such as the Extruded Ironing method, Extruded Drawing method, and cutting method.

本発明における感光層は電荷発生材料と前記一般式(1)の電子輸送材料と有機硫黄系酸化防止剤を含む単一の層からなる。
まず本発明における電荷発生材料について説明する。
本発明に用いられる電荷発生材料としては、公知の材料を用いることができる。例えば、金属フタロシアニン、無金属フタロシアニンなどのフタロシアニン系顔料、アズレニウム塩顔料、スクエアリック酸メチン顔料、カルバゾール骨格を有するアゾ顔料、トリフェニルアミン骨格を有するアゾ顔料、ジフェニルアミン骨格を有するアゾ顔料、ジベンゾチオフェン骨格を有するアゾ顔料、フルオレノン骨格を有するアゾ顔料、オキサジアゾール骨格を有するアゾ顔料、ビススチルベン骨格を有するアゾ顔料、ジスチリルオキサジアゾール骨格を有するアゾ顔料、ジスチリルカルバゾール骨格を有するアゾ顔料、ペリレン系顔料、アントラキノン系または多環キノン系顔料、キノンイミン系顔料、ジフェニルメタン及びトリフェニルメタン系顔料、ベンゾキノン及びナフトキノン系顔料、シアニン及びアゾメチン系顔料、インジゴイド系顔料、ビスベンズイミダゾール系顔料などが挙げられる。これらの電荷発生材料は、単独または2種以上の混合物として用いることができる。
The photosensitive layer in the present invention comprises a single layer containing a charge generating material, the electron transport material of the general formula (1) and an organic sulfur-based antioxidant.
First, the charge generation material in the present invention will be described.
As the charge generation material used in the present invention, a known material can be used. For example, phthalocyanine pigments such as metal phthalocyanine and metal-free phthalocyanine, azulenium salt pigments, squaric acid methine pigments, azo pigments having carbazole skeleton, azo pigments having triphenylamine skeleton, azo pigments having diphenylamine skeleton, dibenzothiophene skeleton Azo pigments having fluorenone skeleton, azo pigments having oxadiazole skeleton, azo pigments having bis-stilbene skeleton, azo pigments having distyryl oxadiazole skeleton, azo pigments having distyrylcarbazole skeleton, perylene Pigments, anthraquinone or polycyclic quinone pigments, quinoneimine pigments, diphenylmethane and triphenylmethane pigments, benzoquinone and naphthoquinone pigments, cyanine and azomethine pigments, Jigoido based pigments, and bisbenzimidazole pigments. These charge generation materials can be used alone or as a mixture of two or more.

本発明においてはフタロシアニン系の顔料が本件発明に必要な諸特性の面から特に好ましい。
その中でも特に中心金属としてチタンを有するチタニルフタロシアニンであることによって、特に感度が高い感光層とすることができ、画像形成装置としても高速化をはかることが可能となる。さらに各種の結晶形のうち、ブラッグ角2θの27.2°に最大回折ピークを有するチタニルフタロシアニンが特に優れた感度特性を示し、良好に使用される。特に、特開2001−19871号公報に記載されている27.2°に最大回析ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回析ピークとして7.3°にピークを有し、該7.3゜のピークと9.4゜のピークの間にピークを有さないチタニルフタロシアニンを用いることで、非常に高感度で、繰り返し使用しても特性劣化の生じない安定した電子写真感光体を得ることができる。
In the present invention, phthalocyanine pigments are particularly preferable from the viewpoint of various properties necessary for the present invention.
Among them, in particular, titanyl phthalocyanine having titanium as a central metal makes it possible to obtain a photosensitive layer with particularly high sensitivity, and the image forming apparatus can be speeded up. Further, among various crystal forms, titanyl phthalocyanine having a maximum diffraction peak at 27.2 ° with a Bragg angle 2θ exhibits particularly excellent sensitivity characteristics and is used favorably. In particular, it has a maximum diffraction peak at 27.2 ° described in JP-A-2001-19871, and further has main peaks at 9.4 °, 9.6 °, and 24.0 °, In addition, by using titanyl phthalocyanine having a peak at 7.3 ° as the diffraction peak on the lowest angle side and no peak between the 7.3 ° peak and the 9.4 ° peak, In addition, it is possible to obtain a stable electrophotographic photosensitive member that is highly sensitive and does not deteriorate in characteristics even when used repeatedly.

次に、電荷輸送材料について説明する。
本発明に用いる一般式(1)で表わされる電子輸送材料は、下記に示す構造骨格を有する。
Next, the charge transport material will be described.
The electron transport material represented by the general formula (1) used in the present invention has the following structural skeleton.

Figure 2008052014
(式中、R1、R2は、それぞれ独立に水素原子、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表わし、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、水酸基、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表わし、nは繰り返し単位であり、0から100までの整数を表わす。)
Figure 2008052014
Wherein R 1 and R 2 each independently represent a group selected from the group consisting of a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, and R 3 , R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14 are each independently a hydrogen atom, halogen atom, cyano group, nitro group, amino group, hydroxyl group, substituted or unsubstituted alkyl group Represents a group selected from the group consisting of a substituted or unsubstituted cycloalkyl group and a substituted or unsubstituted aralkyl group, and n is a repeating unit and represents an integer of 0 to 100.)

該置換又は無置換のアルキル基としては、炭素数1〜25、好ましくは炭素数1〜10の炭素原子を有するアルキル基、具体的には、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ペプチル基、n−オクチル基、n−ノニル基、n−デシル基といった直鎖状のもの、i―プロピル基、s−ブチル基、t−ブチル基、メチルプロピル基、ジメチルプロピル基、エチルプロピル基、ジエチルプロピル基、メチルブチル基、ジメチルブチル基、メチルペンチル基、ジメチルペンチル基、メチルヘキシル基、ジメチルヘキシル基等の分岐状のもの、アルコキシアルキル基、モノアルキルアミノアルキル基、ジアルキルアミノアルキル基、ハロゲン置換アルキル基、アルキルカルボニルアルキル基、カルボキシアルキル基、アルカノイルオキシアルキル基、アミノアルキル基、エステル化されていてもよいカルボキシル基で置換されたアルキル基、シアノ基で置換されたアルキル基等が例示できる。なお、これらの置換基の置換位置については特に限定されず、上記置換又は無置換のアルキル基の炭素原子の一部がヘテロ原子(N、O、S等)に置換された基も置換されたアルキル基に含まれる。   The substituted or unsubstituted alkyl group is an alkyl group having 1 to 25 carbon atoms, preferably 1 to 10 carbon atoms, specifically a methyl group, an ethyl group, an n-propyl group, an n- Straight chain such as butyl group, n-pentyl group, n-hexyl group, n-peptyl group, n-octyl group, n-nonyl group, n-decyl group, i-propyl group, s-butyl group, t -Branched group such as butyl group, methylpropyl group, dimethylpropyl group, ethylpropyl group, diethylpropyl group, methylbutyl group, dimethylbutyl group, methylpentyl group, dimethylpentyl group, methylhexyl group, dimethylhexyl group, alkoxy Alkyl group, monoalkylaminoalkyl group, dialkylaminoalkyl group, halogen-substituted alkyl group, alkylcarbonylalkyl group, Kishiarukiru group, alkanoyloxy group, an aminoalkyl group, esterified optionally alkyl group substituted with a carboxyl group which have an alkyl group substituted by a cyano group are exemplified. The substitution position of these substituents is not particularly limited, and a group in which a part of carbon atoms of the substituted or unsubstituted alkyl group is substituted with a hetero atom (N, O, S, etc.) is also substituted. Included in the alkyl group.

該置換又は無置換のシクロアルキル基としては、炭素数3〜25、好ましくは炭素数3〜10の炭素原子を有するシクロアルキル環、具体的には、シクロプロパンからシクロデカンまでの同属環、メチルシクロペンタン、ジメチルシクロペンタン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、テトラメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、t−ブチルシクロヘキサン等のアルキル置換基を有するもの、アルコキシアルキル基、モノアルキルアミノアルキル基、ジアルキルアミノアルキル基、ハロゲン置換アルキル基、アルコキシカルボニルアルキル基、カルボキシアルキル基、アルカノイルオキシアルキル基、アミノアルキル基、ハロゲン原子、アミノ基、エステル化されていてもよいカルボキシル基、シアノ基等で置換されたシクロアルキル基等が例示できる。なお、これらの置換基の置換位置については特に限定されず、上記置換又は無置換のシクロアルキル基の炭素原子の一部がヘテロ原子(N、O、S等)に置換された基も置換されたシクロアルキル基に含まれる。   The substituted or unsubstituted cycloalkyl group includes a cycloalkyl ring having 3 to 25 carbon atoms, preferably 3 to 10 carbon atoms, specifically, a homocyclic ring from cyclopropane to cyclodecane, methylcyclo Those having an alkyl substituent such as pentane, dimethylcyclopentane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, tetramethylcyclohexane, ethylcyclohexane, diethylcyclohexane, t-butylcyclohexane, alkoxyalkyl groups, monoalkylaminoalkyl groups, dialkylamino Alkyl group, halogen-substituted alkyl group, alkoxycarbonylalkyl group, carboxyalkyl group, alkanoyloxyalkyl group, aminoalkyl group, halogen atom, amino group, esterified Which may be a carboxyl group, a cycloalkyl group substituted by a cyano group and the like. The substitution position of these substituents is not particularly limited, and a group in which a part of carbon atoms of the substituted or unsubstituted cycloalkyl group is substituted with a hetero atom (N, O, S, etc.) is also substituted. It is included in the cycloalkyl group.

置換または無置換のアラルキル基としては、上述の置換または無置換のアルキル基に芳香族環が置換した基が挙げられ、炭素数6〜14のアラルキル基が好ましい。より具体的には、ベンジル基、ペルフルオロフェニルエチル基、1−フェニルエチル基、2−フェニルエチル基、ターフェニルエチル基、ジメチルフェニルエチル基、ジエチルフェニルエチル基、t−ブチルフェニルエチル基、3−フェニルプロピル基、4−フェニルブチル基、5−フェニルペンチル基、6−フェニルヘキシル基、ベンズヒドリル基、トリチル基などが例示できる。
該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
Examples of the substituted or unsubstituted aralkyl group include groups in which an aromatic ring is substituted on the above-described substituted or unsubstituted alkyl group, and an aralkyl group having 6 to 14 carbon atoms is preferable. More specifically, benzyl group, perfluorophenylethyl group, 1-phenylethyl group, 2-phenylethyl group, terphenylethyl group, dimethylphenylethyl group, diethylphenylethyl group, t-butylphenylethyl group, 3- Examples thereof include a phenylpropyl group, a 4-phenylbutyl group, a 5-phenylpentyl group, a 6-phenylhexyl group, a benzhydryl group, and a trityl group.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

前記一般式(1)で表わされる電子輸送材料は主に以下の2通りの合成方法によって合成される。   The electron transport material represented by the general formula (1) is synthesized mainly by the following two synthesis methods.

