JP2008049297A - Electrostatic action control method and apparatus in electrostatic working environment - Google Patents

Electrostatic action control method and apparatus in electrostatic working environment Download PDF

Info

Publication number
JP2008049297A
JP2008049297A JP2006229609A JP2006229609A JP2008049297A JP 2008049297 A JP2008049297 A JP 2008049297A JP 2006229609 A JP2006229609 A JP 2006229609A JP 2006229609 A JP2006229609 A JP 2006229609A JP 2008049297 A JP2008049297 A JP 2008049297A
Authority
JP
Japan
Prior art keywords
electrostatic
target surface
work environment
action control
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006229609A
Other languages
Japanese (ja)
Other versions
JP4872535B2 (en
Inventor
Mitsuhiro Takahashi
光弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006229609A priority Critical patent/JP4872535B2/en
Publication of JP2008049297A publication Critical patent/JP2008049297A/en
Application granted granted Critical
Publication of JP4872535B2 publication Critical patent/JP4872535B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Nonwoven Fabrics (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform an electrostatic work by certainly preventing an electrostatic deposition to a non-target surface facing an electrostatic working environment other than a target surface performing recovery and surface treatment by an electrostatic deposition of a raw material and a treatment material. <P>SOLUTION: The non-target surface 4 facing the electrostatic working environment 3 for performing the electrostatic work for releasing a charged release material 1, i.e., a charged raw material or treatment material to the target surface 2 having a potential difference relative to it to electrostatically deposit it to the target surface 2 gets an AC voltage V2 impressed with conductivity loaded by a metal material 12 to turn it uncharged. Thereby, the charged release material 1 is not electrostatically deposited. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、電子防止系で作り出される原料材としての高分子のファイバなどをこれと電位差を有した対象面上に回収して連続したウエブにするような電子紡糸技術で代表される、対象面への繊維や粉体、粒子などの原料材を静電付着により回収する静電作業、装置、あるいは静電塗装で代表される塗料などの処理材を静電付着させて表面処理などをする静電作業、装置などでの静電作業環境における静電作用制御方法と装置に関するものである。   The present invention is represented by, for example, an electrospinning technique in which a polymer fiber or the like as a raw material produced by an electron prevention system is collected on a target surface having a potential difference with this to form a continuous web. Electrostatic work that collects raw materials such as fibers, powders, and particles on the target surface by electrostatic adhesion, equipment, or surface treatment by electrostatically attaching treatment materials such as paint typified by electrostatic coating The present invention relates to an electrostatic action control method and apparatus in an electrostatic work environment in an electrostatic work or apparatus.

電子紡糸技術は機械的な押し出しに代るもので、下記の特許文献1などで知られるように、高分子の溶融物あるいは溶液を材料としてノズルに供給して線状に流出させ、流出する高分子溶液がノズルを通じ帯電されることにより、高分子溶液の溶媒の蒸発に伴ない帯電電荷間の距離が小さくなって作用するクーロン力が大きくなり、そのクーロン力が線状の高分子溶液の表面張力により勝った時点で線状の高分子溶液が爆発的に延伸される現象が得られ、しかも、この静電爆発と称される現象が一次、二次、三次と繰り返されることで、サブミクロンの直径を持った高分子ファイバ、いわゆるナノ繊維が作り出される。   The electrospinning technique is an alternative to mechanical extrusion, and as known in the following Patent Document 1 or the like, a polymer melt or solution is supplied as a material to a nozzle to flow out in a linear fashion. When the molecular solution is charged through the nozzle, the distance between the charged charges is reduced as the solvent of the polymer solution evaporates, and the Coulomb force that acts is increased, and the Coulomb force is increased on the surface of the linear polymer solution. The phenomenon that the linear polymer solution is stretched explosively when it is won by the tension is obtained, and this phenomenon called electrostatic explosion is repeated as primary, secondary, and tertiary. A so-called nanofiber is produced with a polymer fiber having a diameter of.

ところで、本出願人は、電子紡糸技術の実用に向け、紡糸の安定性と生産性、歩留まりなどの配慮から、図5に示すように紡糸容器ないしは紡糸ノズルである電子紡糸系aと紡糸された帯電している高分子ファイバcを回収するコレクタdとの間に、例えば電子紡糸系a側電圧+V1とコレクタd側電圧−V3との電位差にて10kV〜100kV程度の高電圧を印加して電子紡糸を行い、作り出した帯電した高分子ファイバcなどをコレクタdの表面に静電的に付着させ回収することを行っている。また、このような高電圧の印加に伴いまわりへの影響を防止するため前記のような静電作業環境を絶縁材であるアクリル樹脂製の囲い壁eにより囲い、外周は金属板で覆ってアースfに接続した。   By the way, for the practical application of the electrospinning technique, the present applicant was spun with an electrospinning system a that is a spinning container or a spinning nozzle as shown in FIG. 5 in consideration of spinning stability, productivity, yield, and the like. For example, a high voltage of about 10 kV to 100 kV is applied between the charged polymer fiber c and the collector d for collecting the charged polymer fiber c by a potential difference between the electrospinning system side voltage + V1 and the collector d side voltage −V3. Spinning is performed, and the produced charged polymer fiber c and the like are electrostatically attached to the surface of the collector d and collected. Further, in order to prevent the influence on the surroundings due to the application of such a high voltage, the electrostatic working environment as described above is surrounded by an acrylic resin enclosure wall e which is an insulating material, and the outer periphery is covered with a metal plate and grounded. connected to f.

しかし、これによっては電子紡糸系aから囲い壁e内への高分子ファイバcなどの放出やスプレーが停止したり不安定になることを経験し、これにつき種々に実験をし検討した。その結果、絶縁材よりなる囲い壁eの内面が電子紡糸系aと同極性に帯電しており、これが原因であることが判明した。また、囲い壁eの外面の金属板はかえって囲い壁eの帯電に対しそれを逆極性の電子を囲い壁eとの境界面に揃えてバックアップする働きをして帯電状態を安定させてしまうし、電圧を上げで高分子ファイバcなどの放出性、スプレー性を高めようとすると金属板のバックアップ電子の影響かと思われるが囲い壁eに向けた放電が生じることもある。   However, depending on this, we experienced that the discharge and spraying of the polymer fiber c and the like from the electrospinning system a into the enclosure wall e stopped or became unstable, and various experiments were conducted on this. As a result, it was found that the inner surface of the enclosure wall e made of an insulating material was charged with the same polarity as the electrospinning system a, and this was the cause. In addition, the metal plate on the outer surface of the enclosure wall e, instead of charging the enclosure wall e, functions to back up electrons of opposite polarity to the boundary surface with the enclosure wall e, thereby stabilizing the charged state. If it is attempted to increase the discharge and sprayability of the polymer fiber c by increasing the voltage, it may be due to the back-up electrons of the metal plate, but a discharge toward the enclosure wall e may occur.

