JP2008050635A - Cu-Ni-ORGANIC ELECTRODEPOSITED THIN FILM STACKED STRUCTURE AND METHOD FOR FORMING THE SAME - Google Patents

Cu-Ni-ORGANIC ELECTRODEPOSITED THIN FILM STACKED STRUCTURE AND METHOD FOR FORMING THE SAME Download PDF

Info

Publication number
JP2008050635A
JP2008050635A JP2006226116A JP2006226116A JP2008050635A JP 2008050635 A JP2008050635 A JP 2008050635A JP 2006226116 A JP2006226116 A JP 2006226116A JP 2006226116 A JP2006226116 A JP 2006226116A JP 2008050635 A JP2008050635 A JP 2008050635A
Authority
JP
Japan
Prior art keywords
thin film
electrodeposition
polyimide
organic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006226116A
Other languages
Japanese (ja)
Inventor
Tokihiko Yokoshima
時彦 横島
Hiroshi Nakagawa
博 仲川
Masahiro Aoyanagi
昌宏 青柳
Muneo Kodaira
宗男 小平
Hajime Sasaki
元 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Hitachi Cable Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hitachi Cable Ltd
Priority to JP2006226116A priority Critical patent/JP2008050635A/en
Publication of JP2008050635A publication Critical patent/JP2008050635A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Cu-Ni-organic electrodeposited thin film stacked structure in which an organic electrodeposited thin film such as an electrodeposited polyimide thin film having excellent adherability is deposited on a Cu-base material. <P>SOLUTION: In the Cu-Ni-organic electrodeposited thin film stacked structure, an organic electrodeposited thin film is deposited on the Cu-base material through a Ni-layer having a thickness of ≥1 μm. A method for forming the Cu-Ni-organic electrodeposited thin film stacked structure comprises: forming a Ni-layer having a thickness of ≥1 μm on the Cu-base material; then bringing the Ni-layer into contact with an electrodeposition solution of an anionic material; and electrodepositing the anionic material on the Ni-layer by using the Cu-base material, on which the Ni-layer is formed, as an anode to deposit the organic electrodeposited thin film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、Cu上に密着性に優れた有機電着薄膜、特に電着ポリイミド薄膜を成膜したCu−Ni−有機電着薄膜積層構造体及びその形成方法に関する。   The present invention relates to a Cu—Ni—organic electrodeposition thin film laminated structure in which an organic electrodeposition thin film having excellent adhesion on Cu, particularly an electrodeposited polyimide thin film, and a method for forming the same.

電着塗装法(電着法)は、電圧の印加により電荷をもった材料化合物を溶液中で泳動させると共に、電極(被着物)での水の電気分解により材料化合物を析出させて、被着物上に材料化合物を凝集させて膜を形成するものであり、従来、電着液(電着用組成物)に用いられる樹脂材料として知られているポリイミド樹脂は、耐熱性、電気絶縁性、耐摩耗性、耐薬品性に優れ、更に機械的特性も優れているため、宇宙、航空材料から電気・電子部品に至るまで、広く利用されている。   In the electrodeposition coating method (electrodeposition method), a charged material compound is migrated in a solution by applying a voltage, and the material compound is precipitated by electrolysis of water at an electrode (adhered material). Polyimide resin, which is known as a resin material used in electrodeposition liquids (electrodeposition compositions), is a film formed by agglomerating material compounds on top. Heat resistance, electrical insulation, abrasion resistance It is widely used in a wide range of applications, from space and aviation materials to electrical and electronic parts because of its excellent properties and chemical resistance.

この電着法は、例えば、導電部と非導電部とが混在する複雑な形状の基板に対して、Cuなどの導電部の露出部分のみに膜を形成できることから、導電体金属等の被覆に好適であり、特に、ポリイミド樹脂は各種導電体上にピンホールのない均一な膜を形成できることから、導電体の絶縁膜として有用である。   For example, this electrodeposition method can form a film only on an exposed portion of a conductive portion such as Cu on a substrate having a complicated shape in which a conductive portion and a non-conductive portion are mixed. In particular, polyimide resin is useful as an insulating film for a conductor because it can form a uniform film without pinholes on various conductors.

なお、本発明に関連する先行技術文献情報としては、以下のものが挙げられる。
特開昭49−52252号公報 特開昭52−32943号公報 特開昭63−111199号公報 特開平9−104839号公報 特開2002−299836号公報 特開2003−327905号公報 特開2003−327907号公報 特開2004−266199号公報 特開2005−336559号公報 特開2000−8196号公報 特開2000−68627号公報 特開平8−120496号公報 特開2002−167694号公報 特開平11−269696号公報 上村貴之、他4名,「電着塗装法によるポリイミド膜の形成」,エレクトロニクス実装学会誌,2002年,第5巻,第3号,p.233−240
In addition, the following is mentioned as prior art document information relevant to this invention.
Japanese Patent Laid-Open No. 49-52252 JP 52-32943 A JP-A-63-1111199 JP-A-9-104839 JP 2002-299836 A JP 2003-327905 A JP 2003-327907 A JP 2004-266199 A JP 2005-336559 A JP 2000-8196 A JP 2000-68627 A Japanese Patent Laid-Open No. 8-120496 JP 2002-167694 A Japanese Patent Laid-Open No. 11-269696 Takayuki Uemura and 4 others, “Formation of polyimide film by electrodeposition coating”, Journal of Japan Institute of Electronics Packaging, Vol. 5, No. 3, p. 233-240

しかしながら、導電体金属上に絶縁膜として電着法にて成膜したポリイミド薄膜について検討したところ、導電性材料として最も有用なCuを被着物として用いた場合、成膜したポリイミド薄膜と被着物との密着性が十分でない場合があることが確認された。   However, when a polyimide thin film formed by an electrodeposition method as an insulating film on a conductive metal was examined, when the most useful Cu as a conductive material was used as an adherend, the formed polyimide thin film and the adherend It was confirmed that there was a case where the adhesion of was not sufficient.

本発明は、上記事情に鑑みなされたもので、Cu上に密着性に優れた電着ポリイミド薄膜等の有機電着薄膜を成膜したCu−Ni−有機電着薄膜積層構造体及びその形成方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a Cu-Ni-organic electrodeposited thin film laminated structure in which an organic electrodeposited thin film such as an electrodeposited polyimide thin film having excellent adhesion is formed on Cu and a method for forming the same. The purpose is to provide.

