JP2008051183A - Method of rehabilitating existing pipe - Google Patents

Method of rehabilitating existing pipe Download PDF

Info

Publication number
JP2008051183A
JP2008051183A JP2006226657A JP2006226657A JP2008051183A JP 2008051183 A JP2008051183 A JP 2008051183A JP 2006226657 A JP2006226657 A JP 2006226657A JP 2006226657 A JP2006226657 A JP 2006226657A JP 2008051183 A JP2008051183 A JP 2008051183A
Authority
JP
Japan
Prior art keywords
existing pipe
fiber
tubular body
pipe
backfilling material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006226657A
Other languages
Japanese (ja)
Inventor
Zenji Nozaki
善治 野崎
Toshio Yamane
俊男 山根
Takeo Kuroda
健夫 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2006226657A priority Critical patent/JP2008051183A/en
Publication of JP2008051183A publication Critical patent/JP2008051183A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sewage (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of rehabilitating an existing pipe, which provides sufficient strength only by a back-filling material and a tubular body of a composite pipe without depending on the strength of the existing pipe. <P>SOLUTION: The method for rehabilitating an existing pipe includes: forming a tubular body 30 within the existing pipe 20 by spirally winding a lengthy strip body 50 having joint parts at both side end portions around the existing pipe while mutually bonding the adjacent joint parts; and injecting the back-filling material 40 composed of mortar into a clearance 21 between the inner surface of the existing pipe and the outer surface of the tubular body. The back-filling material 40 contains fiber 41 having an elasticity of 50 GPa or more, and also having a weight ratio of water/cement set at 0.1-0.5, is injected so that the ratio of existing pipe inside diameter/back-filling material thickness is 20-80. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、老朽化した既設管内面に管状体を形成した後、既設管と管状体との隙間に裏込め材を注入充填する既設管の更生工法に関する。   The present invention relates to a method for rehabilitating an existing pipe, in which a tubular body is formed on the inner surface of an aged existing pipe, and then a backfill material is injected and filled into a gap between the existing pipe and the tubular body.

特に、繊維を含有させた裏込め材を用いた既設管の更生工法に関する。   In particular, the present invention relates to a rehabilitation method for existing pipes using a backfill material containing fibers.

下水道、上水道、ガス管などの地中に埋設された既設管においては、長期間の使用によって老朽化してしまい、ひび割れや腐食などを生じてしまう。   Existing pipes buried in the ground, such as sewers, waterworks, and gas pipes, will become obsolete due to long-term use, and cracks, corrosion, etc. will occur.

そのため、老朽化した既設管を更生する方法が種々提案されており、その一つとして、両側縁部に接合部が形成された長尺状の帯状体を螺旋状に巻回しつつ互いに隣接する接合部同士を接合して既設管内面に管状体を形成し、既設管内面と管状体外面との間に生じる隙間に裏込め材を注入充填することで、既設管、裏込め材及び管状体からなる複合管を形成するといった更生工法が提案されている(特許文献1)。   For this reason, various methods have been proposed for rehabilitating aging existing pipes, and as one of them, adjacent strips are joined together while spirally winding long strips with joints formed on both side edges. By joining the parts together to form a tubular body on the inner surface of the existing pipe and filling and filling the backfill material into the gap formed between the inner surface of the existing pipe and the outer surface of the tubular body, the existing pipe, the backfill material and the tubular body A rehabilitation method for forming a composite pipe is proposed (Patent Document 1).

この既設管の更生工法は、複合管を既設管、裏込め材及び管状体からなる3層構造とするため、高い強度を達成することができる。
特開2003−56745号公報
This existing pipe rehabilitation method can achieve high strength because the composite pipe has a three-layer structure including an existing pipe, a backfill material, and a tubular body.
JP 2003-56745 A

しかしながら、既設管の強度が著しく低下している場合、複合管のうちの裏込め材と管状体とだけでは強度を確保しきれないため、複合管は強度不足となってしまい、土圧や地震などによる外力によって、複合管が破損したり、崩落したりする虞がある。   However, when the strength of the existing pipe is significantly reduced, the strength cannot be ensured with the backfill material and the tubular body of the composite pipe. There is a risk that the composite pipe may be damaged or collapsed by an external force due to the above.

そのため、更生を行う前に予め既設管の強度を詳細に調査することが一般的に行われている。一方、既設管の内径が小さすぎて作業者や大型の調査装置が入れない場合には、小型の調査装置などを用いて簡易的にではあるが強度の調査が行われている。   Therefore, it is common practice to investigate the strength of existing pipes in advance before rehabilitation. On the other hand, when the inner diameter of the existing pipe is too small to accommodate an operator or a large investigation device, a strength investigation is performed using a small investigation device or the like.

そして、上記の強度調査によって既設管の強度不足が判明した場合、更生を行う前に既設管に補強工事を施したり、更生を行う際に裏込め材を厚くしたりして、複合管の強度が不足しないように補強が行われるが、これらの補強によって工期が延びてしまい、工事コストも大幅に増えてしまうといった問題があった。   If the above strength survey reveals that the existing pipes are not strong enough, the strength of the composite pipes can be increased by reinforcing the existing pipes before rehabilitation, or by increasing the thickness of the backing material when rehabilitating. However, there is a problem that the construction period is extended by these reinforcements and the construction cost is greatly increased.

また、内径の小さな既設管に対して行われる簡易調査では、既設管の強度やひび割れなどの詳細な状態が把握しにくく、既設管に強度不足があるにもかかわらず調査結果から漏れてしまうことがある。この場合、補強することなく既設管の更生を行ってしまうため、形成された複合管は強度不足となってしまい、土圧や地震などによる外力によって、複合管が破損したり、崩落したりするといった問題があった。   In addition, in a simple survey conducted on existing pipes with small inner diameters, it is difficult to grasp the detailed state of the existing pipes, such as strength and cracks, and leaks from the survey results even though the existing pipes have insufficient strength. There is. In this case, since the existing pipe is rehabilitated without reinforcement, the formed composite pipe becomes insufficient in strength, and the composite pipe is damaged or collapsed due to external force such as earth pressure or earthquake. There was a problem.

本発明は係る実情に鑑みてなされたもので、その目的は、既設管の強度に依存することなく、複合管のうちの裏込め材と管状体とだけでも十分な強度を得ることができる既設管の更生工法を提供することにある。   The present invention has been made in view of such circumstances, and the object thereof is not dependent on the strength of the existing pipe, and can be obtained with sufficient strength only with the backfill material and the tubular body of the composite pipe. The purpose is to provide a pipe rehabilitation method.

上記課題を解決するため、本発明の既設管の更生工法は、両側縁部に接合部が形成された長尺状の帯状体を螺旋状に巻回しつつ互いに隣接する前記接合部同士を接合させることで既設管内に管状体を形成し、既設管内面と管状体外面との隙間にモルタルからなる裏込め材を注入充填する既設管の更生工法において、弾性率が50GPa以上である繊維を含有するとともに、水/セメントの重量比が0.1〜0.5とされた裏込め材を、既設管内径/裏込め材厚みの比が20〜80となるように注入充填することを特徴とする。   In order to solve the above-mentioned problem, the rehabilitation method for an existing pipe according to the present invention joins the adjacent joints to each other while spirally winding a long strip having joints formed on both side edges. In a rehabilitation method for an existing pipe in which a tubular body is formed in the existing pipe, and a backfilling material made of mortar is injected and filled into the gap between the inner surface of the existing pipe and the outer surface of the tubular body, fibers having an elastic modulus of 50 GPa or more are contained. In addition, the backfilling material having a water / cement weight ratio of 0.1 to 0.5 is injected and filled so that the existing pipe inner diameter / backing material thickness ratio is 20 to 80. .

このような本発明によれば、上記のように繊維を含有した裏込め材を既設管内面と管状体外面との隙間に注入充填することにより、複合管のうちの裏込め材と管状体とだけで高い強度を得ることができるため、既設管の強度が低くても、複合管が土圧や地震などの外力によって破損したり、崩落したりするといった虞がない。   According to the present invention, the backfilling material containing fibers as described above is injected and filled into the gap between the inner surface of the existing tube and the outer surface of the tubular body, so that the backfilling material and the tubular body of the composite tube Therefore, even if the strength of the existing pipe is low, there is no risk that the composite pipe will be damaged or collapsed by an external force such as earth pressure or earthquake.