一方、電子紡糸技術と同様な静電作業環境となる静電塗装技術では、粉体塗料の静電塗装室において、帯電した粉体塗料が内壁に付着するのを防ぎ、付着した粉体塗料を時間を掛けて清掃する必要がなく、塗料の交換に要する時間の短縮を図ることが提案されている(例えば、特許文献2参照。)。具体的には、電気抵抗が高い発泡スチロールなどの発泡成形樹脂の上に電気抵抗が高く平滑なポリエステルフィルムなどのプラスチック製薄膜を貼り合わせた粉体付着防止用表面材の発明を提供しており、ポリエステルフィルムを貼り合わせて壁材とする基材に金属材を用いるよりは樹脂材がよく、樹脂材でも非発泡材よりは発泡材がよく、発泡材でも発泡率の高いものがよいことを開示しながら、その粉体付着防止用表面材に沿って陽イオン化した気体を流すことで粉体の付着をより防止できるとし、これらを粉体静電塗装室の内壁の壁材とすることを提案している。
特開2002−201559号公報 特開平11−207849号公報
On the other hand, electrostatic coating technology, which is an electrostatic work environment similar to electrospinning technology, prevents charged powder coating from adhering to the inner wall in the powder coating electrostatic coating chamber. It has been proposed to reduce the time required to replace the paint without having to clean over time (see, for example, Patent Document 2). Specifically, the invention provides an invention for a surface material for preventing powder adhesion, in which a plastic thin film such as a polyester film having a high electrical resistance is laminated on a foam molding resin such as a polystyrene foam having a high electrical resistance, It is disclosed that a resin material is better than using a metal material as a base material to be laminated with a polyester film, a foam material is better than a resin material or a non-foam material, and a foam material with a high foaming rate is better However, by adhering a cationized gas along the surface material for preventing the adhesion of powder, it is possible to prevent the adhesion of the powder and propose to use them as the wall material of the inner wall of the powder electrostatic coating chamber. is doing.
JP 2002-201559 A Japanese Patent Laid-Open No. 11-207849

しかし、特許文献2に記載の粉体付着防止表面材は粉体が全く付着しなくなるものではない。その表面に陽イオン化した空気を流すことで付着防止効果は高まるにしても、粉体静電塗装室の内面といった具体的な静電作業環境を囲う壁面に沿って陽イオン化した風を満遍なく流すのは困難であり、粉体の付着を防止し切れない。   However, the powder adhesion preventing surface material described in Patent Document 2 does not prevent powder from adhering at all. Although the anti-adhesion effect is enhanced by flowing cationized air over the surface, the cationized air can flow evenly along the wall surrounding the specific electrostatic working environment such as the inner surface of the powder electrostatic coating chamber. Is difficult and does not prevent the adhesion of powder.

そこで、本発明者は、先のアクリル樹脂製の囲い壁eの検討から、その内面に銅テープを貼り合わせてアースしたところ、電子紡糸系aから紡糸する高分子ファイバcなどの放出性、スプレー性は向上した。しかし、囲い壁eの内面のアース接続側に高分子ファイバcなどが付着、堆積し、汚れと歩留まりの低下を招いた。また、印加電圧を高めるとアースへの放電が生じた。   Therefore, the present inventor examined the acrylic resin enclosure wall e, and bonded the copper tape to the inner surface and grounded it. As a result, the release property of the polymer fiber c spun from the electrospinning system a, spraying, etc. Improved. However, the polymer fiber c or the like adheres and accumulates on the ground connection side of the inner surface of the enclosure wall e, which causes dirt and a decrease in yield. Further, when the applied voltage was increased, discharge to the ground occurred.

これに対応するさらなる実験、検討によって、アクリル樹脂製の囲い壁eの内面を帯電させない手法、構成により好結果が得られたし、この技術は電荷誘導による対象面へのファイバ、短繊維、粉体、粒子といった原料材や処理材などの静電付着を図って回収し、あるいは表面処理する静電作業環境一般に適用できる。   Through further experiments and examinations corresponding to this, a good result was obtained by a method and configuration that does not charge the inner surface of the acrylic resin enclosure wall e, and this technique is applied to the target surface by charge induction, fiber, short fiber, powder It can be applied to general electrostatic working environments in which raw materials such as bodies and particles and treatment materials are collected by electrostatic adhesion and surface treatment.

また、以上のように帯電した原料材や処理材が対象面以外に静電付着する問題は、それらを静電付着させて回収し、また表面処理される対象面を有した対象物における非対象面においても、静電作業環境を囲う囲い壁の内面がなす非対象面と同様に生じるが、これへの対応も同様にできる。   In addition, the problem of electrostatic adhesion of the charged raw material and processing material to the surface other than the target surface as described above is that the target material having the target surface to be surface-treated is recovered by attaching them electrostatically. The surface also occurs in the same manner as the non-target surface formed by the inner surface of the enclosure wall that surrounds the electrostatic work environment.

本発明の目的は、このような開発結果から、原料材や処理材の静電付着による回収や表面処理を行う対象面以外の静電作業環境に面する非対象面への静電付着を確実に防止して静電作業ができる静電作業環境における静電作用制御方法と装置を提供することにある。   The object of the present invention is to ensure electrostatic adhesion to a non-target surface facing an electrostatic work environment other than the target surface to be recovered or surface-treated by electrostatic adhesion of raw materials and processing materials from such development results. It is an object of the present invention to provide an electrostatic action control method and apparatus in an electrostatic work environment capable of preventing electrostatic work.

上記のような目的を達成するために、本発明の第1の態様によれば、帯電した原料材または処理材をこれと電位差を有している対象面へ放出して対象面上に静電的に付着させる静電作業を行う静電作業環境に面した導電性の非対象面に交流電圧を印加し不帯電状態とすることにより、帯電した原料材または処理材が静電的に付着しないようにすることを特徴としている。   In order to achieve the above object, according to the first aspect of the present invention, a charged raw material or treatment material is discharged to a target surface having a potential difference from the charged raw material or treatment material and electrostatically is applied to the target surface. By applying an AC voltage to an electrically conductive non-target surface facing the electrostatic working environment, the charged raw material or processing material is not electrostatically attached. It is characterized by doing so.

このような静電作業環境における静電作用制御方法では、静電作業環境において帯電した原料材または処理材を、これと電位差を有した対象面上に電荷誘導して静電付着させ回収または表面処理するのに、静電作業環境に面した導電性の非対象面に交流電圧を印加することにより、その非対象面を印加電圧が正負交互に変化することによるいわゆる中和による実質的な不帯電状態に積極的に保てる。このため、原料材や処理材が帯電していることによる影響を受けて原料材や処理材の帯電しての放出を邪魔するようなことはないし、非対象面に帯電した原料材や処理材が静電付着するのを十分に防止できる。しかし、それには導電性面の連続性は必ずしも必須とならない。   In the electrostatic action control method in such an electrostatic work environment, the raw material material or the treatment material charged in the electrostatic work environment is charged and electrostatically adhered to the target surface having a potential difference from the raw material material or the treated material. For the treatment, by applying an AC voltage to the conductive non-target surface facing the electrostatic work environment, the non-target surface is subjected to a substantial defect due to so-called neutralization by alternately changing the applied voltage positive and negative. It can keep positively charged. For this reason, it does not interfere with the charged release of the raw material or treatment material due to the influence of the raw material or treatment material being charged, and the raw material or treatment material charged on the non-target surface Can sufficiently prevent electrostatic adhesion. However, the continuity of the conductive surface is not always essential for this.

このような方法は、本発明の第6の態様によれば、帯電した原料材または処理材をこれと電位差を有して配置した対象面へ放出し静電的に付着させる静電作業手段と、この静電作業手段による静電作業環境に面した非対象面を導電性とする金属材と、この金属材に交流電圧を印加しそれが形成する非対象面を不帯電状態とする交流電圧印加手段と、静電作業手段による静電作業開始に基づき、交流電圧印加手段を働かせる制御手段とを備えたことを特徴とする静電作業環境における静電作用制御装置によって実現する。なお、非対象面に導電性を付与する金属材を金網やパンチング金属板などとしてそれらによる導電性面が不連続であっても、帯電した原料材や処理材を静電的に付着させない不帯電性を非対象面の金属材配置域の全域で発揮させられる。これは、金属材を小さな間隔を置いて配設する場合も同様である。   According to a sixth aspect of the present invention, there is provided an electrostatic working means for discharging and electrostatically attaching a charged raw material or processing material to a target surface disposed with a potential difference from the charged raw material or processing material. , A metal material that makes the non-target surface facing the electrostatic work environment by this electrostatic working means conductive, and an AC voltage that applies an AC voltage to this metal material and makes the non-target surface formed by it non-charged This is realized by an electrostatic action control device in an electrostatic work environment characterized by comprising an applying means and a control means for operating an AC voltage applying means based on the start of electrostatic work by the electrostatic working means. In addition, even if the metal surface that imparts conductivity to the non-target surface is a metal mesh or punched metal plate, etc., and the conductive surface is discontinuous, the charged raw material or processing material is not electrostatically attached. Can be exhibited over the entire area of the metal material on the non-target surface. The same applies to the case where metal materials are arranged at small intervals.

本発明の第2の態様によれば、第1の態様における不帯電状態にする非対象面は、静電作業環境を囲う囲い壁またはおよび対象面を有した対象物の非対象面を対象とすることを特徴としている。これにより、静電作業環境内で原料材や処理材の静電付着を受けるためや静電作業環境を囲うために、静電作業環境に面することになる対象面を持った対象物や囲い壁がなすいずれの非対象面であっても、必要に応じ導電性を付与し交流電圧を印加することによる不帯電状態として原料材や処理材が静電付着するのを防止することができる。特に、絶縁材よりなる囲い壁は静電作業環境において高電圧を掛ける場合でもまわりへの電気的な影響を防止することができるし、帯電して放出される原料材や処理材の影響を受けて原料材や処理材の帯電を伴なう放出を停止させたり不安定にすることはない。   According to the second aspect of the present invention, the non-target surface to be uncharged in the first aspect is a non-target surface of an object having an enclosure wall or target surface surrounding the electrostatic work environment. It is characterized by doing. As a result, an object or enclosure having a target surface that faces the electrostatic work environment in order to receive electrostatic adhesion of raw materials or processing materials in the electrostatic work environment or to surround the electrostatic work environment. Regardless of the non-target surface formed by the wall, it is possible to prevent the raw material and the processing material from electrostatically adhering as an uncharged state by applying conductivity and applying an AC voltage as necessary. In particular, the enclosure wall made of an insulating material can prevent electrical influences on the surroundings even when a high voltage is applied in an electrostatic work environment, and is affected by the raw materials and processing materials released by charging. Therefore, it does not stop or cause the release of the raw material and the treatment material accompanied by charging.

このような方法は、本発明の第7の態様によれば、交流電圧が印加される金属材が、静電作業環境を囲う絶縁材よりなる囲い壁またはおよび対象面を持った絶縁性の対象物の非対象面に導電性を付与していることを特徴とする静電作業環境における静電作用制御装置によって実現する。   In such a method, according to the seventh aspect of the present invention, the metal material to which the AC voltage is applied is an insulating object having an enclosure wall or an object surface made of an insulating material surrounding the electrostatic work environment. This is realized by an electrostatic action control device in an electrostatic work environment characterized by imparting conductivity to a non-target surface of an object.

本発明の第3の態様によれば、囲い壁の不帯電状態にする非対象面は、少なくとも原料材または処理材の放出方向に向く側周域を対象としていることを特徴としている。これにより、囲い壁がなす非対象面のうちの原料材や処理材を帯電を伴い放出させる放出源側、およびこの放出源側に対向して対象物を配置する放出側には原料材や処理材の静電付着による問題が生じないのに反し、原料材や処理材が静電付着しやすく帯電の影響を与えやすい側周域に限って、導電性を利用した交流電圧印加による不帯電状態を得て、帯電している原料材や処理材の静電付着、および原料材や処理材の帯電による影響で帯電を伴なう原料材や処理材の放出を邪魔するようなことを十分に防止することができる。   According to the third aspect of the present invention, the non-target surface of the surrounding wall that is to be uncharged is targeted at least in the side circumferential region facing the discharge direction of the raw material or the processing material. As a result, the source material and the processing material are disposed on the emission source side for discharging the raw material material and the processing material of the non-target surface formed by the enclosure wall with charging, and on the emission side where the target object is disposed opposite to the emission source side. Contrary to the fact that there is no problem due to electrostatic adhesion of materials, the material and treatment materials are not charged due to the application of AC voltage using conductivity only in the side area where the materials and treatment materials are likely to be electrostatically attached and easily affect the charging. To prevent the electrostatic discharge of charged raw materials and processing materials and the discharge of raw materials and processing materials accompanied by charging due to the influence of charging of the raw materials and processing materials. Can be prevented.

このような方法は、本発明の第8の態様によれば、交流電圧が印加される金属材が、囲い壁の内面の少なくとも原料材または処理材の放出方向に向く側周域を対象として導電性を付与している静電作業環境における静電作用制御装置により実現する。   In such a method, according to the eighth aspect of the present invention, the metal material to which an AC voltage is applied is conductive at least in the side circumferential region of the inner surface of the enclosure wall facing the discharge direction of the raw material or the treatment material. It is realized by an electrostatic action control device in an electrostatic work environment that imparts a property.

本発明の第4の態様によれば、静電作業環境は、ファイバ、短繊維、粉体、粒子などの原料材の対象面による回収、塗料を処理材とした対象面への静電塗装、パイルを処理材とした対象面への静電植毛の1つを行うことを特徴として、対象面への静電付着による原料材の回収、静電塗装、静電植毛のいずれか1つの静電作業時にその静電作業環境に面する非対象面に原料材や処理材が静電付着し、あるいは帯電を伴なう原料材や処理材の放出を邪魔するのを防止することができる。   According to the fourth aspect of the present invention, the electrostatic work environment is a collection of raw materials such as fibers, short fibers, powders, particles, and the like, electrostatic coating on a target surface using a paint as a treatment material, It is characterized by performing electrostatic flocking on a target surface using a pile as a treatment material, and collecting any one of electrostatic material flocking, electrostatic coating, and electrostatic flocking by electrostatic adhesion to the target surface It is possible to prevent the raw material and the processing material from electrostatically adhering to the non-target surface facing the electrostatic working environment at the time of work or disturbing the discharge of the raw material and the processing material accompanied by charging.

このような方法は、本発明の第9の態様によれば、静電作業手段が、ファイバ、短繊維、粉体、粒子である原料材の対象面による回収、塗料を処理材とした対象面への静電塗装、パイルを処理材とした対象面への静電植毛の1つを行う静電作業環境における静電作用制御装置によって実現する。   In such a method, according to the ninth aspect of the present invention, the electrostatic working means collects the target surface of the raw material material that is fiber, short fiber, powder, particle, and the target surface using the paint as the processing material. This is realized by an electrostatic action control device in an electrostatic working environment that performs electrostatic coating on the surface and one of electrostatic flocking on a target surface using pile as a treatment material.

本発明の第5の態様によれば、原料材は、電子紡糸法によって作り出される帯電した高分子のファイバ、短繊維、粉体、粒子であることを特徴とするものである。これにより、高電圧を印加してナノレベルの高分子ファイバや粒子類の原料材を作り出し回収するような場合に、まわりへの電気的影響や、作り出した原料材が非対象面に静電付着して堆積したり回収率が低下したり、あるいは帯電を伴なう原料材や処理材の放出を邪魔するのを防止するようなことを回避できる。   According to a fifth aspect of the present invention, the raw material is a charged polymer fiber, short fiber, powder, or particle produced by an electrospinning method. As a result, when high voltage is applied to create and collect nano-level polymer fibers and particle raw materials, the electrical influence on the surroundings and the generated raw materials adhere electrostatically to non-target surfaces. Thus, it is possible to avoid such things as depositing, lowering of the recovery rate, or preventing the discharge of the raw material and processing material accompanied by charging.

このような方法は、本発明の第10の態様によれば、静電作業手段が、電子紡糸手段とこの静電紡糸手段から作り出される帯電した高分子のファイバ、短繊維、粉体、粒子を回収する対象面を有した対象物とを備えた静電作業環境における静電作業制御装置により実現する。   In such a method, according to the tenth aspect of the present invention, the electrostatic working means comprises an electrospinning means and charged polymer fibers, short fibers, powders, and particles produced from the electrostatic spinning means. It implement | achieves by the electrostatic work control apparatus in the electrostatic work environment provided with the target object which has the object surface to collect | recover.

本発明のそれ以上の目的および特徴は、以下の具体的な説明および図面の記載によって明らかになる。   Further objects and features of the present invention will become apparent from the following specific description and drawings.

本発明によれば、帯電した原料材または処理材をこれと電位差を有した対象面上に静電付着させ回収または表面処理する静電作業環境に面した非対象面を実質的な不帯電状態に積極的に保って、帯電した原料材や処理材が静電付着するのを確実に防止し、付着物による問題や除去の手間を回避できるのに併せ、対象面への回収や処理の効率を高められる。従って、原料材や処理材の静電付着による回収や処理を行う対象物の非対象面、高電圧を印加する場合のまわりへの影響を防止するために静電作業環境を囲う絶縁材よりなる囲い壁がなす非対象面のいずれにも有効であり、囲い壁では特に帯電して放出される原料材や処理材の影響で帯電を伴う原料材や処理材の放出を邪魔することは無く静電作業を安定に遂行できる。また、静電作業装置を特に複雑化したり、大型化することはなくコスト上昇の原因にもならない利点がある。   According to the present invention, a non-target surface facing an electrostatic work environment in which a charged raw material or treatment material is electrostatically attached to a target surface having a potential difference from the charged material material and is recovered or surface-treated is substantially uncharged. To prevent electrostatic adhesion of charged raw materials and processing materials, avoid problems due to deposits and troublesome removal, and at the same time collect and process the target surface efficiently. Can be enhanced. Therefore, it is made of an insulating material that surrounds the electrostatic work environment in order to prevent influence on the non-target surface of the target object to be collected or processed by electrostatic adhesion of the raw material or processing material, or when high voltage is applied. It is effective for any non-target surface formed by the enclosure wall, and the enclosure wall does not interfere with the discharge of the charged raw material and processing material due to the influence of the charged raw material and processing material. Electric work can be performed stably. Further, there is an advantage that the electrostatic working device is not particularly complicated or enlarged, and does not cause an increase in cost.

以下、本実施の形態に係る静電作業環境における静電作用制御方法と装置につき図1〜図4を参照しながら説明し、本発明の理解に供する。   Hereinafter, the electrostatic action control method and apparatus in the electrostatic working environment according to the present embodiment will be described with reference to FIGS. 1 to 4 for the understanding of the present invention.

本発明の静電作業環境における静電作用制御方法と装置は、既述の電子紡糸技術での静電爆発による延伸や微細化、粒子化により作り出される高分子ファイバ、短繊維、粉体、粒子などを、原料材として対象面上に静電付着させて回収したり、あるいは処理材として樹脂や金属よりなる各種物品や建物の壁面などの対象面に静電付着させて表面処理したりするものであり、特に高分子ファイバの回収過程では特許文献1に記載のように所定幅の高分子ウエブを製造したり、特開2006−507428号公報(特許文献3)などで既に知られる連続した高分子ファイバ束であるフィラメントや撚りを掛けた糸条に合糸したりすることができる。従って、原料材や処理材は、特許文献1などにより既に知られる電子紡糸用の各種高分子材料、例えば、ポリフッ化ビニリデン(FVDF)、ポリ(フッ化ビニリデン−コ−ヘキサフルオロプロピレン)、ポリアクリロニトリル、ポリ(アクリロニトリル−コ−メタクリレ−ト、ポリメチルメタクリレート、ポリ塩化ビニル、ポリ(塩化ビニリデン−コ−アクリレート)、ポリエチレン、ポリプロピレン、ナイロン12、ナイロン−4,6などのナイロン系列,アラミド、ポリベンゾイミダゾール、ポリビニルアルコール、セルロ−ス、酢酸セルロ−ス、酢酸酪酸セルロ−ス、ポリビニルピロリドン−酢酸ビニル、ポリ(ビス−(2−メトキシ−エトキシエトキシ)) ホスファゼン(MEEP))、ポリエチレンイミド(PEI)、ポリ(コハク酸エチレン)、ポリ(硫化エチレン)、ポリ(オキシメチレン−オリゴ−オキシエチレン)、ポリ(酸化プロピレン)、ポリ(酢酸ビニル)、ポリアニリン、(ポリテレフタル酸エチレン)、ポリ(ヒドロキシ酪酸)、ポリ(酸化エチレン)、SBSコポリマー、ポリ乳酸、ポリペプチド、タンパク質などのバイオポリマー、コールタールピッチ、石油ピッチなどのピッチ系などの様々な高分子が適用でき、これらの共重合体および混合物なども適用できるほか、特許文献3などで知られる材料、その他を用いることができる。また、溶媒はこれら高分子を溶解する任意の溶媒を適用できる。しかし、本発明はこれに限られることはなく、これに類似した静電作業、静電作業環境となる特許文献2などで知られる静電塗装や静電植毛など原料材や処理材の電荷誘導による静電付着を伴う回収や表面処理などの静電作業一般に適用できる。   The electrostatic action control method and apparatus in the electrostatic working environment according to the present invention is a polymer fiber, short fiber, powder, particle produced by stretching, miniaturization, and particle formation by electrostatic explosion in the above-described electrospinning technology. Is electrostatically attached to the target surface as a raw material, or is treated as a processing material by electrostatically attaching to the target surface such as various articles made of resin or metal or building walls. In particular, in the process of recovering the polymer fiber, a polymer web having a predetermined width is manufactured as described in Patent Document 1, or the continuous high height already known in Japanese Patent Application Laid-Open No. 2006-507428 (Patent Document 3) is used. They can be combined with filaments or twisted yarns that are molecular fiber bundles. Therefore, raw materials and treatment materials are various polymer materials for electrospinning already known from Patent Document 1 such as polyvinylidene fluoride (FVDF), poly (vinylidene fluoride-co-hexafluoropropylene), polyacrylonitrile. , Poly (acrylonitrile-co-methacrylate, polymethyl methacrylate, polyvinyl chloride, poly (vinylidene chloride-co-acrylate), polyethylene, polypropylene, nylon 12, nylon-4, 6 and other nylon series, aramid, polybenzo Imidazole, polyvinyl alcohol, cellulose, cellulose acetate, cellulose acetate butyrate, polyvinylpyrrolidone-vinyl acetate, poly (bis- (2-methoxy-ethoxyethoxy)) phosphazene (MEEP)), polyethyleneimide (PEI) , Poly (ethylene succinate), poly ( Ethylene), poly (oxymethylene-oligo-oxyethylene), poly (propylene oxide), poly (vinyl acetate), polyaniline, (polyethylene terephthalate), poly (hydroxybutyrate), poly (ethylene oxide), SBS copolymer Various polymers such as biopolymers such as polylactic acid, polypeptides and proteins, pitch systems such as coal tar pitch and petroleum pitch can be applied, and copolymers and mixtures thereof can also be applied. It is possible to use other materials known in the art. As the solvent, any solvent that dissolves these polymers can be used. However, the present invention is not limited to this, and charge induction of raw materials and treatment materials such as electrostatic painting and electrostatic flocking, which are known in Patent Document 2 and the like, which are similar to electrostatic work and electrostatic work environment. It can be applied to general electrostatic work such as recovery and surface treatment with electrostatic adhesion.

本実施の形態の静電作業環境における静電作用制御方法は、図1の摸式図で例示しているように、帯電した高分子のファイバ、短繊維、粉体、粒子などの原料材や処理材を帯電放出材1として、これと帯電やアースへの接続により電位差を有した対象面2へ向け放出し、放出した帯電放出材1を電荷誘導により対象面2に静電的に付着させ回収または表面処理する静電作業を行うのに、この静電作業を行う静電作業環境3に面している対象面2でない導電性の非対象面4に交流電圧V2を印加し不帯電状態とすることにより、非対象面4に帯電放出材1が静電的に付着しないようにすることを基本的な特徴としている。このように、静電作業環境3において帯電放出材1を放出して、これと電位差を有した対象面2上に電荷誘導して静電付着させ回収または表面処理する静電作業に際し、静電作業環境3に面した導電性の非対象面4に交流電圧V2を印加することにより、帯電放出材1が帯電していることによる影響を受けることなく非対象面4を印加する正負電荷が交互に変化することによるいわゆる中和作用による実質的な不帯電状態に積極的に保てる。これにより、非対象面4に帯電放出材1が静電付着するのを十分に防止できる。   The electrostatic action control method in the electrostatic working environment according to the present embodiment is, as illustrated in the schematic diagram of FIG. 1, a raw material such as charged polymer fiber, short fiber, powder, particle, or the like. The treatment material is used as the charge release material 1 and discharged to the target surface 2 having a potential difference by connecting to the charge or ground, and the discharged charge release material 1 is electrostatically attached to the target surface 2 by charge induction. In order to perform the electrostatic work for recovery or surface treatment, an AC voltage V2 is applied to the conductive non-target surface 4 that is not the target surface 2 facing the electrostatic work environment 3 in which this electrostatic work is performed, and an uncharged state Thus, the basic feature is to prevent the electrostatic discharge material 1 from electrostatically adhering to the non-target surface 4. As described above, in the electrostatic work in which the electrostatic discharge material 1 is discharged in the electrostatic work environment 3 and the charge is induced on the target surface 2 having a potential difference from the charge release material to be electrostatically attached and recovered or surface-treated. By applying the AC voltage V2 to the conductive non-target surface 4 facing the work environment 3, the positive and negative charges applied to the non-target surface 4 are alternately affected without being affected by the charged discharge material 1 being charged. It can be positively maintained in a substantially uncharged state due to a so-called neutralization effect by changing to. Thereby, it is possible to sufficiently prevent the electrostatic discharge material 1 from electrostatically adhering to the non-target surface 4.

本実施の形態の図1に示す静電作業環境における静電作用制御装置は、このような方法を実現するのに、静電放出系100から帯電を伴い高分子ファイバ、短繊維、粉体、粒子などの原料材や処理材である帯電放出材1をこれと電位差を有して配置した対象面2へ放出し静電的に付着させる静電作業手段11と、この静電作業手段11による静電作業環境3に面した非対象面4に導電性を付与する金属材12と、この非対象面4の金属材12に交流電圧V2を印加し不帯電状態とする交流電圧印加手段13と、静電作業手段11による静電作業開始に基づき、交流電圧印加手段13を働かせる制御手段14とを備えたものとしている。   The electrostatic action control apparatus in the electrostatic working environment shown in FIG. 1 of the present embodiment realizes such a method by charging the electrostatic discharge system 100 with polymer fibers, short fibers, powders, Electrostatic working means 11 that discharges the electrostatic discharge material 1 that is a raw material material such as particles or processing material to the target surface 2 arranged with a potential difference from this and electrostatically adheres to this, and the electrostatic working means 11 A metal material 12 for imparting conductivity to the non-target surface 4 facing the electrostatic working environment 3, and an AC voltage applying means 13 for applying an AC voltage V2 to the metal material 12 on the non-target surface 4 to make it uncharged. The control means 14 is provided with the AC voltage application means 13 based on the electrostatic work start by the electrostatic work means 11.

静電作業手段11は静電放出系100から放出する原料材や処理材を電荷V1に帯電させるための帯電手段としての荷電電源16aと、対象面2を電荷V3に帯電させるための帯電手段としての荷電電源16bとを有している。図示例では高分子溶液を図示しないポンプによりノズルタイプの静電放出系100に圧送して帯電放出材1として噴霧し、多次の静電爆発によりナノ単位にまで微細化、粒子化して対象面2を表面処理するような場合を示し、特にノズルタイプの静電放出系100内の挿入したステンレスよりなる電極ワイヤ100aに荷電電源16aからの電圧を印加することにより帯電放出材1に高い電荷を付与できるようにしており、静電爆発のより多次化と対象面2への静電付着性を高めている。荷電電源16bは対象面2に電圧V3を印加しているが、これに代えて対象面2をアースに接続しても同様の効果が得られる。電極ワイヤ100aは、ステンレスに限定するものではなく、タングステンなどの電極ワイヤなどでもよい。   The electrostatic working means 11 is a charging power source 16a as a charging means for charging the raw material and processing material discharged from the electrostatic discharge system 100 to the charge V1, and a charging means for charging the target surface 2 to the charge V3. Charging power source 16b. In the illustrated example, the polymer solution is pumped to the nozzle-type electrostatic discharge system 100 by a pump (not shown) and sprayed as the charge release material 1, and the target surface is refined and granulated into nano-units by multiple electrostatic explosions. 2 shows a case where surface treatment is performed, and in particular, by applying a voltage from the charging power source 16a to the electrode wire 100a made of stainless steel inserted in the nozzle type electrostatic discharge system 100, a high charge is applied to the charge release material 1. It can be applied, and the degree of electrostatic explosion is increased and the electrostatic adhesion to the target surface 2 is enhanced. The charging power source 16b applies the voltage V3 to the target surface 2, but the same effect can be obtained by connecting the target surface 2 to the ground instead. The electrode wire 100a is not limited to stainless steel, and may be an electrode wire such as tungsten.

ここで、電圧V1とV3との電位差は10kV〜100kV程度とするのが好適である。また、交流電圧印加手段13は導電性とした非対象面4に交流電圧を印加したときの正負電極の振動的な反転によって実質的な不帯電状態とするもので、例え帯電があったとしてもそれを中和し消去することができる。しかし、その中和作用には印加する交流電圧の周波数を高く設定するのがよく、前記静電作業電圧の範囲に対して1Hz〜100kHz程度に設定して好適であり、電圧は10V〜500V程度に設定して好適である。一方、印加する交流電圧V2の波形は特に問うものではなく、図2に示すようなサイン波、矩形波を始め、図3に示すような三角波でもよい。   Here, the potential difference between the voltages V1 and V3 is preferably about 10 kV to 100 kV. Further, the AC voltage applying means 13 is a substantially non-charged state by vibrational reversal of the positive and negative electrodes when an AC voltage is applied to the non-target surface 4 that is made conductive. It can be neutralized and eliminated. However, the frequency of the AC voltage to be applied is preferably set high for the neutralization action, and is preferably set to about 1 Hz to 100 kHz with respect to the range of the electrostatic working voltage, and the voltage is about 10 V to 500 V. It is suitable to set. On the other hand, the waveform of the applied AC voltage V2 is not particularly limited, and may be a sine wave or a rectangular wave as shown in FIG. 2 or a triangular wave as shown in FIG.

対象面2はこれを持った対象物200の種類によって種々に形成され、その種類に応じた帯電構造を採用すればよい。例えば金属製品の全表面であれば対象物200に単に電圧V3を印加したりアースに接続したりすればよく、樹脂製品などの誘電体であれば帯電手段により電圧V3を帯電させるか対象面2に導電性を付与して電圧V3を印加するかアースに接続するかすればよい。このように対象物200の全面が対象面2である場合は非対象面4を持たないが、静電放出系100に対向する側だけといった一部の表面であると、それ以外の表面が非対象面4となり、対象物200が平板で非対象面4が支持部材上に伏せられているか、下向きで、帯電放出材1の回り込みやその影響による問題がなければよいが、非対象面4への帯電放出材の静電付着を防止する必要のある場合は、対象面2への帯電域と絶縁を図った導電性の非対象面4として交流電圧V2を印加しないと、それが対象面2に悪影響する。樹脂などの絶縁材料よりなる対象物200では対象面2を導電性部材で形成して電圧V3の印加やアースするのが簡単であるが、絶縁特性のまま各種の帯電手段により帯電させて静電作業に供するようにもでき、いずれにしても、非対象面4を導電性として交流電圧V2を印加するのに対象面2の帯電域との絶縁を図ることは必要である。   The target surface 2 may be formed in various ways depending on the type of the target object 200 having the target surface 2, and a charging structure corresponding to the type may be adopted. For example, in the case of the entire surface of a metal product, the voltage V3 may be simply applied to the object 200 or connected to the ground. In the case of a dielectric such as a resin product, the voltage V3 is charged by charging means or the object surface 2 What is necessary is just to apply the voltage V3 or to connect to the ground by imparting conductivity to. In this way, when the entire surface of the object 200 is the object surface 2, the non-object surface 4 is not provided, but if it is a part of the surface only on the side facing the electrostatic discharge system 100, other surfaces are non-surface. The target surface 4 becomes the target surface 200, and the non-target surface 4 is hung on the support member or faces downward, and there is no problem due to the wraparound of the charge release material 1 or its influence. If it is necessary to prevent electrostatic adhesion of the charge release material, if the AC voltage V2 is not applied as the conductive non-target surface 4 that is insulated from the charged area on the target surface 2, it will be the target surface 2 Adversely affects. In the object 200 made of an insulating material such as resin, it is easy to form the object surface 2 with a conductive member and apply the voltage V3 or to ground it. In any case, in order to apply the alternating voltage V2 with the non-target surface 4 being conductive, it is necessary to insulate the target surface 2 from the charged region.

また、対象面2が帯電放出材1を原料材として回収する対象物200である場合は、図4に示す回転体や、これに代る回転ベルトなどによる周回面とすると、連続的に回収しながら次へ搬送できるので好適であり、必要に応じて電子紡糸方式での高分子ファイバを回収してウエブに堆積させて送り出したり、スライバ化工程やフィラメント化工程として、あるいはスライバ化、フィラメント化、製糸などの前工程として集束を伴ない送り出したりすることができる。図4に示す対象物200は回収により製糸を目的としたもので、静電放出系100から静電紡糸される帯電放出材1を限られた幅を有して周回する対象面2へ連続に回収し集束させながら先へ送りこれを対象面2から連続に引き上げることで連続したスライバー状、フィラメント状の糸条とし、そのままで、あるいは撚糸、撚糸の撚り合わせなどを施して二次製品の使用に供するようにしている。ここに対象物200はその材質に制限がないことから樹脂製として軽量化、低コスト化を図りながら、対象面2は対象物200の外周に嵌め付け、あるいは巻き付けた金属材12により導電性面として荷電電源16bから電圧V3を印加できるようにし、対象物200の非対象面4は対象面2の金属材12と絶縁距離を置くか対象物200自体によって絶縁を図って配した金属材12によって導電性とし、交流電圧印加手段13からの交流電圧V2を印加し、帯電放出材1が付着したりするのを防止することができる。もっとも、図示する帯電放出材1の回収を図る対象面2は薄い円板である対象物の外周両側面は庇状に張り出した形態として対象物200の非対象面4に帯電放出材1が回り込みにくくはなっている。しかし、非対象面は静電作業環境3に面する回転軸の表面など全ての面を含んで同様に対策することができる。   In addition, when the target surface 2 is an object 200 to be collected using the charge release material 1 as a raw material, if the rotating surface shown in FIG. 4 or a rotating belt instead of the rotating body shown in FIG. However, it is suitable because it can be transported to the next, and if necessary, the polymer fiber in the electrospinning method is collected and deposited on the web and sent out, or as a sliver process or filament process, or as a sliver, filament process, It can be sent out with converging as a pre-process such as yarn production. The object 200 shown in FIG. 4 is intended for spinning by collection, and is continuously applied to the target surface 2 that circulates with a limited width around the electrostatic discharge material 1 electrostatically spun from the electrostatic discharge system 100. Collected and fed to the front while converging, and continuously pulling it up from the target surface 2 to form a continuous sliver-like or filament-like thread, or use a secondary product as it is or by twisting or twisting the twisted yarn It is intended to be used. Since the material of the object 200 is not limited, the object surface 2 is fitted with or wound around the outer periphery of the object 200 while being reduced in weight and cost as a resin. The voltage V3 can be applied from the charging power source 16b, and the non-target surface 4 of the target object 200 is placed at an insulation distance from the metal material 12 of the target surface 2 or is insulated by the target object 200 itself. It is possible to prevent the charging / discharging material 1 from adhering by applying the AC voltage V2 from the AC voltage application means 13 and making it conductive. Of course, the target surface 2 for collecting the charge releasing material 1 shown in the figure is a thin disc, and the both sides of the outer periphery of the target object are projected in a bowl shape so that the charge releasing material 1 wraps around the non-target surface 4 of the target object 200. It has become difficult. However, the non-target surface can be treated in the same manner including all surfaces such as the surface of the rotating shaft facing the electrostatic working environment 3.

静電作業環境3は図1に示すように囲い壁15で囲うのが帯電放出材1のまわりへの飛散を防止できるので好適であるし、前記のように静電作業電圧が10kV〜100kV程度と高電圧な場合はまわりへの電気的な影響を防止するために囲い壁15は絶縁材とするのが好適である。しかし、その内面は非対象面4であるが既述した通り帯電放出材1の影響で帯電して静電放出系100からの帯電放出材1の放出が停止したり、不安定になるほか、放出した帯電放出材1が静電付着して問題をもたらすので、その問題となる領域に金属材12により導電性を付与して交流電圧V2を印加し帯電放出材1が静電付着しないようにすることが必須となる。   As shown in FIG. 1, it is preferable that the electrostatic work environment 3 is surrounded by the enclosure wall 15 because scattering around the charge release material 1 can be prevented. As described above, the electrostatic work voltage is about 10 kV to 100 kV. In the case of a high voltage, it is preferable to use an insulating material for the surrounding wall 15 in order to prevent electrical influence on the surroundings. However, the inner surface is the non-target surface 4, but as described above, the discharge of the charge release material 1 from the electrostatic discharge system 100 stops due to the influence of the charge release material 1 or becomes unstable. Since the discharged charge releasing material 1 is electrostatically attached to cause a problem, the conductive material is imparted to the problem area by the metal material 12 and an AC voltage V2 is applied so that the charge releasing material 1 is not electrostatically attached. It is essential to do.

ここに、非対象面4の必要域が帯電した帯電放出材1に対し連続した不帯電性を発揮するのが好適であるが、導電性面の連続性は必ずしも必須とならない。具体的には、図1に示す金属材12は連続した銅板としてあり交流電圧V2の印加によって非対象面4を連続した不帯電面を形成するが、金属材12を金網やパンチング金属板などとして導電性面が不連続になっても、それの帯電放出材1を非対象面4の静電付着させない不帯電性帯は連続して得られ、網目やパンチング穴を通って囲い壁15の内面に静電付着することはない。もっとも、それには網目やパンチング孔の大きさやピッチなどに制限はある。   Here, it is preferable that the necessary area of the non-target surface 4 exhibits a continuous non-charging property with respect to the charged release material 1, but the continuity of the conductive surface is not necessarily essential. Specifically, the metal material 12 shown in FIG. 1 is a continuous copper plate, and the non-target surface 4 is formed as a continuous non-charged surface by application of the AC voltage V2, but the metal material 12 is used as a wire mesh or a punching metal plate. Even when the conductive surface becomes discontinuous, an unchargeable band that does not cause the electrostatic discharge material 1 to adhere electrostatically to the non-target surface 4 is continuously obtained, and the inner surface of the surrounding wall 15 passes through a mesh or punching hole. There is no electrostatic adhesion. However, there are limitations on the size and pitch of the mesh and punching holes.

ここで、囲い壁15は静電作業の種類や作業場所によっては必須でないし、静電作業環境3を囲う囲い壁15を設けても静電作業位置から遠く帯電放出材1が静電付着しない場合や静電付着しても許容される場合も考えられる。また、対象面2が全面である対象物200は非対象面4を持たないし、非対象面4がある対象物200でも対象面2以外への帯電放出材1の回り込み付着が生じない環境か、回り込み付着があっても許容される場合がある。そこで、非対象面4への導電性の付与は、静電作業環境3を囲う絶縁材よりなる囲い壁15またはおよび対象面2を有した対象物200の非対象面4を対象として、交流電圧V2を印加すればよいことになる。   Here, the enclosure wall 15 is not indispensable depending on the type of electrostatic work and the work place. Even if the enclosure wall 15 surrounding the electrostatic work environment 3 is provided, the electrostatic discharge material 1 is not electrostatically attached far from the electrostatic work position. In some cases, even if electrostatic adhesion is allowed. In addition, the target object 200 having the entire target surface 2 does not have the non-target surface 4, and the target 200 having the non-target surface 4 is an environment in which the wraparound adhesion of the charge release material 1 to other than the target surface 2 does not occur. Even if there is wraparound adhesion, it may be allowed. Therefore, the imparting of conductivity to the non-target surface 4 is performed by applying an AC voltage to the non-target surface 4 of the target object 200 having the enclosure wall 15 and the target surface 2 made of an insulating material surrounding the electrostatic work environment 3. It is only necessary to apply V2.

さらに、囲い壁15の非対象面4のうち、帯電放出材1を帯電を伴い放出させる側、つまり静電放出系100を設置した放出源側4aでは、帯電放出材1が小さく絞られた極小範囲から遠ざかる方向に放出される関係から、帯電放出材1が逆流して回り込むことがないか、回り込むことがあっても微小で静電的な影響の問題はない。また、静電放出系100からの帯電放出材1の放出対象である対象面2を持った対象物200を設置する放出対象側4bでは、放出された帯電放出材1のほぼ大半が対象面2に静電付着して、帯電放出材1は届きにくいし、届いても少量でしかも電荷が落ちて静電的な影響の問題はない場合が多い。従って、囲い壁15の非対象面4に対しては、囲い壁15の非対象面4への導電性付与は、少なくとも帯電放出材1の放出方向に向く側周域に限って金属材12を設けて行えば囲い壁15の帯電による問題対策は実用上十分である。   Further, on the non-target surface 4 of the enclosure wall 15 on the side where the charge release material 1 is discharged with charging, that is, on the emission source side 4a where the electrostatic discharge system 100 is installed, the charge release material 1 is reduced to a minimum. Because of the relationship of discharging in a direction away from the range, the charging / discharging material 1 does not flow backward and does not wrap around, and there is no problem of minute and electrostatic influence. Further, on the discharge target side 4b where the target 200 having the target surface 2 that is the target of discharge of the electrostatic discharge material 1 from the electrostatic discharge system 100 is installed, almost the majority of the discharged charge release material 1 is the target surface 2. In many cases, the electrostatic discharge material 1 is difficult to reach, and even if it arrives, a small amount of the charge is dropped and there is no problem of electrostatic influence. Therefore, with respect to the non-target surface 4 of the enclosure wall 15, the conductivity imparting to the non-target surface 4 of the enclosure wall 15 is limited to the metal material 12 at least in the side peripheral region facing the discharge direction of the charge release material 1. If provided, the countermeasure against the problem due to the charging of the surrounding wall 15 is practically sufficient.

本発明に係る実施の形態の静電作業環境における静電作用制御方法と装置の1つの例を示す摸式図である。It is a model diagram which shows one example of the electrostatic-action control method and apparatus in the electrostatic working environment of embodiment which concerns on this invention. 図1の例の方法と装置で用いるサイン波、矩形波での交流電圧の印加状態を示す具体図である。It is a specific figure which shows the application state of the alternating voltage by the sine wave and rectangular wave used with the method and apparatus of the example of FIG. 交流電圧の三角波の例を示す波形図である。It is a wave form diagram which shows the example of the triangular wave of alternating voltage. 図1に示す方法と装置での原料材の回収を目的とした場合の例を示す摸式図である。It is a model diagram which shows the example in case the objective is collection | recovery of the raw material by the method and apparatus shown in FIG. 従来の静電作業環境における静電作用制御方法と装置の1つの例を示す摸式図である。It is a schematic diagram which shows one example of the electrostatic effect control method and apparatus in the conventional electrostatic working environment.

符号の説明Explanation of symbols

1 帯電放出材
2 対象面
3 静電作業環境
4 非対象面
11 静電作業手段
12 金属材
13 交流電圧印加手段
14 制御手段
15 囲い壁
16a、16b 荷電電源
100 静電放出系
200 対象物
DESCRIPTION OF SYMBOLS 1 Charge release material 2 Target surface 3 Electrostatic work environment 4 Non-target surface 11 Electrostatic work means 12 Metal material 13 AC voltage application means 14 Control means 15 Enclosure walls 16a and 16b Charge power supply 100 Electrostatic discharge system 200 Object

Claims (10)

帯電した原料材または処理材をこれと電位差を有している対象面へ放出して対象面上に静電的に付着させる静電作業を行う静電作業環境に面した導電性の非対象面に交流電圧を印加し不帯電状態とすることにより、帯電した原料材または処理材が静電的に付着しないようにすることを特徴とする静電作業環境における静電作用制御方法。 Conductive non-target surface facing an electrostatic work environment in which charged raw material or processing material is discharged to the target surface having a potential difference and electrostatically attached to the target surface. A method of controlling electrostatic action in an electrostatic work environment, wherein an AC voltage is applied to the substrate to make it uncharged to prevent electrostatic charging of raw material or processing material. 不帯電状態にする非対象面は、静電作業環境を囲う囲い壁またはおよび対象面を有した対象物の非対象面を対象とする請求項1に記載の静電作業環境における静電作用制御方法。 The electrostatic action control in the electrostatic work environment according to claim 1, wherein the non-target surface to be uncharged is a target wall surface surrounding the electrostatic work environment or a non-target surface of an object having the target surface. Method. 囲い壁の不帯電状態にする非対象面は、少なくとも原料材または処理材の放出方向に向く側周域を対象としている請求項2に記載の静電作業環境における静電作用制御方法。 3. The electrostatic action control method in an electrostatic work environment according to claim 2, wherein the non-target surface of the enclosure wall to be in an uncharged state targets at least a side peripheral region facing the discharge direction of the raw material or processing material. 静電作業環境は、ファイバ、短繊維、粉体、粒子などの原料材の対象面による回収、塗料を処理材とした対象面への静電塗装、パイルを処理材とした対象面への静電植毛の1つを行う請求項1〜3のいずれか1項に記載の静電作業環境における静電作用制御方法。 The electrostatic work environment consists of collection of raw materials such as fibers, short fibers, powders and particles on the target surface, electrostatic coating on the target surface using paint as a treatment material, and static application on the target surface using pile as a treatment material. The electrostatic action control method in the electrostatic work environment of any one of Claims 1-3 which performs one of the electric flocking. 原料材は、電子紡糸法によって作り出される帯電した高分子のファイバ、短繊維、粉体、粒子である請求項4に記載の静電作業環境における静電作用制御方法。 5. The electrostatic action control method in an electrostatic work environment according to claim 4, wherein the raw material is a charged polymer fiber, short fiber, powder or particle produced by an electrospinning method. 帯電した原料材または処理材をこれと電位差を有して配置した対象面へ放出し静電的に付着させる静電作業手段と、この静電作業手段による静電作業環境に面した非対象面を導電性とする金属材と、この金属材に交流電圧を印加しそれが形成する非対象面を不帯電状態とする交流電圧印加手段と、静電作業手段による静電作業開始に基づき、交流電圧印加手段を働かせる制御手段とを備えたことを特徴とする静電作業環境における静電作用制御装置。 Electrostatic working means for discharging and electrostatically adhering a charged raw material or processing material to a target surface arranged with a potential difference from this, and a non-target surface facing the electrostatic working environment by this electrostatic working means Based on the start of the electrostatic work by the electrostatic working means, the alternating current voltage applying means for applying an alternating voltage to the metallic material to make the non-target surface formed by the metallic material an uncharged state, and the electrostatic working means. An electrostatic action control device in an electrostatic work environment, comprising: control means for operating voltage application means. 金属材は、静電作業環境を囲う絶縁材よりなる囲い壁またはおよび対象面を持った絶縁性の対象物の非対象面に導電性を付与している請求項6に記載の静電作業環境における静電作用制御装置。 The electrostatic work environment according to claim 6, wherein the metal material imparts conductivity to an enclosure wall made of an insulating material surrounding the electrostatic work environment or a non-target surface of an insulating object having a target surface. Electrostatic action control device. 交流電圧が印加される金属材は、囲い壁の内面の少なくとも原料材または処理材の放出方向に向く側周域を対象として導電性を付与している請求項6、7のいずれか1項に記載の静電作業環境における静電作用制御装置。 The metal material to which an alternating voltage is applied imparts conductivity to at least a side peripheral area of the inner surface of the enclosure wall facing the discharge direction of the raw material or treatment material. The electrostatic action control apparatus in the described electrostatic working environment. 静電作業手段は、ファイバ、短繊維、粉体、粒子である原料材の対象面による回収、塗料を処理材とした対象面への静電塗装、パイルを処理材とした対象面への静電植毛の1つを行う請求項6〜8のいずれか1項に記載の静電作業環境における静電作用制御装置。 The electrostatic working means can be used to collect raw materials such as fibers, short fibers, powders and particles from the target surface, electrostatic coating on the target surface using paint as a treatment material, and static coating on the target surface using pile as a treatment material. The electrostatic action control apparatus in the electrostatic work environment of any one of Claims 6-8 which performs one of the electric flocking. 静電作業手段は、電子紡糸手段とこの静電紡糸手段から作り出される帯電した高分子のファイバ、短繊維、粉体、粒子を回収する対象面を有した対象物とを備えている請求項9に記載の静電作業環境における静電作業制御装置。 10. The electrostatic working means comprises an electrospinning means and an object having a target surface for collecting charged polymer fibers, short fibers, powder, and particles produced from the electrostatic spinning means. The electrostatic work control apparatus in the electrostatic work environment described in 1.
JP2006229609A 2006-08-25 2006-08-25 Method and apparatus for controlling electrostatic action in electrostatic working environment Expired - Fee Related JP4872535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229609A JP4872535B2 (en) 2006-08-25 2006-08-25 Method and apparatus for controlling electrostatic action in electrostatic working environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229609A JP4872535B2 (en) 2006-08-25 2006-08-25 Method and apparatus for controlling electrostatic action in electrostatic working environment

Publications (2)

Publication Number Publication Date
JP2008049297A true JP2008049297A (en) 2008-03-06
JP4872535B2 JP4872535B2 (en) 2012-02-08

Family

ID=39233826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229609A Expired - Fee Related JP4872535B2 (en) 2006-08-25 2006-08-25 Method and apparatus for controlling electrostatic action in electrostatic working environment

Country Status (1)

Country Link
JP (1) JP4872535B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133562A (en) * 2006-11-28 2008-06-12 Matsushita Electric Ind Co Ltd Antistatic method for equipment made of metal and apparatus therefor
JP2009013535A (en) * 2007-07-05 2009-01-22 Panasonic Corp Apparatus and method for producing nanofibers
JP2010024577A (en) * 2008-07-18 2010-02-04 Panasonic Corp Apparatus and method for producing nanofiber

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151675A (en) * 1980-03-25 1981-11-24 Agfa Gevaert Nv Radiography-film packing
JPS6140466A (en) * 1984-08-01 1986-02-26 Akira Kobayashi Head drop engine
JPS63249755A (en) * 1987-04-04 1988-10-17 株式会社豊田自動織機製作所 Production of fiber aggregate
JPH03220305A (en) * 1989-11-21 1991-09-27 I C I Japan Kk Production of antistatic spun yarn
JPH0487651A (en) * 1990-08-01 1992-03-19 Hitachi Ltd Powder sprinkler, powder weigher and liquid-crystal display device
JPH05262905A (en) * 1992-01-24 1993-10-12 Fuji Photo Film Co Ltd Matting of recording material
JPH11207849A (en) * 1998-01-26 1999-08-03 Setsuo Tate Powder adhesion preventing surfacing material and powder adhesion preventing method
JP2002201559A (en) * 2000-12-22 2002-07-19 Korea Inst Of Science & Technology Equipment for producing polymeric web by electrospinning
JP2005264374A (en) * 2004-03-18 2005-09-29 Japan Vilene Co Ltd Method and apparatus for producing fiber assembly by electrostatic spinning method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151675A (en) * 1980-03-25 1981-11-24 Agfa Gevaert Nv Radiography-film packing
JPS6140466A (en) * 1984-08-01 1986-02-26 Akira Kobayashi Head drop engine
JPS63249755A (en) * 1987-04-04 1988-10-17 株式会社豊田自動織機製作所 Production of fiber aggregate
JPH03220305A (en) * 1989-11-21 1991-09-27 I C I Japan Kk Production of antistatic spun yarn
JPH0487651A (en) * 1990-08-01 1992-03-19 Hitachi Ltd Powder sprinkler, powder weigher and liquid-crystal display device
JPH05262905A (en) * 1992-01-24 1993-10-12 Fuji Photo Film Co Ltd Matting of recording material
JPH11207849A (en) * 1998-01-26 1999-08-03 Setsuo Tate Powder adhesion preventing surfacing material and powder adhesion preventing method
JP2002201559A (en) * 2000-12-22 2002-07-19 Korea Inst Of Science & Technology Equipment for producing polymeric web by electrospinning
JP2005264374A (en) * 2004-03-18 2005-09-29 Japan Vilene Co Ltd Method and apparatus for producing fiber assembly by electrostatic spinning method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133562A (en) * 2006-11-28 2008-06-12 Matsushita Electric Ind Co Ltd Antistatic method for equipment made of metal and apparatus therefor
JP2009013535A (en) * 2007-07-05 2009-01-22 Panasonic Corp Apparatus and method for producing nanofibers
JP2010024577A (en) * 2008-07-18 2010-02-04 Panasonic Corp Apparatus and method for producing nanofiber

Also Published As

Publication number Publication date
JP4872535B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP5111525B2 (en) Method and apparatus for producing nanoparticle layers or nanofiber layers from polymer solutions or melts
KR101715580B1 (en) Nanofiber production apparatus, nanofiber production method, and nanofiber molded body
JP4948538B2 (en) Improved electroblown fiber spinning method
US5026463A (en) Process and apparatus for preparing the surface of a plastic molding by means of an electrical corona discharge
US7799389B2 (en) Method and device for depositing thin films by electrohydrodynamic, in particular post-discharge, spraying
KR101307877B1 (en) Electret filter element and method for the production thereof
KR20110111368A (en) Electrostatic spinning assembly
JP2009504937A (en) Improved fiber charging device
JP4710783B2 (en) Electrostatic discharge method and apparatus, electrostatic work method and apparatus using them
JPS62263361A (en) Production of nonwoven fabric
JP4872535B2 (en) Method and apparatus for controlling electrostatic action in electrostatic working environment
WO2005042813A1 (en) Electrostatic spinning equipment and method of preparing nano fiber using the same
JP4867672B2 (en) Polymer fiber production method and apparatus, polymer web production method and apparatus using them
SalehHudin et al. Simulation and experimental study of parameters in multiple-nozzle electrospinning: effects of nozzle arrangement on jet paths and fiber formation
Uecker et al. Ion-assisted collection of Nylon-4, 6 electrospun nanofibers
JP2011052337A (en) Electrospinning apparatus
JP2009275326A (en) Apparatus and method for producing nanofiber
JP2009024294A (en) Electrodeposition apparatus, method for producing material-applied substrate and material-applied substrate produced therewith
NL2019764B1 (en) Electrospinning device and method
JP6757641B2 (en) Equipment for manufacturing sheet-shaped fiber deposits and method for manufacturing the fiber deposits
JP4890049B2 (en) Extra fine fiber assembly
JP3517968B2 (en) Insulating web static elimination method and web manufacturing method
US3708561A (en) Process for producing non-woven filamentary structure
Yang et al. Controlled deposition of electrospinning jet by electric field distribution from an insulating material surrounding the barrel of the polymer solution
US3528592A (en) Process of handling a charged web

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090403

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4872535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees