JP2008047453A - Fuel cell and its manufacturing method - Google Patents

Fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2008047453A
JP2008047453A JP2006222872A JP2006222872A JP2008047453A JP 2008047453 A JP2008047453 A JP 2008047453A JP 2006222872 A JP2006222872 A JP 2006222872A JP 2006222872 A JP2006222872 A JP 2006222872A JP 2008047453 A JP2008047453 A JP 2008047453A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
conductor
electrolyte
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006222872A
Other languages
Japanese (ja)
Inventor
Yukio Ota
幸雄 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIDAI SEIKO KK
Original Assignee
NIDAI SEIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIDAI SEIKO KK filed Critical NIDAI SEIKO KK
Priority to JP2006222872A priority Critical patent/JP2008047453A/en
Publication of JP2008047453A publication Critical patent/JP2008047453A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell capable of proving sufficient power output, sufficiently reduced in size and weight, downsized, and capable of being provided at low cost; and its manufacturing method. <P>SOLUTION: In this fuel cell having a flat stack structure, an electrolyte membrane 2 is composed by impregnating an electrolyte into a strip-like base body formed of a fiber body. A unit cell is composed by arranging the respective electrolyte membranes 2 along the longitudinal direction of the strip-like base body, and by forming fuel electrodes 15 and air electrodes 16 on one-side surface side and the other-side surface side of the respective electrolyte membranes 2, respectively. The fuel electrodes 15 of a specific one of the unit cells are electrically connected the air electrodes 16 of the unit cell adjacent to it through conductors such as electroless gold plating 8 or porous electrode material extending by piercing the strip-like base body. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、燃料電池及びその製造方法に関するものである。   The present invention relates to a fuel cell and a manufacturing method thereof.

近年、直接メタノール式燃料電池(DMFC)が注目されている。それは、リチウム二次電池の数倍以上のエネルギを取り出せる可能性があり、また、メタノール供給すれば充電することなく継続して使用が可能であるためである。従って、ノートパソコンや携帯電話等のモバイル機器への適用が試みられている。   In recent years, direct methanol fuel cells (DMFC) have attracted attention. This is because energy more than several times that of a lithium secondary battery may be extracted, and if methanol is supplied, it can be used continuously without being charged. Therefore, application to mobile devices such as notebook computers and mobile phones has been attempted.

燃料電池の基本的な構造は、水素イオンを通す電解質膜の両側に燃料極と空気極とを接合した膜電極接合体を有するものである。そして、実際には、このような構造の単位電池の複数個を接続することによって、電池が構成される。このような場合、全体をコンパクトに構成するために、平面スタック構造が提案されている(例えば特許文献1、特許文献2参照)。   The basic structure of a fuel cell has a membrane electrode assembly in which a fuel electrode and an air electrode are joined on both sides of an electrolyte membrane through which hydrogen ions pass. In practice, a battery is constructed by connecting a plurality of unit batteries having such a structure. In such a case, a planar stack structure has been proposed to make the whole compact (see, for example, Patent Document 1 and Patent Document 2).

上記特許文献1の平面スタック構造は、電気絶縁性の基板に複数個の貫通孔を形成し、この貫通孔内に、上記膜電極接合体より成る単位電池を配置し、各単位電池を電気的に直列又は並列に接続した構造のものである。また、特許文献2の平面スタック構造は、空気極側拡散層を構成するウエブ状の基材を繋ぎ材として、その上に連続的に膜電極接合体を形成した構造のものである。
特開昭62−200666号公報 特開2005−294123号公報
In the planar stack structure of Patent Document 1, a plurality of through holes are formed in an electrically insulating substrate, and unit cells made of the membrane electrode assembly are disposed in the through holes, and each unit cell is electrically connected. Are connected in series or in parallel. In addition, the planar stack structure of Patent Document 2 has a structure in which a membrane electrode assembly is continuously formed on a web-like base material constituting the air electrode side diffusion layer as a connecting material.
JP-A-62-200666 JP-A-2005-294123

しかしながら、上記特許文献1の燃料電池では、充分に小形軽量化、及びコンパクト化されているとは言い難く、そのため、ノートパソコンや携帯電話等のモバイル機器への適用に特に適しているとはいえない状態である。また、その製造に多くの手数を要し、コスト面においても満足し得るものではない。さらに、特許文献2の燃料電池は、空気極側が全て共通化して利用され、各単位電池が並列に接続される構造であるため、充分な出力が得られるとはいい難い。   However, it is difficult to say that the fuel cell disclosed in Patent Document 1 is sufficiently small, light, and compact, and therefore it is particularly suitable for application to mobile devices such as notebook computers and mobile phones. There is no state. In addition, the production requires a lot of work and the cost is not satisfactory. Furthermore, since the fuel cell of Patent Document 2 has a structure in which all the air electrodes are used in common and the unit cells are connected in parallel, it is difficult to say that a sufficient output can be obtained.

この発明は、上記従来の欠点を解決するためになされたものであって、その目的は、充分な出力が得られると共に、充分に小形軽量化、かつコンパクト化され、また低コストに提供可能な燃料電池及びその製造方法を提供することにある。   The present invention has been made in order to solve the above-described conventional drawbacks. The object of the present invention is to provide a sufficient output, as well as being sufficiently small, light and compact, and can be provided at a low cost. The object is to provide a fuel cell and a method of manufacturing the same.

そこで請求項1の燃料電池は、平面スタック構造の燃料電池において、電解質膜2は、繊維体から成る帯状基体1に電解質を含浸させることで構成し、さらに、各電解質膜2を帯状基体1の長手方向に沿って配置すると共に、上記各電解質膜2の一方の面側に燃料極15を、またその他方の面側に空気極16をそれぞれ形成することで単位電池を構成し、特定の単位電池の燃料極15は、これとは相隣接する単位電池の空気極16に対して、帯状基体1を貫通して延びる導体によって電気的接続がなされていることを特徴としている。   Accordingly, in the fuel cell of claim 1, in the fuel cell having a planar stack structure, the electrolyte membrane 2 is configured by impregnating the strip-shaped substrate 1 made of a fibrous body with an electrolyte, and each electrolyte membrane 2 is formed on the strip-shaped substrate 1. A unit cell is formed by arranging the fuel electrode 15 on one surface side of each electrolyte membrane 2 and the air electrode 16 on the other surface side while arranging them along the longitudinal direction. The fuel electrode 15 of the battery is characterized in that it is electrically connected to the air electrode 16 of the unit cell adjacent thereto by a conductor extending through the strip substrate 1.

請求項2の燃料電池は、上記各電解質膜2の長手方向の前後には、各電解質膜2を区画する絶縁剤含浸層4が形成されており、相隣接する単位電池間における絶縁剤含浸層4の間には、上記導体の貫通を許容する導体貫通部3が形成されていることを特徴している。   In the fuel cell according to claim 2, an insulating agent impregnated layer 4 for partitioning each electrolyte membrane 2 is formed in the longitudinal direction of each electrolyte membrane 2, and the insulating agent impregnated layer between adjacent unit cells is formed. 4 is formed with a conductor penetrating portion 3 that allows the conductor to pass therethrough.

請求項3の燃料電池は、上記導体は、無電解金メッキ8であり、燃料極側電極材及び空気極側電極材として無電解金メッキを施す際に、金メッキ8が特定の単位電池の燃料極側触媒5と、これとは相隣接する単位電池の空気極側触媒6とに対して施されると共に、さらに、上記導体貫通部3を通って連続していることを特徴としている。   The fuel cell according to claim 3, wherein the conductor is an electroless gold plating 8, and when performing electroless gold plating as a fuel electrode side electrode material and an air electrode side electrode material, the gold plating 8 is on the fuel electrode side of a specific unit cell. The catalyst 5 is applied to the air electrode side catalyst 6 of the unit cell adjacent to the catalyst 5 and is further continuous through the conductor penetrating portion 3.

請求項4の燃料電池は、上記導体は、印刷によって施される多孔質電極材9であり、燃料極側電極材及び空気極側電極材として多孔質電極材9を印刷する際に上記導体貫通部3内に侵入していることを特徴としている。   The fuel cell according to claim 4, wherein the conductor is a porous electrode material 9 applied by printing, and when the porous electrode material 9 is printed as a fuel electrode side electrode material and an air electrode side electrode material, the conductor penetrates. It is characterized by intruding into the part 3.

請求項5の燃料電池は、上記帯状基体1は不織布から成ることを特徴としている。   The fuel cell according to claim 5 is characterized in that the belt-like substrate 1 is made of a nonwoven fabric.

請求項6の燃料電池の製造方法は、帯状基体1に絶縁剤4を含浸させることにより電解質膜2となる電解質領域2aを、長手方向に所定の間隔をおいて区画する工程と、上記電解質領域2aに電解質を含浸させて電解質膜2を形成する工程と、電解質膜の表裏面に燃料極15と空気極16とを形成して単位電池を形成する工程と、特定の単位電池の燃料極15と、これとは相隣接する単位電池の空気極16とを、帯状基体1内を通って延びる導体によって電気的に接続する工程とを備えたことを特徴としている。   The method of manufacturing a fuel cell according to claim 6 includes the step of partitioning the electrolyte region 2a to be the electrolyte membrane 2 by impregnating the strip substrate 1 with the insulating agent 4 at a predetermined interval in the longitudinal direction, and the electrolyte region. A step of impregnating 2a with an electrolyte to form the electrolyte membrane 2, a step of forming a fuel cell 15 and an air electrode 16 on the front and back surfaces of the electrolyte membrane to form a unit cell, and a fuel electrode 15 of a specific unit cell And a step of electrically connecting the air electrodes 16 of the unit cells adjacent to each other by a conductor extending through the band-shaped substrate 1.

請求項7の燃料電池の製造方法は、上記電解質領域2aを区画する工程において、相隣接する単位電池間における絶縁剤含浸層4の間には、上記導体の通過を許容する導体貫通部3が形成されていることを特徴としている。 In the method of manufacturing a fuel cell according to claim 7, in the step of partitioning the electrolyte region 2a, a conductor through portion 3 that allows passage of the conductor is provided between the insulating impregnated layers 4 between adjacent unit cells. It is characterized by being formed.

請求項1の燃料電池によれば、帯状基体1に対して電解質を含浸させることで電解質膜2を形成することができ、また、帯状基体1に対して同一面側から各燃料極15と各空気極16との形成作業を行うことができるので、高能率に製造可能な燃料電池を提供できる。また、単位電池の接続に、余分なスペースを要さないので、小形軽量化、かつコンパクト化できる。しかも直列接続構造であるため、充分な出力が得られる。さらに、使用に際しては、帯状基体1を折り返して使用することも可能であるため、コンパクトに構成可能である。   According to the fuel cell of claim 1, the electrolyte membrane 2 can be formed by impregnating the belt-like substrate 1 with the electrolyte, and each fuel electrode 15 and each of the fuel electrode 15 and each of the belt-like substrate 1 from the same surface side. Since the forming operation with the air electrode 16 can be performed, a fuel cell that can be manufactured with high efficiency can be provided. Further, since no extra space is required for connecting the unit batteries, the size and weight can be reduced and the size can be reduced. Moreover, because of the series connection structure, a sufficient output can be obtained. Furthermore, in use, the belt-like substrate 1 can be folded and used, so that it can be configured compactly.

請求項2の燃料電池によれば、電解質膜2の寸法精度を向上できるし、また、導体による単位電池の接続を確実に行えることになる。   According to the fuel cell of the second aspect, the dimensional accuracy of the electrolyte membrane 2 can be improved, and the unit cells can be reliably connected by the conductor.

請求項3、及び請求項4の燃料電池によれば、単位電池の接続を低コストにて行え、また、確実な接続状態が得られる。また、請求項5の燃料電池は、その実施に好適である。   According to the fuel cells of claims 3 and 4, the unit cells can be connected at a low cost, and a reliable connection state can be obtained. The fuel cell according to claim 5 is suitable for the implementation.

請求項6の燃料電池の製造方法によれば、帯状基体1に対して電解質を含浸させることで電解質膜2を形成しているので、燃料電池を高能率に製造可能である。また、絶縁剤にて電解質領域2aを、予め区画しているので、電解質膜2の寸法精度を向上できる。   According to the fuel cell manufacturing method of the sixth aspect, since the electrolyte membrane 2 is formed by impregnating the strip substrate 1 with the electrolyte, the fuel cell can be manufactured with high efficiency. Moreover, since the electrolyte region 2a is partitioned in advance with an insulating agent, the dimensional accuracy of the electrolyte membrane 2 can be improved.

請求項7の燃料電池によれば、導体による単位電池の接続を確実に行えることになる。   According to the fuel cell of the seventh aspect, the unit cells can be reliably connected by the conductor.

次に、この発明の燃料電池及びその製造方法の具体的な実施の形態について、図面を参照しつつ詳細に説明する。まず、最初に、図1及び図2を参照しながら、製造方法の第1実施形態を説明する。同図(a)において、1は、帯状基体であり、この基体1は、図において左右方向に連続ものであって、ポリエステル製不織布等の繊維体より成っている。以下の製造方法においては、図示していないが、帯状基体1の両側に位置決め用のガイド孔を所定の間隔で穿設しておき、順送プレスのように、帯状基体1を間歇的に送りながら図1(a)〜(d)、図2(a)(b)の各工程を行っていくのが好ましい。   Next, specific embodiments of the fuel cell and the manufacturing method thereof according to the present invention will be described in detail with reference to the drawings. First, a first embodiment of a manufacturing method will be described with reference to FIGS. 1 and 2. In FIG. 1 (a), reference numeral 1 denotes a belt-like substrate. The substrate 1 is continuous in the left-right direction in the figure and is made of a fibrous body such as a polyester nonwoven fabric. In the following manufacturing method, although not shown, positioning guide holes are formed at predetermined intervals on both sides of the belt-like substrate 1, and the belt-like substrate 1 is fed intermittently like a progressive press. However, it is preferable to perform each process of FIG. 1 (a)-(d) and FIG. 2 (a) (b).

上記基体1には、同図(c)に示すように、所定の間隔をおいて、島状に複数の電解質膜2・・を形成するが、それに先立って、同図(b)に示すように、電解質膜2を形成するための電解質領域2a、及び相隣接する電解質領域2a、2a間において所定幅を除いて、絶縁剤を印刷手法により含浸させる。すなわち、電解質膜2の前後左右に絶縁剤含浸層4を形成して電解質領域2aを区画すると共に、相隣接する電解質領域2a、2aの絶縁剤含浸層4、4間に導体貫通部3を形成しておくのである。この導体貫通部3は、絶縁剤を含浸させていない不織布のままの状態である。絶縁剤としては、対酸性ポリエステル、PTFE(テフロン:登録商標)、ポリイミド、ポリプロピレン、ポリエチレン、ポリカーボネート等を用いることができる。次いで、同図(c)に示すように、平面視四角形(方形)の電解質領域2a・・に印刷手法等によってイオン交換樹脂から成る電解質(例えば、Nafion(デュポン社登録商標)を溶媒中に溶解させた電解質溶液を含浸させて、電解質膜2を形成する。   A plurality of electrolyte membranes 2 are formed on the substrate 1 in the form of islands at predetermined intervals as shown in FIG. 2C. Prior to that, as shown in FIG. Further, an insulating agent is impregnated by a printing method except for a predetermined width between the electrolyte region 2a for forming the electrolyte membrane 2 and the adjacent electrolyte regions 2a, 2a. That is, the insulating agent impregnated layer 4 is formed on the front, rear, right and left of the electrolyte membrane 2 to partition the electrolyte region 2a, and the conductor penetration part 3 is formed between the insulating agent impregnated layers 4 and 4 of the adjacent electrolyte regions 2a and 2a. I will keep it. This conductor penetration part 3 is a state with the nonwoven fabric which is not impregnated with the insulating agent. As the insulating agent, acid polyester, PTFE (Teflon: registered trademark), polyimide, polypropylene, polyethylene, polycarbonate, or the like can be used. Next, as shown in FIG. 6C, an electrolyte made of an ion exchange resin (for example, Nafion (registered trademark of DuPont)) is dissolved in a solvent by a printing method or the like in a square (square) electrolyte region 2a. The electrolyte membrane 2 is formed by impregnating the electrolyte solution.

そしてその後、電解質膜2・・の表裏両面に、それぞれ燃料極(アノード)15と空気極(カソード)16を形成するが、表面側(上側)の燃料極側触媒5を(Pt−Ru/C)とし、裏側(下側)の空気極側触媒6を(Pt−C)とし、これら各触媒5、6を、同図(d)のように印刷する。上記燃料極15は、燃料極側触媒5と、その表面に配置される燃料極側電極材とより成るもので、また、空気極16は、空気極側触媒6と、その表面に配置される空気極側電極材とより成るものであるが、この実施形態においては、各電極材が無電解金メッキ8によって構成される。以下にこの無電解金メッキ方法について説明する。   After that, the fuel electrode (anode) 15 and the air electrode (cathode) 16 are formed on both the front and back surfaces of the electrolyte membranes 2... Respectively, but the fuel electrode side catalyst 5 on the surface side (upper side) is (Pt-Ru / C). ), The back side (lower side) air electrode side catalyst 6 is (Pt-C), and these catalysts 5 and 6 are printed as shown in FIG. The fuel electrode 15 is composed of the fuel electrode side catalyst 5 and a fuel electrode side electrode material disposed on the surface thereof, and the air electrode 16 is disposed on the air electrode side catalyst 6 and the surface thereof. Although it consists of an air electrode side electrode material, in this embodiment, each electrode material is comprised by the electroless gold plating 8. FIG. The electroless gold plating method will be described below.

図2(a)のように、無電解メッキ用の触媒7を印刷する。この印刷に際しては、燃料極15においては、燃料極側触媒5と、これとは図において右側に相隣接する導体貫通部3とを含む領域にかけて触媒7を印刷する。また、空気極16においては、空気極側触媒6と、これとは図において左側に隣接する導体貫通部3とを含む領域にかけて触媒7を印刷する。この結果、各導体貫通部3においては、特定の単位電池Aの燃料極側触媒5に印刷された触媒7と、これとは相隣接する単位電池Bの空気極側触媒6に印刷された触媒7とが上下に重なることになる。   As shown in FIG. 2A, the catalyst 7 for electroless plating is printed. At the time of printing, the catalyst 7 is printed on the fuel electrode 15 over a region including the fuel electrode side catalyst 5 and the conductor penetrating portion 3 adjacent to the right side in the drawing. Further, in the air electrode 16, the catalyst 7 is printed over a region including the air electrode side catalyst 6 and the conductor penetration part 3 adjacent to the left side in the drawing. As a result, in each conductor penetration part 3, the catalyst 7 printed on the fuel electrode side catalyst 5 of the specific unit cell A and the catalyst printed on the air electrode side catalyst 6 of the unit cell B adjacent to this catalyst 7 are printed. 7 overlaps vertically.

そしてこのように触媒7の印刷された状態のものに無電解金メッキ8を施すと、図2(b)に示す状態の単位電池の平面スタック構造が得られる。すなわち、無電解金メッキ8が、特定の単位電池Aの燃料極側触媒5から導体貫通部3を通って、これとは相隣接する単位電池Bの空気極側触媒6へと連続し、これらが電気的に接続された状態となる。   When the electroless gold plating 8 is applied to the printed state of the catalyst 7 in this way, a planar stack structure of the unit cell in the state shown in FIG. 2B is obtained. That is, the electroless gold plating 8 continues from the fuel electrode side catalyst 5 of the specific unit cell A through the conductor penetrating part 3 to the air electrode side catalyst 6 of the unit cell B adjacent thereto. It is in an electrically connected state.

上記平面スタック構造の燃料電池では、帯状の不織布製の帯状基体1に電解質を含浸させることで電解質膜2が形成され、その上側に燃料極5を形成すると共に、その下側に空気極6が形成され、これにより単位電池が構成されている。また、各単位電池は、帯状基体1の長手方向に沿って並設されており、各単位電池は互いに直列接続されている。   In the fuel cell having the planar stack structure, the electrolyte membrane 2 is formed by impregnating the strip-shaped nonwoven fabric strip-shaped substrate 1 with the electrolyte, the fuel electrode 5 is formed on the upper side, and the air electrode 6 is formed on the lower side. Thus, a unit cell is formed. Further, the unit cells are arranged in parallel along the longitudinal direction of the belt-like substrate 1, and the unit cells are connected in series with each other.

図3には、この発明の燃料電池とその製造方法の第2の実施形態を示している。この実施形態は、図1(a)〜(d)の各工程は、上記第1の実施形態と同一であるため、その説明を省略する。この実施形態では、燃料極15の燃料極側電極材と、空気極16の空気極側触媒6とを、無電解金メッキ8によって構成するのではなく、多孔質電極を印刷することによって構成している点において、上記実施形態と相違している。まず、燃料極15側において、燃料極側触媒5に対して、多孔質電極材9を印刷する。この際、図3(a)に示すように、燃料極側触媒5と、これとは図において右側に相隣接する導体貫通部3とを含む領域に対して印刷を行う。そうすると、多孔質電極材9は、導体貫通部3内も含めて印刷されることになる。次に、図3(b)に示すように、空気極16側においても空気極側触媒6と、これとは図において左側に相隣接する導体貫通部3とを含む領域に対して印刷を行う。そうすると、同図(b)に示す状態の単位電池の平面スタック構造が得られる。すなわち、多孔質電極材9が、特定の単位電池Aの燃料極側触媒5から導体貫通部3を通って、これとは相隣接する単位電池Bの空気極側触媒6へと連続し、これらが電気的に接続された状態となる。   FIG. 3 shows a fuel cell according to a second embodiment of the present invention and a method for manufacturing the same. In this embodiment, the steps in FIGS. 1A to 1D are the same as those in the first embodiment, and the description thereof is omitted. In this embodiment, the fuel electrode side electrode material of the fuel electrode 15 and the air electrode side catalyst 6 of the air electrode 16 are configured not by the electroless gold plating 8 but by printing a porous electrode. This is different from the above-described embodiment. First, the porous electrode material 9 is printed on the fuel electrode side catalyst 5 on the fuel electrode 15 side. At this time, as shown in FIG. 3A, printing is performed on a region including the fuel electrode side catalyst 5 and the conductor penetration portion 3 adjacent to the right side in the drawing. If it does so, the porous electrode material 9 will be printed also including the inside of the conductor penetration part 3. FIG. Next, as shown in FIG. 3B, printing is performed on an area including the air electrode side catalyst 6 on the air electrode 16 side and the conductor through-hole 3 adjacent to the left side in the drawing. . Then, the planar stack structure of the unit cell in the state shown in FIG. That is, the porous electrode material 9 continues from the fuel electrode side catalyst 5 of the specific unit cell A through the conductor penetration part 3 to the air electrode side catalyst 6 of the unit cell B adjacent thereto, Are electrically connected.

上記各実施形態の燃料電池によれば、帯状基体1に対して電解質を含浸させることで電解質膜2を形成することができ、また、帯状基体1に対して同一面側から各燃料極15と各空気極16との形成作業を行うことができるので、高能率に製造可能な燃料電池を提供できる。また、帯状基体1に導体貫通部3を設け、この導体貫通部3に導体(無電解金メッキ8、多孔質電極材9)を貫通させて電気的接続を行うようにしているので、余分なスペースを要さない。従って、小形軽量化、かつコンパクト化できる。しかも直列接続構造であるため、充分な出力が得られる。さらに、使用に際しては、帯状基体1を折り返して使用することも可能であるため、コンパクトに構成可能である。また、絶縁剤含浸層4によって電解質領域2aを区画し、この領域2aに電解質膜2を形成するので、電解質膜2の寸法精度を向上できる。   According to the fuel cell of each of the above embodiments, the electrolyte membrane 2 can be formed by impregnating the strip substrate 1 with an electrolyte, and each fuel electrode 15 and the strip electrode 1 can be formed from the same surface side. Since the forming operation with each air electrode 16 can be performed, a fuel cell that can be manufactured with high efficiency can be provided. In addition, since the conductor penetrating portion 3 is provided in the belt-like substrate 1 and the conductor (electroless gold plating 8 and porous electrode material 9) is passed through the conductor penetrating portion 3 for electrical connection, an extra space is required. Is not required. Accordingly, it is possible to reduce the size, weight and size. Moreover, because of the series connection structure, a sufficient output can be obtained. Furthermore, in use, the belt-like substrate 1 can be folded and used, so that it can be configured compactly. In addition, since the electrolyte region 2a is partitioned by the insulating agent impregnated layer 4 and the electrolyte membrane 2 is formed in this region 2a, the dimensional accuracy of the electrolyte membrane 2 can be improved.

また、上記燃料電池の各製造方法によれば、帯状基体1に対して電解質を含浸させることで電解質膜2を形成しているので、燃料電池を高能率に製造可能である。また、絶縁剤にて電解質領域2aを、予め区画しているので、電解質膜2の寸法精度を向上できる。   Moreover, according to each manufacturing method of the fuel cell, since the electrolyte membrane 2 is formed by impregnating the belt-like substrate 1 with the electrolyte, the fuel cell can be manufactured with high efficiency. Moreover, since the electrolyte region 2a is partitioned in advance with an insulating agent, the dimensional accuracy of the electrolyte membrane 2 can be improved.

以上にこの発明の具体的な実施の形態について説明したが、この発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。例えば、上記においては、帯状基体1として不織布を用いているが、これは織布を用いても、また紙を用いてもよい。   Although specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention. For example, in the above, a non-woven fabric is used as the belt-like substrate 1, but this may be a woven fabric or paper.

この発明の燃料電池の製造方法における第1実施形態の前半の工程を説明するための簡略工程図である。FIG. 6 is a simplified process diagram for explaining the first half of the first embodiment in the method for producing a fuel cell of the present invention. この発明の燃料電池の製造方法における第1実施形態の後半の工程を説明するための簡略工程図である。It is a simplified process diagram for explaining the latter half of the process of the first embodiment in the fuel cell manufacturing method of the present invention. この発明の燃料電池の製造方法における第2実施形態の後半の工程を説明するための簡略工程図である。It is a simplified process diagram for demonstrating the latter half process of 2nd Embodiment in the manufacturing method of the fuel cell of this invention.

符号の説明Explanation of symbols

1・・帯状基体、2・・電解質膜、2a・・電解質領域、3・・導体貫通部、4・・絶縁剤含浸層、5・・燃料極触媒、6・・空気極触媒、8・・無電解金メッキ、9・・多孔質電極材、15・・燃料極、16・・空気極   1 .. Strip substrate 2 .. Electrolyte membrane 2a .. Electrolyte region 3 .. Conductor penetration part 4 .. Insulating agent impregnated layer 5 .. Fuel electrode catalyst 6. Electroless gold plating, 9 ... porous electrode material, 15 ... fuel electrode, 16 ... air electrode

Claims (7)

平面スタック構造の燃料電池において、電解質膜(2)は、繊維体から成る帯状基体(1)に電解質を含浸させることで構成し、さらに、各電解質膜(2)を帯状基体(1)の長手方向に沿って配置すると共に、上記各電解質膜(2)の一方の面側に燃料極(15)を、またその他方の面側に空気極(16)をそれぞれ形成することで単位電池を構成し、特定の単位電池の燃料極(15)は、これとは相隣接する単位電池の空気極(16)に対して、帯状基体(1)を貫通して延びる導体によって電気的接続がなされていることを特徴とする燃料電池。   In the fuel cell having a planar stack structure, the electrolyte membrane (2) is constituted by impregnating an electrolyte in a strip-shaped substrate (1) made of a fibrous body, and each electrolyte membrane (2) is arranged in the longitudinal direction of the strip-shaped substrate (1). A unit cell is formed by arranging the fuel electrode (15) on one surface side of the electrolyte membrane (2) and the air electrode (16) on the other surface side. The fuel electrode (15) of a specific unit cell is electrically connected to the air electrode (16) of the unit cell adjacent thereto by a conductor extending through the strip substrate (1). A fuel cell characterized by comprising: 上記各電解質膜(2)の長手方向の前後には、各電解質膜(2)を区画する絶縁剤含浸層(4)が形成されており、相隣接する単位電池間における絶縁剤含浸層(4)の間には、上記導体の貫通を許容する導体貫通部(3)が形成されていることを特徴とする請求項1の燃料電池。   An insulating agent impregnated layer (4) partitioning each electrolytic membrane (2) is formed before and after the longitudinal direction of each electrolytic membrane (2), and an insulating agent impregnated layer (4 between adjacent unit cells) is formed. The fuel cell according to claim 1, wherein a conductor penetrating portion (3) that allows the conductor to pass therethrough is formed. 上記導体は、無電解金メッキ(8)であり、燃料極側電極材及び空気極側電極材として無電解金メッキを施す際に、金メッキ(8)が特定の単位電池の燃料極側触媒(5)と、これとは相隣接する単位電池の空気極側触媒(6)とに対して施されると共に、さらに、上記導体貫通部(3)を通って連続していることを特徴とする請求項2の燃料電池。   The conductor is electroless gold plating (8). When electroless gold plating is performed as a fuel electrode side electrode material and an air electrode side electrode material, the gold plating (8) is a fuel electrode side catalyst (5) of a specific unit cell. And is applied to the air electrode side catalyst (6) of the unit cell adjacent to each other and further continuous through the conductor penetration part (3). 2. Fuel cell. 上記導体は、印刷によって施される多孔質電極材(9)であり、燃料極側電極材及び空気極側電極材として多孔質電極材(9)を印刷する際に上記導体貫通部(3)内に侵入していることを特徴とする請求項2の燃料電池。   The conductor is a porous electrode material (9) applied by printing, and when the porous electrode material (9) is printed as a fuel electrode side electrode material and an air electrode side electrode material, the conductor penetration portion (3) The fuel cell according to claim 2, wherein the fuel cell penetrates into the inside. 上記帯状基体(1)は不織布から成ることを特徴とする請求項1〜請求項4のいずれかの燃料電池。   The fuel cell according to any one of claims 1 to 4, wherein the belt-like substrate (1) is made of a nonwoven fabric. 帯状基体(1)に絶縁剤(4)を含浸させることにより電解質膜(2)となる電解質領域(2a)を、長手方向に所定の間隔をおいて区画する工程と、上記電解質領域(2a)に電解質を含浸させて電解質膜(2)を形成する工程と、電解質膜の表裏面に燃料極(15)と空気極(16)とを形成して単位電池を形成する工程と、特定の単位電池の燃料極(15)と、これとは相隣接する単位電池の空気極(16)とを、帯状基体(1)内を通って延びる導体によって電気的に接続する工程とを備えたことを特徴とする燃料電池の製造方法。   A step of partitioning the electrolyte region (2a) to be the electrolyte membrane (2) by impregnating the strip-shaped substrate (1) with the insulating agent (4) at a predetermined interval in the longitudinal direction; and the electrolyte region (2a) A step of forming an electrolyte membrane (2) by impregnating the electrolyte membrane, a step of forming a fuel cell (15) and an air electrode (16) on the front and back surfaces of the electrolyte membrane to form a unit cell, and a specific unit A step of electrically connecting the fuel electrode (15) of the battery and the air electrode (16) of the unit cell adjacent thereto by a conductor extending through the belt-like substrate (1). A method for manufacturing a fuel cell. 上記電解質領域(2a)を区画する工程において、相隣接する単位電池間における絶縁剤含浸層(4)の間には、上記導体の通過を許容する導体貫通部(3)が形成されていることを特徴とする請求項6の燃料電池の製造方法。   In the step of partitioning the electrolyte region (2a), a conductor penetration portion (3) that allows passage of the conductor is formed between the insulating agent impregnated layers (4) between adjacent unit cells. A method for producing a fuel cell according to claim 6.
JP2006222872A 2006-08-18 2006-08-18 Fuel cell and its manufacturing method Pending JP2008047453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222872A JP2008047453A (en) 2006-08-18 2006-08-18 Fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006222872A JP2008047453A (en) 2006-08-18 2006-08-18 Fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008047453A true JP2008047453A (en) 2008-02-28

Family

ID=39180977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222872A Pending JP2008047453A (en) 2006-08-18 2006-08-18 Fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008047453A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204609A (en) * 2010-03-25 2011-10-13 Sanyo Electric Co Ltd Fuel cell layer, fuel cell system, and method for manufacturing the fuel cell layer
EP2467892A1 (en) * 2009-08-17 2012-06-27 Mioxide Mining (Pty) Ltd Fuel cell
WO2013021553A1 (en) 2011-08-09 2013-02-14 パナソニック株式会社 Electrolyte membrane for solid polymer fuel cell, method for manufacturing same, and solid polymer fuel cell
WO2017047342A1 (en) * 2015-09-18 2017-03-23 本田技研工業株式会社 Fuel battery
WO2017047343A1 (en) * 2015-09-18 2017-03-23 本田技研工業株式会社 Fuel cell and method for manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2467892A1 (en) * 2009-08-17 2012-06-27 Mioxide Mining (Pty) Ltd Fuel cell
EP2467892A4 (en) * 2009-08-17 2014-08-20 Mioxide Mining Pty Ltd Fuel cell
JP2011204609A (en) * 2010-03-25 2011-10-13 Sanyo Electric Co Ltd Fuel cell layer, fuel cell system, and method for manufacturing the fuel cell layer
US8900774B2 (en) 2010-03-25 2014-12-02 Sanyo Electric Co., Ltd. Fuel cell layer, fuel cell system and method for fabricating the fuel cell layer
WO2013021553A1 (en) 2011-08-09 2013-02-14 パナソニック株式会社 Electrolyte membrane for solid polymer fuel cell, method for manufacturing same, and solid polymer fuel cell
US10256494B2 (en) 2011-08-09 2019-04-09 Panasonic Intellectual Property Management Co. Ltd. Electrolyte membrane for solid polymer fuel cell, method for manufacturing same, and solid polymer fuel cell
WO2017047342A1 (en) * 2015-09-18 2017-03-23 本田技研工業株式会社 Fuel battery
WO2017047343A1 (en) * 2015-09-18 2017-03-23 本田技研工業株式会社 Fuel cell and method for manufacturing same
JPWO2017047342A1 (en) * 2015-09-18 2018-07-12 本田技研工業株式会社 Fuel cell
JPWO2017047343A1 (en) * 2015-09-18 2018-07-12 本田技研工業株式会社 Fuel cell and manufacturing method thereof
US10547065B2 (en) 2015-09-18 2020-01-28 Honda Motor Co., Ltd. Fuel battery
US10547063B2 (en) 2015-09-18 2020-01-28 Honda Motor Co., Ltd. Fuel cell and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP5251062B2 (en) Composite current collector plate for fuel cell and fuel cell
JP2008047453A (en) Fuel cell and its manufacturing method
EP1698014B1 (en) Micro fuel cell
US20080138695A1 (en) Fuel Cell
JP2000315524A (en) Lithium polymer secondary battery and manufacture thereof
JP2003346867A (en) Fuel cell and its manufacturing method
CN101176228A (en) Fuel cell and catalytic layer electrode for fuel cell
JP3696230B1 (en) Fuel cell
JP2006216407A (en) Cell module assembly and fuel cell
JP2007273433A (en) Cell unit, cell connection method, and fuel cell
EP2835854B1 (en) Fuel cell pack and fuel cell pack assembly
JP2000058100A (en) Electrode layered structure
JP2006351501A (en) Detachable fuel cell and current supply system
JP2009076395A (en) Tube type fuel battery cell, and tube type fuel cell equipped with tube type fuel battery cell
WO2005050766A1 (en) Fuel cell
JP2006244715A (en) Bipolar membrane and fuel cell using it
JP2008071688A (en) Passive type fuel cell
JP4872287B2 (en) Separator assembly and planar polymer electrolyte fuel cell for planar polymer electrolyte fuel cell
JP4477910B2 (en) Fuel cell
JP2005005077A (en) Gas diffusion layer for fuel cell
JP2005340158A (en) Fuel cell module
JP2010262830A (en) Biofuel cell
JP2006351452A (en) Fuel cell
JP4440088B2 (en) Fuel cell
JP2006107819A (en) Power source device