ここで、繊維の弾性率が50GPa未満であると、繊維を含有した裏込め材の硬化後の曲げひび割れ強度が低くなってしまい、外力によって裏込め材にクラックが入りやすくなってしまう。しかしながら、繊維の弾性率が50GPa以上であると、繊維を含有した裏込め材の硬化後の曲げひび割れ強度が十分に高い値となるため、外力によって裏込め材にクラックが入るといった虞がなくなる。   Here, when the elastic modulus of the fiber is less than 50 GPa, the bending crack strength after curing of the back-filling material containing the fiber becomes low, and the back-filling material is easily cracked by an external force. However, when the elastic modulus of the fiber is 50 GPa or more, the bending cracking strength after curing of the backfill material containing the fiber becomes a sufficiently high value, so that there is no possibility that the backfill material is cracked by an external force.

また、裏込め材の水/セメントの重量比が0.1未満であると、水の量が少なすぎて裏込め材の混練が困難となってしまい、一方、裏込め材の水/セメントの重量比が0.5を超えると、水の量が多すぎて硬化後の裏込め材の強度が低くなってしまう。しかしながら、裏込め材の水/セメントの重量比が0.1〜0.5の範囲であると、混練が容易となり、また、硬化後の裏込め材の強度が低下するといったことがない。   Further, if the weight ratio of the water / cement of the backfilling material is less than 0.1, the amount of water is too small and it becomes difficult to knead the backfilling material. When the weight ratio exceeds 0.5, the amount of water is too large and the strength of the back-filling material after curing becomes low. However, when the water / cement weight ratio of the backfilling material is in the range of 0.1 to 0.5, kneading is facilitated and the strength of the backfilling material after curing does not decrease.

また、既設管内径/裏込め材厚みの比が20未満であると、裏込め材の層が既設管に対して厚く形成されてしまい、管状体の内径が小さくなってしまうため、元々の既設管の処理水量に比べ、複合管の処理水量が極端に減少してしまい、所定の処理水量の確保が困難となる。一方、既設管内径/裏込め材厚みの比が80を超えると、裏込め材の層が既設管に対して薄く形成されてしまい、繊維で強化された裏込め材の層が複合管に対して薄くなりすぎるため、複合管は十分な強度が得られなくなってしまう。しかしながら、既設管内径/裏込め材厚みの比が20〜80となるように裏込め材を注入充填するので、複合管の所定の処理水量の確保ができなかったり、複合管の強度が不足したりといったことがなくなる。   Further, if the ratio of the existing pipe inner diameter / backing material thickness is less than 20, the backfilling material layer is formed thicker than the existing pipe, and the inner diameter of the tubular body is reduced. Compared to the amount of treated water in the pipe, the amount of treated water in the composite pipe is extremely reduced, making it difficult to secure a predetermined amount of treated water. On the other hand, if the ratio of the existing pipe inner diameter / backing material thickness exceeds 80, the layer of the backfilling material is formed thinner than the existing pipe, and the layer of the backfilling material reinforced with fibers is compared with the composite pipe. As a result, the composite tube cannot obtain sufficient strength. However, since the backfilling material is injected and filled so that the ratio of the existing pipe inner diameter / backfilling material thickness is 20 to 80, it is not possible to secure a predetermined amount of treated water in the composite pipe or the strength of the composite pipe is insufficient. Nothing happens.

また、両側縁部に接合部が形成された長尺状の帯状体を螺旋状に巻回しつつ互いに隣接する前記接合部同士を接合させることで既設管内に管状体を形成し、既設管内面と管状体外面との隙間にモルタルからなる裏込め材を注入充填する既設管の更生工法において、繊維を0.5〜5.0vol%含有するとともに、水/セメントの重量比が0.1〜0.5とされた裏込め材を、既設管内径/裏込め材厚みの比が20〜80となるように注入充填することを特徴とする。   Further, a tubular body is formed in the existing pipe by joining the adjacent joints adjacent to each other while spirally winding a long strip having joints formed on both side edges, and an inner surface of the existing pipe In the rehabilitation method of an existing pipe in which a backfill material made of mortar is injected and filled in the gap between the outer surface of the tubular body, the fiber is contained in an amount of 0.5 to 5.0 vol%, and the weight ratio of water / cement is 0.1 to 0 The backfilling material set to .5 is injected and filled so that the ratio of the existing pipe inner diameter / backfilling material thickness is 20 to 80.

このような本発明によれば、上記のように繊維を含有した裏込め材を既設管内面と管状体外面との隙間に注入充填することにより、複合管のうちの裏込め材と管状体とだけで高い強度を得ることができるため、既設管の強度が低くても、複合管が土圧や地震などの外力によって破損したり、崩落したりするといった虞がない。   According to the present invention, the backfilling material containing fibers as described above is injected and filled into the gap between the inner surface of the existing tube and the outer surface of the tubular body, so that the backfilling material and the tubular body of the composite tube Therefore, even if the strength of the existing pipe is low, there is no risk that the composite pipe will be damaged or collapsed by an external force such as earth pressure or earthquake.

ここで、裏込め材への繊維の含有量が0.5vol%未満であると、繊維の含有量が少なすぎて裏込め材を繊維で強化する効果があまり得られず、裏込め材の強度がさほど向上しない。また、裏込め材への繊維の含有量が5.0vol%を超えると、繊維の含有量が多すぎて裏込め材の粘度が高くなってしまうため、既設管内面と管状体外面との隙間に裏込め材を注入する際に抵抗が大きく、注入が困難となってしまう。しかしながら、裏込め材への繊維の含有量が0.5〜5.0vol%の範囲であると、繊維の含有量が少なすぎて裏込め材の強度がさほど向上しないといったことがなく、また、繊維の含有量が多すぎて、裏込め材40の注入が困難になるといったことがない。   Here, if the fiber content in the backfilling material is less than 0.5 vol%, the fiber content is too small to obtain the effect of reinforcing the backfilling material with fibers, and the strength of the backfilling material. Does not improve much. Also, if the fiber content in the backfilling material exceeds 5.0 vol%, the fiber content is too high and the viscosity of the backfilling material becomes high, so the gap between the existing pipe inner surface and the outer surface of the tubular body When the backfill material is injected into the substrate, the resistance becomes large and the injection becomes difficult. However, if the fiber content in the backfilling material is in the range of 0.5 to 5.0 vol%, the fiber content is too small and the strength of the backfilling material does not improve so much, There is no case where the fiber content is too high to make it difficult to inject the backfill material 40.

また、裏込め材の水/セメントの重量比が0.1未満であると、水の量が少なすぎて裏込め材の混練が困難となってしまい、一方、裏込め材の水/セメントの重量比が0.5を超えると、水の量が多すぎて硬化後の裏込め材の強度が低くなってしまう。しかしながら、裏込め材の水/セメントの重量比が0.1〜0.5の範囲であると、混練が容易となり、また、硬化後の裏込め材の強度が低下するといったことがない。   Further, if the weight ratio of the water / cement of the backfilling material is less than 0.1, the amount of water is too small and it becomes difficult to knead the backfilling material. When the weight ratio exceeds 0.5, the amount of water is too large and the strength of the back-filling material after curing becomes low. However, when the water / cement weight ratio of the backfilling material is in the range of 0.1 to 0.5, kneading is facilitated and the strength of the backfilling material after curing does not decrease.

