JP2008051274A - Wheel bearing device - Google Patents

Wheel bearing device Download PDF

Info

Publication number
JP2008051274A
JP2008051274A JP2006229741A JP2006229741A JP2008051274A JP 2008051274 A JP2008051274 A JP 2008051274A JP 2006229741 A JP2006229741 A JP 2006229741A JP 2006229741 A JP2006229741 A JP 2006229741A JP 2008051274 A JP2008051274 A JP 2008051274A
Authority
JP
Japan
Prior art keywords
cage
pocket
bearing device
wheel bearing
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006229741A
Other languages
Japanese (ja)
Inventor
Zenichi Fukumura
善一 福村
Hiroshi Fujimura
啓 藤村
Kohei Yoshino
康平 芳野
Takayuki Norimatsu
孝幸 乗松
Shinji Morita
慎治 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006229741A priority Critical patent/JP2008051274A/en
Publication of JP2008051274A publication Critical patent/JP2008051274A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/49Bearings with both balls and rollers
    • F16C19/492Bearings with both balls and rollers with two or more rows with angular contact
    • F16C19/495Bearings with both balls and rollers with two or more rows with angular contact with two rows
    • F16C19/497Bearings with both balls and rollers with two or more rows with angular contact with two rows in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • F16C33/4676Details of individual pockets, e.g. shape or roller retaining means of the stays separating adjacent cage pockets, e.g. guide means for the bearing-surface of the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • F16C2240/82Degree of filling, i.e. sum of diameters of rolling elements in relation to PCD
    • F16C2240/84Degree of filling, i.e. sum of diameters of rolling elements in relation to PCD with full complement of balls or rollers, i.e. sum of clearances less than diameter of one rolling element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wheel bearing device obtaining lower torque without lowering rigidity of a bearing. <P>SOLUTION: The wheel bearing device comprises: a hub 22 having a hub flange 26 mounted with a wheel; an inner ring 32 having an inner race 34 fitted to the hub 22; a double-row outer ring 38 having a flange 40 to be fixed to a vehicle body 52 and double row outer races 44 formed on the inner peripheral face; tapered rollers 46 rollingly laid between the inner race 34 and each outer race 44; and a cage 48 for holding tapered rollers 46 in rows at predetermined circumferential spaces. The cage 48 consists of: a small annular portion ranging over the tapered rollers 46 at their small end face sides; a large annular portion ranging over the tapered rollers 46 at their large end face sides; and a plurality of columnar portions connecting the large annular portion to the small annular portion. Cutouts are provided in the columnar portions on the narrow sides of pockets formed between the adjacent columnar portions storing the tapered rollers 46 at their small diameter sides. The rollers each abut on the right and left sides of the pocket columnar face of the cage 48 in a range of 10% or more of the pocket length from the axially central position of the pocket. A roller coefficient is over 0.94. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は車輪用軸受装置に関する。   The present invention relates to a wheel bearing device.

車輪用軸受装置では,モーメント荷重が作用することから,転がり軸受を2個1組で使用する場合が多く,ハブとユニット化したいわゆるハブ・ベアリングでは,円すいころ軸受や複列アンギュラ玉軸受などの複列転がり軸受が使用されている。   In wheel bearing devices, a moment load is applied, so rolling bearings are often used in pairs. So-called hub bearings that are united with hubs include tapered roller bearings and double-row angular ball bearings. Double row rolling bearings are used.

円すいころ軸受は,外径面の軌道面の両側に小つばと大つばが設けられた内輪と,内径面に軌道面が設けられた外輪と,内輪と外輪の軌道面間に配列された複数の円すいころと,これらの円すいころをポケットに収納して保持する保持器とからなり,保持器には,円すいころの小径端面側で連なる小環状部と,円すいころの大径端面側で連なる大環状部と,これらの環状部を連結する複数の柱部とからなり,ポケットが,円すいころの小径側を収納する部分が狭幅側,大径側を収納する部分が広幅側となる台形状に形成されたものが用いられている。   Tapered roller bearings consist of an inner ring with a small brim and a large brim on both sides of the raceway surface of the outer diameter surface, an outer ring with a raceway surface on the inner diameter surface, and multiple inner rings arranged between the raceway surfaces of the inner ring and the outer ring. And a retainer that holds and stores these tapered rollers in a pocket. The retainer is connected to a small annular portion that is continuous on the small diameter end surface side of the tapered roller, and is connected to the large diameter end surface side of the tapered roller. A base that consists of a large annular part and a plurality of pillars that connect these annular parts, and the pocket is the narrow side where the small diameter side of the tapered roller is stored, and the wide side is the part that stores the large diameter side What was formed in the shape is used.

円すいころ軸受を有する車輪用軸受装置では,円すいころの小径側からグリースが軸受内部に流入する一方,保持器外径側と内径側からもグリースが軸受内部に流入する。保持器外径側から流入するグリースは外輪となる外方部材の軌道面(アウタレース)に沿って円すいころの大径側へ通過する。保持器内径側から流入するグリースは内輪の軌道面(インナレース)に沿って円すいころの大径側へ通過する。   In a wheel bearing device having a tapered roller bearing, grease flows into the bearing from the small diameter side of the tapered roller, while grease also flows into the bearing from the outer diameter side and inner diameter side of the cage. Grease flowing in from the outer diameter side of the cage passes along the raceway surface (outer race) of the outer member serving as the outer ring to the larger diameter side of the tapered roller. The grease flowing in from the inner diameter side of the cage passes along the raceway surface (inner race) of the inner ring to the larger diameter side of the tapered roller.

このようにグリースなどの潤滑油が外部から流入する部位に使用される円すいころ軸受には,保持器のポケットに切欠きを設けて,保持器の外径側と内径側とに分かれて流入する潤滑油がこの切欠きを通過するようにし,軸受内部での潤滑油の流通を向上させるようにしたものがある(特許文献1,2参照)。特許文献1に記載されたものでは,図22(A)に示すように,保持器5のポケット9間の柱部8の中央部に切欠き10dを設け,潤滑油に混入する異物が軸受内部に滞留しないようにしている。また,特許文献2に記載されたものでは,図22(B)に示すように,保持器5のポケット9の軸方向両端の小環状部6と大環状部7に切欠き10eを設け,保持器の外径側から流入する潤滑油が内輪側へ流れやすくなるようにしている。なお,各図中に記入したポケット9の各寸法は,後述するトルク測定試験における比較例に用いたものの値である。
特開平09−32858号公報(第3図) 特開平11−201149号公報(第2図) 特開平09−096352号公報 特開平11−0210765公報 特開2003−343552号公報 特開2003−28165号公報
Tapered roller bearings that are used in areas where lubricating oil such as grease flows in from the outside are provided with notches in the cage pockets, and flow is divided into the outer diameter side and the inner diameter side of the cage. There is one in which the lubricating oil passes through the notches to improve the flow of the lubricating oil inside the bearing (see Patent Documents 1 and 2). 22A, a notch 10d is provided in the center portion of the column portion 8 between the pockets 9 of the cage 5, and foreign matter mixed into the lubricating oil is generated inside the bearing as shown in FIG. So that it does not stay. Moreover, in what was described in patent document 2, as shown in FIG. 22 (B), notches 10e are provided in the small annular portion 6 and the large annular portion 7 at both ends in the axial direction of the pocket 9 of the retainer 5 to hold it. The lubricating oil flowing in from the outer diameter side of the vessel is made easier to flow to the inner ring side. In addition, each dimension of the pocket 9 entered in each figure is a value used for a comparative example in a torque measurement test described later.
JP 09-32858 A (FIG. 3) JP-A-11-2011149 (FIG. 2) JP 09-096352 A Japanese Patent Laid-Open No. 11-0210765 JP 2003-343552 A JP 2003-28165 A

上述したように潤滑油が保持器の外径側と内径側とに分かれて軸受内部へ流入する円すいころ軸受では,保持器の内径側から内輪側へ流入する潤滑油の割合が多くなると,トルク損失が大きくなることが分かった。この理由は,以下のように考えられる。すなわち,保持器の外径側から外輪側へ流入する潤滑油は,外輪の内径面には障害物がないので,その軌道面に沿って円すいころの大径側へスムーズに通過して軸受内部から流出するが,保持器の内径側から内輪側へ流入する潤滑油は,内輪の外径面には大つばがあるので,その軌道面に沿って円すいころの大径側へ通過したときに大つばで堰き止められ,軸受内部に滞留しやすくなる。このため,保持器の内径側から内輪側へ流入する潤滑油の割合が多くなると,軸受内部に滞留する潤滑油の量が多くなり,この滞留する潤滑油が軸受回転に対する流動抵抗となってトルク損失が増大するものと考えられる。   As described above, in a tapered roller bearing in which the lubricating oil is divided into the outer diameter side and inner diameter side of the cage and flows into the bearing, torque increases as the proportion of lubricating oil flowing from the inner diameter side of the cage into the inner ring increases. It turns out that the loss increases. The reason is considered as follows. That is, the lubricating oil flowing from the outer diameter side of the cage to the outer ring side passes smoothly along the raceway surface to the large diameter side of the tapered roller because there is no obstacle on the inner diameter surface of the outer ring. The lubricating oil flowing from the inner diameter side of the cage to the inner ring side has a large brim on the outer diameter surface of the inner ring, so when it passes along the raceway surface to the larger diameter side of the tapered roller It is blocked by a large brim and tends to stay inside the bearing. For this reason, when the ratio of the lubricating oil flowing from the inner diameter side to the inner ring side of the cage increases, the amount of the lubricating oil staying in the bearing increases, and this staying lubricating oil becomes a flow resistance against the bearing rotation and becomes a torque. Loss is considered to increase.