本発明者は、上記目的を達成するため鋭意検討を行った結果、最も汎用の導電体であるCuに対して電着によりポリイミド薄膜を成膜する場合、導電性を低下させないため(例えば、集積回路における微細Cu配線パターンなどにおいては、配線の導電性能を劣化させないために、配線パターンのCu表面を清浄に保つ必要がある。)、絶縁膜としてのポリイミド薄膜との界面(被着面)の酸化等を避け、清浄な状態を保ってポリイミド薄膜を成膜する必要があるが、Cu表面の清浄性を保ってポリイミド薄膜を電着法により成膜した場合、密着性の低下が確認された。   As a result of intensive studies to achieve the above object, the present inventor does not decrease the conductivity when forming a polyimide thin film by electrodeposition on Cu, which is the most general-purpose conductor (for example, integration). In a fine Cu wiring pattern or the like in a circuit, it is necessary to keep the Cu surface of the wiring pattern clean so as not to deteriorate the conductive performance of the wiring.), And the interface (attachment surface) with the polyimide thin film as the insulating film It is necessary to form a polyimide thin film while avoiding oxidation and maintaining a clean state. However, when the polyimide thin film was formed by electrodeposition while maintaining the cleanness of the Cu surface, a decrease in adhesion was confirmed. .

そこで、更に検討したところ、電着において電極となる被着物としてのCuが、電着の通電時において電極反応によりイオンとなって電着液中に溶解し、この溶解したCuが成膜されるポリイミド薄膜に取り込まれ、その結果、ポリイミド薄膜の密着性を劣化させていることがわかった。   Therefore, further examination revealed that Cu as an electrode to be an electrode in electrodeposition is dissolved into an electrodeposition liquid by an electrode reaction when the electrodeposition is energized, and this dissolved Cu is formed into a film. As a result, it was found that the adhesion of the polyimide thin film was deteriorated.

そして、Cu基材上に電着にてポリイミド薄膜等の有機電着薄膜を成膜する場合、有機電着薄膜を、厚さ1μm以上のNi層を介して成膜すれば、Cu基材表面の清浄性を保ちつつ、Cuの電着液への溶解を避け、有機電着薄膜の密着性の低下を避けることができることを知見し、本発明をなすに至った。   And when forming an organic electrodeposition thin film such as a polyimide thin film on a Cu base material by electrodeposition, if the organic electrodeposition thin film is formed through a Ni layer having a thickness of 1 μm or more, the surface of the Cu base material It was discovered that while maintaining the cleanliness, it was possible to avoid the dissolution of Cu in the electrodeposition solution and avoid the deterioration of the adhesion of the organic electrodeposition thin film, and the present invention was made.

即ち、本発明は下記Cu−Ni−有機電着薄膜積層構造体及びCu−Ni−有機電着薄膜積層構造体の形成方法を提供する。
[1]Cu基材上に厚さ1μm以上のNi層を介して有機電着薄膜を成膜してなることを特徴とするCu−Ni−有機電着薄膜積層構造体。
[2]上記有機電着薄膜がポリイミド薄膜であることを特徴とする[1]記載のCu−Ni−有機電着薄膜積層構造体。
[3]上記電着ポリイミド薄膜が、カルボキシル基を分子構造内に有するアニオン性ポリイミドの水と有機溶媒との混合溶媒溶液であるポリイミド電着液から電着にて成膜されてなることを特徴とする[2]記載のCu−Ni−有機電着薄膜積層構造体。
[4]上記アニオン性ポリイミドがブロック共重合アニオン性ポリイミドであることを特徴とする[3]記載のCu−Ni−有機電着薄膜積層構造体。
[5]Cu基材上に厚さ1μm以上のNi層を形成し、次いで、アニオン性材料電着液に上記Ni層を接触させ、該Ni層上に上記アニオン性材料を上記Ni層が形成されたCu基材を陽極として電着して有機電着薄膜を成膜することを特徴とするCu−Ni−有機電着薄膜積層構造体の形成方法。
[6]Cu基材上に厚さ1μm以上のNi層を形成し、次いで、カルボキシル基を分子構造内に有するアニオン性ポリイミドの水と有機溶媒との混合溶媒溶液である電着液に上記Ni層を接触させ、該Ni層上に上記アニオン性ポリイミドを上記Ni層が形成されたCu基材を陽極として電着してポリイミド薄膜を成膜することを特徴とする[5]記載のCu−Ni−有機電着薄膜積層構造体の形成方法。
[7]上記アニオン性ポリイミドがブロック共重合アニオン性ポリイミドであることを特徴とする[6]記載のCu−Ni−有機電着薄膜積層構造体の形成方法。
That is, this invention provides the formation method of the following Cu-Ni-organic electrodeposition thin film laminated structure and Cu-Ni-organic electrodeposition thin film laminated structure.
[1] A Cu—Ni—organic electrodeposited thin film laminated structure, wherein an organic electrodeposited thin film is formed on a Cu substrate via a Ni layer having a thickness of 1 μm or more.
[2] The Cu—Ni— organic electrodeposited thin film laminated structure according to [1], wherein the organic electrodeposited thin film is a polyimide thin film.
[3] The electrodeposited polyimide thin film is formed by electrodeposition from a polyimide electrodeposition solution which is a mixed solvent solution of an anionic polyimide having a carboxyl group in its molecular structure and water and an organic solvent. The Cu—Ni—organic electrodeposited thin film laminated structure according to [2].
[4] The Cu—Ni— organic electrodeposited thin film laminated structure according to [3], wherein the anionic polyimide is a block copolymerized anionic polyimide.
[5] A Ni layer having a thickness of 1 μm or more is formed on a Cu substrate, and then the Ni layer is brought into contact with an anionic material electrodeposition solution, and the Ni layer is formed on the Ni layer. A method for forming a Cu-Ni-organic electrodeposited thin film laminated structure, wherein an organic electrodeposited thin film is formed by electrodeposition using the prepared Cu substrate as an anode.
[6] An Ni layer having a thickness of 1 μm or more is formed on a Cu substrate, and then the above-mentioned Ni is applied to the electrodeposition liquid which is a mixed solvent solution of an anionic polyimide having a carboxyl group in the molecular structure and water and an organic solvent. Cu— according to [5], wherein a layer is brought into contact, and the polyimide film is formed by electrodeposition of the anionic polyimide on the Ni layer using the Cu base material on which the Ni layer is formed as an anode. A method for forming a Ni-organic electrodeposited thin film laminated structure.
[7] The method for forming a Cu—Ni— organic electrodeposited thin film laminated structure according to [6], wherein the anionic polyimide is a block copolymerized anionic polyimide.

本発明によれば、Cu基材上に密着性に優れた電着ポリイミド薄膜等の有機電着薄膜を成膜したCu−Ni−有機電着薄膜積層構造体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the Cu-Ni-organic electrodeposition thin film laminated structure which formed the organic electrodeposition thin film, such as an electrodeposition polyimide thin film excellent in adhesiveness, on Cu base material can be provided.