また、既設管内径/裏込め材厚みの比が20未満であると、裏込め材の層が既設管に対して厚く形成されてしまい、管状体の内径が小さくなってしまうため、元々の既設管の処理水量に比べ、複合管の処理水量が極端に減少してしまい、所定の処理水量の確保が困難となる。一方、既設管内径/裏込め材厚みの比が80を超えると、裏込め材の層が既設管に対して薄く形成されてしまい、繊維で強化された裏込め材の層が複合管に対して薄くなりすぎるため、複合管は十分な強度が得られなくなってしまう。しかしながら、既設管内径/裏込め材厚みの比が20〜80となるように裏込め材を注入充填するので、複合管の所定の処理水量の確保ができなかったり、複合管の強度が不足したりといったことがなくなる。   Further, if the ratio of the existing pipe inner diameter / backing material thickness is less than 20, the backfilling material layer is formed thicker than the existing pipe, and the inner diameter of the tubular body is reduced. Compared to the amount of treated water in the pipe, the amount of treated water in the composite pipe is extremely reduced, making it difficult to secure a predetermined amount of treated water. On the other hand, if the ratio of the existing pipe inner diameter / backing material thickness exceeds 80, the layer of the backfilling material is formed thinner than the existing pipe, and the layer of the backfilling material reinforced with fibers is compared with the composite pipe. As a result, the composite tube cannot obtain sufficient strength. However, since the backfilling material is injected and filled so that the ratio of the existing pipe inner diameter / backfilling material thickness is 20 to 80, it is not possible to secure a predetermined amount of treated water in the composite pipe or the strength of the composite pipe is insufficient. Nothing happens.

また、前記繊維は、耐アルカリガラス繊維、カーボン繊維、スチール繊維及びアラミド繊維のうち少なくとも1つからなるものであってもよい。   The fiber may be made of at least one of alkali-resistant glass fiber, carbon fiber, steel fiber, and aramid fiber.

この場合、上記の繊維は高弾性率を有するため、上記の繊維を裏込め材に含有することで、硬化後の裏込め材の強度を著しく向上させることができる。   In this case, since the fiber has a high elastic modulus, the strength of the back-filling material after curing can be remarkably improved by containing the fiber in the back-filling material.

本発明の既設管の更生工法は、既設管の強度に依存することなく、複合管のうちの裏込め材と管状体とだけでも十分な強度を得ることができるといった効果を奏する。   The rehabilitation method for an existing pipe according to the present invention produces an effect that a sufficient strength can be obtained only with the back-filling material and the tubular body of the composite pipe without depending on the strength of the existing pipe.

以下、本発明の実施の形態について、図1乃至図9に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は本実施の形態における既設管の更生工法の第1工程を示す説明図、図2及び図3は本実施の形態における帯状体を示す断面図及び概略図、図4は本実施の形態における製管機を示す側面図、図5は本実施の形態における製管機を示す部分断面図、図6は本実施の形態における既設管の更生工法の第1工程の他の例を示す説明図、図7は図6における製管機による製管状態を示す模式図、図8は本実施の形態における支保工装置を示す側面図、並びに、図9は本実施の形態における複合管を示す側面図である。   FIG. 1 is an explanatory view showing a first step of an existing pipe rehabilitation method in the present embodiment, FIG. 2 and FIG. 3 are a cross-sectional view and a schematic view showing a strip in the present embodiment, and FIG. FIG. 5 is a partial sectional view showing the pipe making machine in the present embodiment, and FIG. 6 is an explanation showing another example of the first step of the existing pipe rehabilitation method in the present embodiment. FIG. 7, FIG. 7 is a schematic diagram showing a pipe making state by the pipe making machine in FIG. 6, FIG. 8 is a side view showing a support apparatus in the present embodiment, and FIG. 9 shows a composite pipe in the present embodiment. It is a side view.

本実施の形態における既設管20の更生工法は、既設管20内に管状体30を形成する第1工程と、管状体30を支保工70で固定する第2工程と、既設管内面と管状体外面との隙間21に裏込め材40を注入充填する第3工程とを備えている。   The rehabilitation method of the existing pipe 20 in the present embodiment includes a first step of forming the tubular body 30 in the existing pipe 20, a second step of fixing the tubular body 30 with the support 70, an existing pipe inner surface and a tubular body. And a third step of injecting and filling the backfill material 40 into the gap 21 with the outer surface.

なお、本実施の形態における既設管20の更生工法は、裏込め材40の粘度が比較的低い場合に用いるとよく、例えば、繊維41の含有率が0.5〜2.0vol%の範囲の裏込め材40は、流動性が高く低粘度であるので、体積が大きい既設管内面と管状体外面との隙間21に対しても、本更生工法によって注入充填を円滑に行うことができる。   In addition, the rehabilitation method of the existing pipe 20 in this Embodiment is good to use when the viscosity of the backfilling material 40 is comparatively low, for example, the content rate of the fiber 41 is the range of 0.5-2.0 vol%. Since the backfilling material 40 has high fluidity and low viscosity, the filling and filling can be smoothly performed by this rehabilitation method even in the gap 21 between the existing pipe inner surface and the tubular body outer surface having a large volume.

まず、図1に示すように既設管20内に管状体30を形成する第1工程を行う。   First, as shown in FIG. 1, a first step of forming a tubular body 30 in the existing pipe 20 is performed.

上記既設管20としては、断面形状が、円形、矩形、馬蹄形などいろいろな形状のものが存在するが、本実施の形態では断面形状が円形の既設管20に対して更生を行った例を示す。   The existing pipe 20 has various shapes such as a circular shape, a rectangular shape, and a horseshoe shape as a cross-sectional shape. In the present embodiment, an example in which the existing pipe 20 having a circular cross-sectional shape is regenerated is shown. .

まず、帯状体50(図2及び図3参照)を予め巻いたドラム84を地上または既設管20内に設置する。その後、図1に示すように既設管20内に配置した自走式の製管機60(図4及び図5参照)にドラム84から帯状体50を連続的に供給する。この製管機60によって帯状体50を螺旋状に巻回させるとともに、互いに隣接する帯状体50の両側縁部の接合部同士を相互に接合させ、図1中矢符で示される方向に管状体30を形成することができる。   First, the drum 84 around which the belt-like body 50 (see FIGS. 2 and 3) is wound is installed on the ground or in the existing pipe 20. Thereafter, as shown in FIG. 1, the belt-like body 50 is continuously supplied from the drum 84 to a self-propelled pipe making machine 60 (see FIGS. 4 and 5) disposed in the existing pipe 20. While the strip-shaped body 50 is spirally wound by the pipe making machine 60, the joint portions at both side edges of the strip-shaped bodies 50 adjacent to each other are joined to each other, and the tubular body 30 is formed in the direction indicated by the arrow in FIG. Can be formed.

上記帯状体50としては、両側縁部に接合部が形成された長尺状のものであれば、形状を特に限定するものではなく、例えば、図2(a)に示すようなもの、及び、図3(a)に示すようなものなどが用いられる。   As long as the said strip | belt-shaped body 50 is a long thing by which the junction part was formed in the both-sides edge part, it does not specifically limit a shape, For example, as shown to Fig.2 (a), and A thing as shown to Fig.3 (a) etc. is used.

上記前者の図2(a)に示された帯状体50は、複数のリブ53・・53が長手方向に沿って形成されるとともに、その両側縁部に、互いに内外に重なり合って係合する接合凸部51と接合凹部52が長手方向に沿って形成されている。なお、図2(b)に示すように、製管後の管状体30の強度を確保するために、図2(a)に示す帯状体50の2つのリブ53、53間に補強部材54を設けてもよい。   The former strip 50 shown in FIG. 2A has a plurality of ribs 53... 53 formed along the longitudinal direction, and is joined to both side edges overlapping with each other inside and outside. The convex part 51 and the joining recessed part 52 are formed along the longitudinal direction. As shown in FIG. 2B, a reinforcing member 54 is provided between the two ribs 53 of the strip-like body 50 shown in FIG. 2A in order to ensure the strength of the tubular body 30 after pipe production. It may be provided.

一方、上記後者の図3(a)に示された帯状体50は、主帯状部材501と嵌合部材502との組み合わせよりなり、主帯状部材501は、複数のリブ53・・53が長手方向に沿って形成されるとともに、その両側縁部に接合凹部52が長手方向に沿って形成されている。また、嵌合部材502は主帯状部材501の接合凹部52に弾性的に嵌合する接合凸部51が設けられている。したがって、この帯状体50は、接合時において、図3(b)に示すように、隣接する主帯状部材501、501の接合凹部52、52間に跨って嵌合部材502を嵌合することで、互いに隣接する主帯状部材501、501を相互に接続することができる。なお、製管後の管状体30の強度を確保するために、主帯状部材501の2つのリブ53、53間に補強部材(図示せず)を設けてもよい。   On the other hand, the latter strip 50 shown in FIG. 3A is a combination of a main strip member 501 and a fitting member 502, and the main strip member 501 has a plurality of ribs 53. Are formed along the longitudinal direction. Further, the fitting member 502 is provided with a joint convex portion 51 that is elastically fitted to the joint concave portion 52 of the main belt-like member 501. Accordingly, when the band-like body 50 is joined, as shown in FIG. 3B, the fitting member 502 is fitted over the joining recesses 52 and 52 of the adjacent main band-like members 501 and 501. The main strip members 501 and 501 adjacent to each other can be connected to each other. A reinforcing member (not shown) may be provided between the two ribs 53 of the main belt-like member 501 in order to ensure the strength of the tubular body 30 after pipe production.

また、帯状体50は、合成樹脂であれば材質を特に限定するものではなく、例えば、硬質塩化ビニル、ポリエチレン、ポリプロピレンなどがあげられる。   In addition, the material of the strip 50 is not particularly limited as long as it is a synthetic resin, and examples thereof include hard vinyl chloride, polyethylene, and polypropylene.

上記製管機60は、図4及び図5に示すように、円形断面の管状体30の施工に用いる自走式の製管機60であって、成形フレーム61とこの成形フレーム61に設置された接合機構部62とを備えている。上記接合機構部62は、帯状体50を外面と内面の両方から挟み込むための外面ローラ63及び内面ローラ64などによって構成されている。これら外面ローラ63と内面ローラ64の回転により、製管機60の全体が既設管20内を周回移動し、帯状体50を螺旋状に巻回しながら進行するとともに、その進行過程において互いに隣接する帯状体50の接合凸部51と接合凹部52とを相互に接合することができる。   As shown in FIGS. 4 and 5, the pipe making machine 60 is a self-propelled pipe making machine 60 used for construction of the tubular body 30 having a circular cross section, and is installed on the forming frame 61 and the forming frame 61. And a joining mechanism portion 62. The joining mechanism portion 62 includes an outer roller 63 and an inner roller 64 for sandwiching the belt-like body 50 from both the outer surface and the inner surface. The rotation of the outer surface roller 63 and the inner surface roller 64 causes the entire pipe making machine 60 to move around the existing tube 20 and advance while spirally winding the belt-like body 50. The joint convex part 51 and the joint concave part 52 of the body 50 can be joined to each other.

また、内面ローラ64は、油圧ユニット81(図1参照)から供給される油圧油によって駆動される。また、油圧ユニット81は、発電機82(図1参照)から供給される電力によって駆動される。   The inner roller 64 is driven by hydraulic oil supplied from a hydraulic unit 81 (see FIG. 1). The hydraulic unit 81 is driven by electric power supplied from a generator 82 (see FIG. 1).

なお、本実施の形態の第1工程は、上記したような自走式の製管機60を用いて管状体30を形成するものに限るものではなく、例えば、図6に示すように、既設管20の開口端部に固定するような製管機60を用いて行うものであってもよく、この場合、第1工程は以下のように行われる。   Note that the first step of the present embodiment is not limited to the formation of the tubular body 30 using the self-propelled pipe making machine 60 as described above. For example, as shown in FIG. It may be performed using a pipe making machine 60 that is fixed to the open end of the pipe 20. In this case, the first step is performed as follows.

まず、帯状体50(図2及び図3参照)を予め巻いたドラム84を地上または既設管20内に設置する。その後、図6に示すように、既設管20の開口端部に対向するように配置した固定式の製管機60に、ドラム84から帯状体50を連続的に供給する。この製管機60によって帯状体50が螺旋状に巻回されるとともに、互いに隣接する帯状体50の両側縁部の接合部同士が相互に接合され、管状体30が形成されていく。その際、製管機60によって形成され導出される管状体30は、直接、既設管20内へ導入され、既設管20内を回転しつつ図6中矢符の方向に推進されるため、既設管20内に管状体30が形成されることとなる。   First, the drum 84 around which the belt-like body 50 (see FIGS. 2 and 3) is wound is installed on the ground or in the existing pipe 20. After that, as shown in FIG. 6, the belt-like body 50 is continuously supplied from the drum 84 to the fixed type pipe making machine 60 arranged so as to face the opening end of the existing pipe 20. The strip-shaped body 50 is spirally wound by the pipe making machine 60, and joint portions at both side edges of the strip-shaped bodies 50 adjacent to each other are joined together to form the tubular body 30. At that time, the tubular body 30 formed and led out by the pipe making machine 60 is directly introduced into the existing pipe 20 and is propelled in the direction of the arrow in FIG. 6 while rotating in the existing pipe 20. The tubular body 30 is formed in the inside 20.

上記製管機は、図7に示すように、製管ローラ65により、導入される帯状体50を図中矢符の方向に螺旋状に巻回させつつ、互いに隣接する帯状体50、50の両側縁部の接合部同士を相互に接合することで、順次、管状体30を形成し、さらに、この管状体30を既設管20内に推進していく。   As shown in FIG. 7, the pipe making machine is configured so that the belt-like body 50 to be introduced is spirally wound in the direction of the arrow in the figure by the pipe-making roller 65, and both sides of the belt-like bodies 50, 50 adjacent to each other. By joining the joint portions of the edge portions to each other, the tubular body 30 is sequentially formed, and the tubular body 30 is further pushed into the existing tube 20.

次に、図8に示すように、管状体30を支保工70で固定する第2工程を行う。   Next, as shown in FIG. 8, a second step of fixing the tubular body 30 with the support work 70 is performed.

上記支保工70は、後述する第3工程において裏込め材40を注入充填した際、管状体30の浮上りを防止するために管状体30を内側から固定するためのものである。支保工70としては、特に限定するものではなく、例えば、図8に示すような支保工70などを用いることができる。図8に示す支保工70は、フレーム71と、このフレーム71の各辺部から放射状に延設される進退杆72と、この進退杆72の先端に装着される腹起し部材73と、フレーム71の上辺から鉛直上方へ延設される反力部材74とを備えている。   The support 70 is for fixing the tubular body 30 from the inside in order to prevent the tubular body 30 from being lifted when the backfill material 40 is injected and filled in a third step to be described later. The support work 70 is not particularly limited. For example, a support work 70 as shown in FIG. 8 can be used. The support 70 shown in FIG. 8 includes a frame 71, an advancing and retracting rod 72 extending radially from each side of the frame 71, an abdominal erection member 73 attached to the tip of the advancing and retracting 72, and a frame And a reaction force member 74 extending vertically upward from the upper side of 71.

次に、既設管内面と管状体外面との隙間21に裏込め材40を注入充填する第3工程を行う。   Next, a third step of injecting and filling the backfill material 40 into the gap 21 between the existing pipe inner surface and the tubular body outer surface is performed.

裏込め材40の注入充填は、管状体30に図示しない注入孔を複数箇所設け、注入孔から裏込め材40を既設管内面と管状体外面との隙間21に注入し充填することで行われる。   The filling and filling of the backfill material 40 is performed by providing a plurality of injection holes (not shown) in the tubular body 30 and filling and filling the backfilling material 40 into the gap 21 between the inner surface of the existing tube and the outer surface of the tubular body through the injection holes. .

上記裏込め材40は、弾性率が50GPa以上である繊維41を含有するとともに水/セメントの重量比が0.1〜0.5とされたもの、または、繊維41を0.5〜5.0vol%含有するとともに水/セメントの重量比が0.1〜0.5とされたものが用いられる。   The backfill material 40 contains fibers 41 having an elastic modulus of 50 GPa or more and has a water / cement weight ratio of 0.1 to 0.5, or fibers 41 of 0.5 to 5. A material containing 0 vol% and having a water / cement weight ratio of 0.1 to 0.5 is used.

これらの裏込め材40を既設管内面と管状体外面との隙間21に注入充填することにより、複合管10のうちの裏込め材40と管状体30とだけで高い強度を得ることができるため、既設管20の強度が低くても、複合管10が土圧や地震などの外力によって破損したり、崩落したりするといった虞がなくなる。   By filling and filling these backfilling materials 40 into the gap 21 between the inner surface of the existing pipe and the outer surface of the tubular body, high strength can be obtained only by the backfilling material 40 and the tubular body 30 in the composite pipe 10. Even if the strength of the existing pipe 20 is low, there is no possibility that the composite pipe 10 is broken or collapsed by an external force such as earth pressure or earthquake.

ここで、上記前者の裏込め材40は、前述した通り、弾性率が50GPa以上である繊維41を含有するとともに水/セメントの重量比が0.1〜0.5とされたものである。   Here, as described above, the former backfilling material 40 contains fibers 41 having an elastic modulus of 50 GPa or more and a water / cement weight ratio of 0.1 to 0.5.

仮に、繊維41の弾性率が50GPa未満であると、繊維41を含有した裏込め材40の硬化後の曲げひび割れ強度が低くなってしまい、外力によって裏込め材40にクラックが入りやすくなってしまう。しかしながら、繊維41の弾性率が50GPa以上であると、繊維41を含有した裏込め材40の硬化後の曲げひび割れ強度が十分に高い値となるため、外力によって裏込め材40にクラックが入るといった虞がなくなる。   If the elastic modulus of the fiber 41 is less than 50 GPa, the bending crack strength after curing of the backfilling material 40 containing the fiber 41 becomes low, and the backfilling material 40 is easily cracked by an external force. . However, if the elastic modulus of the fiber 41 is 50 GPa or more, the bending crack strength after curing of the backfilling material 40 containing the fiber 41 becomes a sufficiently high value, so that the backfilling material 40 is cracked by an external force. There is no fear.

また、裏込め材40の水/セメントの重量比が0.1未満であると、水の量が少なすぎて裏込め材40の混練が困難となってしまい、一方、裏込め材40の水/セメントの重量比が0.5を超えると、水の量が多すぎて硬化後の裏込め材40の強度が低くなってしまう。しかしながら、裏込め材40の水/セメントの重量比が0.1〜0.5の範囲であると、混練が容易となり、また、硬化後の裏込め材40の強度が低下するといったことがない。   Further, if the water / cement weight ratio of the backfill material 40 is less than 0.1, the amount of water is too small to make it difficult to knead the backfill material 40, while the water in the backfill material 40 If the weight ratio of / cement exceeds 0.5, the amount of water is too large and the strength of the back-filling material 40 after curing will be low. However, when the water / cement weight ratio of the backfilling material 40 is in the range of 0.1 to 0.5, kneading is facilitated and the strength of the backfilling material 40 after curing does not decrease. .

一方、上記後者の裏込め材40は、前述した通り、繊維41を0.5〜5.0vol%含有するとともに水/セメントの重量比が0.1〜0.5とされたものである。   On the other hand, as described above, the latter backfilling material 40 contains 0.5 to 5.0 vol% of the fiber 41 and has a water / cement weight ratio of 0.1 to 0.5.

仮に、裏込め材40への繊維41の含有量が0.5vol%未満であると、繊維41の含有量が少なすぎて裏込め材40を繊維41で強化する効果があまり得られず、裏込め材40の強度がさほど向上しない。また、裏込め材40への繊維41の含有量が5.0vol%を超えると、繊維41の含有量が多すぎて裏込め材40の粘度が高くなってしまうため、既設管内面と管状体外面との隙間21に裏込め材40を注入する際に抵抗が大きく、注入が困難となってしまう。しかしながら、裏込め材40への繊維41の含有量が0.5〜5.0vol%の範囲であると、繊維41の含有量が少なすぎて裏込め材40の強度の向上が少ないといったことがなく、また、繊維41の含有量が多すぎて、裏込め材40の注入が困難になるといったことがない。   If the content of the fiber 41 in the backfilling material 40 is less than 0.5 vol%, the content of the fiber 41 is too small and the effect of reinforcing the backfilling material 40 with the fiber 41 cannot be obtained so much. The strength of the embedding material 40 is not improved so much. Further, if the content of the fiber 41 in the backfilling material 40 exceeds 5.0 vol%, the content of the fiber 41 is too large and the viscosity of the backfilling material 40 becomes high. When the backfilling material 40 is injected into the gap 21 with the outer surface, the resistance is large and the injection becomes difficult. However, when the content of the fiber 41 in the backfilling material 40 is in the range of 0.5 to 5.0 vol%, the content of the fiber 41 is too small, and the strength of the backfilling material 40 is hardly improved. In addition, there is no case where the content of the fiber 41 is excessive and injection of the backfill material 40 becomes difficult.

また、上記したように、裏込め材40の水/セメントの重量比が0.1〜0.5の範囲であると、混練が容易となり、また、硬化後の裏込め材40の強度が低下するといったことがない。   Further, as described above, when the water / cement weight ratio of the backfill material 40 is in the range of 0.1 to 0.5, kneading is facilitated, and the strength of the backfill material 40 after curing is reduced. There is no such thing as to do.

なお、上記裏込め材40は、弾性率が50GPa以上である繊維41を0.5〜5.0vol%含有するとともに水/セメントの重量比が0.1〜0.5とされたものを用いてもよい。このような裏込め材は、上記前者の裏込め材40及び後者の裏込め材40の長所を併せ持つため、形成された複合管10はより高い強度を得ることができる。   The backfill material 40 contains 0.5 to 5.0 vol% of fibers 41 having an elastic modulus of 50 GPa or more and a water / cement weight ratio of 0.1 to 0.5. May be. Since such a backfilling material has the advantages of the former backfilling material 40 and the latter backfilling material 40, the formed composite pipe 10 can obtain higher strength.

また、裏込め材40は、既設管20内径/裏込め材40厚みの比が20〜80となるように既設管内面と管状体外面との隙間21に注入充填する。   The backfilling material 40 is injected and filled into the gap 21 between the existing tube inner surface and the tubular body outer surface so that the ratio of the existing tube 20 inner diameter / backing material 40 thickness is 20-80.

仮に、既設管20内径/裏込め材40厚みの比が20未満であると、裏込め材40の層が既設管20に対して厚く形成されてしまい、管状体30の内径が小さくなってしまうため、元々の既設管20の処理水量に比べ、複合管10の処理水量が極端に減少してしまい、所定の処理水量の確保が困難となる。一方、既設管20内径/裏込め材40厚みの比が80を超えると、裏込め材40の層が既設管20に対して薄く形成されてしまい、繊維41で強化された裏込め材40の層が複合管10に対して薄くなりすぎるため、複合管10は十分な強度が得られなくなってしまう。しかしながら、既設管20内径/裏込め材40厚みの比が20〜80となるように裏込め材40を注入充填するので、複合管10の所定の処理水量の確保ができなかったり、複合管10の強度が不足したりといったことがなくなる。   If the ratio of the existing tube 20 inner diameter / backfilling material 40 thickness is less than 20, the layer of the backfilling material 40 is formed thicker than the existing tube 20 and the inner diameter of the tubular body 30 is reduced. Therefore, compared to the original treated water amount of the existing pipe 20, the treated water amount of the composite pipe 10 is extremely reduced, and it becomes difficult to secure a predetermined treated water amount. On the other hand, when the ratio of the inner diameter of the existing pipe 20 / the thickness of the backfilling material 40 exceeds 80, the layer of the backfilling material 40 is formed thin with respect to the existing pipe 20, and the backfilling material 40 reinforced with the fibers 41 is formed. Since the layer becomes too thin with respect to the composite tube 10, the composite tube 10 cannot obtain sufficient strength. However, since the backfilling material 40 is injected and filled so that the ratio of the existing pipe 20 inner diameter / backfilling material 40 thickness is 20 to 80, a predetermined amount of treated water in the composite pipe 10 cannot be secured, or the composite pipe 10 There will be no shortage of strength.

なお、裏込め材40に含有される繊維41としては、アスペクト比が50以上、直径が8〜500μm、及び、長さが2〜50mmとされたものを用いるのが好ましい。   In addition, as the fiber 41 contained in the backfill material 40, it is preferable to use a fiber having an aspect ratio of 50 or more, a diameter of 8 to 500 μm, and a length of 2 to 50 mm.

仮に、繊維41のアスペクト比が50未満であると、繊維41は太く短い形状となり、その弾性を損なってしまうことがあるため、このような繊維41を含有しても裏込め材40の強度の向上はさほど望めない。しかしながら、繊維41のアスペクト比が50以上であると、繊維41は細く長い形状となり、十分な弾性を有するので、繊維41を含有した裏込め材40の強度を向上させることができる。   If the aspect ratio of the fiber 41 is less than 50, the fiber 41 becomes thick and short, and the elasticity of the fiber 41 may be lost. I can't expect much improvement. However, when the aspect ratio of the fibers 41 is 50 or more, the fibers 41 are thin and long and have sufficient elasticity, so that the strength of the backfilling material 40 containing the fibers 41 can be improved.

また、繊維41の直径が8μm未満であると、繊維41を含有した裏込め材40を混練する際に、繊維41同士が絡まりやすくなるため、繊維41を裏込め材40に均一に分散させることが難しく、裏込め材40の強度を均一にすることができない。一方、繊維41の直径が500μmを超えると、裏込め材40のモルタルと繊維41との接着性が低下するため、繊維41を含有した裏込め材40に外力が加わった際に、繊維41とモルタルとが界面で滑ってしまい、裏込め材40の強度を向上させる効果が小さくなってしまう。しかしながら、繊維41の直径が8〜500μmの範囲であると、細すぎて繊維41を裏込め材40に均一に分散させにくいといったことがなく、また、太すぎてモルタルと繊維41との接着性が低下するといったことがない。   Further, when the backfilling material 40 containing the fibers 41 is kneaded when the diameter of the fibers 41 is less than 8 μm, the fibers 41 are easily entangled with each other, so that the fibers 41 are uniformly dispersed in the backfilling material 40. It is difficult to make the strength of the backfilling material 40 uniform. On the other hand, when the diameter of the fiber 41 exceeds 500 μm, the adhesiveness between the mortar of the backfilling material 40 and the fiber 41 is lowered. Therefore, when an external force is applied to the backfilling material 40 containing the fiber 41, The mortar slips at the interface, and the effect of improving the strength of the backfilling material 40 is reduced. However, when the diameter of the fiber 41 is in the range of 8 to 500 μm, the fiber 41 is not too thin to be uniformly dispersed in the backfill material 40, and is too thick to adhere the mortar to the fiber 41. There will be no decline.

また、繊維41の長さが2mm未満であると、繊維41が小さすぎるため、裏込め材40に含有しても、裏込め材40を繊維41で強化する効果があまり得られない。一方、繊維41の長さが50mmを超えると、繊維41を含有した裏込め材40を混練する際に、繊維41同士が絡まりやすくなるため、繊維41を裏込め材40に均一に分散させることが難しく、裏込め材40の強度を均一にすることが難しい。しかしながら、繊維41の長さが2〜50mmの範囲であると、短すぎて繊維強化の効果が得られにくいといったことがなく、また、長すぎて繊維41を裏込め材40に均一に分散させにくいといったことがない。   Moreover, since the fiber 41 is too small as the length of the fiber 41 is less than 2 mm, even if it is contained in the backfilling material 40, the effect of reinforcing the backfilling material 40 with the fiber 41 cannot be obtained. On the other hand, when the length of the fiber 41 exceeds 50 mm, the fibers 41 are easily entangled when the backfilling material 40 containing the fiber 41 is kneaded. Therefore, the fibers 41 are uniformly dispersed in the backfilling material 40. It is difficult to make the strength of the backfilling material 40 uniform. However, when the length of the fiber 41 is in the range of 2 to 50 mm, it is not too short and it is difficult to obtain the effect of reinforcing the fiber, and the fiber 41 is uniformly dispersed in the backfilling material 40 because it is too long. It's not difficult.

また、裏込め材40のモルタルに使用されるセメントは、特に限定するものではなく、例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント及び中庸熱ポルトランドセメントなどのポルトランドセメント、並びに、高炉セメント及びシリカセメントなどの混合セメントなどがあげられる。   Further, the cement used for the mortar of the backfill material 40 is not particularly limited. For example, Portland cement such as ordinary Portland cement, early-strength Portland cement, ultra-early strong Portland cement, and moderately hot Portland cement, and Examples include mixed cements such as blast furnace cement and silica cement.

上記繊維41としては、耐アルカリガラス繊維、カーボン繊維、スチール繊維及びアラミド繊維のうち少なくとも1つからなるものを用いるのが好ましい。この場合、上記の繊維41は高弾性率を有するため、上記の繊維41を裏込め材40に含有することで、硬化後の裏込め材40の強度を著しく向上させることができる。   As the fiber 41, it is preferable to use at least one of alkali-resistant glass fiber, carbon fiber, steel fiber, and aramid fiber. In this case, since the fiber 41 has a high elastic modulus, the strength of the back-filling material 40 after curing can be remarkably improved by containing the fiber 41 in the back-filling material 40.

特に、耐アルカリガラス繊維41は、カーボン繊維、スチール繊維及びアラミド繊維と比較して、モルタルとの接着性や防錆の面で最も適している。しかしながら、カーボン繊維、スチール繊維及びアラミド繊維も、その表面にサイジング剤を被覆することで、耐アルカリガラス繊維と同等のモルタルとの接着性や防錆などの特性を得ることができる。   In particular, the alkali-resistant glass fiber 41 is most suitable in terms of adhesion to mortar and rust prevention as compared with carbon fiber, steel fiber, and aramid fiber. However, carbon fiber, steel fiber, and aramid fiber can also be obtained by coating the surface with a sizing agent to obtain properties such as adhesion to mortar equivalent to alkali-resistant glass fiber and rust prevention.

なお、裏込め材40の強度を向上させるために水/セメント重量比を下げる(水の量を減らす)場合、減水剤を添加することで流動性を高くすることができるため、裏込め材40の混練や注入充填などの作業性を向上させることができる。   Note that when the water / cement weight ratio is decreased (the amount of water is reduced) in order to improve the strength of the backfilling material 40, the flowability can be increased by adding a water reducing agent. Workability such as kneading and injection filling can be improved.

上記減水剤としては、特に限定するものではなく、例えば、リグニンスルホン酸系、ナフタレンスルホン酸系、メラミンスルホン酸系、ポリカルボン酸系及びアミノスルホン酸系などのものを使用することができ、これらの減水剤をセメントに対して、通常、0.5〜5.0重量%の範囲で添加するとよい。   The water reducing agent is not particularly limited, and examples thereof include lignin sulfonic acid type, naphthalene sulfonic acid type, melamine sulfonic acid type, polycarboxylic acid type and amino sulfonic acid type. The water reducing agent is usually added in the range of 0.5 to 5.0% by weight with respect to the cement.

また、裏込め材40には、セメントの水和発熱を抑制するためにフライアッシュ、高炉スラグ及びシリカフュームなどの混和材、並びに、セメント硬化時の収縮を抑えるCaO、3CaO・Al23・CaSO4及び6CaO・Al23・SO3−CaOなどの膨張材を添加してもよい。このように裏込め材40に混和材及び膨張材を添加する場合、混和材及び膨張材はセメント成分として、水/セメントの重量比を計算する。 Further, the backfilling material 40 includes admixtures such as fly ash, blast furnace slag and silica fume for suppressing hydration heat generation of cement, and CaO, 3CaO.Al 2 O 3 .CaSO for suppressing shrinkage during cement hardening. 4 and 6CaO · Al 2 O 3 · SO 3 -CaO expansion material, such as may be added. When the admixture and the expansion material are added to the backfill 40 as described above, the water / cement weight ratio is calculated by using the admixture and the expansion material as a cement component.

また、裏込め材40に分離低減剤、骨材及びポリマーディスパージョンなどを混入してもよい。上記分離低減剤としては、メチルセルロース系、ポリビニルアルコール系、ヒドロキシルアルコール系、ポリアクリル酸ソーダ系及びポリアクリルアミド系などのものがあげられ、また、上記骨材としては、珪砂、川砂及び砕石粉などがあげられ、ポリマーディスパージョンとしては、アクリル系、酢酸ビニル系、エチレン酢酸ビニル系及びスチレン・ブタジエンゴム系などのものがあげられる。   Further, the backfill material 40 may be mixed with a separation reducing agent, an aggregate, a polymer dispersion, and the like. Examples of the separation reducing agent include methyl cellulose, polyvinyl alcohol, hydroxyl alcohol, sodium polyacrylate and polyacrylamide, and examples of the aggregate include quartz sand, river sand and crushed stone powder. Examples of the polymer dispersion include acrylics, vinyl acetates, ethylene vinyl acetates, and styrene / butadiene rubbers.

最後に、既設管内面と管状体外面との隙間21に充填された裏込め材40がある程度硬化した後、管状体30の内側に設けられた支保工を撤去することで既設管20の更生作業は終了する(図9参照)。   Finally, after the backfilling material 40 filled in the gap 21 between the inner surface of the existing pipe and the outer surface of the tubular body is hardened to some extent, the supporting work provided inside the tubular body 30 is removed to rehabilitate the existing pipe 20. Ends (see FIG. 9).

次に、本実施の形態における既設管の更生工法の変形例について、図10乃至図12に基づいて説明する。   Next, a modified example of the existing pipe rehabilitation method in the present embodiment will be described with reference to FIGS.

図10は本変形例における既設管の更生工法を示す説明図、図11は本変形例における製管機を示す側面図、及び、図12は本変形例における製管機を示す部分断面図である。   FIG. 10 is an explanatory view showing a rehabilitation method for an existing pipe in this modification, FIG. 11 is a side view showing the pipe making machine in this modification, and FIG. 12 is a partial sectional view showing the pipe making machine in this modification. is there.

本変形例の既設管20の更生工法は、既設管20内に設置された製管機60によって、既設管20内に管状体30を形成しながら、既設管内面と管状体外面との隙間21に製管機60の注入ノズル65を挿入しての裏込め材40を注入充填するものである。   The rehabilitation method for the existing pipe 20 according to the present modification is that a gap 21 between the inner surface of the existing pipe and the outer surface of the tubular body is formed while the tubular body 30 is formed in the existing pipe 20 by the pipe making machine 60 installed in the existing pipe 20. The backfill material 40 is injected and filled by inserting the injection nozzle 65 of the pipe making machine 60.

なお、本変形例における既設管20の更生工法は、裏込め材40の粘度が比較的高い場合に用いるとよく、例えば、繊維41の含有率が2.0〜5.0vol%の範囲の裏込め材40は、流動性が低く高粘度であるので、体積が大きい既設管内面と管状体外面との隙間21に対して、後から注入充填するには不向きであるため、本変形例の更生工法を行うとよい。また、繊維41の含有率が0.5〜2.5vol%の範囲の裏込め材40であっても、分離低減剤を加えることで高粘度とすることができるため、この場合でも本変形例における既設管20の更生工法を用いることができる。   In addition, the rehabilitation method of the existing pipe 20 in this modification is good to use when the viscosity of the backfilling material 40 is comparatively high, for example, the back of the range whose content rate of the fiber 41 is 2.0-5.0 vol%. Since the filling material 40 has low fluidity and high viscosity, the filling material 40 is not suitable for pouring and filling the gap 21 between the existing pipe inner surface and the outer surface of the tubular body having a large volume. It is good to perform the construction method. Further, even in the case of the backfilling material 40 having a fiber 41 content of 0.5 to 2.5 vol%, it is possible to increase the viscosity by adding a separation reducing agent. The rehabilitation method for the existing pipe 20 can be used.

この既設管20の更生工法を具体的に説明すると、まず、帯状体50を予め巻いたドラム84を地上または既設管20内に設置した後、既設管20内に配置した自走式の製管機60にドラム84から帯状体50を連続的に供給し、この製管機60によって帯状体50を螺旋状に巻回させるとともに、互いに隣接する帯状体50の両側縁部の接合部51、52同士を相互に嵌合させ既設管20内に管状体30を形成する。そして、裏込め材供給機67から製管機60に設けられた注入ノズル65に裏込め材40を供給し、管状体30の形成と同時に、注入ノズル65から既設管内面と管状体外面との隙間21に裏込め材40が注入される。   The rehabilitation method for the existing pipe 20 will be described in detail. First, a drum 84 on which the belt-like body 50 is wound in advance is installed on the ground or in the existing pipe 20, and then the self-propelled pipe making arranged in the existing pipe 20 is performed. The belt-like body 50 is continuously supplied from the drum 84 to the machine 60, and the belt-like body 50 is spirally wound by the pipe making machine 60, and the joint portions 51, 52 at both side edges of the belt-like bodies 50 adjacent to each other. The tubular body 30 is formed in the existing pipe 20 by fitting each other. Then, the backfilling material 40 is supplied from the backfilling material supply machine 67 to the injection nozzle 65 provided in the pipe making machine 60, and simultaneously with the formation of the tubular body 30, the inner surface of the existing pipe and the outer surface of the tubular body are supplied from the injection nozzle 65. The backfill material 40 is injected into the gap 21.

この工法によると、管状体30の形成と同時に裏込め材40を封入していくため、支保工70の設置及び撤去が不要であり、迅速な施工が可能であり、施工に必要以上の工数がかからない。また、既設管20全周にわたり、貼り付けるように管状体30を形成していくことが可能なため、管状体30は更生後の断面縮小が極めて少ない。更に、施工速度が速く、工程が簡略化されるという利点がある。   According to this construction method, since the backfilling material 40 is sealed simultaneously with the formation of the tubular body 30, the installation and removal of the support work 70 is unnecessary, rapid construction is possible, and man-hours more than necessary for construction are required. It does not take. Moreover, since it is possible to form the tubular body 30 so that it may affix on the whole circumference of the existing pipe 20, the tubular body 30 has very little cross-sectional reduction after rehabilitation. Furthermore, there is an advantage that the construction speed is fast and the process is simplified.

上記製管機60は、図11及び図12に示されるように、図3及び図4に示される製管機60に注入ノズル65及びホース66が設けられたものである。   As shown in FIGS. 11 and 12, the pipe making machine 60 is one in which an injection nozzle 65 and a hose 66 are provided in the pipe making machine 60 shown in FIGS. 3 and 4.

上記裏込め材供給機67は、図10に示すように、裏込め材40を一定量ずつ押し出すものであり、その押し出し量は任意に調整できるようになっている。この裏込め材供給機67は、台車83上に搭載されており、製管機60の注入ノズル65にホース66を介して接続されている。   As shown in FIG. 10, the backfilling material supplier 67 pushes out the backfilling material 40 by a certain amount, and the amount of extrusion can be arbitrarily adjusted. This backfilling material supply machine 67 is mounted on a carriage 83 and is connected to an injection nozzle 65 of the pipe making machine 60 via a hose 66.

上記台車83は、図10に示すように、裏込め材供給機67と油圧ユニット81とが搭載されており、図中矢符で示すように、製管機60と共に既設管20内を管状体30形成方向に移動される。但し、裏込め材供給機67は地上に固定配置されるものであってもよい。   As shown in FIG. 10, the carriage 83 is equipped with a backfilling material supply machine 67 and a hydraulic unit 81, and as indicated by an arrow in the figure, the tubular body 30 is formed in the existing pipe 20 together with the pipe making machine 60. It is moved in the forming direction. However, the backfilling material supply machine 67 may be fixedly arranged on the ground.

表1は、本実施の形態の裏込め材40に曲げ強度試験を行った際の実施例及び比較例をそれぞれ示している。   Table 1 shows an example and a comparative example when the bending strength test was performed on the backfill material 40 of the present embodiment.

Figure 2008051183
ここで、実施例及び比較例において、セメントは普通ポルトランドセメント又はB種高炉セメントを用い、また、繊維41は長さ6mmで直径18μmの耐アルカリガラス繊維のチョップドストランドを用いた。また、実施例及び比較例の試験体は、オムニミキサーにより作製し、28日後における試験体に対して曲げ強度試験を行った。
Figure 2008051183
Here, in Examples and Comparative Examples, ordinary Portland cement or B-type blast furnace cement was used as the cement, and chopped strands of alkali-resistant glass fibers having a length of 6 mm and a diameter of 18 μm were used as the fibers 41. Moreover, the test body of an Example and a comparative example was produced with the omni mixer, and the bending strength test was done with respect to the test body in 28 days.

なお、比較例1においては、裏込め材40に繊維41を一切含有させておらず、また、比較例2においては、水/セメントの重量比を0.65とし、本発明の水/セメントの重量比の範囲を大きく超えたものとした。   In Comparative Example 1, the backfill material 40 does not contain any fibers 41. In Comparative Example 2, the water / cement weight ratio is 0.65, and the water / cement of the present invention is used. The weight ratio was greatly exceeded.

全ての実施例の裏込め材40は、比較例の裏込め材40と比較して4倍近い曲げ強度を得ることができた。   The backfilling material 40 of all the examples was able to obtain a bending strength nearly four times that of the backfilling material 40 of the comparative example.

本発明における既設管の更生工法の第1工程を示す説明図である。It is explanatory drawing which shows the 1st process of the rehabilitation method of the existing pipe | tube in this invention. 本発明における帯状体を示す断面図である。It is sectional drawing which shows the strip | belt-shaped body in this invention. 本発明における帯状体の他の例を示す概略図である。It is the schematic which shows the other example of the strip | belt-shaped body in this invention. 本発明における製管機を示す側面図である。It is a side view which shows the pipe making machine in this invention. 本発明における製管機を示す部分断面図である。It is a fragmentary sectional view showing the pipe making machine in the present invention. 本発明における既設管の更生工法の第1工程の他の例を示す説明図である。It is explanatory drawing which shows the other example of the 1st process of the rehabilitation method of the existing pipe | tube in this invention. 図6における製管機による製管状態を示す模式図である。It is a schematic diagram which shows the pipe making state by the pipe making machine in FIG. 本発明における支保工装置を示す側面図である。It is a side view which shows the support work apparatus in this invention. 本発明における複合管を示す側面図である。It is a side view which shows the composite pipe | tube in this invention. 本発明における既設管の更生工法の変形例を示す説明図である。It is explanatory drawing which shows the modification of the rehabilitation method of the existing pipe in this invention. 変形例における製管機を示す側面図である。It is a side view which shows the pipe making machine in a modification. 変形例における製管機を示す部分断面図である。It is a fragmentary sectional view showing a pipe making machine in a modification.

符号の説明Explanation of symbols

10 複合管
20 既設管
21 既設管内面と管状体外面との隙間
30 管状体
40 裏込め材
41 繊維
50 帯状体
DESCRIPTION OF SYMBOLS 10 Composite pipe 20 Existing pipe 21 Clearance 30 between existing pipe inner surface and tubular body outer surface Tubular body 40 Back-filling material 41 Fiber 50 Band-shaped body

Claims (3)

両側縁部に接合部が形成された長尺状の帯状体を螺旋状に巻回しつつ互いに隣接する前記接合部同士を接合させることで既設管内に管状体を形成し、既設管内面と管状体外面との隙間にモルタルからなる裏込め材を注入充填する既設管の更生工法において、
弾性率が50GPa以上である繊維を含有するとともに、水/セメントの重量比が0.1〜0.5とされた裏込め材を、既設管内径/裏込め材厚みの比が20〜80となるように注入充填することを特徴とする既設管の更生工法。
A tubular body is formed in an existing pipe by joining the adjacent joints to each other while spirally winding a long strip having joints formed on both side edges, and the inner surface of the existing pipe and the tubular body In the rehabilitation method of existing pipes that inject and fill backfilling material consisting of mortar into the gap with the outer surface,
A backfilling material containing fibers having an elastic modulus of 50 GPa or more and a water / cement weight ratio of 0.1 to 0.5, and an existing pipe inner diameter / backing material thickness ratio of 20 to 80 A rehabilitation method for existing pipes, which is characterized by filling and filling.
両側縁部に接合部が形成された長尺状の帯状体を螺旋状に巻回しつつ互いに隣接する前記接合部同士を接合させることで既設管内に管状体を形成し、既設管内面と管状体外面との隙間にモルタルからなる裏込め材を注入充填する既設管の更生工法において、
繊維を0.5〜5.0vol%含有するとともに、水/セメントの重量比が0.1〜0.5とされた裏込め材を、既設管内径/裏込め材厚みの比が20〜80となるように注入充填することを特徴とする既設管の更生工法。
A tubular body is formed in an existing pipe by joining the adjacent joints to each other while spirally winding a long strip having joints formed on both side edges, and the inner surface of the existing pipe and the tubular body In the rehabilitation method of existing pipes that inject and fill backfilling material consisting of mortar into the gap with the outer surface,
A backfilling material containing 0.5 to 5.0 vol% of fiber and having a water / cement weight ratio of 0.1 to 0.5 is used, and the existing pipe inner diameter / backing material thickness ratio is 20 to 80. An existing pipe rehabilitation method characterized by filling and filling so that
前記繊維は、耐アルカリガラス繊維、カーボン繊維、スチール繊維及びアラミド繊維のうち少なくとも1つからなることを特徴とする請求項1または2に記載の既設管の更生工法。   The method for rehabilitating an existing pipe according to claim 1 or 2, wherein the fiber comprises at least one of alkali-resistant glass fiber, carbon fiber, steel fiber, and aramid fiber.
JP2006226657A 2006-08-23 2006-08-23 Method of rehabilitating existing pipe Pending JP2008051183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006226657A JP2008051183A (en) 2006-08-23 2006-08-23 Method of rehabilitating existing pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006226657A JP2008051183A (en) 2006-08-23 2006-08-23 Method of rehabilitating existing pipe

Publications (1)

Publication Number Publication Date
JP2008051183A true JP2008051183A (en) 2008-03-06

Family

ID=39235441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006226657A Pending JP2008051183A (en) 2006-08-23 2006-08-23 Method of rehabilitating existing pipe

Country Status (1)

Country Link
JP (1) JP2008051183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190652A (en) * 2016-04-15 2017-10-19 株式会社菱晃 Inner pipe back-filler material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190652A (en) * 2016-04-15 2017-10-19 株式会社菱晃 Inner pipe back-filler material

Similar Documents

Publication Publication Date Title
EP0436412B1 (en) Method of rehabilitating manholes by custom lining/relining
Zhu et al. Trenchless rehabilitation for concrete pipelines of water infrastructure: A review from the structural perspective
CN110617381A (en) Drainage pipeline cracking local plugging structure, plugging method and repairing method
CN100370171C (en) Excavation-free integral restoration method of underground conduit and inspection well
WO2011082605A1 (en) Hollow steel pipe concrete column filled with sea sand concrete and method for preparing the same
KR100538513B1 (en) Construction method for repairing and reinforcing strip-lining pipeline
JP2009133477A (en) Method for regenerating existing pipe
CN207298095U (en) Concordant type flexibility wall bushing structure
CN111425208A (en) Anti-suspension device, system and method based on shield segment
JP2014502930A (en) Pipe repair method and repaired pipe
CN103741949B (en) Treatment of juncture between vertical structure and horizontal structure
JP2004050719A (en) Pipe lining method
JP2008051183A (en) Method of rehabilitating existing pipe
RU2296833C2 (en) Method for culvert laying under road embankment
CN110671547A (en) Concrete-plastic composite pipe
JP5334379B2 (en) Hollow steel pipe reinforcement method for power transmission tower
JP2007303535A (en) Method for regenerating pipeline
JP2008240425A (en) Water-stopping construction method
KR101816747B1 (en) Underground Concrete Structure Reinforced With Ultra High Strength Concrete And Sheet Water Proofing And Constructing Methed therof
CN211901889U (en) Concrete-plastic composite pipe
CN206234492U (en) A kind of PCCP pipes pre-stressed carbon fiber reinforcing structure design
CN203066473U (en) Device for fixing formwork
CN103114723B (en) Application method of fixing formwork device
RU2630629C2 (en) Method for repairing tunnel manifolds and underground pipelines
JP2013060749A (en) Repair method for repairing water leakage in structure having stone-pitching surface