したがって,軸受内部に潤滑油が流入する円すいころ軸受における潤滑油の流動抵抗によるトルク損失を低減させる必要がある。以上が低トルク化のために油の流動抵抗を減少させる方法であるが,大幅な低トルク化を行うためには,ころがり粘性抵抗が低下するように軸受諸元を変更することが必要である。しかしながら,従来の低トルク化手法(特許文献3〜5参照)では,定格荷重を低下させない低トルク化は可能であるが,軸受剛性はいくらか低下する。   Therefore, it is necessary to reduce torque loss due to the flow resistance of the lubricating oil in the tapered roller bearing in which the lubricating oil flows into the bearing. The above is the method of reducing the oil flow resistance to reduce the torque, but in order to significantly reduce the torque, it is necessary to change the bearing specifications so that the rolling viscous resistance decreases. . However, with the conventional torque reduction technique (see Patent Documents 3 to 5), it is possible to reduce the torque without reducing the rated load, but the bearing rigidity is somewhat reduced.

特許文献6に記載の円すいころ軸受61(図23)では,保持器と外輪とが接触しないタイプに比べてころの充填率を高め,軌道面最大面圧を低減させることが可能である。しかし,保持器と軌道面中央部を非接触とするため,その部分の板厚が薄くなるというデメリットがある。すなわち,保持器62の柱部62cに凹所64があるので板厚が必然的に薄くなって保持器62の剛性が低下し,軸受61の組立て時の応力によって保持器62が変形したり,軸受61の回転中に保持器62が変形する等の可能性もある。保持器62の剛性を高めようとすると保持器62の径寸法が大きくなるため,外輪接触部での摺接によるトルク増大,いわゆる引きずりトルクを引き起こす可能性がある。   In the tapered roller bearing 61 (FIG. 23) described in Patent Document 6, it is possible to increase the roller filling rate and reduce the maximum raceway surface pressure as compared with the type in which the cage and the outer ring do not contact. However, since the cage and the central part of the raceway surface are not in contact with each other, there is a demerit that the thickness of that part becomes thin. In other words, since the recess 64 is provided in the column portion 62c of the cage 62, the plate thickness is inevitably reduced, the rigidity of the cage 62 is reduced, and the cage 62 is deformed by the stress during the assembly of the bearing 61. There is also a possibility that the cage 62 is deformed while the bearing 61 is rotating. If the rigidity of the retainer 62 is increased, the diameter of the retainer 62 is increased, which may cause an increase in torque due to sliding contact at the outer ring contact portion, so-called drag torque.

一方,特許文献6記載の円すいころ軸受以外の従来の典型的な保持器付き円すいころ軸受は,図24のように外輪71と保持器72との接触を避けた上で,保持器72の柱幅を確保し,適切な保持器72の柱強度と円滑な回転を得るために,次式で定義されるころ係数(ころの充填率)γを,通常,0.94以下にする必要がある(特許文献4参照)。
ころ係数γ=(Z・DA)/(π・PCD)
ここで,Z:ころ本数,DA:ころ平均径,PCD:ころピッチ円径。なお,図24で符号73は円すいころ,74は柱面,75は内輪,θは窓角を示す。
On the other hand, a conventional typical tapered roller bearing with a cage other than the tapered roller bearing described in Patent Document 6 avoids contact between the outer ring 71 and the cage 72 as shown in FIG. In order to secure the width and to obtain the appropriate column strength and smooth rotation of the cage 72, the roller coefficient (roller filling rate) γ defined by the following formula usually needs to be 0.94 or less. (See Patent Document 4).
Roller coefficient γ = (Z · DA) / (π · PCD)
Here, Z: number of rollers, DA: average roller diameter, PCD: roller pitch circle diameter. In FIG. 24, reference numeral 73 denotes a tapered roller, 74 denotes a column surface, 75 denotes an inner ring, and θ denotes a window angle.

保持器72のポケット寸法をそのままにして単純にころ充填率を高めようとすると,保持器72の柱72aが細くなり,充分な柱強度を確保することができない。一方,柱強度を確保するため,保持器と外輪との間のすきまが小さくなる方向に保持器径を変更(径寸法を大きく)すると,特許文献6に紹介されているように,保持器の外輪接触部での摩耗を促進し,引きずりトルクの増大を引き起こすおそれがある。   If an attempt is made to simply increase the roller filling rate with the pocket size of the cage 72 as it is, the column 72a of the cage 72 becomes thin, and sufficient column strength cannot be ensured. On the other hand, in order to ensure the column strength, if the cage diameter is changed (increase the diameter) in the direction in which the clearance between the cage and the outer ring is reduced, as introduced in Patent Document 6, Wear at the outer ring contact area is accelerated, and drag torque may increase.

この発明の目的は,車輪用軸受装置において,軸受剛性を低下させることなく,低トルク化を実現することにある。   An object of the present invention is to realize a reduction in torque in a wheel bearing device without reducing bearing rigidity.

この発明の車輪用軸受装置は,内周に2列のアウタレースを有する外方部材と,外周に2列のインナレースを有する内方部材と,アウタレースとインナレースとの間に転動自在に介在させた円すいころと,各列の円すいころを円周方向で所定間隔に保持する保持器とを備え,前記外方部材が,車体に固定するためのフランジ部を有し内周面に2列のアウタレースを形成した複列外輪であり,前記内方部材が,車輪を固定するためのフランジをもったハブと,ハブに嵌合させた内輪とで構成され,前記保持器が,円すいころの小端面側で連なる小環状部と,円すいころの大端面側で連なる大環状部と,大環状部と小環状部を連結する複数の柱部とからなり,隣接する柱部間に形成されるポケットの,円すいころの小径側を収納する狭幅側の柱部に切欠きが設けてあり,保持器のポケット柱面のころの当たり幅が左右共にポケット軸方向中央位置に対しポケット長さの10%以上確保され,ころ係数が0.94を越えていることを特徴とするものである。   The wheel bearing device according to the present invention includes an outer member having two rows of outer races on the inner periphery, an inner member having two rows of outer races on the outer periphery, and an outer race and an inner race so as to roll freely. A tapered roller and a retainer for holding each row of tapered rollers at a predetermined interval in the circumferential direction, and the outer member has a flange portion for fixing to the vehicle body and has two rows on the inner circumferential surface. The outer member is formed of a hub having a flange for fixing the wheel and an inner ring fitted to the hub, and the retainer is a tapered roller. It is composed of a small annular part that is continuous on the small end face side, a large annular part that is continuous on the large end face side of the tapered roller, and a plurality of pillars that connect the large annular part and the small annular part. Narrow side column that houses the small diameter side of the tapered roller in the pocket A notch is provided, the roller contact width of the pocket pillar surface of the cage is secured at least 10% of the pocket length with respect to the center position in the pocket axial direction on both the left and right sides, and the roller coefficient exceeds 0.94. It is a feature.

ポケット柱面のころの当たり幅を,左右共にポケット軸方向中央位置に対しポケット長さの10%以上確保して,ころから保持器に作用する荷重が局部的に集中したり,偏って負荷されたりすることによって,異常な摩耗が発生したり,応力集中による破損が発生したりしないようにしてある。これらにより,ころ係数γをγ>0.94とすることが可能となった。   The contact width of the roller on the pocket column surface is 10% or more of the pocket length with respect to the central position in the pocket axial direction on both the left and right sides, and the load acting on the cage from the rollers is concentrated locally or unevenly applied. As a result, abnormal wear or damage due to stress concentration does not occur. As a result, the roller coefficient γ can be set to γ> 0.94.

ころ係数γ(ころの充填率)は(ころ本数×ころ平均径)/(π×PCD)で表されるパラメータであって,ころ平均径が一定とした場合,ころ係数γの値が大きいほどころ本数が多いことを意味する。従来の典型的な保持器付き円すいころ軸受では,ころ係数γを,通常0.94以下にして設計しているので,ころ係数γが0.94を越えるということは,従来と比較して,ころ充填率ひいては軸受剛性が高いことを意味する。   The roller coefficient γ (roller filling ratio) is a parameter expressed by (number of rollers × roller average diameter) / (π × PCD). When the roller average diameter is constant, the larger the roller coefficient γ, It means that there are many rollers. In conventional typical tapered roller bearings with cages, the roller coefficient γ is normally designed to be 0.94 or less, so that the roller coefficient γ exceeds 0.94, This means that the roller filling rate and thus the bearing rigidity is high.

ところで,図25は円すいころ軸受においてころピッチ円径(PCD)を変化させたときの剛性比(−●−)およびトルク比(−○−)を表したものである。図25に示すように,PCDを小さくすると軸受のトルクは大幅に低下するが,軸受剛性はあまり低下しないことが,ころの弾性変形量を計算確認した結果として得られた。そこで,ころ本数を減らさないか増加させつつPCDを小さくすれば,剛性を低下させずにトルクを低減させることができる。   FIG. 25 shows the rigidity ratio (− ● −) and torque ratio (− ◯ −) when the roller pitch circle diameter (PCD) is changed in the tapered roller bearing. As shown in FIG. 25, when the PCD is reduced, the bearing torque is greatly reduced, but the bearing rigidity is not reduced so much as a result of calculating and confirming the amount of elastic deformation of the rollers. Therefore, if the PCD is reduced while the number of rollers is not reduced or increased, the torque can be reduced without reducing the rigidity.

ころ係数γが0.94を越えるようにすることによって,ころ本数を増加させつつころPCDを小さくできる。これにより,軸受剛性を低下させることなく,低トルク化を実現できる。また,ころ本数を増加させることによって,負荷容量がアップするばかりでなく,軌道面の最大面圧を低下させることができる。   By making the roller coefficient γ exceed 0.94, it is possible to reduce the roller PCD while increasing the number of rollers. As a result, low torque can be realized without reducing the bearing rigidity. In addition, increasing the number of rollers not only increases the load capacity, but also reduces the maximum surface pressure of the raceway surface.

また,保持器の台形状のポケットの狭幅側の柱部に切欠きを設けることにより,保持器の内径側から内輪側へ流入した潤滑油を,この切欠きを通して外輪側へ速やかに逃がすことができる。   In addition, by providing a notch in the narrow column of the trapezoidal pocket of the cage, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be quickly released to the outer ring side through this notch. Can do.

請求項2の発明は,請求項1の車輪用軸受装置において,ポケットの狭幅側の小環状部にも切欠きが設けてあることを特徴とするものである。このような構成を採用することにより,保持器の内径側から内輪側へ流入する潤滑油をこの切欠きからも外輪側へ逃がしてやることができる。   According to a second aspect of the present invention, in the wheel bearing device of the first aspect, a notch is also provided in the small annular portion on the narrow side of the pocket. By adopting such a configuration, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be released from the notch to the outer ring side.

請求項3の発明は,請求項1または2の車輪用軸受装置において,ポケットの広幅側の少なくとも柱部に切欠きが設けてあることを特徴とするものである。   According to a third aspect of the present invention, in the wheel bearing device according to the first or second aspect, a notch is provided in at least the column portion on the wide side of the pocket.

請求項4の発明は,請求項3の車輪用軸受装置において,ポケットの狭幅側に設けた切欠きの合計面積がポケットの広幅側に設けた切欠きの合計面積よりも広いことを特徴とするものである。   The invention according to claim 4 is the wheel bearing device according to claim 3, wherein the total area of the notches provided on the narrow side of the pocket is wider than the total area of the notches provided on the wide side of the pocket. To do.

請求項5の発明は,請求項1ないし4のいずれかの車輪用軸受装置において,保持器の小環状部の軸方向外側に,内輪の小つばの外径面に対向させた径方向内向きのつばを設け,前記つばの内径面と内輪の小つばの外径面との間のすきまの上限を小つばの外径寸法の2.0%としたことを特徴とするものである。   A fifth aspect of the present invention provides the wheel bearing device according to any one of the first to fourth aspects, wherein the small annular portion of the cage is radially outwardly opposed to the outer diameter surface of the small collar of the inner ring. The upper limit of the clearance between the inner diameter surface of the collar and the outer diameter surface of the small collar of the inner ring is 2.0% of the outer diameter dimension of the small collar.

請求項6の発明は,請求項1ないし5のいずれかの車輪用軸受装置において,少なくとも円すいころの表面に,微小凹形状のくぼみをランダムに無数に設け,このくぼみを設けた表面の面粗さパラメータRyniを0.4μm≦Ryni≦1.0μmとし,かつ,Sk値を−1.6以下としたことを特徴とするものである。   A sixth aspect of the present invention provides the wheel bearing device according to any one of the first to fifth aspects, wherein at least the surface of the tapered roller is provided with an infinite number of minute concave recesses, and the surface roughness of the surface on which the recesses are provided. The parameter Ryni is 0.4 μm ≦ Ryni ≦ 1.0 μm, and the Sk value is −1.6 or less.

パラメータRyniは,基準長毎最大高さの平均値,すなわち,粗さ曲線からその平均線の方向に基準長さだけ抜き取り,この抜き取り部分の山頂線と谷底線との間隔を粗さ曲線の縦倍率の方向に測定した値である(ISO 4287:1997)。また,Sk値は粗さ曲線のひずみ度,すなわち,粗さの凹凸分布の非対称性を表す値であり(ISO 4287:1997),ガウス分布のように対称な分布ではSk値は0に近くなり,凹凸の凸部を削除した場合は負の値,逆に凹部を削除した場合は正の値となる。Sk値のコントロールは,バレル研磨機の回転速度,加工時間,ワーク投入量,研磨チップの種類と大きさ等を選ぶことにより行うことができ,Sk値を−1.6以下とすることにより,無数の微小凹形形状のくぼみに満遍なく潤滑油を保持することができる。   The parameter Ryni is the average value of the maximum height for each reference length, that is, the reference length is extracted from the roughness curve in the direction of the average line, and the interval between the peak line and the bottom line of this extracted part is the vertical axis of the roughness curve. It is a value measured in the direction of magnification (ISO 4287: 1997). The Sk value is a value representing the degree of distortion of the roughness curve, that is, the asymmetry of the roughness unevenness distribution (ISO 4287: 1997), and the Sk value is close to 0 in a symmetric distribution such as a Gaussian distribution. When the concave and convex portions are deleted, a negative value is obtained. Conversely, when the concave and convex portions are deleted, a positive value is obtained. The Sk value can be controlled by selecting the rotational speed of the barrel polishing machine, the processing time, the amount of workpiece input, the type and size of the polishing tip, etc. By making the Sk value −1.6 or less, Lubricating oil can be held evenly in innumerable minute concave recesses.

請求項7の発明は,請求項1ないし6のいずれかの車輪用軸受装置において,保持器が軸中心に位置した状態では保持器外径と外輪軌道面間にすきまが存在していることを特徴とするものである。すきまが存在する保持器寸法とすることにより,軸受運転中には外輪と保持器との接触が殆ど発生しないようにしている。   According to a seventh aspect of the present invention, in the wheel bearing device according to any one of the first to sixth aspects, there is a clearance between the outer diameter of the cage and the outer ring raceway surface in a state where the cage is located at the center of the shaft. It is a feature. By making the cage dimensions so that there is a clearance, there is little contact between the outer ring and the cage during bearing operation.

請求項8の発明は,請求項1から7のいずれかの車輪用軸受装置において,前記複列の円すいころの一方をボールに代えたことを特徴とするものである。これによりトルクが低下する。   The invention according to claim 8 is the wheel bearing device according to any one of claims 1 to 7, wherein one of the double row tapered rollers is replaced with a ball. This reduces the torque.

請求項9の発明は,請求項1から8のいずれかの車輪用軸受装置において,前記複列の転動体のピッチ円径がインボード側とアウトボード側で異なることを特徴とするものである。ピッチ円径を大きくすることにより剛性がアップする。   The invention according to claim 9 is the wheel bearing device according to any one of claims 1 to 8, wherein the pitch circle diameter of the double row rolling elements is different between the inboard side and the outboard side. . Increased pitch circle diameter increases rigidity.

請求項10の発明は,請求項1から9のいずれかの車輪用軸受装置において,前記複列の転動体の数がインボード側とアウトボード側で異なることを特徴とするものである。転動体数を多くすると剛性および寿命がアップする。   The invention according to claim 10 is the wheel bearing device according to any one of claims 1 to 9, characterized in that the number of the rolling elements in the double row is different between the inboard side and the outboard side. Increasing the number of rolling elements increases rigidity and life.

請求項11の発明は,請求項1から7,9,10のいずれかの車輪用軸受装置において,前記複列の転動体のサイズがインボード側とアウトボード側で異なることを特徴とするものである。   The invention according to claim 11 is the wheel bearing device according to any one of claims 1 to 7, 9 and 10, characterized in that the size of the double row rolling elements is different between the inboard side and the outboard side. It is.

この発明によれば,ころ係数γが0.94を越えるようにすることによって,ころ本数を増加させつつ,ころPCDを小さくできる。これにより,軸受剛性を低下させることなく,低トルク化を実現できる。また,ころ本数を増加させることによって,負荷容量がアップするばかりでなく,軌道面の最大面圧を低下させることができるため,過酷潤滑条件下での極短寿命での表面起点剥離を防止することができる。   According to the present invention, the roller PCD can be reduced while increasing the number of rollers by making the roller coefficient γ exceed 0.94. As a result, low torque can be realized without reducing the bearing rigidity. In addition, increasing the number of rollers not only increases the load capacity, but also reduces the maximum surface pressure of the raceway surface, preventing surface-origin separation with extremely short life under severe lubrication conditions. be able to.

また,保持器の台形状ポケットの狭幅側の柱部に切欠きを設けることにより,保持器の内径側から内輪側へ流入した潤滑油を,この切欠きを通して外輪側へ速やかに逃がすことができるため,内輪の軌道面に沿って大つばに至る潤滑油の量が少なくなり,軸受内部に滞留する潤滑油の量が減少して,潤滑油の流動抵抗によるトルク損失が低減する。   In addition, by providing a notch in the narrow column of the trapezoidal pocket of the cage, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be quickly released to the outer ring side through this notch. As a result, the amount of lubricating oil reaching the collar along the raceway surface of the inner ring is reduced, the amount of lubricating oil staying inside the bearing is reduced, and torque loss due to the flow resistance of the lubricating oil is reduced.

請求項2の発明のように,ポケットの狭幅側の小環状部にも切欠きを設けることにより,保持器の内径側から内輪側へ流入する潤滑油をこの小環状部の切欠きからも外輪側へ逃がし,内輪の軌道面に沿って大つばまで到る潤滑油の量をより少なくして,潤滑油の流動抵抗によるトルク損失をさらに低減することができる。   As in the invention of claim 2, by providing a notch also in the small annular portion on the narrow side of the pocket, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be removed from the notch in the small annular portion. The amount of lubricating oil that escapes to the outer ring side and reaches the large brim along the raceway surface of the inner ring can be further reduced, and torque loss due to the flow resistance of the lubricating oil can be further reduced.

請求項3の発明のように,ポケットの広幅側の少なくとも柱部に切欠きを設けることにより,円すいころをバランスよく柱部に摺接させることができる。   As in the invention of claim 3, by providing the notch in at least the column portion on the wide side of the pocket, the tapered roller can be brought into sliding contact with the column portion in a well-balanced manner.

請求項4の発明のように,ポケットの狭幅側に設けた切欠きの合計面積を,台形状ポケットの広幅側に設けた切欠きの合計面積よりも広くすることによっても,内輪の軌道面に沿って大つばまで到る潤滑油の量をより少なくして,潤滑油の流動抵抗によるトルク損失をさらに低減することができる。   As in the invention of claim 4, the raceway surface of the inner ring can also be obtained by making the total area of the notches provided on the narrow side of the pocket larger than the total area of the notches provided on the wide side of the trapezoidal pocket. As a result, the amount of lubricating oil that reaches the main flange can be reduced, and torque loss due to the flow resistance of the lubricating oil can be further reduced.

請求項5の発明にように,保持器の小環状部の輪方向外側に,内輪の小つばの外径面に対向させた径方向内向きのつばを設け,この対向させた小環状部のつばの内径面と内輪の小つばの外径面との隙間を,内輪の小つばの外径寸法の2.0%以下とすることにより,保持器の内径側から内輪側へ流入する潤滑油の量を少なくし,潤滑油の流動抵抗によるトルク損失をより低減することができる。   According to the fifth aspect of the present invention, a radially inward flange is provided on the outer side in the ring direction of the small annular portion of the cage so as to face the outer diameter surface of the small collar of the inner ring. Lubricating oil that flows from the inner diameter side of the cage to the inner ring side by setting the clearance between the inner diameter surface of the collar and the outer diameter surface of the small collar of the inner ring to 2.0% or less of the outer diameter dimension of the small collar of the inner ring. The torque loss due to the flow resistance of the lubricating oil can be further reduced.

請求項6の発明のように,少なくとも円すいころの表面に,微小凹形形状のくぼみをランダムに無数に設け,このくぼみを設けた表面の面粗さパラメータRyniを0.4μm≦Ryni≦1.0μmとし,かつ,Sk値を−1.6以下とすることにより,円すいころの表面に満遍なく潤滑油を保持させて,軸受内部に滞留する潤滑油の量を減らしても,円すいころと内外輪との接触部を十分に潤滑することができる。   As in the invention of claim 6, at least the surface of the tapered roller is randomly provided with an infinite number of minute concave recesses, and the surface roughness parameter Ryni of the surface provided with these recesses is 0.4 μm ≦ Ryni ≦ 1. Even if the amount of lubricating oil staying inside the bearing is reduced by keeping the lubricating oil evenly on the surface of the tapered roller by setting the value to 0 μm and the Sk value to −1.6 or less, the tapered roller and the inner and outer rings The contact portion can be sufficiently lubricated.

請求項7の発明のように,保持器が軸中心に位置した状態では保持器外径と外輪軌道面間にすきまが存在しているので,軸受運転中には外輪と保持器との接触が殆ど発生せず,接触による引きずりトルクの増大や摩耗を抑制することができる。   As in the seventh aspect of the present invention, there is a clearance between the outer diameter of the cage and the raceway surface of the outer ring when the cage is located at the center of the shaft, so that contact between the outer ring and the cage is not caused during the bearing operation. Almost no occurrence occurs, and an increase in drag torque due to contact and wear can be suppressed.

以下,図面に従ってこの発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に示す実施例1は,ハブ22と複列転がり軸受とをユニット化したもので,いわゆる2.5世代のハブ・ベアリングである。複列転がり軸受は,軸受外輪に相当する外方部材と,軸受内輪に相当する内方部材と,両部材間に介在する転動体とで構成される。実施例1は複列円すいころ軸受を用いた例で,転動体46はアウトボード側もインボード側も円すいころであり,その数およびピッチ円径PCDも同一である。   The embodiment 1 shown in FIG. 1 is a so-called 2.5 generation hub bearing in which the hub 22 and the double row rolling bearing are unitized. The double row rolling bearing is composed of an outer member corresponding to the bearing outer ring, an inner member corresponding to the bearing inner ring, and rolling elements interposed between the two members. Example 1 is an example using a double-row tapered roller bearing, and the rolling elements 46 are tapered rollers on both the outboard side and the inboard side, and the number and pitch circle diameter PCD are the same.

ハブ22は等速自在継手の外側継手部材12のステム部14を受け入れる軸孔24を有している。ハブ22は外周にハブフランジ26を有し,ハブフランジ26にはホイールディスク(図示せず)を固定するためのハブボルト30が植え込んである。   The hub 22 has a shaft hole 24 that receives the stem portion 14 of the outer joint member 12 of the constant velocity universal joint. The hub 22 has a hub flange 26 on the outer periphery, and a hub bolt 30 for fixing a wheel disk (not shown) is implanted in the hub flange 26.

複列円すいころ軸受は,一対の内輪32と,外輪38と,円すいころ46と,保持器48とを主要な構成要素としている。内輪32が内方部材を構成し,外輪38が外方部材を構成する。内輪32は外周にインナレース34を有し,ハブ22の円筒状をしたスリーブ28の外周面に嵌合させてある。アウトボード側の内輪32は大つば36をハブ22に当ててあり,インボード側の内輪32は大つば36を外側継手部材12の肩部20に当ててある。外側継手部材12のステム部14をハブ22の軸孔24に挿入し,軸端の雄ねじ部16にナット18を締め付けることにより,外側継手部材12の肩部20との間にハブ22を固定する。   The double row tapered roller bearing has a pair of inner ring 32, outer ring 38, tapered roller 46, and cage 48 as main components. The inner ring 32 constitutes an inner member, and the outer ring 38 constitutes an outer member. The inner ring 32 has an inner race 34 on the outer periphery, and is fitted to the outer peripheral surface of the cylindrical sleeve 28 of the hub 22. The inner ring 32 on the outboard side has the large collar 36 applied to the hub 22, and the inner ring 32 on the inboard side has the large collar 36 applied to the shoulder 20 of the outer joint member 12. The stem portion 14 of the outer joint member 12 is inserted into the shaft hole 24 of the hub 22, and the nut 22 is fastened to the male screw portion 16 at the shaft end, thereby fixing the hub 22 between the shoulder portion 20 of the outer joint member 12. .

外輪38の外周にはボルト穴42をもったフランジ40が形成してある。ボルト穴42に通したボルト54を締め付けることにより外輪38を車体52に固定する。外輪38は内周に2列の軌道すなわちアウタレース44を有している。内輪32のインナレース34と外輪38のアウタレース44との間に2列の転動体ここでは円すいころ46が介在させてある。各列の転動体46は保持器48で円周方向に所定間隔に保持される。   A flange 40 having a bolt hole 42 is formed on the outer periphery of the outer ring 38. The outer ring 38 is fixed to the vehicle body 52 by tightening the bolt 54 passed through the bolt hole 42. The outer ring 38 has two rows of tracks or outer races 44 on the inner periphery. Two rows of rolling elements, here tapered rollers 46, are interposed between the inner race 34 of the inner ring 32 and the outer race 44 of the outer ring 38. The rolling elements 46 in each row are held at predetermined intervals in the circumferential direction by a cage 48.

軸受内部に充填した潤滑剤の漏れを防止し,また,外部から異物が侵入するのを防止するため,外輪38の両端開口部と内輪32の大つば36との間にシール50が装着してある。   In order to prevent leakage of the lubricant filled in the bearing and to prevent foreign matter from entering from the outside, a seal 50 is mounted between the opening portions at both ends of the outer ring 38 and the large collar 36 of the inner ring 32. is there.

図2に示す実施例2は,2列のインナレース34のうちの一方をハブ22に直接形成したもので,いわゆる3世代ハブ・ベアリングの例である。この場合,ハブ22と内輪32とで内方部材を構成する。   The second embodiment shown in FIG. 2 is an example of a so-called third generation hub bearing in which one of the two rows of inner races 34 is formed directly on the hub 22. In this case, the hub 22 and the inner ring 32 constitute an inner member.

図3に示す実施例3は,実施例1において,複列の転動体のピッチ円径PCDをインボード側とアウトボード側で異ならせたものである。ここでは,アウトボード側転動体のピッチ円径PCDをインボード側転動体のピッチ円径PCDより大きくしてある。アウトボード側を大きくすることにより剛性がアップする。   The third embodiment shown in FIG. 3 differs from the first embodiment in that the pitch circle diameter PCD of the double row rolling elements is different between the inboard side and the outboard side. Here, the pitch circle diameter PCD of the outboard side rolling element is made larger than the pitch circle diameter PCD of the inboard side rolling element. Increasing the outboard side increases rigidity.

図4に示す実施例4は,実施例2において,複列の転動体のピッチ円径PCDをインボード側とアウトボード側で異ならせたものである。ここでは,アウトボード側転動体のピッチ円径PCDをインボード側転動体のピッチ円径PCDより大きくしてある。アウトボード側を大きくすることにより剛性がアップする。   Example 4 shown in FIG. 4 differs from Example 2 in that the pitch circle diameter PCD of the double row rolling elements is different on the inboard side and the outboard side. Here, the pitch circle diameter PCD of the outboard side rolling element is made larger than the pitch circle diameter PCD of the inboard side rolling element. Increasing the outboard side increases rigidity.

図5に示す実施例5は,複列の転動体46をインボード側とアウトボード側で異ならせたものである。具体的には,アウトボード側の転動体46をボールに変更して,アンギュラ玉軸受を構成している。この実施例5は従動輪の場合を例示したもので,ハブ22は中実で,符号20で示すようにハブフランジ26とは反対側の軸端をかしめることによって内輪32の軸方向位置決めがしてある。   In the fifth embodiment shown in FIG. 5, the double row rolling elements 46 are different on the inboard side and the outboard side. Specifically, the rolling element 46 on the outboard side is changed to a ball to constitute an angular ball bearing. The fifth embodiment exemplifies the case of a driven wheel, the hub 22 is solid, and the axial end of the inner ring 32 is positioned by caulking the shaft end opposite to the hub flange 26 as indicated by reference numeral 20. It is.

図6に示す実施例6はいわゆる3世代ハブ・ベアリングの例である。実施例5との相違点は,実施例5が一対の分離型内輪32を用いていたのに対して,2列のインナレース34のうちの一方,ここではアウトボード側のインナレース34がハブ22に直接形成してある点である。複列の転動体46は,アウトボード側がボール,インボード側が円すいころで,その数およびピッチ円径PCDは同一である。この場合,実施例2と同様に,ハブ22と内輪32とで内方部材を構成する。   Example 6 shown in FIG. 6 is an example of a so-called third generation hub bearing. The difference from the fifth embodiment is that while the fifth embodiment uses a pair of separated inner rings 32, one of the two inner races 34, here, the inner race 34 on the outboard side is the hub. 22 is directly formed. The double row rolling elements 46 are balls on the outboard side and tapered rollers on the inboard side, and the number and pitch circle diameter PCD are the same. In this case, as in the second embodiment, the hub 22 and the inner ring 32 constitute an inner member.

図7に示す実施例7は,実施例5において,複列の転動体46のピッチ円径PCDをインボード側とアウトボード側で異ならせたものである。ここでは,アウトボード側転動体46のピッチ円径PCDをインボード側転動体46のピッチ円径PCDより大きくしてある。アウトボード側を大きくすることにより剛性がアップする。   The seventh embodiment shown in FIG. 7 differs from the fifth embodiment in that the pitch circle diameter PCD of the double row rolling elements 46 is different between the inboard side and the outboard side. Here, the pitch circle diameter PCD of the outboard side rolling element 46 is larger than the pitch circle diameter PCD of the inboard side rolling element 46. Increasing the outboard side increases rigidity.

図8に示す実施例8は,実施例6において,複列の転動体46のピッチ円径PCDをインボード側とアウトボード側で異ならせたものである。ここでは,インボード側転動体46のピッチ円径PCDをアウトボード側転動体46のピッチ円径PCDより大きくしてある。アウトボード側を大きくすることにより剛性がアップする。   The eighth embodiment shown in FIG. 8 is different from the sixth embodiment in that the pitch circle diameter PCD of the double row rolling elements 46 is different between the inboard side and the outboard side. Here, the pitch circle diameter PCD of the inboard side rolling element 46 is made larger than the pitch circle diameter PCD of the outboard side rolling element 46. Increasing the outboard side increases rigidity.

上述の各実施例では,転動体の数をインボード側とアウトボード側で同数としてあるが,インボード側とアウトボード側で異ならせてもよい。転動体数を多くすると軸受寿命および剛性がアップする。あるいは,インボード側とアウトボード側で転動体のサイズを異ならせてもよい。多少の軸受寿命の低下が起きても、剛性をアップさせる必要がある場合は、転動体サイズを小さくして、個数を多くすることで所望の効果が得られる。   In the above-described embodiments, the number of rolling elements is the same on the inboard side and the outboard side, but may be different on the inboard side and the outboard side. Increasing the number of rolling elements increases bearing life and rigidity. Alternatively, the size of the rolling elements may be different between the inboard side and the outboard side. Even if the bearing life is somewhat reduced, if it is necessary to increase the rigidity, the desired effect can be obtained by reducing the size of the rolling element and increasing the number of rolling elements.

次に,車輪用軸受装置を構成する複列転がり軸受の構成要素につき,単列の円すいころ軸受を例にとって説明する。図9に示す円すいころ軸受1は,1つの内輪2と転動体ここでは円すいころ4のサブアセンブリを示す。円すいころ4は保持器5に形成されたポケット9内に収容されている。各円すいころ4は,内輪2の軌道面2aの両側に設けた小つば2bと大つば2cとで軸方向への移動を規制されている。   Next, the single row tapered roller bearing will be described as an example of the components of the double row rolling bearing constituting the wheel bearing device. A tapered roller bearing 1 shown in FIG. 9 shows a sub-assembly of one inner ring 2 and rolling elements, here a tapered roller 4. The tapered roller 4 is accommodated in a pocket 9 formed in the cage 5. Each tapered roller 4 is restricted from moving in the axial direction by a small brim 2 b and a large brim 2 c provided on both sides of the raceway surface 2 a of the inner ring 2.

保持器5は,円すいころ4の小径端面側で連なる小環状部6と,円すいころ4の大径端面側で連なる大環状部7と,これらの小環状部6と大環状部7を連結する複数の柱部8とを含んでいる。そして,図10に示すように,隣り合った柱部8間にポケット9が形成される。保持器5のポケット9は台形状で,円すいころ4の小径側を収納する部分が狭幅側,大径側を収納する部分が広幅側となる。ポケット9の狭幅側と広幅側には,それぞれ両側の柱部8に2つずつ,外径側から内径側まで切り通した切欠き10a,10bが設けてある。各切欠き10a,10bの寸法は,いずれも深さ1.0mm,幅4.6mmとされている。なお,図面に例示した切欠き10a,10bは,保持器5の半径方向に切り通した溝の形態をしているが,保持器5の内径側と外径側を連絡して潤滑油の円滑な通過を許容することができる限り,形状や寸法は任意である。また,柱面5dの窓角θ(図24参照)は,例えば25°〜50°である。   The cage 5 connects the small annular part 6 connected on the small diameter end face side of the tapered roller 4, the large annular part 7 connected on the large diameter end face side of the tapered roller 4, and the small annular part 6 and the large annular part 7. A plurality of column portions 8 are included. Then, as shown in FIG. 10, a pocket 9 is formed between the adjacent column portions 8. The pocket 9 of the cage 5 has a trapezoidal shape, and the portion for storing the small diameter side of the tapered roller 4 is the narrow side, and the portion for storing the large diameter side is the wide side. On the narrow side and wide side of the pocket 9, two notches 10 a and 10 b are provided in each of the column portions 8 on both sides and cut from the outer diameter side to the inner diameter side. Each notch 10a, 10b has a depth of 1.0 mm and a width of 4.6 mm. The notches 10a and 10b illustrated in the drawings are in the form of grooves cut in the radial direction of the cage 5, but the inner diameter side and the outer diameter side of the cage 5 are connected to smoothly lubricate the lubricating oil. As long as the passage is allowed, the shape and dimensions are arbitrary. Further, the window angle θ (see FIG. 24) of the column surface 5d is, for example, 25 ° to 50 °.

図11および図12に保持器5の変形例を示す。図11に示す変形例は,ポケット9の狭幅側の小環状部6にも切欠き10cを設けたものである。そして,狭幅側の3つの切欠き10a,10cの合計面積が,広幅側の2つの切欠き10bの合計面積よりも広くなっている。なお,切欠き10cは深さ1.0mm,幅5.7mmとしてある。図12に示す変形例は,狭幅側の柱部8の各切欠き10aの深さが1.5mmと広幅側の柱部8の各切欠き10bよりも深く,狭幅側の各切欠き10aの合計面積が,広幅側の各切欠き10bの合計面積よりも広くなっている。   11 and 12 show a modified example of the cage 5. In the modification shown in FIG. 11, a notch 10 c is also provided in the small annular portion 6 on the narrow side of the pocket 9. The total area of the three notches 10a and 10c on the narrow side is wider than the total area of the two notches 10b on the wide side. The notch 10c has a depth of 1.0 mm and a width of 5.7 mm. In the modification shown in FIG. 12, the depth of each notch 10a in the narrow column 8 is 1.5 mm, which is deeper than each notch 10b in the wide column 8, and each notch on the narrow side. The total area of 10a is wider than the total area of the notches 10b on the wide side.

図13に示すように,保持器5の小環状部6の軸方向外側には,内輪2の小つば2bの外径面に対向させた径方向内向きのつば11が設けてあり,このつば11の内径面と内輪2の小つば2bの外径面との間のすきまδは,小つば2bの外径寸法の2.0%以下に狭く設定してある。   As shown in FIG. 13, a radially inward flange 11 is provided on the outer side in the axial direction of the small annular portion 6 of the cage 5 so as to face the outer diameter surface of the small collar 2b of the inner ring 2. The clearance δ between the inner diameter surface of 11 and the outer diameter surface of the small collar 2b of the inner ring 2 is set narrowly to 2.0% or less of the outer diameter dimension of the small collar 2b.

また,図示は省略するが,円すいころ4の全表面には微小凹形状のくぼみがランダムに無数に設けてある。このくぼみを設けた表面は,面粗さパラメータRyniが0.4μm≦Ryni≦1.0μm,かつ,Sk値が−1.6以下としてある。   In addition, although illustration is omitted, an infinite number of minute concave recesses are randomly provided on the entire surface of the tapered roller 4. The surface provided with the depression has a surface roughness parameter Ryni of 0.4 μm ≦ Ryni ≦ 1.0 μm and an Sk value of −1.6 or less.

軸受が高速で回転すると,図13に矢印で示すように,潤滑油が円すいころ4の小径側から保持器5の外径側と内径側とに分かれて軸受内部へ流入し,保持器5の外径側から外輪3へ流入した潤滑油は,外輪3の軌道面3aに沿って円すいころ4の大径側へ通過して軸受内部から流出する。一方,保持器5の内径側から内輪2側へ流入する潤滑油は,保持器5の外径側から流入する潤滑油よりも遥かに少なく,かつ,このすきまδから流入する潤滑油の大半は,ポケット9の狭幅側の柱部8に設けた切欠き10aを通過して,保持器5の外径側へ移動する。したがって,そのまま内輪2の軌道面2aに沿って大つば2cに至る潤滑油の量は非常に少なくなり,軸受内部に滞留する潤滑油の量を減らすことができる。   When the bearing rotates at high speed, as indicated by an arrow in FIG. 13, the lubricating oil is divided into the outer diameter side and the inner diameter side of the cage 5 from the small diameter side of the tapered roller 4 and flows into the bearing. The lubricating oil flowing into the outer ring 3 from the outer diameter side passes along the raceway surface 3a of the outer ring 3 to the larger diameter side of the tapered roller 4 and flows out of the bearing. On the other hand, the lubricating oil flowing from the inner diameter side of the cage 5 to the inner ring 2 side is far less than the lubricating oil flowing from the outer diameter side of the cage 5, and most of the lubricating oil flowing from this clearance δ is , It passes through the notch 10a provided in the column 8 on the narrow side of the pocket 9 and moves to the outer diameter side of the cage 5. Therefore, the amount of the lubricating oil that reaches the large collar 2c along the raceway surface 2a of the inner ring 2 is extremely reduced, and the amount of the lubricating oil staying inside the bearing can be reduced.

保持器5は例えばPPS,PEEK,PA,PPA,PAI等のスーパーエンプラで一体成形されている。   The cage 5 is integrally formed with a super engineering plastic such as PPS, PEEK, PA, PPA, PAI.

また,保持器に,機械的強度,耐油性および耐熱性に優れたエンジニアリング・プラスチックを使用することにより保持器重量が軽く,自己潤滑性があり,摩擦係数が小さいという特徴があるため,軸受内に介在する潤滑油の効果と相俟って,外輪との接触による摩耗の発生を抑えることが可能になる。また,これらの樹脂は鋼板と比べると重量が軽く摩擦係数が小さいため,軸受起動時のトルク損失や保持器摩耗の低減に好適である。   In addition, the use of engineering plastics with excellent mechanical strength, oil resistance and heat resistance for the cage makes the cage lightweight, self-lubricating, and has a low friction coefficient. Combined with the effect of the lubricating oil intervening, it is possible to suppress the occurrence of wear due to contact with the outer ring. In addition, these resins are lighter and have a smaller coefficient of friction than steel plates, and are suitable for reducing torque loss and cage wear when starting bearings.

エンジニアリング・プラスチックは,汎用エンジニアリング・プラスチックとスーパー・エンジニアリング・プラスチックを含む。以下に代表的なものを掲げるが,これらはエンジニアリング・プラスチックの例示であって,エンジニアリング・プラスチックが以下のものに限定されるものではない。   Engineering plastics include general-purpose engineering plastics and super engineering plastics. Typical examples are listed below, but these are examples of engineering plastics, and engineering plastics are not limited to the following.

〔汎用エンジニアリング・プラスチック〕ポリカーボネート(PC),ポリアミド6(PA6),ポリアミド66(PA66),ポリアセタール(POM),変性ポリフェニレンエーテル(m−PPE),ポリブチレンテレフタレート(PBT),GF強化ポリエチレンテレフタレート(GF−PET),超高分子量ポリエチレン(UHMW−PE)   [General-purpose engineering plastics] Polycarbonate (PC), polyamide 6 (PA6), polyamide 66 (PA66), polyacetal (POM), modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT), GF reinforced polyethylene terephthalate (GF) -PET), ultra high molecular weight polyethylene (UHMW-PE)

〔スーパー・エンジニアリング・プラスチック〕ポリサルホン(PSF),ポリエーテルサルホン(PES),ポリフェニレンサルファイド(PPS),ポリアリレート(PAR),ポリアミドイミド(PAI),ポリエーテルイミド(PEI),ポリエーテルエーテルケトン(PEEK),液晶ポリマー(LCP),熱可塑性ポリイミド(TPI),ポリベンズイミダゾール(PBI),ポリメチルベンテン(TPX),ポリ1,4−シクロヘキサンジメチレンテレフタレート(PCT),ポリアミド46(PA46),ポリアミド6T(PA6T),ポリアミド9T(PA9T),ポリアミド11,12 (PA11,12),フッ素樹脂,ポリフタルアミド(PPA)   [Super Engineering Plastics] Polysulfone (PSF), Polyethersulfone (PES), Polyphenylene sulfide (PPS), Polyarylate (PAR), Polyamideimide (PAI), Polyetherimide (PEI), Polyetheretherketone ( PEEK), liquid crystal polymer (LCP), thermoplastic polyimide (TPI), polybenzimidazole (PBI), polymethylbenten (TPX), poly 1,4-cyclohexanedimethylene terephthalate (PCT), polyamide 46 (PA46), polyamide 6T (PA6T), polyamide 9T (PA9T), polyamide 11,12 (PA11,12), fluororesin, polyphthalamide (PPA)

なお,保持器材料の例としてPPS,PEEK,PA,PPA,PAI等のスーパーエンプラを挙げたが,必要に応じて,強度増強のため,これら樹脂材料またはその他のエンジニアリング・プラスチックに,ガラス繊維または炭素繊維などを配合したものを使用してもよい。   Examples of cage materials include super engineering plastics such as PPS, PEEK, PA, PPA, and PAI. If necessary, these resin materials or other engineering plastics may be made of glass fiber or What mix | blended carbon fiber etc. may be used.

円すいころ軸受1は,ころ係数γがγ>0.94となっている。ころ係数γはころの充填率を表し,次式で定義される。
ころ係数γ=(Z・DA)/(π・PCD)
ここに,
Z:ころ本数
DA:ころ平均径
PCD:ころピッチ円径。
The tapered roller bearing 1 has a roller coefficient γ> 0.94. The roller coefficient γ represents the filling rate of the roller and is defined by the following equation.
Roller coefficient γ = (Z · DA) / (π · PCD)
here,
Z: Number of rollers DA: Roller average diameter PCD: Roller pitch circle diameter.

ところで,保持器5の外径は,図14(A)の状態から同図に矢印で示すように保持器5を軸方向小径側に移動させ(図14(B)),次に図15(A)のように径方向下側に移動させると,外輪3と保持器5が接触し,軸受が回転して図15(C)のように保持器5がセンタリングされると,保持器5と外輪3が全周にわたり所定すきまをあけて非接触となるような寸法に設定してある。言い換えれば,そのような寸法とは,保持器5が軸中心に配置され,図14(B)のように保持器5が小径側に寄った状態では保持器5と外輪3の間にすきまが存在するが,保持器5を軸中心から径方向に移動させると外輪3と保持器5が接触するような寸法である。これにより,運転初期(図15(B))には外輪3と保持器5は接触するが,運転中(図15(C))は非接触となることから,接触による引きずりトルクの増大や摩耗を抑制することができる。   By the way, the outer diameter of the cage 5 is changed from the state of FIG. 14A by moving the cage 5 to the axially smaller diameter side as shown by the arrow in FIG. 14B (FIG. 14B), and then FIG. As shown in FIG. 15C, when the outer ring 3 and the cage 5 are brought into contact with each other and the bearing is rotated and the cage 5 is centered as shown in FIG. The dimensions are set such that the outer ring 3 is not contacted with a predetermined clearance all around. In other words, such a dimension means that the cage 5 is arranged at the center of the shaft, and the clearance between the cage 5 and the outer ring 3 when the cage 5 is close to the small diameter side as shown in FIG. However, the outer ring 3 and the cage 5 are in contact with each other when the cage 5 is moved in the radial direction from the axial center. As a result, the outer ring 3 and the cage 5 are in contact at the initial stage of operation (FIG. 15B), but are not in contact during operation (FIG. 15C). Can be suppressed.

図16〜19は,保持器5の内径側から見たポケットを示し,ポケット柱面5a(柱の側面)にころの当たりを二点差線で示してある。いずれの場合も,ポケット柱面5aのころの当たり幅を,ポケット9の軸方向中央位置すなわちポケット中央位置からポケット長さの10%以上確保してある。ころから保持器5に作用する荷重が局部的に集中したり,偏って負荷されたりすることによって,異常な摩耗が発生したり,応力集中による破損が発生したりしないようにするためである。なお,図16〜19においては,切欠き10a等を省略している。   16 to 19 show the pockets viewed from the inner diameter side of the cage 5, and the contact of the rollers with the pocket column surface 5a (side surface of the column) is indicated by a two-dot chain line. In any case, the contact width of the roller of the pocket column surface 5a is secured 10% or more of the pocket length from the axial center position of the pocket 9, that is, the pocket center position. This is because the load acting on the cage 5 from the rollers is concentrated locally or biased so that abnormal wear does not occur or damage due to stress concentration does not occur. 16 to 19, the notch 10a and the like are omitted.

具体的には,図16の場合,ころ当たり幅は,ポケット中央位置から軸方向両側にそれぞれポケット長さの10%以上にわたって確保されている。したがって,ポケット中央位置でのころ当たり幅はポケット長さの20%以上となっている。図17の場合は,ころの当たりが図中の左側寄りになっているが,ポケット中央位置から右側にもポケット長さの10%以上のころ当たり幅が確保されている。図18の場合は,図17と逆にころの当たりが図中の右側寄りになっているが,ポケット中央位置から左側にもポケット長さの10%以上のころ当たり幅が確保されている。図19は,図中上側のポケット柱面5aと図中下側のポケット柱面5aとでころの当たりが逆方向に片寄っている場合であるが,いずれも,ポケット中央位置から少なくともポケット長さの10%以上のころ当たり幅が確保されている。   Specifically, in the case of FIG. 16, the roller contact width is secured over 10% or more of the pocket length from the pocket center position to both sides in the axial direction. Therefore, the roller contact width at the pocket center position is 20% or more of the pocket length. In the case of FIG. 17, the roller contact is closer to the left side in the figure, but a roller contact width of 10% or more of the pocket length is also secured from the center of the pocket to the right side. In the case of FIG. 18, the roller contact is closer to the right side in FIG. 17, but a roller contact width of 10% or more of the pocket length is secured on the left side from the pocket center position. FIG. 19 shows a case where the roller contact between the upper pocket column surface 5a and the lower pocket column surface 5a in the drawing is offset in the opposite direction. In either case, at least the pocket length from the pocket center position is shown. A width per roller of 10% or more is secured.

図20に軸受の寿命試験の結果を示す。過酷潤滑,過大負荷条件下の寿命試験結果を示す。比較例1はころ係数0.86の従来品である。比較例2は鉄板製保持器付きで運転時に外輪と保持器が接触するようにした点を除き実施例と同じである。図20から明らかなように,比較例1は内輪剥離を起こし,寿命時間は16.4hであった。比較例2は,保持器摩耗によるトルク増大のため,寿命時間40.2hで停止した。実施例は200hでも全く異常が認められなかった。なお,同じ試験条件の場合,JISによる計算寿命は92.2hである。   FIG. 20 shows the result of the bearing life test. The life test results under severe lubrication and overload conditions are shown. Comparative Example 1 is a conventional product having a roller coefficient of 0.86. Comparative Example 2 is the same as the example except that the outer ring and the cage are in contact with each other during operation with a steel plate cage. As is clear from FIG. 20, in Comparative Example 1, inner ring peeling occurred and the lifetime was 16.4 h. Comparative Example 2 stopped at a lifetime of 40.2 h due to increased torque due to cage wear. In the examples, no abnormality was observed even after 200 hours. Under the same test conditions, the calculated life according to JIS is 92.2h.

また,縦型トルク試験機を用いてトルク測定試験を行った。図10の保持器を用いた円すいころ軸受と,図11の保持器を用いた円すいころ軸受を用意した。これらを便宜上それぞれ実施例A,実施例Bと呼ぶ。また,比較例として,ポケットに切欠きのない保持器を用いた円すいころ軸受(比較例A)と,図22(A),(B)に示した保持器を用いた円すいころ軸受(比較例B,C)を用意した。なお,各円すいころ軸受は,寸法が外径100mm,内径45mm,幅27.25mmであり,ポケットの切欠き以外の部分は同じである。試験条件は次のとおりである。
アキシアル荷重:2942N
回転速度:300〜2000r/min(100r/minピッチ)
潤滑条件:油浴潤滑(潤滑油:75W−90)
A torque measurement test was performed using a vertical torque tester. Tapered roller bearings using the cage shown in FIG. 10 and tapered roller bearings using the cage shown in FIG. 11 were prepared. These are referred to as Example A and Example B, respectively, for convenience. As a comparative example, a tapered roller bearing using a cage not having a notch in a pocket (Comparative Example A) and a tapered roller bearing using a cage shown in FIGS. 22A and 22B (Comparative Example) B, C) were prepared. Each tapered roller bearing has an outer diameter of 100 mm, an inner diameter of 45 mm, and a width of 27.25 mm, and the portions other than the pocket notch are the same. The test conditions are as follows.
Axial load: 2942N
Rotational speed: 300-2000r / min (100r / min pitch)
Lubrication condition: oil bath lubrication (lubricating oil: 75W-90)

図21に試験結果を示す。同図のグラフの縦軸は,ポケットに切欠きのない保持器を用いた比較例Aのトルクに対するトルク低減率を表す。ポケットの柱部中央部に切欠きを設けた比較例Bや,ポケットの小環状部と大環状部に切欠きを設けた比較例Cも,トルク低減効果が認められるが,ポケットの狭幅部側の柱部に切欠きを設けた実施例Aは,これらの比較例よりも優れたトルク低減効果が認められ,狭幅側の小環状部にも切欠きを設け,狭幅側の切欠きの合計面積を広幅側のそれよりも広くした実施例Bは,さらに優れたトルク低減効果が認められる。   FIG. 21 shows the test results. The vertical axis of the graph in the figure represents the torque reduction rate with respect to the torque of Comparative Example A using a cage not having a notch in the pocket. The comparative example B in which a notch is provided in the central portion of the pocket column and the comparative example C in which a notch is provided in the small annular portion and the large annular portion of the pocket also show a torque reducing effect, but the narrow width portion of the pocket Example A with a notch in the column on the side shows a torque reduction effect superior to those of these comparative examples, and a notch on the narrow side is provided with a notch on the small annular part on the narrow side. In Example B, in which the total area is larger than that on the wide side, a further excellent torque reduction effect is recognized.

また,試験の最高回転速度である2000r/minにおけるトルク低減率は,実施例Aが9.5%,実施例Bが11.5%であり,車輪用軸受装置等における高速回転での使用条件でも優れたトルク低減効果を得ることができる。なお,比較例Bと比較例Cの回転速度2000r/minにおけるトルク低減率は,それぞれ8.0%と6.5%である。   The torque reduction rate at 2000 r / min, which is the maximum rotation speed of the test, was 9.5% in Example A and 11.5% in Example B. Conditions for use at high speed rotation in wheel bearing devices and the like However, an excellent torque reduction effect can be obtained. In addition, the torque reduction rate in the rotational speed 2000r / min of the comparative example B and the comparative example C is 8.0% and 6.5%, respectively.

実施例1の車輪用軸受装置の縦断面図Vertical sectional view of the wheel bearing device of Example 1 実施例2の車輪用軸受装置の縦断面図The longitudinal cross-sectional view of the wheel bearing apparatus of Example 2 実施例3の車輪用軸受装置の縦断面図Vertical sectional view of the wheel bearing device of Example 3 実施例4の車輪用軸受装置の縦断面図Vertical sectional view of the wheel bearing device of Example 4 実施例5の車輪用軸受装置の縦断面図Vertical sectional view of the wheel bearing device of Example 5 実施例6の車輪用軸受装置の縦断面図Vertical sectional view of the wheel bearing device of Example 6 実施例7の車輪用軸受装置の縦断面図Vertical sectional view of the wheel bearing device of Example 7 実施例8の車輪用軸受装置の縦断面図Vertical sectional view of the wheel bearing device of Example 8 (A)は内輪と円すいころのサブアセンブリの横断面図,(B)は縦断面図(A) is a cross-sectional view of the sub-assembly of the inner ring and the tapered roller, and (B) is a vertical cross-sectional view. 図9における保持器の展開平面図9 is a developed plan view of the cage in FIG. 保持器の変形例を示す図10と類似の展開平面図An expanded plan view similar to FIG. 10 showing a modified example of the cage 保持器の別の変形例を示す図10と類似の展開平面図Fig. 10 is a developed plan view similar to Fig. 10 showing another modified example of the cage. 図9(B)の部分拡大図Partial enlarged view of FIG. (A)は保持器が軸方向に移動する前の縦断面図,(B)は保持器が移動した後の縦断面図(A) is a longitudinal sectional view before the cage is moved in the axial direction, and (B) is a longitudinal sectional view after the cage is moved. (A)は静止時の横断面略図,(B)は回転初期の横断面略図,(C)は回転中の横断面略図(A) is a schematic cross-sectional view at rest, (B) is a schematic cross-sectional view at the beginning of rotation, and (C) is a schematic cross-sectional view during rotation. 保持器のポケットの簡略図Simplified cage pocket 保持器のポケットの簡略図Simplified cage pocket 保持器のポケットの簡略図Simplified cage pocket 保持器のポケットの簡略図Simplified cage pocket 軸受の寿命試験の結果を示す図Diagram showing results of bearing life test トルク測定試験の結果を示すグラフGraph showing results of torque measurement test (A),(B)はそれぞれ従来の技術を示す保持器の展開平面図(A), (B) is a developed plan view of a cage showing the prior art, respectively. 保持器を外輪側に寄せた従来の円すいころ軸受の断面図Sectional view of a conventional tapered roller bearing with the cage moved toward the outer ring 従来の技術を示す円すいころ軸受の部分拡大断面図Partial enlarged sectional view of a tapered roller bearing showing conventional technology 円すいころ軸受においてころピッチ円径(PCD)を変化させたときの剛性比およびトルク比の変化を表す線図Diagram showing changes in rigidity ratio and torque ratio when changing the roller pitch circle diameter (PCD) in tapered roller bearings

符号の説明Explanation of symbols

1 円すいころ軸受
2 内輪
2a 軌道面
2b 小つば
2c 大つば
3 外輪
3a 軌道面
4 円すいころ
5 保持器
6 小環状部
7 大環状部
8 柱部
9 ポケット
10a,10b,10c 切欠き
11 つば
12 外側継手部材
14 ステム部
16 雄ねじ部
18 ナット
20 肩部
22 ハブ
24 軸孔
26 フランジ
28 スリーブ
30 ハブボルト
32 内輪
34 インナレース
36 大つば
38 外輪
40 フランジ
42 ボルト孔
44 アウタレース
46 円すいころ
47 ボルト
48 保持器
50 シール
52 車体
54 ボルト
DESCRIPTION OF SYMBOLS 1 Tapered roller bearing 2 Inner ring 2a Raceway surface 2b Small brim 2c Large brim 3 Outer ring 3a Raceway surface 4 Tapered roller 5 Cage 6 Small annular part 7 Large annular part 8 Pillar part 9 Pocket 10a, 10b, 10c Notch 11 Collar 12 Outside Joint member 14 Stem portion 16 Male thread portion 18 Nut 20 Shoulder portion 22 Hub 24 Shaft hole 26 Flange 28 Sleeve 30 Hub bolt 32 Inner ring 34 Inner race 36 Large collar 38 Outer ring 40 Flange 42 Bolt hole 44 Outer race 46 Tapered roller 47 Bolt 48 Cage 50 Seal 52 Car body 54 Bolt

Claims (11)

内周に2列のアウタレースを有する外方部材と,外周に2列のインナレースを有する内方部材と,アウタレースとインナレースとの間に転動自在に介在させた円すいころと,各列の円すいころを円周方向で所定間隔に保持する保持器とを備え,
前記外方部材が,車体に固定するためのフランジ部を有し内周面に2列のアウタレースを形成した複列外輪であり,
前記内方部材が,車輪を固定するためのフランジをもったハブと,ハブに嵌合させた内輪とで構成され,
前記保持器が,円すいころの小端面側で連なる小環状部と,円すいころの大端面側で連なる大環状部と,大環状部と小環状部を連結する複数の柱部とからなり,隣接する柱部間に形成されるポケットの,円すいころの小径側を収納する狭幅側の柱部に切欠きが設けてあり,保持器のポケット柱面のころの当たり幅が左右共にポケット軸方向中央位置に対しポケット長さの10%以上確保され,
ころ係数が0.94を越えている,車輪用軸受装置。
An outer member having two rows of outer races on the inner periphery, an inner member having two rows of inner races on the outer periphery, a tapered roller interposed between the outer race and the inner race so as to roll freely, A cage for holding the tapered rollers at predetermined intervals in the circumferential direction;
The outer member is a double-row outer ring having a flange portion for fixing to the vehicle body and forming two rows of outer races on the inner peripheral surface;
The inner member includes a hub having a flange for fixing the wheel and an inner ring fitted to the hub;
The cage is composed of a small annular portion that is continuous on the small end surface side of the tapered roller, a large annular portion that is continuous on the large end surface side of the tapered roller, and a plurality of column portions that connect the large annular portion and the small annular portion. A notch is provided in the narrow side column part that houses the small diameter side of the tapered roller of the pocket formed between the column parts, and the contact width of the roller on the pocket column surface of the cage is the pocket axial direction on both the left and right sides. 10% or more of the pocket length is secured relative to the center position,
Wheel bearing device with roller coefficient exceeding 0.94.
前記ポケットの狭幅側の小環状部にも切欠きが設けてある請求項1の車輪用軸受装置。   The wheel bearing device according to claim 1, wherein a notch is provided also in a small annular portion on a narrow side of the pocket. 前記ポケットの広幅側の少なくとも柱部に切欠きが設けてある請求項1または2の車輪用軸受装置。   The wheel bearing device according to claim 1 or 2, wherein a notch is provided in at least a column portion on the wide side of the pocket. 前記ポケットの狭幅側に設けた切欠きの合計面積が前記ポケットの広幅側に設けた切欠きの合計面積よりも広い請求項3の車輪用軸受装置。   4. The wheel bearing device according to claim 3, wherein a total area of notches provided on the narrow side of the pocket is wider than a total area of notches provided on the wide side of the pocket. 前記保持器の小環状部の軸方向外側に,内輪の小つばの外径面に対向させた径方向内向きのつばを設け,前記つばの内径面と内輪の小つばの外径面との間のすきまの上限を小つばの外径寸法の2.0%とした請求項1ないし4のいずれかの車輪用軸受装置。   A radially inward flange is provided on the outer side in the axial direction of the small annular portion of the cage so as to face the outer diameter surface of the small collar of the inner ring, and the inner diameter surface of the collar and the outer diameter surface of the inner ring small collar The wheel bearing device according to any one of claims 1 to 4, wherein the upper limit of the clearance is 2.0% of the outer diameter of the small brim. 少なくとも前記円すいころの表面に微小凹形状のくぼみをランダムに無数に設け,このくぼみを設けた表面の面粗さパラメータRyniを0.4μm≦Ryni≦1.0μmとし,かつ,Sk値を−1.6以下とした請求項1から5のいずれかの車輪用軸受装置。   An infinite number of minute concave recesses are provided at least on the surface of the tapered roller, the surface roughness parameter Ryni of the surface provided with these recesses is 0.4 μm ≦ Ryni ≦ 1.0 μm, and the Sk value is −1. 6. The wheel bearing device according to claim 1, wherein the wheel bearing device is 6 or less. 保持器が軸中心に位置した状態では保持器外径と外輪軌道面間にすきまが存在している請求項1ないし6のいずれかの車輪用軸受装置。   The wheel bearing device according to any one of claims 1 to 6, wherein a clearance exists between the outer diameter of the cage and the outer ring raceway surface in a state where the cage is located at the center of the shaft. 前記複列の円すいころの一方をボールに代えた請求項1から7のいずれかの車輪用軸受装置。   The wheel bearing device according to claim 1, wherein one of the double-row tapered rollers is replaced with a ball. 前記複列の転動体のPCDがインボード側とアウトボード側で異なる請求項1から8のいずれかの車輪用軸受装置。   The wheel bearing device according to any one of claims 1 to 8, wherein PCDs of the double row rolling elements are different on an inboard side and an outboard side. 前記複列の転動体の数がインボード側とアウトボード側で異なる請求項1から9のいずれかの車輪用軸受装置。   The wheel bearing device according to any one of claims 1 to 9, wherein the number of rolling elements in the double row is different between the inboard side and the outboard side. 前記複列の転動体のサイズがインボード側とアウトボード側で異なる請求項1から7,9,10のいずれかの車輪用軸受装置。   The wheel bearing device according to any one of claims 1 to 7, 9, and 10, wherein the size of the double row rolling elements is different between an inboard side and an outboard side.
JP2006229741A 2006-08-25 2006-08-25 Wheel bearing device Withdrawn JP2008051274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229741A JP2008051274A (en) 2006-08-25 2006-08-25 Wheel bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229741A JP2008051274A (en) 2006-08-25 2006-08-25 Wheel bearing device

Publications (1)

Publication Number Publication Date
JP2008051274A true JP2008051274A (en) 2008-03-06

Family

ID=39235520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229741A Withdrawn JP2008051274A (en) 2006-08-25 2006-08-25 Wheel bearing device

Country Status (1)

Country Link
JP (1) JP2008051274A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108381340A (en) * 2018-05-04 2018-08-10 昆山日晟轴承有限公司 A kind of asymmetric connecting shaft combination bearing, mill machining tool, mill processing method
CN112576618A (en) * 2020-12-24 2021-03-30 浙江万向精工有限公司 Wheel hub bearing unit with three rows of rolling bodies

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108381340A (en) * 2018-05-04 2018-08-10 昆山日晟轴承有限公司 A kind of asymmetric connecting shaft combination bearing, mill machining tool, mill processing method
CN108381340B (en) * 2018-05-04 2023-12-22 江苏日晟轴承股份有限公司 Asymmetric connecting shaft combined bearing, grinding machine tool and grinding method
CN112576618A (en) * 2020-12-24 2021-03-30 浙江万向精工有限公司 Wheel hub bearing unit with three rows of rolling bodies

Similar Documents

Publication Publication Date Title
US7775722B2 (en) Double-row antifriction bearing
EP1770294B1 (en) Tapered roller bearing
JP2008051272A (en) Wheel bearing device
WO2013028284A1 (en) Bearing cage for a roller bearing assembly
JP4722822B2 (en) Tandem type double row angular contact ball bearing
US8123414B2 (en) Tapered roller bearing
JP4975293B2 (en) Tapered roller bearings
JP2008051308A (en) Wheel bearing device
JP2011094716A (en) Thrust roller bearing
JP2008051274A (en) Wheel bearing device
JP2008051276A (en) Wheel bearing device
JP2008051278A (en) Wheel bearing device
JP2008051275A (en) Wheel bearing device
JP4680169B2 (en) Tandem type double row angular contact ball bearing
JP2008051220A (en) Wheel bearing device
JP2009024742A (en) Double row tapered roller bearing
JP2008051271A (en) Wheel bearing device
JP5031219B2 (en) Tapered roller bearing
JP2006022824A (en) Tapered roller bearing for differential
JP4987277B2 (en) Tapered roller bearings for differential
JP2007120575A (en) Tapered roller bearing
WO2017043414A1 (en) Roller bearing
JP4717574B2 (en) Tapered roller bearing
JP4994638B2 (en) Tapered roller bearing
JP5031220B2 (en) Tapered roller bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110