JP2008047554A - Manufacturing method of neodymium-based bond magnet - Google Patents

Manufacturing method of neodymium-based bond magnet Download PDF

Info

Publication number
JP2008047554A
JP2008047554A JP2006218582A JP2006218582A JP2008047554A JP 2008047554 A JP2008047554 A JP 2008047554A JP 2006218582 A JP2006218582 A JP 2006218582A JP 2006218582 A JP2006218582 A JP 2006218582A JP 2008047554 A JP2008047554 A JP 2008047554A
Authority
JP
Japan
Prior art keywords
magnet
temperature
heating
powder
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006218582A
Other languages
Japanese (ja)
Other versions
JP4721357B2 (en
Inventor
Haruhiro Yukimura
治洋 幸村
Masutaro Suzuki
増太郎 鈴木
Teruo Kiyomiya
照夫 清宮
Nobuyuki Sueyoshi
伸行 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2006218582A priority Critical patent/JP4721357B2/en
Publication of JP2008047554A publication Critical patent/JP2008047554A/en
Application granted granted Critical
Publication of JP4721357B2 publication Critical patent/JP4721357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To minimize a decrease in magnetic characteristics, and to efficiently and inexpensively manufacture an Nd-based bond magnet having improved rustproof properties. <P>SOLUTION: Nd-based magnet powder (Nd-Fe-B-based magnet alloy powder) and a binder resin (epoxy resin) are mixed to a prescribed shape, and the forming body is heat-cured in an inert gas atmosphere. The obtained magnet body is heated at a high temperature of 300-500°C for a short time, namely 1 second to 5 minutes, thus performing rustproof treatment for forming an oxide film on the surface of the magnet powder, and then magnetization is performed by an arbitrary method. More preferably, rustproof treatment by short-time heating at high temperature is performed at 350-430°C for 2-5 seconds. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、Nd系ボンド磁石の製造方法に関し、更に詳しく述べると、高温短時間の加熱によって磁石粉末表面に酸化被膜を形成し防錆効果を生じさせるNd系ボンド磁石の製造方法に関するものである。   The present invention relates to a method for producing an Nd-based bonded magnet, and more specifically, relates to a method for producing an Nd-based bonded magnet that forms an oxide film on the surface of a magnet powder by heating at a high temperature for a short time to produce a rust prevention effect. .

ボンド磁石の製造は、一般に、磁石粉末と熱硬化性バインダ樹脂とを混練し、乾燥、粉砕した粉末を用いて所望の形状に成形した後、加熱してバインダ樹脂を硬化させる方法が採られている。Nd−Fe−B系ボンド磁石の場合も、基本的には同様の方法で製造される。   In general, a bonded magnet is manufactured by kneading magnet powder and a thermosetting binder resin, forming the powder into a desired shape using dried and pulverized powder, and then heating to cure the binder resin. Yes. The Nd—Fe—B based bonded magnet is basically manufactured by the same method.

ところが、Nd−Fe−B系ボンド磁石の場合、磁石合金粉末は活性なNd,Feを多量に含有するため、錆び易いという問題がある。そこで、磁石粉末を外的酸化要因から守るために、バインダ樹脂が磁石粉末を被覆する形になるのが理想であり、実際そのような形に近づけることで防錆性を向上させ実用に供している。   However, in the case of an Nd—Fe—B based bonded magnet, the magnet alloy powder contains a large amount of active Nd and Fe, and thus has a problem that it is easily rusted. Therefore, in order to protect the magnet powder from external oxidation factors, it is ideal that the binder resin is in a form that covers the magnet powder. Yes.

しかしながら、バインダ樹脂の被覆によって防錆性能を向上させるには、樹脂量をかなり多くする必要がある。それによって磁粉比率が下がると、磁石特性が低下する問題が生じる。近年の各種電子デバイスの小型化並びに高性能化に伴い、磁石特性をより一層向上させたい要望が強く、そのため樹脂量を必要以上に多くすることは避けねばならない。   However, in order to improve the rust prevention performance by coating the binder resin, it is necessary to considerably increase the resin amount. As a result, when the magnetic powder ratio is lowered, there arises a problem that the magnetic properties are lowered. With recent miniaturization and higher performance of various electronic devices, there is a strong demand to further improve the magnet characteristics, and therefore it is unavoidable to increase the amount of resin more than necessary.

そこで、樹脂量を必要以上に増加させることなく、防錆性の向上を図る様々な方法が提案されている。例えば特許文献1には、有機バインダ樹脂の熱硬化処理をCO2 、N2 またはCO2 +N2 混合ガスの雰囲気中で行うか、あるいは磁石粉末をCO2 、N2 またはCO2 +N2 混合ガスの雰囲気に曝露した後に有機バインダ樹脂と混練する方法が提案されている。いずれも雰囲気ガスへの曝露は、200℃以下の温度に加熱することで行われる。この方法によって、磁石粉末の表面に金属の炭化物や窒化物を形成し、それらが酸素の作用を抑えるものと推測しているが、防錆の効果は必ずしも顕著ではない。また特許文献2には、磁石表面に設けるコーティング層を形成するためのコーティング剤組成液として、コーティング剤樹脂と防錆機能を有する硬化剤を用いる方法が開示されている。 Therefore, various methods for improving the rust prevention property without increasing the resin amount more than necessary have been proposed. For example, Patent Document 1 discloses that an organic binder resin is thermally cured in a CO 2 , N 2, or CO 2 + N 2 mixed gas atmosphere, or magnet powder is a CO 2 , N 2, or CO 2 + N 2 mixed gas. There has been proposed a method of kneading with an organic binder resin after exposure to the above atmosphere. In any case, the exposure to the atmospheric gas is performed by heating to a temperature of 200 ° C. or lower. Although it is presumed that this method forms metal carbides and nitrides on the surface of the magnet powder and suppresses the action of oxygen, the effect of rust prevention is not necessarily remarkable. Patent Document 2 discloses a method using a coating agent resin and a curing agent having a rust prevention function as a coating agent composition liquid for forming a coating layer provided on the magnet surface.

一般に、防錆性を向上させる最も確実な方法は、めっき等による磁石粉末の被覆であるが、そのような方法は高価で生産性が劣り、防錆性改善策としては過剰な処理方法ともいえる。そこで、生産性に優れ、しかも必要十分な防錆性向上を図ることができる方法の開発が望まれている。
特開平5−267030号公報 特開2003−261826号公報
In general, the most reliable method for improving rust prevention is to coat magnetic powder by plating or the like, but such a method is expensive and inferior in productivity, and can be said to be an excessive treatment method as a rust prevention improvement measure. . Therefore, development of a method that is excellent in productivity and that can improve the necessary and sufficient rust prevention property is desired.
Japanese Patent Laid-Open No. 5-267030 JP 2003-261826 A

本発明が解決しようとする課題は、磁気特性の低下を最小限に抑えつつ、防錆性の良好なNd系ボンド磁石を、効率よく安価に製造できるようにすることである。   The problem to be solved by the present invention is to make it possible to efficiently and inexpensively manufacture an Nd-based bonded magnet with good rust prevention properties while minimizing the deterioration of magnetic properties.

本発明は、Nd系磁石粉末とバインダ樹脂(熱硬化性樹脂)を混合して成形し、その成形体を不活性ガス雰囲気中で熱硬化処理した後、得られた磁石体に温度300℃〜500℃、時間1秒〜5分の高温短時間加熱を行うことで磁石粉末表面に酸化被膜を形成する防錆処理を施し、その後、着磁を行うことを特徴とするNd系ボンド磁石の製造方法である。この高温短時間加熱による保磁力の減少率を10%以下に制限することが好ましい。   In the present invention, an Nd-based magnet powder and a binder resin (thermosetting resin) are mixed and molded, and the molded body is subjected to thermosetting treatment in an inert gas atmosphere. Production of an Nd-based bonded magnet characterized in that it is subjected to a rust prevention treatment for forming an oxide film on the surface of the magnet powder by heating at 500 ° C. for 1 second to 5 minutes for a short time, followed by magnetization. Is the method. It is preferable to limit the reduction rate of the coercive force by this high temperature short time heating to 10% or less.

より好ましくは、高温短時間加熱による防錆処理を、温度350℃〜430℃、時間2秒〜5秒の条件で行うことである。このような条件では、高温短時間加熱による保磁力の減少率を1%以下にできる。   More preferably, the rust prevention treatment by high-temperature and short-time heating is performed under conditions of a temperature of 350 ° C. to 430 ° C. and a time of 2 seconds to 5 seconds. Under such conditions, the reduction rate of the coercive force due to high-temperature and short-time heating can be reduced to 1% or less.

典型的には、Nd系磁石粉末としてNd−Fe−B系磁石合金粉末を用い、バインダ樹脂としてエポキシ樹脂を用いる。   Typically, Nd-Fe-B magnet alloy powder is used as the Nd magnet powder, and epoxy resin is used as the binder resin.

ところで、Nd系ボンド磁石では、磁石粉末の活性が高く、高温度下で曝されると磁気特性が低下すること、バインダ樹脂を用いているため、高温度下で曝されると樹脂の劣化が進むこと、等の理由で、高温度下に曝すことは技術常識に反すると考えられていた。そのため、バインダ樹脂の熱硬化処理でも、温度を必要最低限に抑え、且つ不活性ガス雰囲気中で行うというように、磁石粉末が酸化されないように、また樹脂が劣化しないように細心の注意を払って行っているのが現状である。   By the way, in the Nd-based bonded magnet, the activity of the magnet powder is high, and the magnetic properties are lowered when exposed at a high temperature, and since the binder resin is used, the resin deteriorates when exposed at a high temperature. For reasons such as going forward, exposure to high temperatures was thought to be against technical common sense. Therefore, even in the thermosetting treatment of the binder resin, extreme care is taken not to oxidize the magnet powder and to prevent the resin from deteriorating, as in the case where the temperature is kept to the minimum necessary and in an inert gas atmosphere. This is the current situation.

本発明者らは、Nd系ボンド磁石に対して、高温短時間加熱(熱硬化処理の際の条件よりも遙かに高温で且つ遙かに短時間での加熱処理)を行うことによって、磁石粉末の表面に積極的に極薄の酸化被膜を形成すると、それによって磁気特性の低下を最小限に抑えつつ防錆効果を著しく高めることができること、またバインダ樹脂が劣化しないこと、を見出した。本発明は、かかる現象の知得に基づき完成したものであり、従来の技術常識を覆すものである。   The inventors of the present invention perform high-temperature and short-time heating (heat treatment at a much higher temperature and in a much shorter time than the conditions during the thermosetting process) on the Nd-based bonded magnet. It has been found that when an extremely thin oxide film is positively formed on the surface of the powder, the rust prevention effect can be remarkably enhanced while minimizing the deterioration of the magnetic properties, and the binder resin is not deteriorated. The present invention has been completed based on the knowledge of such a phenomenon and overturns the conventional technical common sense.

本発明に係るNd系ボンド磁石の製造方法は、高温短時間加熱という安価で簡便な方法でありながら、十分な防錆性を発現させることができ、しかも樹脂の劣化が生じず、磁気特性の低下を最小限に抑えることができる。   The manufacturing method of the Nd-based bonded magnet according to the present invention is an inexpensive and simple method of heating at a high temperature and a short time, but can exhibit sufficient rust prevention properties, and does not cause deterioration of the resin. Degradation can be minimized.

本発明に係るNd系ボンド磁石の製造方法のプロセスを図1に示す。Nd−Fe−B系磁石合金粉末とエポキシ樹脂とを混合し、粉砕して粒度調整する。その粉体を用いて、所望の形状に成形する。その成形体を、窒素ガス雰囲気中で200℃、1時間の熱硬化処理を行う。次いで、得られた磁石体に温度300℃〜500℃、時間1秒〜5分の高温短時間加熱を行うことで磁石粉末表面に酸化被膜を形成する防錆処理を施す。最後に、任意の方法で着磁を行う。   The process of the manufacturing method of the Nd type bonded magnet which concerns on this invention is shown in FIG. Nd—Fe—B magnet alloy powder and epoxy resin are mixed and pulverized to adjust the particle size. Using the powder, it is formed into a desired shape. The molded body is subjected to thermosetting treatment at 200 ° C. for 1 hour in a nitrogen gas atmosphere. Next, the obtained magnet body is subjected to a rust preventive treatment for forming an oxide film on the surface of the magnet powder by performing high-temperature and short-time heating at a temperature of 300 ° C. to 500 ° C. for a time of 1 second to 5 minutes. Finally, magnetization is performed by an arbitrary method.

成形及び熱硬化までのプロセスは、基本的に従来技術と同様である。熱硬化条件は、適宜変更してもよい。本発明において、高温短時間加熱の条件は、防錆性の点から実験的に明らかにしたものである。加熱温度を300℃〜500℃としたのは、300℃以上でないと防錆効果が発現せず、500℃以下でないと磁石合金粉末の磁気特性劣化が甚だしくなってしまうからである。加熱時間を1秒〜5分としたのは、1秒以上でないと防錆効果が発現せず、5分以下でないと磁石合金粉末の磁気特性劣化が甚だしくなってしまうからである。なお、高温短時間加熱は大気中で行う。この高温短時間加熱によって、磁石合金粉末の表面に極薄の酸化被膜が形成され、内部が保護される。酸化被膜は、磁石合金粉末の表面のみに形成されるため、磁気特性が低下するのを最小限に抑えることができる。また酸化被膜は、磁石体の表面近傍の磁石合金粉末のみに形成されればよい(内部の磁石合金粉末に形成される必要はない)ので、磁石体が大型化しても、上記の高温短時間加熱の条件は変える必要はない。   The processes up to molding and thermosetting are basically the same as in the prior art. The thermosetting conditions may be changed as appropriate. In the present invention, the conditions for high-temperature and short-time heating are experimentally clarified from the viewpoint of rust prevention. The reason why the heating temperature is set to 300 ° C. to 500 ° C. is that the rust preventive effect is not exhibited unless the heating temperature is 300 ° C. or higher, and the magnetic characteristic deterioration of the magnet alloy powder becomes severe unless the heating temperature is 500 ° C. or lower. The reason why the heating time is set to 1 second to 5 minutes is that the rust preventive effect is not exhibited unless the heating time is 1 second or longer, and the magnetic property deterioration of the magnet alloy powder becomes serious unless the heating time is 5 minutes or shorter. In addition, high temperature short time heating is performed in air | atmosphere. By this high-temperature and short-time heating, an extremely thin oxide film is formed on the surface of the magnet alloy powder, and the inside is protected. Since the oxide film is formed only on the surface of the magnet alloy powder, it is possible to minimize the deterioration of the magnetic properties. In addition, the oxide film only needs to be formed on the magnet alloy powder near the surface of the magnet body (it is not necessary to be formed on the inner magnet alloy powder). There is no need to change the heating conditions.

高温短時間加熱後の着磁は、従来公知の任意の方法を用いて行うことができる。電流が発生する磁界により着磁する方法でもよいし、永久磁石が発生する磁界により着磁する方法でもよい。電流による着磁では、直流電流を印加する方法でもよいし、パルス電流を印加する方法でもよい。着磁は、室温で行ってもよいし、キュリー温度未満の温度に加熱して行ってもよい。あるいは、キュリー点以上の温度からキュリー点未満の温度まで降温させつつ、その間、着磁磁界を印加し続けることにより着磁する方法でもよい。   Magnetization after high-temperature and short-time heating can be performed using any conventionally known method. A method of magnetizing by a magnetic field generated by an electric current or a method of magnetizing by a magnetic field generated by a permanent magnet may be used. In the magnetization by current, a method of applying a direct current or a method of applying a pulse current may be used. Magnetization may be performed at room temperature or by heating to a temperature lower than the Curie temperature. Alternatively, a method may be used in which the temperature is lowered from a temperature equal to or higher than the Curie point to a temperature lower than the Curie point while the magnetizing magnetic field is continuously applied during that time.

Nd−Fe−B系磁石合金粉末(粒径300μm以下):97.5重量%、エポキシ樹脂:2.5重量%の割合で混合後、粉砕して粒径300μm以下に粒度調整した。この粉体を、金型(外径φ2.6mm/内径φ1.0mm)内に充填し、成形圧3トン/cm2 の圧力で成形した。得られたリング状成形体(長さ3mm)を、窒素ガス中で、200℃×1時間の熱硬化処理を行い、磁石体を作製した。そして、この磁石体について、各種条件で高温短時間加熱を行った。 Nd—Fe—B-based magnet alloy powder (particle size: 300 μm or less): 97.5 wt%, epoxy resin: 2.5 wt%, mixed and then pulverized to adjust the particle size to 300 μm or less. The powder was filled in a mold (outer diameter φ2.6 mm / inner diameter φ1.0 mm) and molded at a molding pressure of 3 ton / cm 2 . The obtained ring-shaped molded body (length: 3 mm) was subjected to a thermosetting treatment at 200 ° C. for 1 hour in nitrogen gas to produce a magnet body. And about this magnet body, high temperature and short time heating was performed on various conditions.

加熱温度を350℃(一定)とし加熱時間を変えた試料を、生理食塩水(0.9%NaCl)に浸漬し、18時間後に赤錆の出方(色)を目視判定した。これは、かなり厳しい条件の防錆性試験である。結果を表1に示す。相対比較して防錆性が優れている順に、◎>○>×で示す。また、比較のために、高温短時間加熱を行わない試料(従来品)の結果も併せて示す。

Figure 2008047554
表1の結果から、従来品は赤錆の出方が甚だしかったが、1秒以上の加熱を行うと防錆性が発現し、2分以上では防錆性が極めて良好で殆ど赤錆の発生は認められなかった。 A sample with a heating temperature of 350 ° C. (constant) and a different heating time was immersed in physiological saline (0.9% NaCl), and the appearance (color) of red rust was visually judged 18 hours later. This is a rustproof test under fairly severe conditions. The results are shown in Table 1. In the order of superior rust prevention as compared to the relative, ◎>○> ×. For comparison, the result of a sample (conventional product) that is not heated for a short time at high temperature is also shown.
Figure 2008047554
From the results in Table 1, the conventional product was very red rust, but when heated for more than 1 second, rust resistance was exhibited, and over 2 minutes the rust resistance was very good and almost no red rust was generated. I was not able to admit.

次に加熱時間を3秒(一定)とし加熱温度を変えた試料を、生理食塩水(0.9%NaCl)に浸漬し、9時間後に赤錆の出方(色)を目視判定した。結果を表2に示す。ここでも、比較のために、高温短時間加熱を行わない試料(従来品)の結果も併せて示す。

Figure 2008047554
表2の結果から、従来品は赤錆がかなり発生していたが、370℃以上の加熱を行うと防錆性が得られ、430℃以上の加熱では防錆性が極めて良好で殆ど赤錆の発生は認められなかった。 Next, a sample with a heating time of 3 seconds (constant) and a different heating temperature was immersed in physiological saline (0.9% NaCl), and the appearance (color) of red rust was visually determined after 9 hours. The results are shown in Table 2. Here, for comparison, the results of a sample (conventional product) that is not heated at a high temperature for a short time are also shown.
Figure 2008047554
From the results shown in Table 2, red rust was considerably generated in the conventional product, but when heated at 370 ° C. or higher, rust prevention was obtained, and when heated at 430 ° C. or higher, rust prevention was extremely good and almost red rust was generated. Was not recognized.

そこで、加熱温度を350℃(一定)とし加熱時間を変えた試料について、磁石合金粉末を観察した。その結果、磁石合金粉末の表面には薄い被膜が形成されていることが分かり、それは酸化被膜であることが判明した。加熱時間に対する酸化被膜の厚みをプロットしたのが図2である。加熱時間2秒で酸化膜厚は約10nm(TEM:透過型電子顕微鏡による)、15秒で約60nm、120秒で約350nm(いずれもBSE:走査型電子顕微鏡での反射電子像による)であった。酸化膜厚が厚くなることと防錆性の向上とが対応していることが分かる。   Therefore, the magnet alloy powder was observed for a sample in which the heating temperature was 350 ° C. (constant) and the heating time was changed. As a result, it was found that a thin film was formed on the surface of the magnet alloy powder, which was an oxide film. FIG. 2 plots the thickness of the oxide film against the heating time. With a heating time of 2 seconds, the oxide film thickness was about 10 nm (TEM: transmission electron microscope), 15 seconds about 60 nm, 120 seconds about 350 nm (both BSE: reflected electron image with scanning electron microscope). It was. It can be seen that the increase in the oxide film thickness corresponds to the improvement in rust prevention.

これらの塩水浸漬試験の結果から、本発明による高温短時間加熱は防錆性の向上に極めて有効であることが確認できた。そこで次に、この高温短期間加熱による樹脂並びに磁気特性の変化を検討した。   From the results of these salt water immersion tests, it was confirmed that high-temperature and short-time heating according to the present invention is extremely effective for improving rust prevention. Next, changes in the resin and magnetic properties due to this high-temperature, short-term heating were examined.

加熱温度を350℃(一定)とし加熱時間を2秒〜5分まで種々変化させて圧環強度を測定した。即ち、側面(R面)より押圧し破壊寸前の最大荷重を求めた。その結果、加熱時間に関わらず圧環強度はほぼ一定であった。圧環強度の劣化が認められないことから、実験した加熱条件の範囲では樹脂劣化は生じていないといえる。また、従来品と350℃×5分加熱した試料とをX線光電子分光(ESCA)による分析で比較した結果、化学結合状態に有意差は無く、樹脂の酸化等の化学変化は起きていないことが確認された。つまり、本発明の加熱は、かなり高温になるが短時間の処理であるため、樹脂劣化は生じず、品質上は全く問題がない。   The crushing strength was measured by changing the heating temperature to 350 ° C. (constant) and variously changing the heating time from 2 seconds to 5 minutes. That is, pressing from the side surface (R surface) determined the maximum load just before the breakage. As a result, the crushing strength was almost constant regardless of the heating time. Since no degradation of the crushing strength is observed, it can be said that there is no resin degradation within the range of the experimental heating conditions. In addition, as a result of comparing the conventional product and the sample heated at 350 ° C. for 5 minutes by analysis by X-ray photoelectron spectroscopy (ESCA), there is no significant difference in the chemical bonding state, and there is no chemical change such as oxidation of the resin. Was confirmed. That is, although the heating of the present invention is a process for a short time although the temperature is considerably high, the resin does not deteriorate and there is no problem in quality.

また、加熱温度を350℃(一定)とし加熱時間を2秒〜5分まで種々変化させて保磁力を測定した。結果を図3に示す。横軸は加熱時間、縦軸は従来品の保磁力に対する高温短時間加熱品の保磁力の比を表している。加熱時間が5分以内であれば、保磁力の減少率を10%以下に収めることができることが分かる。   Further, the coercive force was measured by changing the heating temperature to 350 ° C. (constant) and variously changing the heating time from 2 seconds to 5 minutes. The results are shown in FIG. The horizontal axis represents the heating time, and the vertical axis represents the ratio of the coercivity of the high-temperature and short-time heating product to the coercivity of the conventional product. It can be seen that if the heating time is within 5 minutes, the coercivity reduction rate can be kept to 10% or less.

これらのことから、本発明における高温短時間加熱は、温度300℃〜500℃、時間1秒〜5分としている。また、磁気特性の劣化を極力防ぐ観点から、より好ましくは、温度350℃〜430℃、時間2秒〜5秒の条件で行うことである。この条件であれば、保磁力の減少率を1%以下に収めることができる。   From these things, the high temperature short time heating in this invention is made into the temperature of 300 to 500 degreeC, and time 1 second-5 minutes. Further, from the viewpoint of preventing the deterioration of the magnetic properties as much as possible, it is more preferable to carry out under conditions of a temperature of 350 ° C. to 430 ° C. and a time of 2 seconds to 5 seconds. Under these conditions, the reduction rate of the coercive force can be kept to 1% or less.

本発明に係るNd系ボンド磁石の製造方法を示すプロセス図。The process figure which shows the manufacturing method of the Nd type bonded magnet which concerns on this invention. 加熱時間に対する酸化膜厚の関係を示すグラフ。The graph which shows the relationship of the oxide film thickness with respect to heating time. 加熱時間に対する保磁力の減少率の関係を示すグラフ。The graph which shows the relationship of the decreasing rate of coercive force with respect to heating time.

Claims (4)

Nd系磁石粉末とバインダ樹脂を混合して成形し、その成形体を不活性ガス雰囲気中で熱硬化処理した後、得られた磁石体に温度300℃〜500℃、時間1秒〜5分の高温短時間加熱を行うことで磁石粉末表面に酸化被膜を形成する防錆処理を施し、その後、着磁を行うことを特徴とするNd系ボンド磁石の製造方法。   After the Nd-based magnet powder and the binder resin are mixed and molded, the molded body is heat-cured in an inert gas atmosphere, and then the obtained magnet body is heated to 300 ° C. to 500 ° C. for 1 second to 5 minutes. A method for producing an Nd-based bonded magnet, which comprises subjecting a surface of a magnet powder to an anticorrosive treatment by heating at a high temperature for a short time, followed by magnetization. 高温短時間加熱による保磁力の減少率を10%以下にする請求項1記載のNd系ボンド磁石の製造方法。   The method for producing an Nd-based bonded magnet according to claim 1, wherein a reduction rate of the coercive force by high-temperature and short-time heating is set to 10% or less. 高温短時間加熱による防錆処理を、温度350℃〜430℃、時間2秒〜5秒の条件で行う請求項1記載のNd系ボンド磁石の製造方法。   The method for producing an Nd-based bonded magnet according to claim 1, wherein the rust prevention treatment by high-temperature and short-time heating is performed under conditions of a temperature of 350C to 430C and a time of 2 seconds to 5 seconds. Nd系磁石粉末がNd−Fe−B系磁石合金粉末であり、バインダ樹脂がエポキシ樹脂である請求項1乃至3のいずれかに記載のNd系ボンド磁石の製造方法。
The method for producing an Nd-based bonded magnet according to any one of claims 1 to 3, wherein the Nd-based magnet powder is an Nd-Fe-B-based magnet alloy powder, and the binder resin is an epoxy resin.
JP2006218582A 2006-08-10 2006-08-10 Manufacturing method of Nd-based bonded magnet Active JP4721357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218582A JP4721357B2 (en) 2006-08-10 2006-08-10 Manufacturing method of Nd-based bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218582A JP4721357B2 (en) 2006-08-10 2006-08-10 Manufacturing method of Nd-based bonded magnet

Publications (2)

Publication Number Publication Date
JP2008047554A true JP2008047554A (en) 2008-02-28
JP4721357B2 JP4721357B2 (en) 2011-07-13

Family

ID=39181041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218582A Active JP4721357B2 (en) 2006-08-10 2006-08-10 Manufacturing method of Nd-based bonded magnet

Country Status (1)

Country Link
JP (1) JP4721357B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157506A (en) * 2012-01-31 2013-08-15 Minebea Co Ltd Method of manufacturing bond magnet
US20140167895A1 (en) * 2008-12-04 2014-06-19 Shin-Etsu Chemical Co., Ltd. METHOD OF MANUFACTURING AN Nd BASED SINTERED MAGNET

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148321A (en) * 1994-11-21 1996-06-07 Minnesota Mining & Mfg Co <3M> Magnetic composition and resin bonded magnet
JPH08316076A (en) * 1995-05-18 1996-11-29 Matsushita Electric Ind Co Ltd Production of neodymium based bond magnet
JPH11204319A (en) * 1998-01-14 1999-07-30 Hitachi Metals Ltd Rare-earth bonded magnet and its manufacture
JP2003328014A (en) * 2002-05-15 2003-11-19 Sumitomo Special Metals Co Ltd Method for manufacturing nanocomposite magnet powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148321A (en) * 1994-11-21 1996-06-07 Minnesota Mining & Mfg Co <3M> Magnetic composition and resin bonded magnet
JPH08316076A (en) * 1995-05-18 1996-11-29 Matsushita Electric Ind Co Ltd Production of neodymium based bond magnet
JPH11204319A (en) * 1998-01-14 1999-07-30 Hitachi Metals Ltd Rare-earth bonded magnet and its manufacture
JP2003328014A (en) * 2002-05-15 2003-11-19 Sumitomo Special Metals Co Ltd Method for manufacturing nanocomposite magnet powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140167895A1 (en) * 2008-12-04 2014-06-19 Shin-Etsu Chemical Co., Ltd. METHOD OF MANUFACTURING AN Nd BASED SINTERED MAGNET
US9953750B2 (en) * 2008-12-04 2018-04-24 Shin-Etsu Chemical Co., Ltd. Nd based sintered magnet
JP2013157506A (en) * 2012-01-31 2013-08-15 Minebea Co Ltd Method of manufacturing bond magnet

Also Published As

Publication number Publication date
JP4721357B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US10748694B2 (en) Coil component
KR101932422B1 (en) Manufacturing method of soft magnetic powder, compacted core, magnetic component and compacted core
JP4308864B2 (en) Soft magnetic alloy powder, green compact and inductance element
US6888435B2 (en) Composite magnetic body, and magnetic element and method of manufacturing the same
JP4971886B2 (en) Soft magnetic powder, soft magnetic molded body, and production method thereof
WO2010071111A1 (en) Iron-based magnetic alloy powder containing rare earth element, method for producing same, resin composition for bonded magnet obtained from same, bonded magnet, and compacted magnet
US9601249B2 (en) Soft magnetic metal powder-compact magnetic core and reactor
CN108573786B (en) Dust core
CN105074852B (en) RFeB systems method of manufacturing sintered magnet and RFeB systems sintered magnet
JP4721357B2 (en) Manufacturing method of Nd-based bonded magnet
JP2007294535A (en) Magnetostrictive element
JP2007254814A (en) Fe-Ni-BASED SOFT MAGNETIC ALLOY POWDER, GREEN COMPACT, AND COIL-SEALED DUST CORE
JP6688373B2 (en) Coil parts
JP6468427B2 (en) Coiled dust core
JP2018152559A (en) Powder-compact magnetic core
JP6488773B2 (en) Coiled dust core
JPS62149108A (en) Manufacture of permanent magnet
JP7133114B1 (en) Magnetic substances and magnetic elements
KR102007898B1 (en) Soft magnetic powders for inductor core and method for manufacturing of the same
JP4318309B2 (en) Magnetostrictive element, sensor, and method of manufacturing magnetostrictive element
JP6455241B2 (en) Coiled dust core
EP3051545A1 (en) Soft magnetic metal powder-compact magnetic core and reactor
JP2006228775A (en) Magnetostriction element, manufacturing method thereof, and sensor
JP2006049789A (en) Soft magnetic material, powder magnetic core, and manufacturing method therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4721357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250