以下、本発明について更に詳しく説明する。
本発明のCu−Ni−有機電着薄膜積層構造体は、Cu基材上に厚さ1μm以上のNi層を介して有機電着薄膜を積層した構造のものであり、Cu基材上に厚さ1μm以上のNi層を形成し、次いで、アニオン性材料電着液にNi層を接触させ、Ni層上にアニオン性材料をNi層が形成されたCu基材を陽極として電着して有機電着薄膜を成膜することにより形成することができる。
Hereinafter, the present invention will be described in more detail.
The Cu—Ni—organic electrodeposition thin film laminated structure of the present invention has a structure in which an organic electrodeposition thin film is laminated on a Cu substrate via a Ni layer having a thickness of 1 μm or more. A Ni layer having a thickness of 1 μm or more is formed, and then the Ni layer is brought into contact with the anionic material electrodeposition solution, and the anionic material is electrodeposited on the Ni layer with the Ni layer formed on the Ni layer as an anode. It can be formed by forming an electro-deposition thin film.

このCu−Ni−有機電着薄膜積層構造体としては、例えば、図1に示されるようなCu基材3の上面にNi層2を介して有機電着薄膜1が成膜された構造のもの、例えばフレキシブルプリント基板などの銅板や銅箔等の銅層上や回路銅配線上に有機電着薄膜を成膜したものなどが該当する。   As this Cu—Ni—organic electrodeposited thin film laminated structure, for example, a structure in which the organic electrodeposited thin film 1 is formed on the upper surface of the Cu base 3 via the Ni layer 2 as shown in FIG. For example, a film obtained by forming an organic electrodeposition thin film on a copper layer such as a flexible printed board or a copper layer such as a copper foil or a circuit copper wiring is applicable.

本発明では、電着において電極となるCu基材が、Cuのような電着の通電時において電極反応によりイオン化して電着液中に溶解する金属である場合であっても、Cu基材上に形成した1μm以上の厚さを有するNi層によって、基材を構成するCuは電着液に溶解せず、Cuは有機電着薄膜に取り込まれることがほとんどない。そのため、この有機電着薄膜は、密着性が劣化しておらず、Cuで構成された基材上に成膜する有機電着薄膜として、特に、電気・電子材料の絶縁膜として優れた有機電着薄膜であり、このような有機電着薄膜を備えるCu−Ni−有機電着薄膜積層構造体は、導通を確保するCu基材とその絶縁体としての有機電着薄膜とを備える積層構造体として有用である。   In the present invention, even if the Cu base material that becomes an electrode in electrodeposition is a metal that is ionized by an electrode reaction and dissolves in the electrodeposition liquid when the electrodeposition is energized, such as Cu. Due to the Ni layer having a thickness of 1 μm or more formed above, Cu constituting the base material is not dissolved in the electrodeposition liquid, and Cu is hardly taken into the organic electrodeposition thin film. Therefore, this organic electrodeposition thin film does not deteriorate in adhesion, and is excellent as an organic electrodeposition thin film formed on a substrate made of Cu, particularly as an insulating film for electric / electronic materials. A Cu-Ni-organic electrodeposition thin film laminated structure comprising an organic electrodeposition thin film is a laminated structure comprising a Cu base material that ensures electrical conduction and an organic electrodeposition thin film as an insulator thereof. Useful as.

本発明において、有機電着薄膜は、電着塗装法として知られているアノード電着法により成膜した薄膜であり、有機電着薄膜としてポリイミド薄膜が好適である。この電着ポリイミド薄膜は、カルボキシル基を分子構造内に有するアニオン性ポリイミドの水と有機溶媒との混合溶媒溶液を電着液(電着用組成物)とした電着により成膜することができる。また、有機電着薄膜としてアクリル系電着薄膜を挙げることもできる。   In the present invention, the organic electrodeposition thin film is a thin film formed by an anode electrodeposition method known as an electrodeposition coating method, and a polyimide thin film is suitable as the organic electrodeposition thin film. This electrodeposited polyimide thin film can be formed by electrodeposition using a mixed solvent solution of an anionic polyimide having a carboxyl group in the molecular structure and an organic solvent as an electrodeposition solution (electrodeposition composition). Moreover, an acrylic electrodeposition thin film can also be mentioned as an organic electrodeposition thin film.

有機電着薄膜がポリイミド薄膜であるCu−Ni−電着ポリイミド薄膜積層構造体は、例えば、Cu基材上に厚さ1μm以上のNi層を形成し、次いで、カルボキシル基を分子構造内に有するアニオン性ポリイミドの水と有機溶媒との混合溶媒溶液である電着液にNi層を接触させ、Ni層上に上記アニオン性ポリイミドを、Ni層が形成されたCu基材を陽極として電着してポリイミド薄膜を成膜することにより形成することができる。   The Cu-Ni-electrodeposited polyimide thin film laminated structure in which the organic electrodeposited thin film is a polyimide thin film has, for example, a Ni layer having a thickness of 1 μm or more formed on a Cu substrate, and then has a carboxyl group in the molecular structure. The Ni layer is brought into contact with an electrodeposition solution that is a mixed solvent solution of an anionic polyimide water and an organic solvent, the anionic polyimide is electrodeposited on the Ni layer, and the Cu base material on which the Ni layer is formed is electrodeposited. It can be formed by forming a polyimide thin film.

本発明において、ポリイミド薄膜は、カルボキシル基を分子構造内に有するアニオン性ポリイミドの水と有機溶媒との混合溶媒溶液を電着液(電着用組成物)として成膜することができるが、このような電着液としては、電着によるポリイミド薄膜の成膜に用いられる公知の電着液を用いることができる。   In the present invention, the polyimide thin film can be formed as an electrodeposition liquid (electrodeposition composition) by using a mixed solvent solution of an anionic polyimide having a carboxyl group in the molecular structure and an organic solvent. As a suitable electrodeposition solution, a known electrodeposition solution used for forming a polyimide thin film by electrodeposition can be used.

ポリイミド電着液としては、アニオン性ポリイミド、例えば、特開平9−104839号公報(特許文献4)等に記載されているランダム共重合アニオン性ポリイミドを用いるもの、特開2003−327905号公報(特許文献6)、特開2003−327907号公報(特許文献7)等に記載されているブロック共重合ポリイミドを用いる電着液を挙げることができるが、得られる電着ポリイミド膜の密着性が良好となる観点から、ブロック共重合アニオン性ポリイミドを用いるものが特に好ましい。   As the polyimide electrodeposition solution, an anionic polyimide, for example, a random copolymerized anionic polyimide described in JP-A-9-104839 (Patent Document 4), JP-A 2003-327905 (Patent) Reference 6), an electrodeposition liquid using a block copolymerized polyimide described in JP-A No. 2003-327907 (Patent Document 7) and the like can be mentioned, but the adhesion of the obtained electrodeposition polyimide film is good. From this point of view, those using block copolymerized anionic polyimide are particularly preferred.