Figure 2008052014
Figure 2008052014

Figure 2008052014
Figure 2008052014

前記一般式(1)で表わされる電子輸送材料を製造するための出発原料の入手方法としては、下記の方法が例示できる。
すなわち、ナフタレンカルボン酸は公知の合成方法(例えば、米国特許6794102号明細書、Industrial Organic Pigments 2nd edition, VCH, 485 (1997)など)に従い、下記反応式より合成される。
Examples of the method for obtaining the starting material for producing the electron transport material represented by the general formula (1) include the following methods.
That is, naphthalenecarboxylic acid is synthesized from the following reaction formula according to a known synthesis method (for example, US Pat. No. 6,794,102, Industrial Organic Pigments 2nd edition, VCH, 485 (1997)).

Figure 2008052014
式中、RnはR3、R4、R7、R8を表わし、RmはR5、R6、R9、R10を表わす。
Figure 2008052014
In the formula, Rn represents R3, R4, R7, R8, and Rm represents R5, R6, R9, R10.

本発明に用いられる一般式(1)で表わされる電子輸送材料は、上記のナフタレンカルボン酸若しくはその無水物をアミン類と反応させ、モノイミド化する方法、ナフタレンカルボン酸若しくはその無水物を緩衝液によりpH調整してジアミン類と反応させる方法等により得られる。モノイミド化は無溶媒、若しくは溶媒存在下で行なう。溶媒としては特に制限はないが、ベンゼン、トルエン、キシレン、クロロナフタレン、酢酸、ピリジン、メチルピリジン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルエチレンウレア、ジメチルスルホキサイド等原料や生成物と反応せず50℃〜250℃の温度で反応させられるものを用いるとよい。pH調整には水酸化リチウム、水酸化カリウム等の塩基性水溶液をリン酸等の酸との混合により作製した緩衝液を用いる。カルボン酸とアミン類やジアミン類とを反応させて得られたカルボン酸誘導体脱水反応は無溶媒、若しくは溶媒存在下で行なう。溶媒としては特に制限は無いが、ベンゼン、トルエン、クロロナフタレン、ブロモナフタレン、無水酢酸等原料や生成物と反応せず50℃〜250℃の温度で反応させられるものを用いるとよい。いずれの反応も、無触媒若しくは触媒存在下で行なってよく、特に限定されないが、例えばモレキュラーシーブスやベンゼンスルホン酸やp−トルエンスルホン酸等を脱水剤として用いることが例示できる。   The electron transport material represented by the general formula (1) used in the present invention is a method of reacting the above naphthalenecarboxylic acid or its anhydride with amines to monoimidize, and using a buffer solution for naphthalenecarboxylic acid or its anhydride. It is obtained by a method of adjusting pH and reacting with diamines. Monoimidization is carried out without solvent or in the presence of a solvent. The solvent is not particularly limited, but it does not react with raw materials or products such as benzene, toluene, xylene, chloronaphthalene, acetic acid, pyridine, methylpyridine, dimethylformamide, dimethylacetamide, dimethylethyleneurea, dimethylsulfoxide, and the like. It is good to use what can be made to react at the temperature of -250 degreeC. For pH adjustment, a buffer solution prepared by mixing a basic aqueous solution such as lithium hydroxide or potassium hydroxide with an acid such as phosphoric acid is used. Carboxylic acid derivative dehydration reaction obtained by reacting carboxylic acid with amines or diamines is carried out without solvent or in the presence of a solvent. Although there is no restriction | limiting in particular as a solvent, It is good to use what reacts at the temperature of 50 to 250 degreeC, without reacting with raw materials and products, such as benzene, toluene, chloronaphthalene, bromonaphthalene, and acetic anhydride. Any reaction may be performed in the absence of a catalyst or in the presence of a catalyst, and is not particularly limited. For example, molecular sieves, benzenesulfonic acid, p-toluenesulfonic acid and the like can be used as a dehydrating agent.

前記一般式(1)で表わされる電子輸送材料の繰り返し単位nは0から100の整数である。繰り返し単位nは、重量平均分子量(Mw)から求められる。すなわち化合物は分子量に分布をもった状態で存在する。nが100をこえると化合物の分子量が大きくなり、各種溶媒に対する溶解性が落ちるため、100以下が好ましい。特にnが0の二量体が溶解性及び感光体特性が優れており好ましい。
一方、例えばnが1の場合はナフタレンカルボン酸の三量体であるが、R1、R2の置換基を適切に選択することにより、オリゴマーでも優れた電子移動特性が得られる。このように繰り返し単位nの数により、オリゴマーからポリマーまで幅広い範囲のナフタレンカルボン酸誘導体が合成される。
オリゴマー領域の分子量が小さい範囲では、段階的に合成することで、単分散の化合物を得ることができる。分子量が大きい化合物の場合は、分子量に分布をもった化合物が得られる。
The repeating unit n of the electron transport material represented by the general formula (1) is an integer of 0 to 100. The repeating unit n is determined from the weight average molecular weight (Mw). That is, the compound exists with a distribution in molecular weight. When n exceeds 100, the molecular weight of the compound increases and the solubility in various solvents decreases, so 100 or less is preferable. In particular, a dimer with n = 0 is preferable because of excellent solubility and photoreceptor characteristics.
On the other hand, for example, when n is 1, it is a trimer of naphthalene carboxylic acid, but excellent electron transfer characteristics can be obtained even for oligomers by appropriately selecting substituents for R1 and R2. In this way, a wide range of naphthalenecarboxylic acid derivatives from oligomers to polymers are synthesized depending on the number of repeating units n.
In the range where the molecular weight of the oligomer region is small, monodispersed compounds can be obtained by stepwise synthesis. In the case of a compound having a large molecular weight, a compound having a distribution in molecular weight is obtained.

以下に、前記一般式(1)で表わされる電子輸送材料の好ましい例を挙げる。但し本発明は、これらの化合物に限定されるものではない。   Below, the preferable example of the electron transport material represented by the said General formula (1) is given. However, the present invention is not limited to these compounds.

Figure 2008052014
Figure 2008052014

Figure 2008052014
Figure 2008052014

なお、上述の構造式(1−1)で表わされる電子輸送材料は、下記の方法により製造した。
<第一工程>
200ml4つ口フラスコに、1,4,5,8―ナフタレンテトラカルボン酸二無水物5.0g(18.6mmol)、DMF50mlを入れ、加熱還流させた。これに、2−アミノヘプタン2.14g(18.6mmol)とDMF25mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/ヘキサンにより再結晶し、モノイミド体A 2.14g(収率31.5%)を得た。
<第二工程>
100ml4つ口フラスコに、モノイミド体A 2.0g(5.47mmol)と、ヒドラジン一水和物0.137g(2.73mmol)、p−トルエンスルホン酸10mg、トルエン50mlを入れ、5時間加熱還流させた。反応終了後、容器を冷却し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/酢酸エチルにより再結晶し、構造式(1−1)で表わされる化合物0.668g(収率33.7%)を得た。質量分析(FD−MS)において、M/z=726のピークが観測されたことにより目的物であると同定した。元素分析は計算値、炭素69.41%、水素5.27%、窒素7.71%に対し、実測値で炭素69.52%、水素5.09%、窒素7.93%あった。
In addition, the electron transport material represented by the above structural formula (1-1) was manufactured by the following method.
<First step>
In a 200 ml four-necked flask, 5.0 g (18.6 mmol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride and 50 ml of DMF were placed and heated to reflux. To this, a mixture of 2.14 g (18.6 mmol) of 2-aminoheptane and 25 ml of DMF was added dropwise with stirring. After completion of dropping, the mixture was heated to reflux for 6 hours. After completion of the reaction, the container was cooled and concentrated under reduced pressure. Toluene was added to the residue, and the residue was purified by silica gel column chromatography. Further, the recovered product was recrystallized from toluene / hexane to obtain 2.14 g of monoimide A (yield 31.5%).
<Second step>
Into a 100 ml four-necked flask, 2.0 g (5.47 mmol) of monoimide A, 0.137 g (2.73 mmol) of hydrazine monohydrate, 10 mg of p-toluenesulfonic acid, and 50 ml of toluene were heated and refluxed for 5 hours. It was. After completion of the reaction, the container was cooled and concentrated under reduced pressure. The residue was purified by silica gel column chromatography. Further, the recovered product was recrystallized from toluene / ethyl acetate to obtain 0.668 g (yield 33.7%) of the compound represented by the structural formula (1-1). In mass spectrometry (FD-MS), a peak of M / z = 726 was observed and identified as a target product. In the elemental analysis, calculated values were 69.41% carbon, 5.27% hydrogen, and 7.71% nitrogen, and the measured values were 69.52% carbon, 5.09% hydrogen, and 7.93% nitrogen.

なお、上述の構造式(1−2)で表わされる電子輸送材料は、下記の方法により製造した。
<第一工程>
200ml4つ口フラスコに、1,4,5,8―ナフタレンテトラカルボン酸二無水物10g(37.3mmol)とヒドラジン一水和物0.931g(18.6mmol)、p−トルエンスルホン酸20mg、トルエン100mlを入れ、5時間加熱還流させた。反応終了後、容器を冷却し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/酢酸エチルにより再結晶し、二量体C 2.84g(収率28.7%)を得た。
<第二工程>
100ml4つ口フラスコに、二量体C 2.5g(4.67mmol)、DMF30mlを入れ、加熱還流させた。これに、2−アミノプロパン0.278g(4.67mmol)とDMF10mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製し、モノイミド体C 0.556g(収率38.5%)を得た。
<第三工程>
50ml4つ口フラスコに、モノイミド体C 0.50g(1.62mmol)、DMF10mlを入れ、加熱還流させた。これに、2−アミノヘプタン0.186g(1.62mmol)とDMF5mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/ヘキサンにより再結晶し、上記構造式(1−2)で表わされる化合物0.243g(収率22.4%)を得た。質量分析(FD−MS)において、M/z=670のピークが観測されたことにより目的物であると同定した。元素分析は計算値、炭素68.05%、水素4.51%、窒素8.35%に対し、実測値で炭素68.29%、水素4.72%、窒素8.33%あった。
In addition, the electron transport material represented by the above structural formula (1-2) was manufactured by the following method.
<First step>
In a 200 ml four-necked flask, 1,4,5,8-naphthalenetetracarboxylic dianhydride 10 g (37.3 mmol), hydrazine monohydrate 0.931 g (18.6 mmol), p-toluenesulfonic acid 20 mg, toluene 100 ml was added and heated to reflux for 5 hours. After completion of the reaction, the container was cooled and concentrated under reduced pressure. The residue was purified by silica gel column chromatography. The recovered product was recrystallized from toluene / ethyl acetate to obtain 2.84 g of dimer C (yield 28.7%).
<Second step>
In a 100 ml four-necked flask, 2.5 g (4.67 mmol) of dimer C and 30 ml of DMF were placed and heated to reflux. To this, a mixture of 2-aminopropane 0.278 g (4.67 mmol) and DMF 10 ml was added dropwise with stirring. After completion of dropping, the mixture was heated to reflux for 6 hours. After completion of the reaction, the reaction vessel was cooled and concentrated under reduced pressure. Toluene was added to the residue and the residue was purified by silica gel column chromatography to obtain 0.556 g of monoimide C (yield 38.5%).
<Third step>
In a 50 ml four-necked flask, 0.50 g (1.62 mmol) of monoimide C and 10 ml of DMF were placed and heated to reflux. To this, a mixture of 2-aminoheptane 0.186 g (1.62 mmol) and DMF 5 ml was added dropwise with stirring. After completion of dropping, the mixture was heated to reflux for 6 hours. After completion of the reaction, the reaction vessel was cooled and concentrated under reduced pressure. Toluene was added to the residue, and the residue was purified by silica gel column chromatography. Furthermore, the recovered product was recrystallized from toluene / hexane to obtain 0.243 g (yield 22.4%) of the compound represented by the structural formula (1-2). In mass spectrometry (FD-MS), the peak was identified as M / z = 670, and the product was identified as the target product. In the elemental analysis, the calculated values were 68.05% carbon, 4.51% hydrogen, and 8.35% nitrogen, and the measured values were 68.29% carbon, 4.72% hydrogen, and 8.33% nitrogen.

