JP2008049988A - High speed fishing boat - Google Patents

High speed fishing boat Download PDF

Info

Publication number
JP2008049988A
JP2008049988A JP2006259768A JP2006259768A JP2008049988A JP 2008049988 A JP2008049988 A JP 2008049988A JP 2006259768 A JP2006259768 A JP 2006259768A JP 2006259768 A JP2006259768 A JP 2006259768A JP 2008049988 A JP2008049988 A JP 2008049988A
Authority
JP
Japan
Prior art keywords
hull
ship
propeller
center
buoyancy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006259768A
Other languages
Japanese (ja)
Inventor
Toshiyuki Toshima
俊之 戸嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO MARINE KK
Original Assignee
TECHNO MARINE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO MARINE KK filed Critical TECHNO MARINE KK
Priority to JP2006259768A priority Critical patent/JP2008049988A/en
Publication of JP2008049988A publication Critical patent/JP2008049988A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ship type for reducing labor, and increasing a speed, by simultaneously realizing a high speed ship type of approaching the buoyancy center backward, by taking in an inclined flat surface being smooth and untwistable in a ship bottom gliding surface over the stern end from the longitudinal center vicinity, while arranging a large skeg, a large propelling propeller and a large rudder being the requirements required for a fishing boat. <P>SOLUTION: A projection part 7 having a triangular cross-sectional shape is bilaterally symmetrically arranged to the hull center line 11. This constitutes buoyancy reaching the stern end from its central vicinity in the longitudinal direction of a hull, and can position the longitudinal center LCB of the buoyancy backward as the whole ship. A knuckle line 8 constituted in front and in rear by the apex 8a of a triangle is formed in a shape near to a straight line together with a chine line 12, and is arranged near to parallel, and thereby, the ship bottom gliding surface 4 over the stern end from the longitudinal center vicinity of the hull, can be formed as an untwistable surface near to a plane. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、大きなスケグをキールに持ち、同時に高速走行が可能な滑走面を持つ漁船など船舶に関する。The present invention relates to a ship such as a fishing boat having a large skeg on a keel and a sliding surface capable of high speed traveling at the same time.

漁船はその魚種、漁法、漁場により、さまざまであるが、海上にて漁を行うときはどの船も停船しているか、割合ゆっくり走航している場合が多い。荷物を運ぶ貨物船やタンカー、あるいは沿岸警備艇、プレジャーボート等、他の船種との相違点は、ある決まった船速で走るものではないということである。漁船が他の船舶に比して割合大きなスケグを設けている理由は、停船時、低速走航時の性能確保のためである。Fishing boats vary depending on the type of fish, fishing method, and fishing ground, but when fishing at sea, there are many cases where all boats are stopped or run slowly. The difference with other ship types such as cargo ships and tankers that carry luggage, coast guard boats, pleasure boats, etc. is that they do not run at a fixed speed. The reason why fishing boats have a larger skeg than other vessels is to ensure performance when stopping and running at low speed.

低速にて重い網を引く時、横流れを少なくするために大きなスケグが有効である。又、魚のいる同一地点にとどまっていなければならない場合も多い。潮、風に流されずに同じ場所にとどまるためには、船首を同じ方向、つまり風上側に向けておかなければならない。そのためには、水面下の船側面積中心(CLR)が船首側になければならず、やはり大きなスケグを水面下に設けていなくてはならない。When drawing heavy nets at low speeds, large skegs are effective to reduce cross flow. In many cases, it is necessary to stay at the same spot where the fish are located. In order to stay in the same place without being swept by the tide or wind, the bow must be directed in the same direction, that is, upwind. To that end, the ship side area center (CLR) below the water surface must be on the bow side, and a large skeg must be provided below the water surface.

更にこの大きなスケグは漁撈中に網やロープを推進用プロペラに巻き込まないために必要である。船が網やロープの上に乗り上げても、網やロープは船首から船尾までのびるスケグの下を通り、推進用プロペラに巻き込むことはない。In addition, this large skeg is necessary to prevent nets and ropes from getting caught in the propeller for propulsion during fishing. Even if a ship rides on a net or rope, the net or rope passes under the skeg extending from the bow to the stern and does not get caught in the propeller for propulsion.

本キール式の大きなスケグを持つ漁船は、港のスロープにそのまま上架(浜上げ)することができる。造船所や特別な上架設備を持たなくとも船主は毎日のように漁船を浜上げし、陸上に保管しておくことができる。一方、本キール式のスケグを持たなくとも、大きなスケグを備えていれば、それを全く持たない船にくらべて、上架作業は格段に容易になる。A fishing boat with a large keel-type skeg can be directly elevated on the slope of the port. Even without a shipyard or special overhead equipment, shipowners can raise fishing boats and store them on land on a daily basis. On the other hand, even if it does not have this keel-type skeg, if it has a large skeg, the overhead work becomes much easier than a ship that does not have it at all.

上記の理由により、漁船はそのほとんどが、割合大きなスケグをキールに備えている。しかしながら、この大きなスケグは走航時の抵抗になるだけでなく、スケグの後側に配設される推進用プロペラや舵に流れる水流に流体的影響を与える。そのため、大きなスケグを備える船は大きな径の推進用プロペラと大きな舵を備える必要がある。スケグの幅や高さに対して小さな径の推進用プロペラは効率が悪く、船速が遅くなり、燃費も悪くなるからである。又、小さな舵は旋回性能を著しく悪くし、漁に支障をきたすのである。For the above reasons, most fishing boats have a large skeg in the keel. However, this large skeg is not only resistance during running, but also has a fluid effect on the water flow flowing through the propeller and the rudder disposed behind the skeg. Therefore, a ship with a large skeg needs to have a large diameter propeller and a large rudder. This is because a propeller for propulsion having a small diameter with respect to the width and height of the skeg is inefficient, the boat speed is slow, and the fuel consumption is also poor. In addition, small rudder remarkably deteriorates turning performance and hinders fishing.

船尾付近の喫水下に大きな推進用プロペラと大きな舵を配置するために、船尾横断面の船底形状は平らで、傾斜が浅くならざるおえない。このため漁船の従来船型では船体の前後中央付近から船尾後端にかけての船底滑走面が捩れているのが一般となってる。又、船尾横断面形状が平らで吃水から浅くなることにより、船尾側の浮力が船首側に比べ少なくなり、船体全体の浮力は他の高速船に比べ前側に配置されている。In order to place a large propeller for propulsion and a large rudder under the draft near the stern, the bottom of the stern cross section must be flat and shallow. For this reason, in the conventional hull form of a fishing boat, it is common that the bottom running surface is twisted from near the center of the hull to the rear end of the stern. Further, since the stern cross-sectional shape is flat and shallow from flooding, the buoyancy on the stern side is less than that on the bow side, and the buoyancy of the entire hull is arranged on the front side compared to other high-speed ships.

一方、大きなスケグを必要としない、沿岸警備艇やプレジャーボートなど、最近の高速艇の多くに採用されているV型船型という船型は深い船底傾斜のV字型の船体横断面を持ち、前後中央付近から船尾端にかけての滑走面に水流があたることにより動的圧力を発生し、浮上して走ることを大きな特徴としている。船体が浮上し、走航時の排水量がみかけ上減れば、その結果として船体抵抗が減り、高速化できるということである。一般的に沿海を走航する船舶の船速はフルード数でいうと0.5〜2.2程度である。高速の業務船で1.0〜1.5程度、警備艇や取締艇では1.5〜2.2である。漁船においても近年の高速化でフルード数が1.3を超えるものが増えてきた。On the other hand, the V-shaped hull form used in many recent high-speed boats, such as coast guard boats and pleasure boats that do not require large skegs, has a V-shaped hull cross-section with a deep bottom bottom, near the front and rear center The main feature is that it creates dynamic pressure by running water on the running surface from the stern to the stern end, and moves up. If the hull surface rises and the amount of drainage during the run is apparently reduced, the hull resistance is reduced as a result, and the speed can be increased. Generally, the speed of a ship traveling along the coast is about 0.5 to 2.2 in terms of fluid number. It is about 1.0 to 1.5 for high-speed commercial vessels, and 1.5 to 2.2 for guard boats and police boats. In fishing boats, the number of fluids exceeding 1.3 has increased due to the recent increase in speed.

高速船になるほど、すなわちフルード数が大きくなるほど、排水量に対する滑走による浮上の割合が大きくなっていく。浮上して走航する時、船体前部が水面から浮き上がり、船体の後部のみを水面下に沈めて走航する姿勢になる。この姿勢での走航を保つためには、船体甲板の滑走面に発生する動的圧力と船全体の重心位置がバランスしないと、安定した走航ができないことになる。この事実により、フルード数の大きな船ほど船体の重心前後位置が後ろ側によった設計が必要になる。The faster the ship becomes, that is, the greater the number of fluids, the greater the rate of ascent due to gliding relative to the amount of drainage. When ascending and sailing, the front part of the hull is lifted from the surface of the water, and only the rear part of the hull is submerged below the surface. In order to keep running in this position, stable running is not possible unless the dynamic pressure generated on the running surface of the hull deck and the center of gravity of the ship are balanced. Due to this fact, a ship with a larger fluid number needs to be designed so that the position of the center of gravity of the hull is in the rear side.

高速船にV型船型が多く採用される理由は、前後中央付近から船尾端にかける滑走面が滑らかで捩れの少ない平らな面にすることができることである。又ラベットライン及びチャインラインのコントロールにより、浮力中心を後方に設計しやすい点にある。The reason why V-shaped hulls are often used for high-speed ships is that the running surface from the front and rear center to the stern end can be made smooth and flat with less twist. In addition, it is easy to design the center of buoyancy rearward by controlling the rabbet line and the chine line.

ところで近年、漁業は漁撈機器の進歩により、効率的な漁業形態に変化してきた。たとえば、魚群探知機により海の中の魚が見える時代となり、魚を確認しながら漁を行うことができるようになった。又、主機関は重量や大きさ、容積に対する馬力が向上し、高性能化してきている。その一方で漁船の船体部分は旧来の形状を維持しているのが現状である。こういった環境の中で、漁業コストを下げるためには、同じ大きさの船であれば、より小さいエンジンで、少ない燃料を使い、漁場に早く到達する高速化された近代的漁船船型が求められている。By the way, in recent years, the fishery has been transformed into an efficient fishery by the progress of fishing equipment. For example, it has become an era when fish in the sea can be seen by fish finder, and it is now possible to fish while checking the fish. In addition, the main engine has been improved in performance due to improved horsepower with respect to weight, size, and volume. On the other hand, the hull part of the fishing boat is maintaining the old shape at present. In order to reduce fishing costs in such an environment, there is a need for a faster modern fishing boat hull form that uses a smaller engine, uses less fuel, and reaches the fishing ground faster if it is a boat of the same size. It has been.

そこで、本発明は漁船に必要な要件である、大きなスケグ、大きな推進用プロペラ、そして大きな舵を設置したまま、漁船としての基本性能を損なうことなく、省力化、高速化された船型の船舶を提供することを課題とする。ただし、本発明はスケグを有する漁船以外の船舶に応用できる。Therefore, the present invention is a necessary requirement for fishing boats, with a large skeg, a large propeller for propulsion, and a large rudder installed. The issue is to provide. However, the present invention can be applied to vessels other than fishing boats having skegs.

前述の課題を解決するため、漁船に必要な要件である、大きなスケグ、大きな推進用プロペラ、そして大きな舵を設置したまま、前後中央付近から船尾端にかける滑走面が滑らかで捩れの少ない、傾斜をもつ平らな面を取り入れ、同時に浮力中心を後方に寄せた高速船型を実現する。In order to solve the above-mentioned problems, the slope that runs from the center of the front and rear to the stern end is smooth and has little torsion, with the large skeg, large propeller, and large rudder that are necessary for the fishing boat installed. It realizes a high-speed hull form that incorporates a flat surface with, and at the same time brings the center of buoyancy back.

船体の前後中央部付近から船尾端にいたる部分に、船体中央部の推進用プロペラ部分及びスケグ部分を残し左右に三角形の断面形状を持つ凸部を設け、船体の幅方向で、できるだけ広い範囲で、可能であれば船体の幅の2/3以上の部分で滑走面となる捩れの少ない平面を形成する。三角形の断面形状を持つ凸部は前後中央部付近で0となり、後方に向かうに従い逓増し、プロペラ断面付近から船尾端付近付近にかけて最大となる。推進用プロペラのある船体断面中央部分は船体前後中央付近より船尾端にいたるまで従来の漁船形状を維持するものである。これにより、船体断面中央に配置される漁船に必要な要件である、大きなスケグ、大きな推進用プロペラ、そして大きな舵は維持されることになる。Protrusions with a triangular cross-sectional shape are provided on the left and right sides of the hull in the width direction of the hull as far as possible, leaving the propeller part and skeg part of the hull center part in the part from the front and rear center part of the hull to the stern end. If possible, a plane with less torsion is formed as a sliding surface in a portion of 2/3 or more of the width of the hull. The convex portion having a triangular cross-sectional shape becomes 0 near the front and rear central portions, increases gradually toward the rear, and becomes the maximum from the vicinity of the propeller cross section to the vicinity of the stern end. The central section of the hull section with the propeller for propulsion maintains the conventional fishing boat shape from the vicinity of the center of the hull to the stern end. As a result, a large skeg, a large propeller for propulsion, and a large rudder, which are requirements for a fishing boat disposed in the center of the hull cross section, are maintained.

推進用プロペラの上部から船体下部までにはプロペラアパチャーという空間があるが、これは船体にプロペラの振動を伝えないために必要な空間であり、船体をキャビテーションから守る役目もある。高速艇におけるプロペラアパチャーは推進用プロペラ直径の12%〜25%の間で設定されるのが一般である。この間隔と推進用プロペラから左右の三角形の断面形状を持つ凸部までの距離と同じ程度とする。少なすぎるとやはり船体に上述の悪い影響を与えるからであり、広すぎると三角形の断面形状の船側側の平面である船底滑走面の面積が狭くなり、滑走性能が不利となる。There is a space called propeller aperture from the upper part of the propeller for propulsion to the lower part of the hull. This space is necessary to prevent the propeller vibration from being transmitted to the hull, and it also serves to protect the hull from cavitation. In general, the propeller aperture in a high-speed boat is set between 12% and 25% of the propeller propeller diameter. The distance and the distance from the propeller for propulsion to the convex portion having a right and left triangular cross-sectional shape are set to be approximately the same. This is because if the amount is too small, the above-mentioned adverse effect is exerted on the hull. If the amount is too wide, the area of the ship bottom sliding surface, which is the plane on the ship side having a triangular cross-sectional shape, becomes narrow, and the sliding performance becomes disadvantageous.

三角形の断面形状の船側側の面と三角形の断面形状のプロペラ側の面の交点が前後方向に形成する線は船体前後中央付近より船尾端にいたるまで連続しており、滑らかな直線に近い線を特徴とする。この三角形の断面形状の船側側の面と三角形の断面形状のプロペラ側の面の交点を鋭角な角にするとプロペラに流れ込む乱流や渦の発生原因となるので丸みをつけるてもよい。The line formed in the front-rear direction by the intersection of the triangular cross-section side of the ship and the triangular cross-section side of the propeller is continuous from the center of the hull front and back to the stern end, and is close to a smooth straight line It is characterized by. If the intersection of the triangular cross-sectional surface on the ship side and the triangular cross-sectional surface on the propeller side is an acute angle, it may cause turbulence and vortices flowing into the propeller, and may be rounded.

以下、この出願に係る発明の実施の形態を図面を参照しながら説明する。図1(A)は第1実施形態を示す側面図であり、図1(B)は図1(A)のA−A線における横断面図である。図2(A),(B)はそれぞれ図1(A)のB−B線、C−C線における横断面図である。図1,図2の船底面5及び6は従来の漁船の船型を示す。Hereinafter, embodiments of the invention according to this application will be described with reference to the drawings. 1A is a side view showing the first embodiment, and FIG. 1B is a cross-sectional view taken along the line AA of FIG. 1A. 2A and 2B are cross-sectional views taken along lines BB and CC in FIG. 1A, respectively. 1 and 2 show the hull form of a conventional fishing boat.

図1(A)に示すように、大きなスケグ1、大きな推進用プロペラ2、そして大きな舵3は従来の技術で説明したとおり、漁船に必要な要件となるものである。これらは高速化の邪魔をするもので、それぞれ形状を小さくすれば船速は向上する。しかし、本発明の実施形態はこれらの必要な要件は従来のままで、船体の前後中央付近から船尾端にかける船底滑走面が滑らかで捩れの少ない平らな面を形成するように、図1(B),図2に示すような三角形の断面形状を持つ凸部7を船体中心線11に対し左右対称に設けるものである。この三角形の断面形状を持つ凸部7の面積は船体前後中央部付近で0であり、船体後方に向かうに従い、逓増し、プロペラ断面付近から船尾端付近にかけて最大となるように配設されている。三角形の断面形状を持つ凸部7は船体の前後方向においてその中央付近より、船尾端にいたる浮力を構成するもので、従来の船型に比べ、船全体として浮力の前後方向の中心(LCB)が後方に位置することができる。同時に三角形の断面形状を持つ凸部7は船底滑走面4の捩れを少なくし、より平面に近い船底滑走面4を形成することができる。As shown in FIG. 1A, the large skeg 1, the large propeller 2 for propulsion, and the large rudder 3 are necessary requirements for the fishing boat, as described in the prior art. These are obstacles to speeding up, and the boat speed increases if the shape is reduced. However, in the embodiment of the present invention, these necessary requirements remain the same as in the prior art, and the bottom sliding surface from the vicinity of the front and rear center of the hull to the stern end forms a smooth flat surface with little twist. B), convex portions 7 having a triangular cross-sectional shape as shown in FIG. 2 are provided symmetrically with respect to the hull center line 11. The area of the convex portion 7 having a triangular cross-sectional shape is 0 in the vicinity of the center of the hull front and rear, and is gradually increased toward the rear of the hull, and is arranged so as to become the maximum from the vicinity of the propeller cross section to the vicinity of the stern end. . The convex section 7 having a triangular cross-sectional shape constitutes buoyancy from the center of the hull to the stern end in the front-rear direction of the hull, and the center of the buoyancy in the front-rear direction (LCB) of the ship as a whole compared to the conventional hull form. Can be located rearward. At the same time, the convex portion 7 having a triangular cross-sectional shape can reduce the twist of the ship bottom running surface 4 and form the ship bottom running surface 4 closer to a flat surface.

本発明の実施形態は上述の2点において、従来の漁船船型に比べ、高速型の船型、つまり滑走型船型とすることが可能になっている。理論船舶工学によると滑走型船型が有効とされるフルード数は0.8以上とされている。長さ10Mの船では15ノット以上、長さ15Mの船体では19ノット以上である。これより遅い船舶においては本発明の実施形態は有効ではない。しかしフルード数が大きいほど、つまり高速船舶ほど有効性を増してくるものである。In the above-described two points, the embodiment of the present invention can be a high-speed type hull, that is, a planing hull, as compared with a conventional fishing boat hull. According to theoretical ship engineering, the number of fluids for which a sliding hull form is effective is 0.8 or more. It is 15 knots or more for a 10M long ship and 19 knots or more for a 15M long hull. The embodiment of the present invention is not effective in a ship that is slower than this. However, the greater the Froude number, that is, the higher the speed, the greater the effectiveness.

一軸本キール式漁船の場合、大きなスケグ1、大きな推進用プロペラ2、そして大きな舵3は船体中心線11付近に配置されている。よって船体中心線11付近は従来の形状を維持する必要があるが、船体がより大きな滑走性能を有するためには、より広い船底滑走面4を得たい。可能であれば船体の幅の2/3以上の部分で船底滑走面4aを配設し、三角形の断面形状を持つ凸部7を形成するのが理想である。図1(B)の推進用プロペラ2の上部から船体下部5までにはプロペラアパチャー13という空間が必要となる。これはプロペラ単独効率を保持し、船体にプロペラの振動を伝えないために必要な空間であり、船体をキャビテーションから守る役目も担う。高速艇におけるプロペラアパチャーは推進用プロペラ直径の12%〜25%の間で設定されるのが一般である。同じ理由により、この間隔と図1(B)の推進用プロペラ2またはプロペラ円2aから左右の三角形の断面形状を構成するプロペラ側の面9までの距離とはプロペラアパチャーと同じ程度とする必要がある。これにより三角形の断面形状を持つ凸部7の頂点8aが決まる。図1(A)の船底滑走面4を構成する図1(B),図2における断面線4aは船側側のチャイン12bから内側の三角形の頂点8aまで連なる直線に近い線となる。In the case of a uniaxial keel fishing boat, the large skeg 1, the large propeller 2 for propulsion, and the large rudder 3 are arranged near the hull center line 11. Therefore, it is necessary to maintain the conventional shape in the vicinity of the hull center line 11, but in order for the hull to have a greater sliding performance, it is desired to obtain a wider bottom surface 4. If possible, it is ideal to dispose the ship bottom sliding surface 4a at a portion of 2/3 or more of the width of the hull and form the convex portion 7 having a triangular cross-sectional shape. A space called a propeller aperture 13 is required from the upper part of the propeller 2 for propulsion shown in FIG. This space is necessary for maintaining the propeller efficiency alone and not transmitting the propeller vibration to the hull, and also serves to protect the hull from cavitation. In general, the propeller aperture in a high-speed boat is set between 12% and 25% of the propeller propeller diameter. For the same reason, this distance and the distance from the propeller 2 for propulsion or the propeller circle 2a in FIG. 1B to the propeller-side surface 9 constituting the left and right triangular cross-sectional shapes should be the same as the propeller aperture. is there. Thereby, the vertex 8a of the convex part 7 having a triangular cross-sectional shape is determined. The cross section line 4a in FIG. 1 (B) and FIG. 2 constituting the ship bottom sliding surface 4 of FIG. 1 (A) is a line close to a straight line extending from the ship side tine 12b to the vertex 8a of the inner triangle.

図1(B)、図2の三角形の頂点8aが船体前後方向に連なる線、つまり図1(A)のナックルライン8は図1(B)、図2のチャイン12a、12bが船体前後方向に連なる線、つまり図1(A)のチャインライン12と共に、船体中央付近から後側において、直線に近い形状とすることにより船底滑走面4を平面に近くすることができる。更にナックルライン8とチャインライン12を、船体中央付近から後側において、平行に近く配設することにより、幾何学的に船底滑走面4を捩れの少ない平面とすることができる。1 (B) and FIG. 2 where the triangular vertex 8a continues in the longitudinal direction of the hull, that is, the knuckle line 8 in FIG. 1 (A) is shown in FIG. 1 (B), and the chines 12a and 12b in FIG. Along with the continuous lines, that is, the inline 12 of FIG. 1 (A), from the vicinity of the center of the hull to the rear side, a shape close to a straight line can be used to make the ship bottom running surface 4 close to a plane. Further, by arranging the knuckle line 8 and the chine line 12 in parallel from the center of the hull to the rear side, it is possible to geometrically make the ship bottom running surface 4 a flat surface with little twist.

図3は本発明の第2実施形態をとして、上記の第1実施形態の三角形の断面形状を構成するプロペラ側の面9と推進用プロペラ2の上部の船体下部5を一体化して円弧状に配設した例である。三角形の断面形状を持つ凸部7のうち、線4aは第1実施形態と同様に船体前後中心付近から船尾端にかけて、平面に近く、捩れの少ない傾斜面である船底滑走面4を形成する。FIG. 3 shows, as a second embodiment of the present invention, the propeller side surface 9 constituting the triangular cross-sectional shape of the first embodiment and the hull lower portion 5 of the upper portion of the propeller 2 for propulsion are integrated into an arc shape. This is an example of arrangement. Of the convex portions 7 having a triangular cross-sectional shape, the line 4a forms a bottom planing surface 4 that is an inclined surface that is close to a flat surface and less twisted from the vicinity of the center of the hull to the stern end as in the first embodiment.

図4に本発明の第3実施形態として、一軸セミキール船に採用した例を示す。同様に、図5は一軸ブラケット船の例を示す。どちらも一軸本キール船に比してスケグが小さい分、スケグ幅が狭くできる。そのため推進用プロペラの径も小さくできるので、船底滑走面4が船体幅方向で広くでき、一軸本キール船に比べて滑走性能がよく、効率向上が見込める。FIG. 4 shows an example adopted in a uniaxial semi keel ship as a third embodiment of the present invention. Similarly, FIG. 5 shows an example of a uniaxial bracket ship. In both cases, the skeg width can be narrowed because the skeg is smaller than that of a single-axle keel ship. Therefore, since the diameter of the propeller for propulsion can be reduced, the bottom running surface 4 can be widened in the width direction of the hull, and the sliding performance is better than that of the single-shaft keel ship, so that the efficiency can be improved.

又、本発明は新造船に採用するだけでなく、既存の一軸本キール船、一軸セミキール船、一軸ブラケット船の船体に改造として、施工することができる。改造により高速化、省エネ化が可能となる条件は、浮力が後方に移動する分だけ、船全体の重心位置を後方に移動できる場合、船底滑走面が幅方向で十分確保できる船体幅をもつ場合、そしてフルード数が0.8以上で走る船舶の場合である。ただし、改造により重量の増加が見込まれるため、新造船ほどの効果は期待できない。In addition, the present invention can be applied not only to a new ship, but can also be applied to a hull of an existing single-shaft main keel ship, single-shaft semi-keel ship, or single-shaft bracket ship as a modification. The conditions for speeding up and energy saving by remodeling are when the center of gravity of the entire ship can be moved backward by the amount of buoyancy that moves backward, and when the hull width is sufficient to ensure that the bottom planing surface is sufficiently wide in the width direction. This is the case for a ship running with a fluid number of 0.8 or more. However, since the weight is expected to be increased by remodeling, the effect as new shipbuilding cannot be expected.

発明の効果及び実施例Effects and embodiments of the invention

上述のようにフルード数0.8以上の滑走域の船速を常用走航する船において、船体後半の船底滑走面形状は性能を左右する大きな要素となる。この状態で走航する船は船底面から受ける動的流体力により浮上して走航する。フルード数が増える程、つまり高速な程、この浮上の割合は大きくなる。浮上することにより、見かけの排水量は減り、摩擦抵抗を受ける面積も減る。船体前半部分は水面から浮上して走ることとなので、実際走航中、水面下に没している船体は船体後半の船底滑走面のみとなる。As described above, in a ship that regularly runs at a ship speed in a sliding area with a fluid number of 0.8 or more, the shape of the bottom sliding surface in the latter half of the hull is a major factor that affects the performance. Ships that run in this state levitate and run due to the dynamic fluid force received from the bottom of the ship. As the number of fluids increases, that is, as the speed increases, the rate of levitation increases. By surfacing, the apparent amount of drainage is reduced and the area subject to frictional resistance is also reduced. Since the first half of the hull is to float and run from the surface of the water, the only hull that is submerged under the surface of the water during actual cruising is the bottom planing surface of the latter half of the hull.

本発明の第1実施形態を採用した船のデータをもとに性能検討を行った結果、同型の主機関を搭載した従来船に比べて、最大船速が5.7%向上した。これを図6に示す。船速向上は走航時の船体抵抗が減ったことによるもので、高速化はそのまま省エネ化を達成したことになる。高速化により、漁場に早く到達する分、少ない燃料で目的を達成できる。逆に考えると、主機関の馬力あたりの燃料消費率は低速側で向上する傾向から、性能向上前の船速で走れば、船速向上以上の燃料削減が可能となる。As a result of the performance study based on the data of the ship adopting the first embodiment of the present invention, the maximum ship speed was improved by 5.7% compared to the conventional ship equipped with the same type main engine. This is shown in FIG. The increase in ship speed is due to a decrease in hull resistance during operation, and the increase in speed is the same as achieving energy savings. By speeding up, the objective can be achieved with less fuel as soon as the fishing ground is reached. Conversely, the fuel consumption rate per horsepower of the main engine tends to improve on the low speed side, so if you run at the ship speed before the performance improvement, you can reduce the fuel more than the ship speed improvement.

(A)この出願に係る発明を一軸本キール船に適用した場合の側面図である。(B)は(A)のA−A線における横断面図である。(A) It is a side view at the time of applying the invention concerning this application to a uniaxial keel ship. (B) is a cross-sectional view in the AA line of (A). (A)は図1(A)のB−B線における横断面図である。(B)は図1(A)のC−C線における横断面図である。(A) is a cross-sectional view in the BB line of FIG. 1 (A). FIG. 2B is a cross-sectional view taken along the line CC in FIG. この出願に係る発明の第2実施形態としてのプロペラ近傍の横断面図である。It is a cross-sectional view of the vicinity of the propeller as the second embodiment of the invention according to this application. この出願に係る発明を一軸本セミキール船に適用した場合の側面図である。It is a side view at the time of applying the invention concerning this application to a single axis this semi keel ship. この出願に係る発明を一軸ブラケット船に適用した場合の側面図である。It is a side view at the time of applying the invention concerning this application to a uniaxial bracket ship. 本発明を採用した一軸本キール船により行った、海上試験結果である。It is a sea test result performed by the single-shaft keel ship which employ | adopted this invention.

符号の説明Explanation of symbols

1・・・スケグ
2・・・プロペラ
3・・・舵
4・・・船底滑走面
5・・・プロペラ上船体
6・・・従来船の船底面
7・・・凸部
8・・・ナックルライン
10・・・水面
11・・・船体中心線
12・・・チャインライン
DESCRIPTION OF SYMBOLS 1 ... Skeg 2 ... Propeller 3 ... Rudder 4 ... Ship bottom planing surface 5 ... Propeller upper hull 6 ... Bottom surface of conventional ship 7 ... Convex part 8 ... Knuckle line 10 ... Water surface 11 ... Hull center line 12 ... Chinelein

Claims (3)

漁船等の一軸本キール船において、船体中央部の推進用プロペラ、舵及びスケグ部分を残し、断面面積が船体前後中央部付近で0となり、後方に向かうに従い逓増し、プロペラ断面付近から船尾端付近にかけて最大となるような、左右対象な三角形断面の凸部を設けることにより、船体前後中心付近から船尾端にかけて、平面に近く、捩れの少ない傾斜面にて形成される船体滑走面及び、船体後方浮力をもつことを特徴とする船体構造。In a single-axle keel ship such as a fishing boat, the propeller, rudder and skeg portion in the center of the hull remain, the cross-sectional area becomes zero near the center of the hull front and rear, and gradually increases toward the rear, from near the propeller cross section and near the stern end By providing a convex part with a triangular cross section that is the right and left as the maximum, the hull sliding surface formed by an inclined surface that is close to a plane and has little torsion from the center of the hull front and back to the stern end, and the hull rear Hull structure characterized by having buoyancy. 前記三角形断面の凸部のプロペラ側の面が湾曲したことを特徴とする請求項1記載の船体構造。The hull structure according to claim 1, wherein a surface on a propeller side of the convex portion of the triangular section is curved. 一軸セミキール船及び、一軸ブラケット船において、請求項1及び請求項2記載の船体構造。The hull structure according to claim 1 or 2, wherein the hull structure is a single-shaft semi-keel ship or a single-shaft bracket ship.
JP2006259768A 2006-08-28 2006-08-28 High speed fishing boat Pending JP2008049988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006259768A JP2008049988A (en) 2006-08-28 2006-08-28 High speed fishing boat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006259768A JP2008049988A (en) 2006-08-28 2006-08-28 High speed fishing boat

Publications (1)

Publication Number Publication Date
JP2008049988A true JP2008049988A (en) 2008-03-06

Family

ID=39234410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259768A Pending JP2008049988A (en) 2006-08-28 2006-08-28 High speed fishing boat

Country Status (1)

Country Link
JP (1) JP2008049988A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113071625A (en) * 2021-05-14 2021-07-06 中国船舶科学研究中心 Anti-rolling device suitable for single-oar unmanned survey ship

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113071625A (en) * 2021-05-14 2021-07-06 中国船舶科学研究中心 Anti-rolling device suitable for single-oar unmanned survey ship
CN113071625B (en) * 2021-05-14 2022-02-18 中国船舶科学研究中心 Anti-rolling device suitable for single-oar unmanned survey ship

Similar Documents

Publication Publication Date Title
US6745715B1 (en) Stern flap corrective motion and fuel saving control system for marine vessels
JP5175281B2 (en) boat
US8863678B2 (en) Ship
JP5986856B2 (en) Commercial cargo ship
Uithof et al. An update on the development of the Hull Vane
JP2014177279A (en) Watercraft with stepped hull and outboard fins
KR101403618B1 (en) Propeller system for vessel
CN111017129A (en) Anti-shake and course stability-enhancing full-rotation tug
JP2006321306A (en) Ship with bow fin
KR101248290B1 (en) Lateral ship&#39;s rudder
US7685958B2 (en) Ship bow
CN104608875A (en) Single-body semiplaning wave-piercing ship
Van Terwisga et al. Steerable propulsion units: hydrodynamic issues and design consequences
JP2008247050A (en) Vessel drag reducing device and vessel
JP2005537175A (en) Ships with foil located below the waterline
JP2008049988A (en) High speed fishing boat
US7207286B2 (en) Tri-point hydro sled
US7497179B2 (en) Quadrapod air assisted catamaran boat or vessel
CN103786829A (en) Single wave-piercing yacht
JP4530505B2 (en) Ship stern flap device
CN211494406U (en) Anti-shake and course stability-enhancing full-rotation tug
JP3951979B2 (en) Hull shape
CN110682995A (en) Planing boat with three-channel structure
EP2906462A2 (en) Boat
JP3987849B2 (en) Stern structure