この電着液としては、ジアミンと酸二無水物との反応生成物からなるランダム共重合アニオン性ポリイミド又はブロック共重合アニオン性ポリイミドを含むものが挙げられる。   As this electrodeposition liquid, what contains the random copolymerization anionic polyimide or the block copolymerization anionic polyimide which consists of a reaction product of diamine and an acid dianhydride is mentioned.

上記ジアミンとしては、芳香族ジアミンを含むことが好ましく、芳香族ジアミンとしては、o−,m−,p−フェニレンジアミン、2,4−ジアミノトルエン、2,5−ジアミノトルエン、2,4−ジアミノキシレン、ジアミノジュレン、1,5−ジアミノナフタレン、2,6−ジアミノナフタレン、ベンジジン、4,4’−ジアミノターフェニル、4,4’−ジアミノクォーターフェニル、4,4’−ジアミノジフェニルメタン、1,2−ビス(アニリノ)エタン、4,4’−ジアミノジフェニルエーテル、ジアミノジフェニルスルホン、2,2−ビス(p−アミノフェニル)プロパン、3,3’−ジメチルベンジジン、3,3’−ジメチル−4,4’−ジアミノジフェニルエーテル、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、ジアミノトルエン、1,4−ビス(p−アミノフェノキシ)ベンゼン、4,4’−ビス−(p−アミノフェノキシ)ビフェニル、2,2−ビス{4−(p−アミノフェノキシ)フェニル}プロパン、4,4’−ビス(3−アミノフェノキシフェニル)ジフェニルスルホン、2,2−ビス{4−(p−アミノフェノキシ)フェニル}ヘキサフルオロプロパンなどが挙げられる。また、2,6−ジアミノピリジンなどの芳香族ジアミン以外のジアミンを含んでいてもよい。2,6−ジアミノピリジンを含むポリイミドは、分子内に酸基と塩基とを持ち、ポリマー相互作用によって、良好なポリイミド薄膜を成膜する。更には、水に対する親和性を増し、水溶性電着液として安定となり、得られた電着膜が平滑で緻密になる利点がある。   The diamine preferably includes an aromatic diamine, and examples of the aromatic diamine include o-, m-, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, and 2,4-diamino. Xylene, diaminodurene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, benzidine, 4,4′-diaminoterphenyl, 4,4′-diaminoquaterphenyl, 4,4′-diaminodiphenylmethane, 1, 2-bis (anilino) ethane, 4,4′-diaminodiphenyl ether, diaminodiphenyl sulfone, 2,2-bis (p-aminophenyl) propane, 3,3′-dimethylbenzidine, 3,3′-dimethyl-4, 4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminodiphenyl Tan, diaminotoluene, 1,4-bis (p-aminophenoxy) benzene, 4,4′-bis- (p-aminophenoxy) biphenyl, 2,2-bis {4- (p-aminophenoxy) phenyl} propane 4,4′-bis (3-aminophenoxyphenyl) diphenylsulfone, 2,2-bis {4- (p-aminophenoxy) phenyl} hexafluoropropane, and the like. Further, it may contain a diamine other than an aromatic diamine such as 2,6-diaminopyridine. Polyimide containing 2,6-diaminopyridine has an acid group and a base in the molecule, and forms a good polyimide thin film by polymer interaction. Furthermore, there is an advantage that the affinity for water is increased, the water-soluble electrodeposition solution is stabilized, and the obtained electrodeposition film is smooth and dense.

また、酸二無水物としては、ピロメリット酸二無水物、1,2,3,4−ベンゼンテトラカルボン酸二無水物、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物、3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,2’,3’−ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(2,3−ジカルボキシフェニル)エーテル二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(2,3−ジカルボキシフェニル)スルホン二無水物、4,4’−{2,2,2−トリフルオロ−1−(トリフルオロメチル)エチリデン}ビス(1,2−ベンゼンジカルボン酸無水物)、9,9−ビス{4−(3,4−ジカルボキシフェノキシ)フェニル}フルオレン二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、2,3,5,6−ピリジンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物等の芳香族テトラカルボン酸二無水物を挙げることができる。   Examples of the acid dianhydride include pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride, 2,3,2 ′, 3′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic acid Dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxy) Phenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (2,3-dicarboxyphenyl) sulfone 4,4 ′-{2,2,2-trifluoro-1- (trifluoromethyl) ethylidene} bis (1,2-benzenedicarboxylic anhydride), 9,9-bis {4- (3 4-dicarboxyphenoxy) phenyl} fluorene dianhydride, 1,2,5,6-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 1,4,5 , 8-Naphthalenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, bicyclo [2.2.2 And aromatic tetracarboxylic dianhydrides such as octo-7-ene-2,3,5,6-tetracarboxylic dianhydride.

ランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドは、これらのジアミンと酸二無水物とをほぼ等量用いて、加熱、脱水することにより得られる。ブロック共重合アニオン性ポリイミドの場合は、逐次添加反応によって製造され、第一段階で、酸二無水物とジアミンからポリイミドオリゴマーとし、第二段階で、更に酸二無水物及び/又はジアミンを添加して、重縮合してブロック共重合アニオン性ポリイミドとする。本発明において、ランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドの分子量(ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算値)は50,000〜100,000、特に60,000〜80,000が好適である。   Random copolymerized anionic polyimide and block copolymerized anionic polyimide can be obtained by heating and dehydrating using approximately equal amounts of these diamines and acid dianhydrides. In the case of a block copolymerized anionic polyimide, it is produced by a sequential addition reaction. In the first stage, a polyimide oligomer is formed from acid dianhydride and diamine, and in the second stage, acid dianhydride and / or diamine is further added. Then, polycondensation is performed to obtain a block copolymerized anionic polyimide. In the present invention, the molecular weight of the random copolymerized anionic polyimide and the block copolymerized anionic polyimide (polystyrene conversion value by gel permeation chromatography (GPC)) is 50,000 to 100,000, particularly 60,000 to 80,000. Is preferred.

このランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドは、通常、塩基性化合物で中和したものとして電着液に用いられる。この塩基性化合物としては、N−ジメチルエタノール、トリエチルアミン、トリエタノールアミン、N−ジメチルベンジルアミン、N−メチルモルホリンが用いられるが、N−ジメチルエタノールやN−メチルモルホリンが好適である。中和剤(塩基性化合物)の使用量はポリイミドが溶液中で溶解または安定に分散する程度であって、通常は化学量論中和量の30モル%以上、特に30〜200モル%であることが好ましい。また、電着液中の中和されたポリイミドの固形分濃度は5〜15質量%であることが好ましい。   This random copolymerized anionic polyimide and block copolymerized anionic polyimide are usually used in an electrodeposition solution as neutralized with a basic compound. As the basic compound, N-dimethylethanol, triethylamine, triethanolamine, N-dimethylbenzylamine, and N-methylmorpholine are used, and N-dimethylethanol and N-methylmorpholine are preferable. The amount of the neutralizing agent (basic compound) used is such that the polyimide is dissolved or stably dispersed in the solution, and is usually 30 mol% or more, particularly 30 to 200 mol% of the stoichiometric neutralization amount. It is preferable. Moreover, it is preferable that the solid content density | concentration of the neutralized polyimide in an electrodeposition liquid is 5-15 mass%.

一方、電着液の溶媒としては、水と有機溶媒とが用いられ、有機溶媒としては、このランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドを溶解する水溶性極性有機溶媒、例えば、N−メチルピロリドン、N,N’−ジメチルアセトアミド、N,N’−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、テトラヒドロチオフェン−1,1−オキシド等が用いられる。好ましくは毒性の少ないN−メチルピロリドン、テトラヒドロチオフェン−1,1−オキシドが好ましい。これら水溶性極性有機溶媒は、上述したブロック共重合アニオン性ポリイミドを製造する際の反応溶媒として用いたものでもよい。   On the other hand, water and an organic solvent are used as the solvent for the electrodeposition solution, and the organic solvent is a water-soluble polar organic solvent that dissolves the random copolymerized anionic polyimide and the block copolymerized anionic polyimide, for example, N -Methylpyrrolidone, N, N'-dimethylacetamide, N, N'-dimethylformamide, dimethyl sulfoxide, tetramethylurea, tetrahydrothiophene-1,1-oxide, etc. are used. N-methylpyrrolidone and tetrahydrothiophene-1,1-oxide, which are less toxic, are preferred. These water-soluble polar organic solvents may be those used as a reaction solvent when the above-described block copolymerized anionic polyimide is produced.

また、電着液に含まれる有機溶媒としては、ランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドを溶解する油溶性溶媒を用いてもよい。油溶性溶媒は、電着後の被着物に析出したポリイミド樹脂のフロー性を高め、塗膜の平滑性を向上させる点で効果がある。またその結果として、電着液の貯蔵安定性を高めることができる。ここで油溶性溶媒とは、実質的に水に不溶性か又は難溶性の有機溶媒を意味する。ランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドを溶解する油溶性溶媒としては、1−アセトナフトン、アセトフェノン、ベンジルアセトン、メチルアセトフェノン、ジメチルアセトフェノン、プロピオフェノン、バレロフェノン、アニソール、安息香酸メチル、安息香酸ベンジルなどが挙げられる。   Moreover, as the organic solvent contained in the electrodeposition liquid, an oil-soluble solvent that dissolves the random copolymerized anionic polyimide and the block copolymerized anionic polyimide may be used. The oil-soluble solvent is effective in that it improves the flowability of the polyimide resin deposited on the adherend after electrodeposition and improves the smoothness of the coating film. As a result, the storage stability of the electrodeposition liquid can be enhanced. Here, the oil-soluble solvent means an organic solvent that is substantially insoluble or hardly soluble in water. Examples of oil-soluble solvents for dissolving random copolymerized anionic polyimide and block copolymerized anionic polyimide include 1-acetonaphthone, acetophenone, benzylacetone, methylacetophenone, dimethylacetophenone, propiophenone, valerophenone, anisole, methyl benzoate, benzoic acid Examples include benzyl acid.

更に、電着液に含まれる有機溶媒としては、フェニル基、フルフリル基又はナフチル基を有するアルコール等のポリイミドに対する貧溶媒を併用することが好ましく、このようなものとしては、例えばベンジルアルコール、置換ベンジルアルコール、フルフリルアルコールなどを挙げることができる。   Further, as the organic solvent contained in the electrodeposition liquid, it is preferable to use a poor solvent for polyimide such as an alcohol having a phenyl group, a furfuryl group or a naphthyl group, and examples thereof include benzyl alcohol and substituted benzyl. Examples thereof include alcohol and furfuryl alcohol.

電着液中の溶媒の濃度は85〜95質量%であるが、有機溶媒の濃度は15〜85質量%、特に20〜70質量%であり、溶媒として水を併用する場合、これと上述した中和されたポリイミドの固形分濃度との残部が水の濃度となる。なお、上記油溶性溶媒を用いる場合、電着液中の油溶性溶媒の濃度は10〜30質量%であることが好ましく、また、上記ポリイミドに対する貧溶媒を用いる場合、電着液中の貧溶媒の濃度は5〜15質量%であることが好ましい。電着液のpHは、ほぼ中性乃至弱塩基性(例えばpH=7〜9、好ましくは7.5〜8)であることが好ましい。   Although the concentration of the solvent in the electrodeposition liquid is 85 to 95% by mass, the concentration of the organic solvent is 15 to 85% by mass, particularly 20 to 70% by mass. The balance with the solid content concentration of the neutralized polyimide is the concentration of water. In addition, when using the said oil-soluble solvent, it is preferable that the density | concentration of the oil-soluble solvent in an electrodeposition liquid is 10-30 mass%, and when using the poor solvent with respect to the said polyimide, the poor solvent in an electrodeposition liquid The concentration of is preferably 5 to 15% by mass. It is preferable that the pH of the electrodeposition liquid is approximately neutral to weakly basic (for example, pH = 7 to 9, preferably 7.5 to 8).

上述した電着液としては、株式会社ピーアイ技術研究所製の可溶型ブロック共重合ポリイミド電着液Q−EDシリーズ(例えば、Q−ED−21−129等)などの市販品を用いることができる。   As the electrodeposition liquid described above, a commercially available product such as a soluble block copolymerized polyimide electrodeposition liquid Q-ED series (for example, Q-ED-21-129, etc.) manufactured by PI Engineering Laboratory Co., Ltd. may be used. it can.

電着条件は、従来公知の条件をそのまま採用することができる。例えば、ランダム共重合アニオン性ポリイミド又はブロック共重合アニオン性ポリイミドを用いる場合、導電性被着物を温度15〜35℃にて電着液に浸漬し、陰極としてCu、Pt等の電極を用い、電圧20〜400V、好ましくは50〜200Vで、通電時間30秒〜10分間、好ましくは1〜5分間通電することにより導電性被着物の表面に溶媒を含むポリイミド薄膜が成膜される。   Conventionally known conditions can be adopted as electrodeposition conditions. For example, when using a random copolymerized anionic polyimide or a block copolymerized anionic polyimide, the conductive adherend is immersed in an electrodeposition solution at a temperature of 15 to 35 ° C., and an electrode such as Cu or Pt is used as a cathode. A polyimide thin film containing a solvent is formed on the surface of the conductive deposit by energizing at 20 to 400 V, preferably 50 to 200 V, and energizing time 30 seconds to 10 minutes, preferably 1 to 5 minutes.

更に、洗浄、風乾後、120〜220℃で30分〜1時間加熱して溶媒を揮発させることにより乾燥され、固化したポリイミド薄膜が得られる。なお、電着された薄膜は、既にポリイミドであるため、加熱は溶媒を飛散させるに足る温度で十分であり、溶媒の種類にもよるが、赤外線加熱で80〜150℃程度の温度で、30分〜1時間でよいこともある。電着ポリイミド薄膜の膜厚は、特に限定されないが、通常1〜100μmである。   Furthermore, after washing and air drying, the polyimide thin film is dried and solidified by heating at 120 to 220 ° C. for 30 minutes to 1 hour to volatilize the solvent. In addition, since the electrodeposited thin film is already a polyimide, heating is sufficient at a temperature sufficient to disperse the solvent, and depending on the type of the solvent, the heating is performed at a temperature of about 80 to 150 ° C. by infrared heating. Minutes to 1 hour may be sufficient. Although the film thickness of an electrodeposition polyimide thin film is not specifically limited, Usually, it is 1-100 micrometers.

本発明においては、有機電着薄膜が成膜されるCu基材は、電着時には陽極となる。また、上記Cu基材上に形成されるNi層は、例えば、電解めっき、無電解めっきの他、スパッタリング等のドライメッキなどにより形成することが可能であり、その厚さは1μm以上である。厚さの上限は特に限定されないが、通常5μm以下とすることが好ましい。なお、上記Cu基材上のNi層は有機電着薄膜を成膜する所望の部分に形成されていればよいが、Cu基材の有機電着薄膜を成膜する部分以外の部分であって電着液に浸漬される部分は、Cu基材が露出せず、電気的に絶縁された状態とすることが必要である。   In the present invention, the Cu substrate on which the organic electrodeposition thin film is formed serves as an anode during electrodeposition. The Ni layer formed on the Cu substrate can be formed by, for example, electrolytic plating, electroless plating, dry plating such as sputtering, and the thickness is 1 μm or more. Although the upper limit of thickness is not specifically limited, Usually, it is preferable to set it as 5 micrometers or less. The Ni layer on the Cu substrate may be formed at a desired portion where the organic electrodeposition thin film is formed, but the portion other than the portion where the organic electrodeposition thin film is formed on the Cu substrate. The part immersed in the electrodeposition liquid needs to be in an electrically insulated state without exposing the Cu base material.

なお、本発明は、例えば、フレキシブルプリント基板の銅板や銅箔等の銅層上の絶縁膜として有機電着薄膜を積層した構造体及びその形成方法として好適である。特に、フレキシブルプリント基板においては、小型化、軽量化のために、また、圧延銅箔の屈曲性を維持するために、有機電着薄膜の薄膜化の要望があるが、本発明によれば、銅箔上に例えば1〜20μm、特に5〜10μmという従来の25〜75μmに比べて格段に薄膜化された有機電着薄膜を備えるCu−Ni−有機電着薄膜積層構造体を、有機電着薄膜の密着性を低下させることなく得ることができる。   In addition, this invention is suitable as a structure which laminated | stacked the organic electrodeposition thin film as an insulating film on copper layers, such as a copper plate of a flexible printed circuit board, copper foil, etc., and its formation method, for example. In particular, in the flexible printed circuit board, there is a demand for thinning the organic electrodeposition thin film in order to reduce the size and weight, and to maintain the flexibility of the rolled copper foil. A Cu-Ni-organic electrodeposition thin film laminated structure comprising an organic electrodeposition thin film that is significantly thinner than a conventional 25 to 75 μm, for example 1 to 20 μm, particularly 5 to 10 μm, on a copper foil. It can be obtained without reducing the adhesion of the thin film.

また、上述したランダム共重合アニオン性ポリイミド又はブロック共重合アニオン性ポリイミドを用いた電着液を用いた場合、イミド化を目的とした電着後の高温熱処理が不要であるので、熱処理による銅の再結晶化が抑制され、高い耐折特性を維持することができる。更に、本発明は、凹凸のある基板上のCu配線パターン、Cu三次元構造体など上に有機電着薄膜を形成した構造体及びその形成方法としても好適である。   In addition, when the electrodeposition liquid using the random copolymerized anionic polyimide or the block copolymerized anionic polyimide described above is used, high-temperature heat treatment after electrodeposition for imidization is not necessary, Recrystallization is suppressed and high folding resistance can be maintained. Furthermore, the present invention is also suitable as a structure in which an organic electrodeposition thin film is formed on a Cu wiring pattern, a Cu three-dimensional structure, etc. on an uneven substrate, and a method for forming the structure.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to the following Example.

[実施例1]
3cm×5cm、厚さ36μmのCu箔に以下の前処理1(電解脱脂、酸洗浄1、酸洗浄2)を施した。
前処理1
電解脱脂:界面活性剤を含む3%NaOH水溶液に浸漬し、電流密度10A/dm2で60秒処理。
酸洗浄1:10%リン酸水溶液中で揺動させながら60秒間浸漬。
酸洗浄2:10%硫酸水溶液中で揺動させながら60秒間浸漬。
[Example 1]
The following pretreatment 1 (electrolytic degreasing, acid cleaning 1, acid cleaning 2) was applied to a Cu foil having a size of 3 cm × 5 cm and a thickness of 36 μm.
Pretreatment 1
Electrolytic degreasing: Immerse in a 3% NaOH aqueous solution containing a surfactant and treat at a current density of 10 A / dm 2 for 60 seconds.
Acid cleaning 1: immersed for 60 seconds in a 10% phosphoric acid aqueous solution while rocking.
Acid cleaning 2: immersed for 60 seconds while rocking in 10% sulfuric acid aqueous solution.

次に、上記前処理1を施したCu箔を水洗し、電気めっき法によりCu箔上にNi層(厚さ1μm)を形成し、水洗後、大気中、室温で乾燥した。   Next, the Cu foil subjected to the pretreatment 1 was washed with water, an Ni layer (thickness: 1 μm) was formed on the Cu foil by electroplating, washed with water, and then dried in the atmosphere at room temperature.

次に、Ni層を形成したCu箔に以下の前処理2(プレディップ1及びプレディップ2)を施した。
前処理2
プレディップ1:市販の電着液用希釈液(株式会社ピーアイ技術研究所製)中で揺動させながら15秒間浸漬。
プレディップ2:市販の電着液(株式会社ピーアイ技術研究所製 Q−ED−21−129)中で揺動させながら15秒間浸漬。
Next, the following pretreatment 2 (pre-dip 1 and pre-dip 2) was applied to the Cu foil on which the Ni layer was formed.
Pretreatment 2
Pre-dip 1: Immersion for 15 seconds while rocking in a commercially available diluent for electrodeposition (made by PI Engineering Laboratory Co., Ltd.).
Pre-dip 2: Immersion for 15 seconds while rocking in a commercially available electrodeposition solution (Q-ED-21-129 manufactured by PI Engineering Laboratory Co., Ltd.).

次に、上記前処理2を施したNi層を形成したCu箔を市販の電着液(株式会社ピーアイ技術研究所製 Q−ED−21−129)に室温で浸漬し、対極をPt線とし、印加電圧60V、通電時間5分として、Cu箔上にNi層を介してポリイミド薄膜を電着し、電着後、ポリイミド薄膜を成膜したCu箔を、市販の電着液用希釈液(株式会社ピーアイ技術研究所製)中で揺動させながら15秒間浸漬し、その後、90℃で30分間、大気中で加熱乾燥して、Cu箔上にNi層を介してポリイミド薄膜(厚さ50μm)を成膜したCu−Ni−電着ポリイミド薄膜積層構造体を得た。   Next, the Cu foil on which the Ni layer subjected to the pretreatment 2 was formed was immersed in a commercially available electrodeposition solution (Q-ED-21-129, manufactured by PI Engineering Laboratory Co., Ltd.) at room temperature, and the counter electrode was used as a Pt wire. Then, an applied voltage of 60 V and an energization time of 5 minutes were used for electrodeposition of a polyimide thin film on a Cu foil via a Ni layer. After electrodeposition, a Cu foil on which a polyimide thin film was formed was used as a commercially available diluent for electrodeposition liquid ( It is immersed for 15 seconds while swinging in PIA Research Laboratory Co., Ltd., then heated and dried at 90 ° C. for 30 minutes in the atmosphere, and a polyimide thin film (thickness 50 μm) through a Ni layer on Cu foil. Cu-Ni-electrodeposited polyimide thin film laminated structure was obtained.

その後、180℃で30分間、引き続き220℃で、30分間大気中で加熱した。   Then, it heated in air | atmosphere for 30 minutes at 220 degreeC for 30 minutes at 180 degreeC.

得られたポリイミド薄膜の密着性を下記剥離試験により評価した。   The adhesion of the obtained polyimide thin film was evaluated by the following peel test.

剥離試験:カッターナイフを用いて1mm間隔のスリットを入れた後、ピンセットを用いてひっかいたときに、剥離がなかったものを良好、剥離があったものを不良とした。   Peeling test: After putting slits at 1 mm intervals using a cutter knife and scratching with tweezers, those that did not peel off were good and those that were peeled off were considered bad.

その結果、耐電圧試験及び剥離試験ともに良好であった。また、ポリイミド薄膜中及び電着液中のいずれにもCu及びNiは共に検出されなかった。   As a result, both the withstand voltage test and the peel test were good. Further, neither Cu nor Ni was detected in either the polyimide thin film or the electrodeposition solution.

[比較例1]
前処理1後の水洗、Ni層の形成及びその後の水洗、乾燥を実施しなかった以外は実施例1と同様の方法でポリイミド薄膜をCu箔上に直接成膜した。得られたポリイミド薄膜の密着性を実施例1と同様にして評価した。
[Comparative Example 1]
A polyimide thin film was directly formed on the Cu foil in the same manner as in Example 1 except that water washing after the pretreatment 1, formation of the Ni layer and subsequent water washing and drying were not performed. The adhesion of the obtained polyimide thin film was evaluated in the same manner as in Example 1.

その結果、剥離試験は不良であった。   As a result, the peel test was poor.

本発明のCu−Ni−有機電着薄膜積層構造体の一例を示す断面図である。It is sectional drawing which shows an example of the Cu-Ni-organic electrodeposition thin film laminated structure of this invention.

符号の説明Explanation of symbols

1 有機電着薄膜
2 Ni層
3 Cu基材
1 Organic Electrodeposition Thin Film 2 Ni Layer 3 Cu Base

Claims (7)

Cu基材上に厚さ1μm以上のNi層を介して有機電着薄膜を成膜してなることを特徴とするCu−Ni−有機電着薄膜積層構造体。   A Cu-Ni-organic electrodeposited thin film laminated structure, wherein an organic electrodeposited thin film is formed on a Cu substrate through a Ni layer having a thickness of 1 μm or more. 上記有機電着薄膜がポリイミド薄膜であることを特徴とする請求項1記載のCu−Ni−有機電着薄膜積層構造体。   The Cu-Ni-organic electrodeposition thin film laminated structure according to claim 1, wherein the organic electrodeposition thin film is a polyimide thin film. 上記電着ポリイミド薄膜が、カルボキシル基を分子構造内に有するアニオン性ポリイミドの水と有機溶媒との混合溶媒溶液であるポリイミド電着液から電着にて成膜されてなることを特徴とする請求項2記載のCu−Ni−有機電着薄膜積層構造体。   The electrodeposited polyimide thin film is formed by electrodeposition from a polyimide electrodeposition solution which is a mixed solvent solution of water and an organic solvent of an anionic polyimide having a carboxyl group in a molecular structure. Item 3. A Cu-Ni-organic electrodeposited thin film laminated structure according to Item 2. 上記アニオン性ポリイミドがブロック共重合アニオン性ポリイミドであることを特徴とする請求項3記載のCu−Ni−有機電着薄膜積層構造体。   The Cu-Ni-organic electrodeposition thin film laminated structure according to claim 3, wherein the anionic polyimide is a block copolymerized anionic polyimide. Cu基材上に厚さ1μm以上のNi層を形成し、次いで、アニオン性材料電着液に上記Ni層を接触させ、該Ni層上に上記アニオン性材料を上記Ni層が形成されたCu基材を陽極として電着して有機電着薄膜を成膜することを特徴とするCu−Ni−有機電着薄膜積層構造体の形成方法。   A Cu layer in which a Ni layer having a thickness of 1 μm or more is formed on a Cu substrate, the Ni layer is then brought into contact with an anionic material electrodeposition solution, and the Ni layer is formed on the Ni layer. A method for forming a Cu-Ni-organic electrodeposited thin film laminate structure, wherein an organic electrodeposited thin film is formed by electrodeposition using a substrate as an anode. Cu基材上に厚さ1μm以上のNi層を形成し、次いで、カルボキシル基を分子構造内に有するアニオン性ポリイミドの水と有機溶媒との混合溶媒溶液である電着液に上記Ni層を接触させ、該Ni層上に上記アニオン性ポリイミドを上記Ni層が形成されたCu基材を陽極として電着してポリイミド薄膜を成膜することを特徴とする請求項5記載のCu−Ni−有機電着薄膜積層構造体の形成方法。   A Ni layer having a thickness of 1 μm or more is formed on a Cu substrate, and then the Ni layer is brought into contact with an electrodeposition solution that is a mixed solvent solution of an anionic polyimide having a carboxyl group in the molecular structure and an organic solvent. 6. A Cu-Ni-existent film according to claim 5, wherein the anionic polyimide is electrodeposited on the Ni layer and the Cu base material on which the Ni layer is formed is electrodeposited to form a polyimide thin film. A method for forming an electro-deposition thin film laminated structure. 上記アニオン性ポリイミドがブロック共重合アニオン性ポリイミドであることを特徴とする請求項6記載のCu−Ni−有機電着薄膜積層構造体の形成方法。
The said anionic polyimide is block copolymerization anionic polyimide, The formation method of the Cu-Ni-organic electrodeposition thin film laminated structure of Claim 6 characterized by the above-mentioned.
JP2006226116A 2006-08-23 2006-08-23 Cu-Ni-ORGANIC ELECTRODEPOSITED THIN FILM STACKED STRUCTURE AND METHOD FOR FORMING THE SAME Pending JP2008050635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006226116A JP2008050635A (en) 2006-08-23 2006-08-23 Cu-Ni-ORGANIC ELECTRODEPOSITED THIN FILM STACKED STRUCTURE AND METHOD FOR FORMING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006226116A JP2008050635A (en) 2006-08-23 2006-08-23 Cu-Ni-ORGANIC ELECTRODEPOSITED THIN FILM STACKED STRUCTURE AND METHOD FOR FORMING THE SAME

Publications (1)

Publication Number Publication Date
JP2008050635A true JP2008050635A (en) 2008-03-06

Family

ID=39234959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006226116A Pending JP2008050635A (en) 2006-08-23 2006-08-23 Cu-Ni-ORGANIC ELECTRODEPOSITED THIN FILM STACKED STRUCTURE AND METHOD FOR FORMING THE SAME

Country Status (1)

Country Link
JP (1) JP2008050635A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020179525A (en) * 2019-04-23 2020-11-05 株式会社シミズ Copper damage prevention membrane, method for manufacturing copper member with copper damage prevention membrane and copper damage prevention method
TWI795595B (en) * 2018-09-20 2023-03-11 日商住友精化股份有限公司 Electrodeposition paint and insulating film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251436A (en) * 1975-10-21 1977-04-25 Westinghouse Electric Corp Method of coating through electrodeposition
JPH03120779A (en) * 1989-10-03 1991-05-22 Hitachi Chem Co Ltd Manufacture of printed-wiring board
JP2003327905A (en) * 2002-05-07 2003-11-19 Pi R & D Co Ltd Blocked copolymer polyimide composition for electrodeposition
JP2005162954A (en) * 2003-12-05 2005-06-23 Pi R & D Co Ltd Electrodeposition coating material composition and electrodepositing method using the same
JP2005187914A (en) * 2003-12-26 2005-07-14 Mitsui Mining & Smelting Co Ltd Smoothing heat treatment method for polyimide resin film formed by electrodeposition coating method, polyimide resin film subjected to the smoothing heat treatment, and flexible copper-clad laminate using the polyimide resin film as insulative layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251436A (en) * 1975-10-21 1977-04-25 Westinghouse Electric Corp Method of coating through electrodeposition
JPH03120779A (en) * 1989-10-03 1991-05-22 Hitachi Chem Co Ltd Manufacture of printed-wiring board
JP2003327905A (en) * 2002-05-07 2003-11-19 Pi R & D Co Ltd Blocked copolymer polyimide composition for electrodeposition
JP2005162954A (en) * 2003-12-05 2005-06-23 Pi R & D Co Ltd Electrodeposition coating material composition and electrodepositing method using the same
JP2005187914A (en) * 2003-12-26 2005-07-14 Mitsui Mining & Smelting Co Ltd Smoothing heat treatment method for polyimide resin film formed by electrodeposition coating method, polyimide resin film subjected to the smoothing heat treatment, and flexible copper-clad laminate using the polyimide resin film as insulative layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795595B (en) * 2018-09-20 2023-03-11 日商住友精化股份有限公司 Electrodeposition paint and insulating film
JP2020179525A (en) * 2019-04-23 2020-11-05 株式会社シミズ Copper damage prevention membrane, method for manufacturing copper member with copper damage prevention membrane and copper damage prevention method

Similar Documents

Publication Publication Date Title
US5741599A (en) Polyimide compositions for electrodeposition and coatings formed of the same
TWI450918B (en) Surface treatment method of polyimide resin and method for producing metal foil laminated body
KR101451264B1 (en) Method of modifying surface of polyimide resin layer and process for producing metal-clad laminate
TWI433879B (en) Method for surface modification of polyimide resin layer and method for manufacturing sheet metal paste
KR100811586B1 (en) Laminate comprising polyimide and conductor layer, process for producing the same and multi-layer wiring board with the use of the same
JP2008227126A (en) Fine coaxial wire, its manufacturing method, and semiconductor device
JP4998871B2 (en) Electrodeposited polyimide thin film and method for forming the same
JP2006278371A (en) Manufacturing method of polyimide-metal layer laminate, and the polyimide-metal layer laminate obtained thereby
JP4654647B2 (en) Polyamideimide film with metal for circuit board and method for producing the same
JP5345116B2 (en) Copper-clad laminate, manufacturing method thereof, and wiring board including the copper-clad laminate
JP2000151046A (en) Polyimide film and flexible boar
TW200405776A (en) Two-layer copper polyimide substrate
JP2008050635A (en) Cu-Ni-ORGANIC ELECTRODEPOSITED THIN FILM STACKED STRUCTURE AND METHOD FOR FORMING THE SAME
JP4956702B2 (en) Cu-Ni-organic electrodeposition thin film laminated structure and method for forming the same
JP2005162954A (en) Electrodeposition coating material composition and electrodepositing method using the same
JP2017075206A (en) Polyimide for electrodeposition and electrodeposition coating composition containing the same
JP5240812B2 (en) Plating film-polyimide laminate and method for producing the same
JP2005041049A (en) Wide copper clad laminated board
JP2009283528A (en) Polyimide base printed wiring board and method of manufacturing the same
JP3691952B2 (en) Wiring board and manufacturing method thereof
JP5042728B2 (en) Method for modifying surface of polyimide resin layer and method for producing metal-clad laminate
CN1432661A (en) Metal layer forming process and laminated metal foil-based product
TWI282759B (en) Electro-conductive metal plated polyimide substrate
WO2015101135A1 (en) Polyimide film, flexible circuit board, and method of preparing the same
JP4521683B2 (en) Polyimide film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20090803

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Effective date: 20090806

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20090803

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110831

A521 Written amendment

Effective date: 20111025

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111116