なお、上述の構造式(1−3)で表わされる電子輸送材料は、下記の方法により製造した。
<第一工程>
200ml4つ口フラスコに、1,4,5,8−ナフタレンテトラカルボン酸二無水物5.0g(18.6mmol)、DMF50mlを入れ、加熱還流させた。これに、2−アミノプロパン1.10g(18.6mmol)とDMF25mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/ヘキサンにより再結晶し、モノイミド体B 2.08g(収率36.1%)を得た。
<第二工程>
100ml4つ口フラスコに、モノイミド体B 2.0g(6.47mmol)と、ヒドラジン一水和物0.162g(3.23mmol)、p−トルエンスルホン酸10mg、トルエン50mlを入れ、5時間加熱還流させた。反応終了後、容器を冷却し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/酢酸エチルにより再結晶し、上記構造式(1−3)で表わされる化合物0.810g(収率37.4%)を得た。質量分析(FD−MS)において、M/z=614のピークが観測されたことにより目的物であると同定した。元素分析は計算値、炭素66.45%、水素3.61%、窒素9.12%に対し、実測値で炭素66.28%、水素3.45%、窒素9.33%あった。
In addition, the electron transport material represented by the above structural formula (1-3) was manufactured by the following method.
<First step>
In a 200 ml four-necked flask, 5.0 g (18.6 mmol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride and 50 ml of DMF were placed and heated to reflux. To this, a mixture of 1.10 g (18.6 mmol) of 2-aminopropane and 25 ml of DMF was added dropwise with stirring. After completion of dropping, the mixture was heated to reflux for 6 hours. After completion of the reaction, the reaction vessel was cooled and concentrated under reduced pressure. Toluene was added to the residue, and the residue was purified by silica gel column chromatography. Furthermore, the recovered product was recrystallized from toluene / hexane to obtain 2.08 g of monoimide B (yield 36.1%).
<Second step>
In a 100 ml four-necked flask, 2.0 g (6.47 mmol) of monoimide B, 0.162 g (3.23 mmol) of hydrazine monohydrate, 10 mg of p-toluenesulfonic acid, and 50 ml of toluene are heated and refluxed for 5 hours. It was. After completion of the reaction, the container was cooled and concentrated under reduced pressure. The residue was purified by silica gel column chromatography. Further, the recovered product was recrystallized from toluene / ethyl acetate to obtain 0.810 g (yield 37.4%) of the compound represented by the structural formula (1-3). In mass spectrometry (FD-MS), the peak of M / z = 614 was observed and identified as the target product. In the elemental analysis, the calculated values were 66.45% carbon, 3.61% hydrogen, and 9.12% nitrogen, and the measured values were 66.28% carbon, 3.45% hydrogen, and 9.33% nitrogen.

なお、上述の構造式(1−4)で表わされる電子輸送材料は、下記の方法により製造した。
<第一工程>
200ml4つ口フラスコに、上述した二量体C 5.0g(9.39mmol)、DMF50mlを入れ、加熱還流させた。これに、2−アミノヘプタン1.08g(9.39mmol)DMF25mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製し、モノイミド体D 1.66g(収率28.1%)を得た。
<第二工程>
100ml4つ口フラスコに、モノイミド体D 1.5g(2.38mmol)、DMF50mlを入れ、加熱還流させた。これに、2−アミノオクタン0.308g(2.38mmol)とDMF10mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/ヘキサンにより再結晶し、構造式(1−4)で表わされる電子輸送材料0.328g(収率18.6%)を得た。質量分析(FD−MS)において、M/z=740のピークが観測されたことにより目的物であると同定した。元素分析は計算値、炭素69.72%、水素5.44%、窒素7.56%に対し、実測値で炭素69.55%、水素5.26%、窒素7.33%あった。
In addition, the electron transport material represented by the above structural formula (1-4) was manufactured by the following method.
<First step>
In a 200 ml four-necked flask, 5.0 g (9.39 mmol) of the above-mentioned dimer C and 50 ml of DMF were placed and heated to reflux. To this, a mixture of 2-aminoheptane 1.08 g (9.39 mmol) DMF 25 ml was added dropwise with stirring. After completion of dropping, the mixture was heated to reflux for 6 hours. After completion of the reaction, the reaction vessel was cooled and concentrated under reduced pressure. Toluene was added to the residue, and the residue was purified by silica gel column chromatography to obtain 1.66 g (yield 28.1%) of monoimide D.
<Second step>
A 100 ml four-necked flask was charged with 1.5 g (2.38 mmol) of monoimide D and 50 ml of DMF and heated to reflux. To this, a mixture of 2-aminooctane 0.308 g (2.38 mmol) and DMF 10 ml was added dropwise with stirring. After completion of dropping, the mixture was heated to reflux for 6 hours. After completion of the reaction, the reaction vessel was cooled and concentrated under reduced pressure. Toluene was added to the residue, and the residue was purified by silica gel column chromatography. Furthermore, the recovered product was recrystallized from toluene / hexane to obtain 0.328 g (yield 18.6%) of an electron transport material represented by the structural formula (1-4). In mass spectrometry (FD-MS), the peak of M / z = 740 was observed and identified as the target product. In the elemental analysis, the calculated values were 69.72% carbon, 5.44% hydrogen, and 7.56% nitrogen, and the measured values were 69.55% carbon, 5.26% hydrogen, and 7.33% nitrogen.

なお、上述の構造式(1−5)で表わされる電子輸送材料は、下記の方法により製造した。
<第一工程>
200ml4つ口フラスコに、上述した二量体C 5.0g(9.39mmol)、DMF50mlを入れ、加熱還流させた。これに、2−アミノヘプタン1.08g(9.39mmol)DMF25mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製し、モノイミド体D 1.66g(収率28.1%)を得た。
<第二工程>
100ml4つ口フラスコに、モノイミド体D 1.5g(2.38mmol)、DMF50mlを入れ、加熱還流させた。これに、6−アミノウンデカン0.408g(2.38mmol)とDMF10mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/ヘキサンにより再結晶し、上述した構造式(1−5)で表わされる電子輸送材料0.276g(収率14.8%)を得た。質量分析(FD−MS)において、M/z=782のピークが観測されたことにより目的物であると同定した。元素分析は計算値、炭素70.57%、水素5.92%、窒素7.16%に対し、実測値で炭素70.77%、水素6.11%、窒素7.02%あった。
The electron transport material represented by the above structural formula (1-5) was produced by the following method.
<First step>
In a 200 ml four-necked flask, 5.0 g (9.39 mmol) of the above-mentioned dimer C and 50 ml of DMF were placed and heated to reflux. To this, a mixture of 2-aminoheptane 1.08 g (9.39 mmol) DMF 25 ml was added dropwise with stirring. After completion of dropping, the mixture was heated to reflux for 6 hours. After completion of the reaction, the reaction vessel was cooled and concentrated under reduced pressure. Toluene was added to the residue, and the residue was purified by silica gel column chromatography to obtain 1.66 g (yield 28.1%) of monoimide D.
<Second step>
A 100 ml four-necked flask was charged with 1.5 g (2.38 mmol) of monoimide D and 50 ml of DMF and heated to reflux. To this, a mixture of 0.408 g (2.38 mmol) of 6-aminoundecane and 10 ml of DMF was added dropwise with stirring. After completion of dropping, the mixture was heated to reflux for 6 hours. After completion of the reaction, the reaction vessel was cooled and concentrated under reduced pressure. Toluene was added to the residue, and the residue was purified by silica gel column chromatography. Furthermore, the recovered product was recrystallized from toluene / hexane to obtain 0.276 g (yield 14.8%) of the electron transport material represented by the structural formula (1-5) described above. In mass spectrometry (FD-MS), the peak of M / z = 782 was observed and identified as the target product. In the elemental analysis, the measured values were 70.77% carbon, 6.11% hydrogen, and 7.02% nitrogen while the calculated values were 70.57% carbon, 5.92% hydrogen, and 7.16% nitrogen.

なお、上述の構造式(1−13)で表わされる電子輸送材料は、下記の方法により製造した。
<第一工程>
200ml4つ口フラスコに、1,4,5,8−ナフタレンテトラカルボン酸二無水物5.0g(18.6mmol)、DMF50mlを入れ、加熱還流させた。これに、2−アミノペンタン1.62g(18.6mmol)とDMF25mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/ヘキサンにより再結晶し、モノイミド体E 3.49g(収率45.8%)を得た。
<第二工程>
100ml4つ口フラスコに、モノイミド体E 3.0g(7.33mmol)と、1,4,5,8−ナフタレンテトラカルボン酸二無水物0.983g(3.66mmol)、ヒドラジン一水和物0.368g(7.33mmol)、p−トルエンスルホン酸10mg、トルエン50mlを入れ、5時間加熱還流させた。反応終了後、容器を冷却し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーにて2回精製した。更に回収品をトルエン/酢酸エチルにより再結晶し、構造式(1−13)で表わされる電子輸送材料を0.939g(収率13.7%)得た。質量分析(FD−MS)において、M/z=934のピークが観測されたことにより目的物であると同定した。元素分析は計算値、炭素66.81%、水素3.67%、窒素8.99%に対し、実測値で炭素66.92%、水素3.74%、窒素9.05%であった。
In addition, the electron transport material represented by the above structural formula (1-13) was manufactured by the following method.
<First step>
In a 200 ml four-necked flask, 5.0 g (18.6 mmol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride and 50 ml of DMF were placed and heated to reflux. To this, a mixture of 1.62 g (18.6 mmol) of 2-aminopentane and 25 ml of DMF was added dropwise with stirring. After completion of dropping, the mixture was heated to reflux for 6 hours. After completion of the reaction, the container was cooled and concentrated under reduced pressure. Toluene was added to the residue, and the residue was purified by silica gel column chromatography. Further, the recovered product was recrystallized from toluene / hexane to obtain 3.49 g of monoimide E (yield 45.8%).
<Second step>
In a 100 ml four-necked flask, 3.0 g (7.33 mmol) of the monoimide E, 0.983 g (3.66 mmol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride, 0. 368 g (7.33 mmol), p-toluenesulfonic acid 10 mg, and toluene 50 ml were added and heated to reflux for 5 hours. After completion of the reaction, the container was cooled and concentrated under reduced pressure. The residue was purified twice by silica gel column chromatography. Further, the recovered product was recrystallized from toluene / ethyl acetate to obtain 0.939 g (yield 13.7%) of an electron transport material represented by the structural formula (1-13). In mass spectrometry (FD-MS), the peak of M / z = 934 was observed and identified as the target product. In the elemental analysis, the calculated values were 66.92% carbon, 3.67% hydrogen, and 8.99% nitrogen, and the measured values were 66.92% carbon, 3.74% hydrogen, and 9.05% nitrogen.

次に有機硫黄系酸化防止剤について説明する。
本発明に用いられる有機硫黄系酸化防止剤としては硫黄原子を含む酸化防止剤であれば特に限定されるものではなく、従来公知の各種のものを使用することができるが、特に前記一般式(2)で表わされる化合物を用いた場合、残留電位上昇や感度劣化がほとんど起こらないため好ましい。これは一般式(2)で表わされる化合物がエステル基を有することで感光層中に適度に相溶することが原因であると考えられる。また、一般式(2)で表わされる化合物においてはnが8より小さいと昇華しやすく、25より大きいと感光層中での相溶性が悪くなり、析出するようになる。
有機硫黄系酸化防止剤の具体例を表2、表3に示すが、本発明はこれらに限定されるものではない。
Next, the organic sulfur-based antioxidant will be described.
The organic sulfur-based antioxidant used in the present invention is not particularly limited as long as it is an antioxidant containing a sulfur atom, and various conventionally known ones can be used. When the compound represented by 2) is used, it is preferable because a residual potential increase and sensitivity deterioration hardly occur. This is considered to be caused by the fact that the compound represented by the general formula (2) has an ester group and is appropriately compatible in the photosensitive layer. Further, in the compound represented by the general formula (2), when n is smaller than 8, the compound is easily sublimated, and when it is larger than 25, the compatibility in the photosensitive layer is deteriorated and precipitates.
Specific examples of the organic sulfur-based antioxidant are shown in Tables 2 and 3, but the present invention is not limited to these.

Figure 2008052014
Figure 2008052014

Figure 2008052014
Figure 2008052014

本発明においては電荷輸送材料として前述の一般式(1)の電子輸送材料を含むことが必須であるが、これに加えて公知の電荷輸送材料、即ち電子輸送材料、正孔輸送材料を併用することもできる。
電子輸送材料としては、例えばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、2,6,8−トリニトロ−4H−インデノ〔1,2−b〕チオフェン−4−オン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキサイドなどの電子受容性物質が挙げられる。
これらの電子輸送材料は、単独でも2種以上の混合物として用いてもよい。
In the present invention, it is essential to include the electron transport material of the general formula (1) as a charge transport material, but in addition to this, a known charge transport material, that is, an electron transport material and a hole transport material are used in combination. You can also.
Examples of the electron transport material include chloroanil, bromoanil, tetracyanoethylene, tetracyanoquinodimethane, 2,4,7-trinitro-9-fluorenone, 2,4,5,7-tetranitro-9-fluorenone, 2,4 , 5,7-tetranitroxanthone, 2,4,8-trinitrothioxanthone, 2,6,8-trinitro-4H-indeno [1,2-b] thiophen-4-one, 1,3,7-tri Examples thereof include electron accepting substances such as nitrodibenzothiophene-5,5-dioxide.
These electron transport materials may be used alone or as a mixture of two or more.

正孔輸送材料としては、電子供与性物質が好ましく用いられる。
その例としては、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、トリフェニルアミン誘導体、9−(p−ジエチルアミノスチリルアントラセン)、1,1−ビス−(4−ジベンジルアミノフェニル)プロパン、スチリルアントラセン、スチリルピラゾリン、フェニルヒドラゾン類、α−フェニルスチルベン誘導体、チアゾール誘導体、トリアゾール誘導体、フェナジン誘導体、アクリジン誘導体、ベンゾフラン誘導体、ベンズイミダゾール誘導体、チオフェン誘導体などが挙げられる。
これらの正孔輸送材料は、単独でも2種以上の混合物として用いてもよい。
As the hole transport material, an electron donating substance is preferably used.
Examples thereof include oxazole derivatives, oxadiazole derivatives, imidazole derivatives, triphenylamine derivatives, 9- (p-diethylaminostyrylanthracene), 1,1-bis- (4-dibenzylaminophenyl) propane, styrylanthracene, Examples include styrylpyrazolines, phenylhydrazones, α-phenylstilbene derivatives, thiazole derivatives, triazole derivatives, phenazine derivatives, acridine derivatives, benzofuran derivatives, benzimidazole derivatives, and thiophene derivatives.
These hole transport materials may be used alone or as a mixture of two or more.

感光層のバインダー成分として用いることのできる高分子化合物としては、公知のものが使用できる。例えば、ポリスチレン、スチレン/アクリロニトリル共重合体、スチレン/ブタジエン共重合体、スチレン/無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル/酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、アクリル樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキド樹脂などの熱可塑性又は熱硬化性樹脂が挙げられるが、これらに限定されるものではない。
これらの高分子化合物の中でも特にポリカーボネート樹脂が膜質の面から好ましい。
Known polymer compounds can be used as the polymer compound that can be used as the binder component of the photosensitive layer. For example, polystyrene, styrene / acrylonitrile copolymer, styrene / butadiene copolymer, styrene / maleic anhydride copolymer, polyester, polyvinyl chloride, vinyl chloride / vinyl acetate copolymer, polyvinyl acetate, polyvinylidene chloride, Thermoplastic such as polyarylate resin, polycarbonate, cellulose acetate resin, ethyl cellulose resin, polyvinyl butyral, polyvinyl formal, polyvinyl toluene, acrylic resin, silicone resin, fluorine resin, epoxy resin, melamine resin, urethane resin, phenol resin, alkyd resin Although thermosetting resin is mentioned, it is not limited to these.
Among these polymer compounds, polycarbonate resin is particularly preferable from the viewpoint of film quality.

感光層を形成する方法としては、溶液分散系からのキャスティング法が好ましい。キャスティング法によって感光層を設けるには、電荷発生材料、電荷輸送材料、バインダー樹脂、更に必要に応じて他の成分を適当な溶媒に分散、又は溶解させて作製した塗工液を適当な濃度に調節して塗布すればよい。   As a method for forming the photosensitive layer, a casting method from a solution dispersion system is preferable. In order to provide a photosensitive layer by the casting method, a coating solution prepared by dispersing or dissolving a charge generating material, a charge transporting material, a binder resin, and, if necessary, other components in an appropriate solvent is adjusted to an appropriate concentration. Adjust and apply.

電荷発生材料を感光層中(塗工液中)に均一に分散させるために、予め電荷発生材料を、必要ならばバインダー樹脂と共にテトラヒドロフラン、シクロヘキサノン、ジオキサン、ジクロロエタン、ブタノンなどの溶媒を用いてボールミル、アトライター、サンドミルなどにより分散した分散液を作製しておくことが好ましい。
塗布は、浸漬塗工法、スプレーコート法、ビードコート法などにより行なうことができる。
In order to uniformly disperse the charge generation material in the photosensitive layer (in the coating solution), the charge generation material is previously ball milled with a binder resin, if necessary, using a solvent such as tetrahydrofuran, cyclohexanone, dioxane, dichloroethane, butanone, It is preferable to prepare a dispersion liquid dispersed by an attritor, a sand mill or the like.
Application can be performed by dip coating, spray coating, bead coating, or the like.

以上のようにして設けられる感光層塗工液を調製する際に使用できる分散溶媒としては、例えば、メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ジオキサン、テトラヒドロフラン、エチルセロソルブなどのエーテル類、トルエン、キシレンなどの芳香族類、クロロベンゼン、ジクロロメタンなどのハロゲン類、酢酸エチル、酢酸ブチルなどのエステル類等を挙げることができる。これらの溶媒は単独としてまたは混合して用いることができる。   Examples of the dispersion solvent that can be used in preparing the photosensitive layer coating solution provided as described above include ketones such as methyl ethyl ketone, acetone, methyl isobutyl ketone, and cyclohexanone, and ethers such as dioxane, tetrahydrofuran, and ethyl cellosolve. And aromatics such as toluene and xylene, halogens such as chlorobenzene and dichloromethane, and esters such as ethyl acetate and butyl acetate. These solvents can be used alone or in combination.

上記感光層において、電荷発生材料は感光層全体に対して0.1〜30重量%、好ましくは0.5〜10重量%が適当である。電子輸送材料はバインダー樹脂成分100重量部に対して5〜300重量部、好ましくは10〜150重量部が適当である。ただし電子輸送材料全体に対し、一般式(1)で表わされる電子輸送材料が50〜100重量%であることが好ましい。また正孔輸送材料は、バインダー樹脂成分100重量部に対して5〜300重量部、好ましくは20〜150重量部が適当である。電子輸送材料と正孔輸送材料の総量は、バインダー樹脂成分100重量部に対して20〜300重量部、好ましくは30〜200重量部が適当である。
また有機硫黄系酸化防止剤は感光層全体に対して0.05重量%〜5重量%、好ましくは0.1重量%〜1重量%が適当である。
In the photosensitive layer, the charge generating material is 0.1 to 30% by weight, preferably 0.5 to 10% by weight, based on the entire photosensitive layer. The electron transport material is suitably 5 to 300 parts by weight, preferably 10 to 150 parts by weight, based on 100 parts by weight of the binder resin component. However, the electron transport material represented by the general formula (1) is preferably 50 to 100% by weight with respect to the entire electron transport material. The hole transport material is suitably 5 to 300 parts by weight, preferably 20 to 150 parts by weight with respect to 100 parts by weight of the binder resin component. The total amount of the electron transport material and the hole transport material is 20 to 300 parts by weight, preferably 30 to 200 parts by weight, based on 100 parts by weight of the binder resin component.
The organic sulfur-based antioxidant is suitably 0.05% to 5% by weight, preferably 0.1% to 1% by weight, based on the entire photosensitive layer.

また、必要により、感光層中にその他の酸化防止剤、可塑剤、滑剤、紫外線吸収剤などの低分子化合物およびレベリング剤を添加することもできる。これらの化合物は単独または2種以上の混合物として用いることができる。低分子化合物の使用量は、バインダー樹脂100重量部に対して0.1〜50重量部、好ましくは、0.1〜20重量部、レベリング剤の使用量は、バインダー樹脂100重量部に対して0.001〜5重量部程度が適当である。
感光層の膜厚は5〜40μm程度が適当であり、好ましくは15〜35μm程度が適当である。
Further, if necessary, other antioxidants, plasticizers, lubricants, low molecular compounds such as ultraviolet absorbers and leveling agents can be added to the photosensitive layer. These compounds can be used alone or as a mixture of two or more. The amount of the low molecular compound used is 0.1 to 50 parts by weight, preferably 0.1 to 20 parts by weight, based on 100 parts by weight of the binder resin, and the amount of the leveling agent used is 100 parts by weight of the binder resin. About 0.001 to 5 parts by weight is appropriate.
The film thickness of the photosensitive layer is suitably about 5 to 40 μm, preferably about 15 to 35 μm.

本発明に用いられる電子写真感光体には、図8に示すように、導電性支持体(21)と感光層(22)との間に下引き層(23)を設けることもできる。下引き層は、接着性の向上、上層の塗工性の改良、残留電位の低減、導電性支持体からの電荷注入の防止などの目的で設けられる。   As shown in FIG. 8, the electrophotographic photosensitive member used in the present invention may be provided with an undercoat layer (23) between the conductive support (21) and the photosensitive layer (22). The undercoat layer is provided for the purpose of improving adhesion, improving coatability of the upper layer, reducing residual potential, and preventing charge injection from the conductive support.

下引き層は一般に樹脂を主成分とするが、これらの樹脂はその上に溶剤を用いて感光層を塗布することを考慮すると、一般の有機溶剤に対して耐溶解性の高い樹脂であることが望ましく、このような樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウムなどの水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロンなどのアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、アルキッド−メラミン樹脂、エポキシ樹脂など三次元網目構造を形成する硬化型樹脂などが挙げられる。
また、下引き層には、酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウムなどの金属酸化物、或いは金属硫化物、金属窒化物などの微粉末を加えてもよい。これらの下引き層は、前述の感光層と同様、適当な溶媒及び塗工法を用いて形成することができる。
更に下引き層としては、シランカップリング剤、チタンカップリング剤、クロムカップリング剤などを使用して、例えばゾル−ゲル法などにより形成した金属酸化物層も有用である。この他に、アルミナを陽極酸化により設けたもの、ポリパラキシリレン(パリレン)などの有機物、酸化ケイ素、酸化スズ、酸化チタン、ITO、セリアなどの無機物を真空薄膜作製法にて設けたものも下引き層として良好に使用できる。
下引き層の膜厚は0.1〜10μmが適当であり、さらに好ましくは1〜5μmである。
In general, the undercoat layer is mainly composed of a resin. However, considering that the photosensitive layer is applied on the resin using a solvent, the resin is a resin having high resistance to general organic solvents. Examples of such resins include water-soluble resins such as polyvinyl alcohol, casein, and sodium polyacrylate, alcohol-soluble resins such as copolymer nylon and methoxymethylated nylon, polyurethane, melamine resin, alkyd-melamine resin, and epoxy. Examples thereof include a curable resin that forms a three-dimensional network structure such as a resin.
In addition, a fine powder such as a metal oxide such as titanium oxide, silica, alumina, zirconium oxide, tin oxide, or indium oxide, or a metal sulfide or metal nitride may be added to the undercoat layer. These undercoat layers can be formed using an appropriate solvent and coating method, as in the case of the above-described photosensitive layer.
Further, as the undercoat layer, a metal oxide layer formed by using, for example, a sol-gel method using a silane coupling agent, a titanium coupling agent, a chromium coupling agent, or the like is also useful. In addition to this, alumina is provided by anodic oxidation, organic materials such as polyparaxylylene (parylene), and inorganic materials such as silicon oxide, tin oxide, titanium oxide, ITO, ceria are provided by the vacuum thin film manufacturing method. It can be used well as an undercoat layer.
The thickness of the undercoat layer is suitably from 0.1 to 10 μm, more preferably from 1 to 5 μm.

次に本発明の画像形成装置について説明する。
図1は、本発明の画像形成装置を説明するための概略図であり、後述するような変形例も本発明の範疇に属するものである。
図1において感光体(11)は本発明の要件を満たす感光体である。感光体(11)はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。
帯電手段(12)は、コロトロン、スコロトロン、固体帯電器(ソリッド・ステート・チャージャー)、帯電ローラを始めとする公知の手段が用いられる。帯電手段(12)は、消費電力の低減の観点から、感光体に対し接触もしくは近接配置したものが良好に用いられる。中でも、帯電手段(12)への汚染を防止するため、感光体と帯電手段表面の間に適度な空隙を有する感光体近傍に近接配置された帯電機構が望ましい。
転写手段(16)には、一般に上記の帯電器を使用できるが、転写チャージャーと分離チャージャーを併用したものが効果的である。
また、露光手段(13)、除電手段(1A)等に用いられる光源には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの発光物全般を挙げることができる。そして、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。
現像手段(14)により感光体上に現像されたトナー(15)は、受像媒体(18)に転写されるが、全部が転写されるわけではなく、感光体上に残存するトナーも生ずる。このようなトナーは、クリーニング手段(17)により、感光体より除去される。クリーニング手段は、ゴム製のクリーニングブレードやファーブラシ、マグファーブラシ等のブラシ等を用いることができる。
Next, the image forming apparatus of the present invention will be described.
FIG. 1 is a schematic view for explaining an image forming apparatus of the present invention, and modifications as described later also belong to the category of the present invention.
In FIG. 1, a photoreceptor (11) is a photoreceptor that satisfies the requirements of the present invention. Although the photoconductor (11) has a drum shape, it may have a sheet shape or an endless belt shape.
As the charging means (12), known means such as a corotron, a scorotron, a solid state charger (solid state charger), and a charging roller are used. The charging means (12) is preferably used in contact with or in close proximity to the photoreceptor from the viewpoint of reducing power consumption. In particular, in order to prevent contamination of the charging means (12), a charging mechanism disposed in the vicinity of the photoreceptor having an appropriate gap between the photoreceptor and the surface of the charging means is desirable.
As the transfer means (16), the above charger can be generally used, but a combination of a transfer charger and a separation charger is effective.
The light source used for the exposure means (13), the charge removal means (1A), etc. includes fluorescent lamps, tungsten lamps, halogen lamps, mercury lamps, sodium lamps, light emitting diodes (LEDs), semiconductor lasers (LDs), electroluminescence ( EL) in general. Various types of filters such as a sharp cut filter, a band pass filter, a near infrared cut filter, a dichroic filter, an interference filter, and a color temperature conversion filter can be used to irradiate only light in a desired wavelength range.
The toner (15) developed on the photoreceptor by the developing means (14) is transferred to the image receiving medium (18), but not all is transferred, and toner remaining on the photoreceptor is also generated. Such toner is removed from the photoreceptor by the cleaning means (17). As the cleaning means, a rubber cleaning blade, a brush such as a fur brush, a mag fur brush, or the like can be used.

図2には、本発明による電子写真プロセスの別の例を示す。図2において、感光体(11)は、本発明の要件を満たし、エンドレスベルト状のものである。
駆動手段(1C)により駆動され、帯電手段(12)による帯電、露光手段(13)による像露光、現像(図示せず)、転写手段(16)による転写、クリーニング前露光手段(1B)によるクリーニング前露光、クリーニング手段(17)によるクリーニング、除電手段(1A)による除電が繰返し行なわれる。図2においては、感光体(この場合は支持体が透光性である)の支持体側よりクリーニング前露光の光照射が行なわれる。
FIG. 2 shows another example of an electrophotographic process according to the present invention. In FIG. 2, the photoconductor (11) satisfies the requirements of the present invention and has an endless belt shape.
Driven by drive means (1C), charged by charging means (12), image exposure by exposure means (13), development (not shown), transfer by transfer means (16), cleaning by pre-cleaning exposure means (1B). Pre-exposure, cleaning by the cleaning means (17), and static elimination by the static elimination means (1A) are repeated. In FIG. 2, light irradiation for pre-cleaning exposure is performed from the support side of the photoreceptor (in this case, the support is translucent).

以上の電子写真プロセスは、本発明における実施形態を例示するものであって、もちろん他の実施形態も可能である。例えば、図2において支持体側よりクリーニング前露光を行なっているが、これは感光層側から行なってもよいし、また、像露光、除電光の照射を支持体側から行なってもよい。一方、光照射工程は、像露光、クリーニング前露光、除電露光が図示されているが、他に転写前露光、像露光のプレ露光、およびその他公知の光照射工程を設けて、感光体に光照射を行なうこともできる。   The above electrophotographic process exemplifies an embodiment of the present invention, and other embodiments are of course possible. For example, in FIG. 2, the pre-cleaning exposure is performed from the support side, but this may be performed from the photosensitive layer side, or image exposure and neutralization light irradiation may be performed from the support side. On the other hand, the light irradiation process is illustrated as image exposure, pre-cleaning exposure, and static elimination exposure. In addition, a pre-transfer exposure, a pre-exposure of image exposure, and other known light irradiation processes are provided to light the photosensitive member. Irradiation can also be performed.

また、以上に示すような画像形成手段は、複写機、ファクシミリ、プリンタ内に固定して組み込まれていてもよいが、プロセスカートリッジの形でそれら装置内に組み込まれてもよい。プロセスカートリッジとは、感光体を内蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段のうちのいずれか1つ又は2つ以上を含んだ1つの装置(部品)である。プロセスカートリッジの形状等は多く挙げられるが、一般的な例として、図3に示すものが挙げられる。この場合も、感光体(11)は、本発明の要件を満たす感光体である。感光体(11)はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。   Further, the image forming means as described above may be fixedly incorporated in a copying machine, a facsimile, or a printer, but may be incorporated in these apparatuses in the form of a process cartridge. A process cartridge is a single device (part) that contains a photosensitive member and includes any one or more of charging means, exposure means, developing means, transfer means, cleaning means, and discharging means. It is. There are many shapes and the like of the process cartridge, but a general example is shown in FIG. Also in this case, the photoreceptor (11) is a photoreceptor that satisfies the requirements of the present invention. Although the photoconductor (11) has a drum shape, it may have a sheet shape or an endless belt shape.

図4には本発明によるフルカラー画像形成装置の例を示す。この電子写真装置では、感光体(11)の周囲に帯電手段(帯電装置)(12)、露光手段(13)、ブラック(Bk)、シアン(C)、マゼンタ(M)、およびイエロー(Y)の各色トナー毎の現像手段(14Bk,14C,14M,14Y)、中間転写体である中間転写ベルト(1F)、クリーニング手段(17)が順に配置されている。ここで、図中に示すBk、C、M、Yの添字は上記のトナーの色に対応し、必要に応じて添字を付けたり適宜省略する。
感光体(11)は、本発明の要件を満たす電子写真感光体である。各色の現像手段(14Bk,14C,14M,14Y)は各々独立に制御可能となっており、画像形成を行なう色の現像手段のみが駆動される。感光体(11)上に形成されたトナー像は中間転写ベルト(1F)の内側に配置された第1の転写手段(1D)により、中間転写ベルト(1F)上に転写される。第1の転写手段(1D)は感光体(11)に対して接離可能に配置されており、転写動作時のみ中間転写ベルト(1F)を感光体(11)に当接させる。各色の画像形成を順次行ない、中間転写ベルト(1F)上で重ね合わされたトナー像は第2の転写手段(1E)により、受像媒体(18)に一括転写された後、定着手段(19)により定着されて画像が形成される。第2の転写手段(1E)も中間転写ベルト(1F)に対して接離可能に配置され、転写動作時のみ中間転写ベルト(1F)に当接する。
転写ドラム方式の電子写真装置では、転写ドラムに静電吸着させた転写材に各色のトナー像を順次転写するため、厚紙にはプリントできないという転写材の制限があるのに対し、図4に示すような中間転写方式の画像形成装置では中間転写体(1F)上で各色のトナー像を重ね合わせるため、転写材の制限を受けないという特長がある。このような中間転写方式は図4に示す装置に限らず前述の図1、図2、図3および後述する図5(具体例を図6に記す)に記す画像形成装置に適用することができる。
FIG. 4 shows an example of a full-color image forming apparatus according to the present invention. In this electrophotographic apparatus, charging means (charging device) (12), exposure means (13), black (Bk), cyan (C), magenta (M), and yellow (Y) are disposed around the photoreceptor (11). Developing means (14Bk, 14C, 14M, 14Y) for each color toner, an intermediate transfer belt (1F) as an intermediate transfer member, and a cleaning means (17) are arranged in this order. Here, the subscripts Bk, C, M, and Y shown in the figure correspond to the color of the toner, and are added or omitted as appropriate.
The photoreceptor (11) is an electrophotographic photoreceptor that satisfies the requirements of the present invention. Each color developing means (14Bk, 14C, 14M, 14Y) can be controlled independently, and only the color developing means for image formation is driven. The toner image formed on the photoreceptor (11) is transferred onto the intermediate transfer belt (1F) by the first transfer means (1D) disposed inside the intermediate transfer belt (1F). The first transfer means (1D) is arranged so as to be able to come into contact with and separate from the photoreceptor (11), and the intermediate transfer belt (1F) is brought into contact with the photoreceptor (11) only during the transfer operation. The respective color images are sequentially formed, and the toner images superimposed on the intermediate transfer belt (1F) are collectively transferred to the image receiving medium (18) by the second transfer means (1E) and then fixed by the fixing means (19). The image is formed by fixing. The second transfer means (1E) is also arranged so as to be able to contact and separate from the intermediate transfer belt (1F), and abuts on the intermediate transfer belt (1F) only during the transfer operation.
In the transfer drum type electrophotographic apparatus, since the toner images of the respective colors are sequentially transferred onto the transfer material electrostatically attracted to the transfer drum, there is a limitation on the transfer material that cannot be printed on cardboard, as shown in FIG. Such an intermediate transfer type image forming apparatus is characterized in that the toner images of the respective colors are superimposed on the intermediate transfer body (1F), and therefore, there is no restriction on the transfer material. Such an intermediate transfer method is not limited to the apparatus shown in FIG. 4, and can be applied to the image forming apparatus shown in FIGS. 1, 2, 3 and 5 described later (a specific example is shown in FIG. 6). .

図5には本発明によるフルカラー画像形成装置の別の例を示す。この画像形成装置は、トナーとしてイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(Bk)の4色を用いるタイプとされ、各色毎に画像形成部が配設されている。また、各色毎の感光体(11Y,11M,11C,11Bk)が設けられている。この電子写真装置に用いられる感光体は、本発明の要件を満たす感光体である。各感光体(11Y,11M,11C,11Bk)の周りには、帯電手段(12Y,12M,12C,12Bk)、露光手段(13Y,13M,13C,13Bk)、現像手段(14Y,14M,14C,14Bk)、クリーニング手段(17Y,17M,17C,17Bk)等が配設されている。また、直線上に配設された各感光体(11Y,11M,11C,11Bk)の各転写位置に接離する転写材担持体としての搬送転写ベルト(1G)が駆動手段(1C)にて掛け渡されている。この搬送転写ベルト(1G)を挟んで各感光体(11Y,11M,11C,11Bk)に対向する転写位置には転写手段(16Y,16M,16C,16Bk)が配設されている。   FIG. 5 shows another example of a full-color image forming apparatus according to the present invention. This image forming apparatus is of a type using four colors of yellow (Y), magenta (M), cyan (C), and black (Bk) as toner, and an image forming unit is provided for each color. In addition, photoconductors (11Y, 11M, 11C, 11Bk) for each color are provided. The photoreceptor used in this electrophotographic apparatus is a photoreceptor that satisfies the requirements of the present invention. Around each photoconductor (11Y, 11M, 11C, 11Bk), charging means (12Y, 12M, 12C, 12Bk), exposure means (13Y, 13M, 13C, 13Bk), developing means (14Y, 14M, 14C, 14Bk), cleaning means (17Y, 17M, 17C, 17Bk) and the like are provided. Further, a transfer transfer belt (1G) as a transfer material carrier that comes in contact with and separates from each transfer position of each photoconductor (11Y, 11M, 11C, 11Bk) arranged on a straight line is hung by a driving means (1C). Has been passed. Transfer means (16Y, 16M, 16C, 16Bk) are disposed at transfer positions facing the respective photoconductors (11Y, 11M, 11C, 11Bk) with the conveyance transfer belt (1G) interposed therebetween.

以上に示すような画像形成手段は、複写装置、ファクシミリ、プリンタ内に固定して組み込まれていてもよいが、プロセスカートリッジの形でそれら装置内に組み込まれてもよい。プロセスカートリッジとは、感光体を内蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段等を含んだ1つの装置(部品)である。   The image forming means as described above may be fixedly incorporated in a copying apparatus, a facsimile, or a printer, but may be incorporated in these apparatuses in the form of a process cartridge. A process cartridge is a single device (part) that contains a photoconductor and further includes a charging unit, an exposure unit, a developing unit, a transfer unit, a cleaning unit, a neutralizing unit, and the like.

以下、本発明を実施例によって説明する。なお、これによって本発明の範囲は限定されるわけではない。部は全て重量部である。
(感光体作製例1)
無金属フタロシアニンを下記組成の処方、条件で分散を行ない、顔料分散液を調製した。
無金属フタロシアニン顔料(大日本インキ工業社製:Fastogen Blue8120B):3部
シクロヘキサノン:97部
これらを直径9cmのガラスポットに入れ、直径0.5mmのPSZボールを用いて、
回転数100rpmで5時間分散を行ない、顔料分散液とした。
顔料分散液を用いて下記組成の感光体用塗工液を調製した。
顔料分散液:60部
例示化合物No.1−1の電子輸送材料:20部
下記構造の正孔輸送材料(HTM1):30部
Hereinafter, the present invention will be described by way of examples. Note that this does not limit the scope of the present invention. All parts are parts by weight.
(Photosensitive member production example 1)
Metal-free phthalocyanine was dispersed under the following composition and conditions to prepare a pigment dispersion.
Metal-free phthalocyanine pigment (Dainippon Ink Industries, Ltd .: Fastogen Blue8120B): 3 parts Cyclohexanone: 97 parts These were put in a glass pot with a diameter of 9 cm, and PSZ balls with a diameter of 0.5 mm were used.
Dispersion was carried out at a rotational speed of 100 rpm for 5 hours to obtain a pigment dispersion.
A photoreceptor coating solution having the following composition was prepared using the pigment dispersion.
Pigment dispersion: 60 parts Exemplified Compound No. 1-1 electron transport material: 20 parts Hole transport material (HTM1) having the following structure: 30 parts

Figure 2008052014

例示化合物No.2−1の有機硫黄系酸化防止剤:1部
Z型ポリカーボネート樹脂(帝人化成社製:パンライトTS−2050):50部
シリコーンオイル(信越化学工業社製:KF50):0.01部
テトラヒドロフラン:350部
こうして得られた感光層用塗工液を直径30mm、長さ340mmアルミニウムドラム上に、浸漬塗工法により塗布、120℃で20分間乾燥し、25μmの感光層を形成し、感光体を作製した(感光体1とする)。
Figure 2008052014

Exemplified Compound No. 2-1 organic sulfur-based antioxidant: 1 part Z-type polycarbonate resin (manufactured by Teijin Chemicals: Panlite TS-2050): 50 parts Silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd .: KF50): 0.01 parts Tetrahydrofuran: 350 parts The coating solution for photosensitive layer thus obtained was applied on an aluminum drum having a diameter of 30 mm and a length of 340 mm by a dip coating method, dried at 120 ° C. for 20 minutes to form a photosensitive layer of 25 μm, and a photoreceptor was produced. (Referred to as photoreceptor 1).

(感光体作製例2)
感光体作製例1において用いた無金属フタロシアニン顔料(Fastogen Blue8120B)の代わりに、下記に示す合成例に従って作製したチタニルフタロシアニンを用いた以外は、感光体作製例1と同様にして感光体を作製した(感光体2とする)。
(Photosensitive member preparation example 2)
A photoconductor was prepared in the same manner as in Photoconductor Preparation Example 1 except that titanyl phthalocyanine prepared according to the following synthesis example was used instead of the metal-free phthalocyanine pigment (Fastogen Blue8120B) used in Photoconductor Preparation Example 1. (Photoreceptor 2).

(感光体作製例2に用いるチタニルフタロシアニン)
特開2001−19871号公報に準じて、顔料を作製した。すなわち、1,3−ジイミノイソインドリン29.2gとスルホラン200mlを混合し、窒素気流下でチタニウムテトラブトキシド20.4gを滴下する。滴下終了後、徐々に180℃まで昇温し、反応温度を170℃乃至180℃の間に保ちながら5時間撹拌して反応を行なった。反応終了後、放冷した後析出物を濾過し、クロロホルムで粉体が青色になるまで洗浄し、つぎにメタノールで数回洗浄し、更に80℃の熱水で数回洗浄した後乾燥し、粗チタニルフタロシアニンを得た。粗チタニルフタロシアニンを20倍量の濃硫酸に溶解し、100倍量の氷水に撹拌しながら滴下し、析出した結晶を濾過、ついで洗浄液が中性になるまで水洗いを繰り返し(洗浄後のイオン交換水のpH値は6.8であった)、チタニルフタロシアニン顔料のウェットケーキ(水ペースト)を得た。得られたこのウェットケーキ(水ペースト)40gをテトラヒドロフラン200gに投入し、4時間攪拌を行なった後、濾過を行ない、乾燥して、チタニルフタロシアニン粉末を得た。
上記ウェットケーキの固形分濃度は、15wt%であった。結晶変換溶媒のウェットケーキに対する重量比は33倍である。
得られたチタニルフタロシアニン粉末を、下記の条件によりX線回折スペクトル測定したところ、Cu−Kαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さないチタニルフタロシアニン粉末を得られた。
X線回折スペクトル図を図9に示す。
(Titanyl phthalocyanine used in Photoconductor Preparation Example 2)
A pigment was prepared according to Japanese Patent Application Laid-Open No. 2001-19871. That is, 29.2 g of 1,3-diiminoisoindoline and 200 ml of sulfolane are mixed, and 20.4 g of titanium tetrabutoxide is added dropwise under a nitrogen stream. After completion of the dropwise addition, the temperature was gradually raised to 180 ° C., and the reaction was carried out by stirring for 5 hours while maintaining the reaction temperature between 170 ° C. and 180 ° C. After completion of the reaction, the mixture was allowed to cool and then the precipitate was filtered, washed with chloroform until the powder turned blue, then washed several times with methanol, further washed several times with hot water at 80 ° C. and dried, Crude titanyl phthalocyanine was obtained. Dissolve the crude titanyl phthalocyanine in 20 times the amount of concentrated sulfuric acid, add dropwise to 100 times the amount of ice water with stirring, filter the precipitated crystals, and then repeat washing with water until the washing solution becomes neutral (ion-exchanged water after washing). PH value was 6.8), and a titanyl phthalocyanine pigment wet cake (water paste) was obtained. 40 g of the obtained wet cake (water paste) was put into 200 g of tetrahydrofuran, stirred for 4 hours, filtered and dried to obtain titanyl phthalocyanine powder.
The solid content concentration of the wet cake was 15 wt%. The weight ratio of the crystal conversion solvent to the wet cake is 33 times.
The obtained titanyl phthalocyanine powder was subjected to X-ray diffraction spectrum measurement under the following conditions. As a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray of Cu-Kα (wavelength 1.542 mm), at least It has a maximum diffraction peak at 27.2 °, and further main peaks at 9.4 °, 9.6 °, and 24.0 °, and a peak at 7.3 ° as the lowest diffraction peak. And titanyl phthalocyanine powder having no peak between the peak at 7.3 ° and the peak at 9.4 °.
An X-ray diffraction spectrum is shown in FIG.

(X線回折スペクトル測定条件)
X線管球:Cu
電圧:50kV
電流:30mA
走査速度:2°/分
走査範囲:3°乃至40°
時定数:2秒
(X-ray diffraction spectrum measurement conditions)
X-ray tube: Cu
Voltage: 50kV
Current: 30mA
Scanning speed: 2 ° / min Scanning range: 3 ° to 40 °
Time constant: 2 seconds

(感光体作製例3〜13)
感光体作製例2において用いた電子輸送材料及び有機硫黄系酸化防止剤を表4に示すものに変更した以外は感光体作製例2と同様にして感光体を作製した(感光体3〜13とする)。
(Photosensitive member production examples 3 to 13)
Photoconductors were prepared in the same manner as in Photoconductor Preparation Example 2 except that the electron transport materials and organic sulfur-based antioxidants used in Photoconductor Preparation Example 2 were changed to those shown in Table 4 (Photoconductors 3 to 13 and To do).

(感光体作製例14)
感光体作製例2において用いた正孔輸送材料を下記構造の正孔輸送材料(HTM2)に変更した以外は感光体作製例2と同様にして感光体を作製した(感光体14とする)。
(Photoreceptor Preparation Example 14)
A photoconductor was prepared in the same manner as in Photoconductor Preparation Example 2 except that the hole transport material used in Photoconductor Preparation Example 2 was changed to a hole transport material (HTM2) having the following structure.

Figure 2008052014
Figure 2008052014

(感光体作製例15)
感光体作製例2において用いた正孔輸送材料を下記構造の正孔輸送材料(HTM3)に変更した以外は感光体作製例2と同様にして感光体を作製した(感光体15とする)。
(Photoreceptor Preparation Example 15)
A photoconductor was prepared in the same manner as in Photoconductor Preparation Example 2 except that the hole transport material used in Photoconductor Preparation Example 2 was changed to a hole transport material (HTM3) having the following structure.

Figure 2008052014
Figure 2008052014

(感光体作製例16)
感光体作製例2において有機硫黄系酸化防止剤を添加しない以外は感光体作製例2と同様にして感光体を作製した(感光体16とする)。
(Photoreceptor Production Example 16)
A photoconductor was prepared in the same manner as in Photoconductor Preparation Example 2 except that no organic sulfur-based antioxidant was added in Photoconductor Preparation Example 2 (referred to as Photoconductor 16).

(感光体作製例17)
感光体作製例2において用いた有機硫黄系酸化防止剤を下記構造の酸化防止剤(AO1)に変更した以外は感光体作製例2と同様にして感光体を作製した(感光体17とする)。
(Photoreceptor Preparation Example 17)
A photoconductor was prepared in the same manner as in Photoconductor Preparation Example 2 except that the organic sulfur-based antioxidant used in Photoconductor Preparation Example 2 was changed to an antioxidant (AO1) having the following structure (referred to as Photoconductor 17). .

Figure 2008052014
Figure 2008052014

(感光体作製例18)
感光体作製例2において用いた有機硫黄系酸化防止剤を下記構造の酸化防止剤(AO2)に変更した以外は感光体作製例2と同様にして感光体を作製した(感光体18とする)。
(Photoreceptor Preparation Example 18)
A photoconductor was prepared in the same manner as in Photoconductor Preparation Example 2 except that the organic sulfur-based antioxidant used in Photoconductor Preparation Example 2 was changed to an antioxidant (AO2) having the following structure (referred to as Photoconductor 18). .

Figure 2008052014
Figure 2008052014

(感光体作製例19)
感光体作製例2において用いた有機硫黄系酸化防止剤を下記構造の酸化防止剤(AO3)に変更した以外は感光体作製例2と同様にして感光体を作製した(感光体19とする)。
(Photoreceptor Preparation Example 19)
A photoconductor was prepared in the same manner as in Photoconductor Preparation Example 2 except that the organic sulfur-based antioxidant used in Photoconductor Preparation Example 2 was changed to an antioxidant (AO3) having the following structure (referred to as Photoconductor 19). .

Figure 2008052014
Figure 2008052014

(感光体作製例20)
感光体作製例2において用いた電子輸送材料を下記構造の電子輸送材料(ETM1)に変更した以外は感光体作製例2と同様にして感光体を作製した(感光体20とする)。
(Photoreceptor Preparation Example 20)
A photoconductor was prepared in the same manner as in Photoconductor Preparation Example 2 except that the electron transport material used in Photoconductor Preparation Example 2 was changed to an electron transport material (ETM1) having the following structure (referred to as Photoconductor 20).

Figure 2008052014
Figure 2008052014

(感光体作製例21)
感光体作製例2において用いた電子輸送材料を下記構造の電子輸送材料(ETM2)に変更した以外は感光体作製例2と同様にして感光体を作製した(感光体21とする)。
(Photoconductor Preparation Example 21)
A photoconductor was prepared in the same manner as in Photoconductor Preparation Example 2 except that the electron transport material used in Photoconductor Preparation Example 2 was changed to an electron transport material (ETM2) having the following structure (referred to as Photoconductor 21).

Figure 2008052014
Figure 2008052014

(実施例1〜15、比較例1〜6)
作製した感光体1〜21を実装用にした後、画像形成装置(リコー製imgio Neo 270改造機、パワーパックを交換し正帯電となるよう改造した装置)に搭載し、書き込み率5%チャート(A4全面に対して、画像面積として5%相当の文字が平均的に書かれている)を用い通算5万枚印刷する耐刷試験を行なった。
トナーと現像剤はimgio Neo 270専用のものから極性が逆となるトナーと現像剤に交換し使用した。
また、画像形成装置の帯電手段は外部電源を用いて、帯電ローラの印加電圧は試験開始時にそれぞれの感光体の帯電電位が+600Vとなるようなバイアスを設定し、試験終了に至るまでこの帯電条件で試験を行なった。また現像バイアスは+450Vとした。試験環境は23℃、55%RHである。
耐刷試験の前後で残像評価、露光部電位の評価を行なった。
(Examples 1-15, Comparative Examples 1-6)
After the produced photoreceptors 1 to 21 are mounted, they are mounted on an image forming apparatus (Ricoh's imgio Neo 270 remodeling machine, a power pack that has been remodeled so as to be positively charged), and a writing rate 5% chart ( On the entire surface of A4, a printing durability test was performed to print a total of 50,000 sheets using characters equivalent to 5% as an image area).
The toner and developer used were exchanged for toner and developer having polarity reversed from those dedicated to imgio Neo 270.
Also, the charging means of the image forming apparatus uses an external power source, and the bias voltage applied to the charging roller is set so that the charging potential of each photoconductor becomes +600 V at the start of the test. The test was conducted. The developing bias was + 450V. The test environment is 23 ° C. and 55% RH.
Afterimage evaluation and exposure area potential evaluation were performed before and after the printing durability test.

[残像評価]
図10に示すような黒ベタ部とハーフトーン部のある評価用画像を出力し、残像の評価を行なった。評価はランク評価を行なった。評価ランクは以下の通りである。
〈残像ランク〉
◎:残像発生せず
○:かすかに見える
△:残像発生
×:非常に悪い
[Afterimage evaluation]
An evaluation image having a solid black portion and a halftone portion as shown in FIG. 10 was output and the afterimage was evaluated. Evaluation performed rank evaluation. The evaluation rank is as follows.
<Afterimage rank>
◎: Afterimage does not occur ○: Faintly visible △: Afterimage occurs ×: Very bad

[明部電位]
感光体を+600Vに帯電させた後、画像露光(全面露光)を受け、現像部位置まで移動した際の感光体の表面電位。
感光体表面電位は現像部に表面電位計を搭載し、測定した。
結果を表4に示す。
[Bright part potential]
The surface potential of the photosensitive member when the photosensitive member is charged to +600 V, subjected to image exposure (entire exposure), and moved to the developing portion position.
The surface potential of the photosensitive member was measured by mounting a surface potential meter on the developing part.
The results are shown in Table 4.

Figure 2008052014
Figure 2008052014

(感光体評価例)
更に感光体2〜6及び感光体16〜21について耐刷試験前後で感光体の帯電性の評価を行なった。
評価はリコー製imgio Neo 270改造機(現像部に表面電位計を搭載し、また帯電手段に外部電源を用い、帯電極性を自由に変えることができるようになっている)を用い、正帯電性、負帯電性を評価した。
(Photoreceptor evaluation example)
Further, for the photoreceptors 2 to 6 and the photoreceptors 16 to 21, the chargeability of the photoreceptors was evaluated before and after the printing durability test.
Evaluation is made using Ricoh's imgio Neo 270 remodeling machine (a surface potential meter is installed in the development section, and an external power source is used as the charging means, and the charging polarity can be freely changed). The negative chargeability was evaluated.

〈評価方法〉
[正帯電性評価]
初期の感光体16において帯電電位が+500Vになるような帯電条件を設定し、その帯電条件のまま、その他の感光体の帯電電位を測定した。耐刷試験後の評価も同じ帯電条件で行なった。
[負帯電性評価]
初期の感光体16において帯電電位が−500Vになるような帯電条件を設定し、その帯電条件のまま、その他の感光体の帯電電位を測定した。耐刷試験後の評価も同じ帯電条件で行なった。
結果を表5に示す。
<Evaluation methods>
[Positive charge evaluation]
The charging conditions were set so that the charging potential of the initial photosensitive member 16 was +500 V, and the charging potentials of the other photosensitive members were measured with the charging conditions maintained. Evaluation after the printing durability test was performed under the same charging conditions.
[Negative charging evaluation]
Charging conditions were set so that the charging potential of the initial photosensitive member 16 was −500 V, and the charging potentials of the other photosensitive members were measured with the charging conditions maintained. Evaluation after the printing durability test was performed under the same charging conditions.
The results are shown in Table 5.

Figure 2008052014
Figure 2008052014

以上の実施例から明らかなように、本発明の要件を満たす感光体は、繰り返し使用によっても残像が発生せず、更に明部電位の変動も少ない。従って本発明の画像形成装置では長期にわたり残像などの異常画像の発生しない高画質な画像を出力することができる。
また、感光体評価例の結果から、本発明の要件を満たす感光体は繰り返し使用によっても高い正帯電性を維持できていることがわかる。一方、酸化防止剤としてAO3を用いた感光体19でも正帯電性を維持できているが、比較例4の結果から残像が発生している。本発明の感光体の場合には負帯電性が大幅に低下しており、このために転写工程において感光体がマイナスに帯電することが防止され残像が発生していないと考えられる。
As is clear from the above embodiments, the photoreceptor satisfying the requirements of the present invention does not generate afterimages even after repeated use, and further, there is little fluctuation in the bright part potential. Therefore, the image forming apparatus of the present invention can output a high-quality image that does not generate an abnormal image such as an afterimage over a long period of time.
Moreover, it can be seen from the results of the photoreceptor evaluation examples that a photoreceptor satisfying the requirements of the present invention can maintain a high positive charge even after repeated use. On the other hand, the photoconductor 19 using AO 3 as the antioxidant can maintain the positive charge, but the afterimage is generated from the result of Comparative Example 4. In the case of the photoconductor of the present invention, the negative chargeability is greatly reduced. For this reason, it is considered that the photoconductor is prevented from being negatively charged in the transfer step and no afterimage is generated.

本発明に係る画像形成装置の例を示す模式断面図である。1 is a schematic cross-sectional view illustrating an example of an image forming apparatus according to the present invention. 本発明に係る画像形成装置の別の例を示す模式断面図である。It is a schematic cross section which shows another example of the image forming apparatus which concerns on this invention. 本発明に係るプロセスカートリッジの例を示す模式断面図である。It is a schematic cross section showing an example of a process cartridge according to the present invention. 本発明に係る画像形成装置の別の例を示す模式断面図である。It is a schematic cross section which shows another example of the image forming apparatus which concerns on this invention. 本発明に係る画像形成装置の更に別の例を示す模式断面図である。FIG. 6 is a schematic cross-sectional view showing still another example of the image forming apparatus according to the present invention. 本発明に係る画像形成装置の更に別の例を示す模式断面図である。FIG. 6 is a schematic cross-sectional view showing still another example of the image forming apparatus according to the present invention. 本発明に係る電子写真感光体の層構成の例を示す断面図である。It is sectional drawing which shows the example of the layer structure of the electrophotographic photoreceptor which concerns on this invention. 本発明に係る電子写真感光体の別の層構成の例を示す断面図である。It is sectional drawing which shows the example of another layer structure of the electrophotographic photoreceptor which concerns on this invention. 実施例で合成したチタニルフタロシアニンのX線回折スペクトル図である。It is a X-ray-diffraction spectrum figure of the titanyl phthalocyanine synthesize | combined in the Example. 実施例で用いた評価用画像を示す図である。It is a figure which shows the image for evaluation used in the Example.

符号の説明Explanation of symbols

11・・・電子写真感光体
12・・・帯電手段
13・・・露光手段
14・・・現像手段
15・・・トナー
16・・・転写手段
17・・・クリーニング手段
18・・・受像媒体
19・・・定着手段
1A・・・除電手段
1B・・・クリーニング前露光手段
1C・・・駆動手段
1D・・・第1の転写手段
1E・・・第2の転写手段
1F・・・中間転写体
1G・・・搬送転写ベルト
21・・・導電性支持体
22・・・感光層
23・・・下引き層
DESCRIPTION OF SYMBOLS 11 ... Electrophotographic photoreceptor 12 ... Charging means 13 ... Exposure means 14 ... Developing means 15 ... Toner 16 ... Transfer means 17 ... Cleaning means 18 ... Image receiving medium 19 ... Fixing means 1A ... Charging means 1B ... Pre-cleaning exposure means 1C ... Drive means 1D ... First transfer means 1E ... Second transfer means 1F ... Intermediate transfer member 1G ... Conveyance transfer belt 21 ... Conductive support 22 ... Photosensitive layer 23 ... Undercoat layer

Claims (7)

プラス極性に帯電させて用いる電子写真感光体であって、該電子写真感光体が少なくとも導電性支持体上に感光層を設けて成り、該感光層が少なくとも電荷発生材料と下記一般式(1)で表わされる電子輸送材料と有機硫黄系酸化防止剤を含む単一の層からなることを特徴とする電子写真感光体。
Figure 2008052014
(式中、R1、R2は、それぞれ独立に水素原子、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表わし、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、水酸基、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表わし、nは繰り返し単位であり、0から100までの整数を表わす。)
An electrophotographic photosensitive member used by being charged to a positive polarity, wherein the electrophotographic photosensitive member is provided with at least a photosensitive layer on a conductive support, and the photosensitive layer comprises at least a charge generating material and the following general formula (1) An electrophotographic photosensitive member comprising a single layer containing an electron transport material represented by the formula (1) and an organic sulfur-based antioxidant.
Figure 2008052014
Wherein R 1 and R 2 each independently represent a group selected from the group consisting of a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, and R 3 , R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14 are each independently a hydrogen atom, halogen atom, cyano group, nitro group, amino group, hydroxyl group, substituted or unsubstituted alkyl group Represents a group selected from the group consisting of a substituted or unsubstituted cycloalkyl group and a substituted or unsubstituted aralkyl group, and n is a repeating unit and represents an integer of 0 to 100.)
前記有機硫黄系酸化防止剤が下記一般式(2)で表わされる化合物であることを特徴とする請求項1に記載の電子写真感光体。
Figure 2008052014
(式中nは8〜25の整数である。)
2. The electrophotographic photoreceptor according to claim 1, wherein the organic sulfur-based antioxidant is a compound represented by the following general formula (2).
Figure 2008052014
(In the formula, n is an integer of 8 to 25.)
前記電荷発生材料がフタロシアニンであることを特徴とする請求項1又は2に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 1, wherein the charge generation material is phthalocyanine. 前記フタロシアニンがCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さないことを特徴とする請求項3に記載の電子写真感光体。 The phthalocyanine has a maximum diffraction peak at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542 mm) of CuKα, and further 9.4 °, 9 It has major peaks at .6 ° and 24.0 ° and has a peak at 7.3 ° as the lowest angled diffraction peak, between the 7.3 ° peak and the 9.4 ° peak. The electrophotographic photosensitive member according to claim 3, which has no peak. 請求項1乃至4のいずれかに記載の電子写真感光体が搭載されたことを特徴とする画像形成装置。 An image forming apparatus comprising the electrophotographic photosensitive member according to claim 1. 現像方式が反転現像方式であることを特徴とする請求項5に記載の画像形成装置。 6. The image forming apparatus according to claim 5, wherein the developing system is a reversal developing system. 装置本体に対して着脱可能であり、少なくとも電子写真感光体を有する画像形成装置用プロセスカートリッジであって、該電子写真感光体が請求項1乃至4の何れかに記載の電子写真感光体であることを特徴とするプロセスカートリッジ。
A process cartridge for an image forming apparatus, which is detachable from an apparatus main body and has at least an electrophotographic photosensitive member, wherein the electrophotographic photosensitive member is the electrophotographic photosensitive member according to any one of claims 1 to 4. A process cartridge characterized by that.
JP2006227576A 2006-04-20 2006-08-24 Electrophotographic photosensitive member, image forming apparatus, and process cartridge Expired - Fee Related JP4731426B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006227576A JP4731426B2 (en) 2006-08-24 2006-08-24 Electrophotographic photosensitive member, image forming apparatus, and process cartridge
US11/736,919 US8192905B2 (en) 2006-04-20 2007-04-18 Electrophotographic photoconductor, image forming apparatus, and process cartridge
CN2007101008373A CN101059663B (en) 2006-04-20 2007-04-20 Electrophotographic photoconductor, image forming apparatus, and process cartridge
EP07106588A EP1847882A1 (en) 2006-04-20 2007-04-20 Electrophotographic photoconductor, image forming apparatus, and process cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227576A JP4731426B2 (en) 2006-08-24 2006-08-24 Electrophotographic photosensitive member, image forming apparatus, and process cartridge

Publications (2)

Publication Number Publication Date
JP2008052014A true JP2008052014A (en) 2008-03-06
JP4731426B2 JP4731426B2 (en) 2011-07-27

Family

ID=39236132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227576A Expired - Fee Related JP4731426B2 (en) 2006-04-20 2006-08-24 Electrophotographic photosensitive member, image forming apparatus, and process cartridge

Country Status (1)

Country Link
JP (1) JP4731426B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175784A (en) * 2009-01-29 2010-08-12 Kyocera Mita Corp Single-layer electrophotographic photoreceptor, image forming apparatus, and image formation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115941A (en) * 1996-10-14 1998-05-06 Fuji Electric Co Ltd Electrophotographic photoreceptor
JP2001034000A (en) * 1999-07-23 2001-02-09 Fuji Denki Gazo Device Kk Electrophotographic photoreceptor
JP2003107759A (en) * 2001-09-28 2003-04-09 Kyocera Mita Corp Image forming device
WO2005092901A1 (en) * 2004-03-29 2005-10-06 Mitsui Chemicals, Inc. Novel compound and organic electronic device using such compound
JP2006028027A (en) * 2004-07-12 2006-02-02 Mitsui Chemicals Inc Tetracarboxylic acid derivative, electrophotographic photoconductor using the compound and electrohptographic apparatus
JP2006195056A (en) * 2005-01-12 2006-07-27 Ricoh Co Ltd Electrophotographic photoreceptor, and image forming apparatus and process cartridge using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115941A (en) * 1996-10-14 1998-05-06 Fuji Electric Co Ltd Electrophotographic photoreceptor
JP2001034000A (en) * 1999-07-23 2001-02-09 Fuji Denki Gazo Device Kk Electrophotographic photoreceptor
JP2003107759A (en) * 2001-09-28 2003-04-09 Kyocera Mita Corp Image forming device
WO2005092901A1 (en) * 2004-03-29 2005-10-06 Mitsui Chemicals, Inc. Novel compound and organic electronic device using such compound
JP2006028027A (en) * 2004-07-12 2006-02-02 Mitsui Chemicals Inc Tetracarboxylic acid derivative, electrophotographic photoconductor using the compound and electrohptographic apparatus
JP2006195056A (en) * 2005-01-12 2006-07-27 Ricoh Co Ltd Electrophotographic photoreceptor, and image forming apparatus and process cartridge using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175784A (en) * 2009-01-29 2010-08-12 Kyocera Mita Corp Single-layer electrophotographic photoreceptor, image forming apparatus, and image formation method

Also Published As

Publication number Publication date
JP4731426B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4825167B2 (en) Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP5010243B2 (en) Electrophotographic photosensitive member, image forming apparatus, and process cartridge
US8192905B2 (en) Electrophotographic photoconductor, image forming apparatus, and process cartridge
JP4668121B2 (en) Image forming apparatus
JP4722758B2 (en) Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP2008224785A (en) Image forming apparatus and process cartridge
JP4719616B2 (en) Image forming apparatus and process cartridge
JP4739101B2 (en) Electrophotographic equipment
JP4814714B2 (en) Image forming apparatus
JP4731426B2 (en) Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP4705518B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP4567615B2 (en) Electrophotographic equipment
JP4607034B2 (en) Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP4621151B2 (en) Image forming apparatus
JP5022099B2 (en) Image forming apparatus and process cartridge for image forming apparatus
JP4562092B2 (en) Electrophotographic equipment
JP4567614B2 (en) Electrophotographic equipment
JP4879631B2 (en) Image forming apparatus and process cartridge
JP4641991B2 (en) Image forming apparatus
JP4739100B2 (en) Electrophotographic equipment
JP4726716B2 (en) Process cartridge and image forming apparatus
JP4741382B2 (en) Electrophotographic apparatus and process cartridge
JP4741392B2 (en) Image forming apparatus and process cartridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees