JP2008044204A - Vulcanization process of pneumatic tire - Google Patents

Vulcanization process of pneumatic tire Download PDF

Info

Publication number
JP2008044204A
JP2008044204A JP2006220875A JP2006220875A JP2008044204A JP 2008044204 A JP2008044204 A JP 2008044204A JP 2006220875 A JP2006220875 A JP 2006220875A JP 2006220875 A JP2006220875 A JP 2006220875A JP 2008044204 A JP2008044204 A JP 2008044204A
Authority
JP
Japan
Prior art keywords
pressure
mpa
pressure steam
steam
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006220875A
Other languages
Japanese (ja)
Inventor
Hiroshi Takizawa
滝沢  浩
Kazuo Miyasaka
和夫 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2006220875A priority Critical patent/JP2008044204A/en
Publication of JP2008044204A publication Critical patent/JP2008044204A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vulcanization process of pneumatic tires which does not require the need for a nitrogen gas supply unit and warm water supply unit and reduces the running cost of a vulcanization apparatus in vulcanizing pneumatic tires with a silica-compounded rubber compound for cap treads. <P>SOLUTION: In vulcanizing pneumatic tires using a silica-compounded rubber compound for cap treads, unvulcanized tires are placed in the mold, pressurized and heated from inside with a high pressure steam at a pressure of 1.4 MPa-1.8 MPa. The pressurizing process with the high pressure steam lasts for 2-8 minutes. Then, the tires are pressurized and heated from inside with a low pressure steam which has a lower pressure than the higher one and satisfies the formula: Pi>Pt+0.2. Pi is the pressure of the low pressure steam (as expressed by MPa in unit) and Pt is the saturated steam pressure (as expressed by MPa in unit) at the same temperature of the inside of the treads. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、加熱加圧媒体としてスチームを用いた空気入りタイヤの加硫方法に関し、更に詳しくは、シリカ配合のゴムコンパウンドをキャップトレッドに用いた空気入りタイヤを加硫するにあたって、加圧のための窒素ガス供給装置や温水供給装置を不要とし、加硫装置のランニングコストの低減を可能にした空気入りタイヤの加硫方法に関する。   The present invention relates to a method for vulcanizing a pneumatic tire using steam as a heating and pressurizing medium, and more specifically, for vulcanizing a pneumatic tire using a silica compound rubber compound as a cap tread. The present invention relates to a method for vulcanizing a pneumatic tire that eliminates the need for a nitrogen gas supply device and a hot water supply device, and enables reduction in running cost of the vulcanizer.

通常、空気入りタイヤを加硫する場合、金型内に未加硫のタイヤを投入し、金型を外部から加熱すると共に、タイヤの内側に直接的又はブラダーを介して間接的に加熱加圧媒体を充填することにより、タイヤを内外から同時に加熱するようにしている。加熱加圧媒体としては、主としてスチーム(飽和蒸気)が使用されているが、スチームだけを用いた場合、その温度が圧力に比例して変化するため、必要な内部圧力を維持しながら温度だけを下げるという操作ができない。そこで、加熱加圧媒体として、スチームに対して窒素ガスや温水を組み合わせて用いることが行われている。例えば、加硫初期は高圧スチームを用いて高温かつ高圧の加硫条件を設定する一方で、加硫後期は低圧スチームと窒素ガスを混合することで適正な温度範囲において低温かつ高圧の加硫条件を設定している。このような操作を行うことにより、タイヤに対して十分な圧力を与えながら、カーカス層の過加硫に起因する耐久性の低下を回避するようにしている。   Normally, when vulcanizing a pneumatic tire, an unvulcanized tire is put into the mold, the mold is heated from the outside, and the inside of the tire is directly heated or pressurized directly through a bladder. By filling the medium, the tire is heated simultaneously from inside and outside. Steam (saturated steam) is mainly used as the heating and pressurizing medium, but when only steam is used, the temperature changes in proportion to the pressure, so only the temperature is maintained while maintaining the necessary internal pressure. Can not be lowered. Thus, nitrogen gas or hot water is used in combination with steam as a heating and pressurizing medium. For example, high-pressure steam is used to set high-temperature and high-pressure vulcanization conditions in the early stages of vulcanization, while low-pressure and high-pressure vulcanization conditions are set in an appropriate temperature range by mixing low-pressure steam and nitrogen gas in the late vulcanization stage. Is set. By performing such an operation, a decrease in durability due to overvulcanization of the carcass layer is avoided while applying sufficient pressure to the tire.

しかしながら、上述のようにスチームに対して窒素ガスや温水を組み合わせた場合、窒素ガス供給装置や温水供給装置が別途必要になるため加硫装置の設備コストが増加し、更には窒素ガスや温水を得るために多大なエネルギーが必要になるため加硫装置のランニングコストも増加するという問題がある。   However, when nitrogen gas and hot water are combined with steam as described above, a nitrogen gas supply device and a hot water supply device are required separately, which increases the equipment cost of the vulcanizer, and further reduces the nitrogen gas and hot water. There is a problem that the running cost of the vulcanizer increases because a large amount of energy is required to obtain it.

これに対して、窒素ガスや温水を用いずにスチームだけを用いて空気入りタイヤを加硫することが提案されている(例えば、特許文献1参照)。この提案では、加硫初期は高圧スチームにより高温かつ高圧の加硫条件を設定する一方で、加硫後期は低圧スチームにより低温かつ低圧の加硫条件を設定し、それら高圧スチームと低圧スチームの圧力をカーカス層の枚数に基づいて設定している。特に、カーカス層により発生する熱収縮力に打ち勝つためにカーカス層の枚数に基づいて加硫後期に与える圧力の下限値を設定している。   In contrast, it has been proposed to vulcanize a pneumatic tire using only steam without using nitrogen gas or hot water (see, for example, Patent Document 1). In this proposal, high temperature and high pressure vulcanization conditions are set by high pressure steam in the initial stage of vulcanization, while low temperature and low pressure vulcanization conditions are set by low pressure steam in the late vulcanization stage. Is set based on the number of carcass layers. In particular, in order to overcome the heat shrinkage force generated by the carcass layer, the lower limit value of the pressure applied in the latter vulcanization period is set based on the number of carcass layers.

上述のように加熱加圧媒体としてスチームだけを用いて空気入りタイヤを加硫する方法は、一般的なカーボンブラック配合のゴムコンパウンドをキャップトレッドに用いた空気入りタイヤについては有効である。しかしながら、このような加硫方法を近年普及しているシリカ配合のゴムコンパウンドをキャップトレッドに用いた空気入りタイヤに適用した場合、トレッド内部の水分が発泡し、良好なタイヤが得られないのが現状である。
特開昭62−297115号公報
As described above, the method of vulcanizing a pneumatic tire using only steam as a heating and pressurizing medium is effective for a pneumatic tire using a rubber compound containing a general carbon black as a cap tread. However, when such a vulcanization method is applied to a pneumatic tire using a silica compound rubber compound which has been popular in recent years for a cap tread, the water inside the tread is foamed, and a good tire cannot be obtained. Currently.
JP 62-297115 A

本発明の目的は、シリカ配合のゴムコンパウンドをキャップトレッドに用いた空気入りタイヤを加硫するにあたって、加圧のための窒素ガス供給装置や温水供給装置を不要とし、加硫装置のランニングコストの低減を可能にした空気入りタイヤの加硫方法を提供することにある。   An object of the present invention is to eliminate the need for a nitrogen gas supply device and a hot water supply device for pressurization when vulcanizing a pneumatic tire using a silica compound rubber compound as a cap tread, and reduce the running cost of the vulcanizer. It is an object of the present invention to provide a method for vulcanizing a pneumatic tire that can be reduced.

上記目的を達成するための本発明の空気入りタイヤの加硫方法は、シリカ配合のゴムコンパウンドをキャップトレッドに用いた空気入りタイヤを加硫する方法において、金型内に未加硫のタイヤを投入し、該タイヤを圧力1.4MPa〜1.8MPaの高圧スチームで内側から加圧しながら加熱し、該高圧スチームによる加圧工程を2〜8分間維持した後、該タイヤを前記高圧スチームよりも低圧であって下式を満足する低圧スチームで内側から加圧しながら加熱することを特徴とするものである。
Pi>Pt+0.2
Pi:低圧スチームの圧力(MPa)
Pt:トレッド内部温度と等しい温度での飽和蒸気圧(MPa)
In order to achieve the above object, the method for vulcanizing a pneumatic tire according to the present invention is a method of vulcanizing a pneumatic tire using a silica compound rubber compound in a cap tread. The tire is heated while being pressurized from the inside with high-pressure steam having a pressure of 1.4 MPa to 1.8 MPa, and after maintaining the pressurizing step with the high-pressure steam for 2 to 8 minutes, the tire is more than the high-pressure steam. Heating is performed while pressurizing from the inside with low-pressure steam satisfying the following formula at a low pressure.
Pi> Pt + 0.2
Pi: Pressure of low-pressure steam (MPa)
Pt: saturated vapor pressure (MPa) at a temperature equal to the internal temperature of the tread

本発明者は、加熱加圧媒体としてスチームだけを用いて、シリカ配合のゴムコンパウンドをキャップトレッドに用いた空気入りタイヤを加硫する場合に、トレッド内部の水分が発泡する原因について鋭意研究した結果、シリカ配合のゴムコンパウンドはカーボンブラック配合のゴムコンパウンドに比べて吸湿し易いため、その吸湿性が高いシリカ配合のゴムコンパウンドに含まれる水分の発泡を防止するには加硫後期においてもタイヤの内側から与える圧力をトレッド内部温度に関連付けた所定値以上に維持する必要があることを知見し、本発明に至ったのである。   As a result of diligent research on the cause of foaming of water inside the tread when vulcanizing a pneumatic tire using a silica compound rubber compound as a cap tread using only steam as a heating and pressurizing medium. The silica compounded rubber compound absorbs moisture more easily than the carbon black compounded rubber compound. To prevent foaming of moisture contained in the silica compounded rubber compound, which is highly hygroscopic, the inner side of the tire is also in the late vulcanization stage. As a result, the present inventors have found that it is necessary to maintain the pressure applied from above at a predetermined value or more that is related to the internal temperature of the tread.

即ち、本発明では、高圧スチームによる加圧工程を所定時間維持した後、タイヤをトレッド内部温度と等しい温度での飽和蒸気圧よりも十分に高い圧力に設定された低圧スチームで内側から加圧しながら加熱することにより、シリカ配合のゴムコンパウンドをキャップトレッドに用いた空気入りタイヤを加硫する場合であっても、トレッド内部に含まれる水分の発泡を防止することができる。そして、加熱加圧媒体としてスチームだけを用いるため、加圧のための窒素ガス供給装置や温水供給装置を不要とし、加硫装置のランニングコストを低減することができる。   That is, in the present invention, after maintaining the pressurizing step with high-pressure steam for a predetermined time, the tire is pressed from the inside with low-pressure steam set to a pressure sufficiently higher than the saturated vapor pressure at a temperature equal to the internal temperature of the tread. By heating, even when a pneumatic tire using a rubber compound containing silica as a cap tread is vulcanized, foaming of moisture contained in the tread can be prevented. Since only steam is used as the heating and pressurizing medium, a nitrogen gas supply device and a hot water supply device for pressurization are unnecessary, and the running cost of the vulcanizing device can be reduced.

本発明において、低圧スチームの圧力は1.0MPa〜1.2MPaであることが好ましい。これにより、トレッド内部の水分の揮発をより確実に防止しながらカーカス層の過加硫に起因する耐久性の低下を回避することができる。この低圧スチームの圧力条件は、金型のエキスターナル温度が160℃〜185℃である場合に好適である。なお、タイヤを内側から加圧するにあたって、タイヤの内側にスチームをブラダーレスで直接充填しても良く、或いは、ブラダーを介して間接的に充填しても良い。   In the present invention, the pressure of the low-pressure steam is preferably 1.0 MPa to 1.2 MPa. Thereby, the fall of durability resulting from the overvulcanization of the carcass layer can be avoided while more reliably preventing the volatilization of moisture inside the tread. This low pressure steam pressure condition is suitable when the external temperature of the mold is 160 ° C to 185 ° C. In addition, when pressurizing a tire from the inside, steam may be directly filled inside the tire without a bladder, or may be indirectly filled via a bladder.

本発明の対象となる空気入りタイヤは、シリカ配合のゴムコンパウンドをキャップトレッドに用いたものであるが、シリカ配合のゴムコンパウンドとはゴム100重量部に対してシリカを5重量部〜100重量部の割合で配合したものである。このようなゴムコンパウンドは吸湿性が高くなる傾向がある。上記ゴムコンパウンドには、加硫剤、加硫促進剤、老化防止剤、軟化剤、シランカップリング剤等の添加剤を適宜配合することができ、勿論、カーボンブラックをシリカと併用することも可能である。   The pneumatic tire that is the subject of the present invention uses a silica compounded rubber compound for the cap tread. The silica compounded rubber compound is 5 to 100 parts by weight of silica with respect to 100 parts by weight of rubber. It is blended in the ratio. Such rubber compounds tend to be highly hygroscopic. Additives such as vulcanizing agents, vulcanization accelerators, anti-aging agents, softeners, silane coupling agents, etc. can be added to the rubber compound as appropriate. Of course, carbon black can be used in combination with silica. It is.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。
図1は本発明の空気入りタイヤの加硫方法におけるタイヤの内圧と加硫時間との関係を示すものである。
Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows the relationship between the internal pressure of a tire and the vulcanization time in the method for vulcanizing a pneumatic tire of the present invention.

シリカ配合のゴムコンパウンドをキャップトレッドに用いた空気入りタイヤを加硫する場合、金型内に未加硫のタイヤを投入した後、図1に示すように、先ず、タイヤを圧力1.4MPa〜1.8MPa(温度換算で197℃〜209℃)の高圧スチームで内側から加圧しながら加熱する。高圧スチームの圧力が1.4MPa未満であるとタイヤに十分な型付けができず、また、圧力が1.8MPaを超える高圧スチームを用いるとスチーム製造設備のコストが過大になる。図1において、時間t1 から時間t2 までの範囲が高圧スチームによる加圧工程である。高圧スチームによる加圧工程は、加硫反応が進んで金型内のゴムの流れが止まるまで2〜8分間維持する。高圧スチームによる加圧工程が短過ぎるとタイヤに十分な型付けができず、逆に長過ぎるとカーカス層等のタイヤ構成部材の過加硫を招くことになる。なお、乗用車用空気入りラジアルタイヤの場合、高圧スチームによる加圧工程は2.5〜3.5分とすれば良い。 In the case of vulcanizing a pneumatic tire using a silica compounded rubber compound for a cap tread, as shown in FIG. It heats, pressurizing from the inside with a high-pressure steam of 1.8 MPa (197 ° C. to 209 ° C. in terms of temperature). If the pressure of the high-pressure steam is less than 1.4 MPa, the tire cannot be sufficiently molded, and if high-pressure steam having a pressure exceeding 1.8 MPa is used, the cost of the steam production facility becomes excessive. In FIG. 1, the range from time t 1 to time t 2 is the pressurizing step with high-pressure steam. The pressurizing step using high-pressure steam is maintained for 2 to 8 minutes until the vulcanization reaction proceeds and the rubber flow in the mold stops. If the pressurizing process using high-pressure steam is too short, the tire cannot be sufficiently molded, and if too long, the tire component such as the carcass layer is excessively vulcanized. In the case of a pneumatic radial tire for a passenger car, the pressurizing process using high-pressure steam may be 2.5 to 3.5 minutes.

高圧スチームによる加圧後、高圧スチームよりも低圧であって下式を満足する低圧スチームでタイヤを内側から加圧しながら加熱する。図1において、時間t3 から時間t4 までの範囲が低圧スチームによる加圧工程である。
Pi>Pt+0.2
Pi:低圧スチームの圧力(MPa)
Pt:トレッド内部温度と等しい温度での飽和蒸気圧(MPa)
After pressurization with high-pressure steam, the tire is heated while being pressurized from the inside with low-pressure steam having a lower pressure than the high-pressure steam and satisfying the following formula. In FIG. 1, the range from time t 3 to time t 4 is the pressurizing process using low-pressure steam.
Pi> Pt + 0.2
Pi: Pressure of low-pressure steam (MPa)
Pt: saturated vapor pressure (MPa) at a temperature equal to the internal temperature of the tread

低圧スチームの圧力Piをトレッド内部温度と等しい温度での飽和蒸気圧Ptよりも十分に高く設定することにより、トレッド内部の水分や揮発成分が発泡するのを抑えることができる。ここで、低圧スチームの圧力Piとトレッド内部温度と等しい温度での飽和蒸気圧Ptとの差は0.2MPaよりも大きくする。即ち、本発明者が各種タイヤのカーカス層、ベルト層、ベルトカバー層について加硫中のコードの収縮に基づく各部材の熱収縮力(シュリンクバック圧力)を求めたところ、いずれの場合も0.2MPaを下回るものであることを知見した。そのため、低圧スチームの圧力Piを上記の如く設定すれば、シュリンクバック圧力に打ち勝って、タイヤ内に残留エア等の製造故障を生じることなく高圧スチームによる加圧工程を短縮することができ、その結果として、従来から使用されている加圧のための窒素ガス供給装置や温水供給装置を不要とし、加硫装置のランニングコストを低減することができる。   By setting the pressure Pi of the low-pressure steam sufficiently higher than the saturated vapor pressure Pt at a temperature equal to the internal temperature of the tread, it is possible to suppress foaming of moisture and volatile components inside the tread. Here, the difference between the pressure Pi of the low pressure steam and the saturated vapor pressure Pt at a temperature equal to the internal temperature of the tread is set to be larger than 0.2 MPa. That is, the present inventor obtained the thermal contraction force (shrink back pressure) of each member based on the contraction of the cord during vulcanization for the carcass layer, belt layer, and belt cover layer of various tires. It was found that the pressure was less than 2 MPa. Therefore, if the pressure Pi of the low pressure steam is set as described above, the pressurization process by the high pressure steam can be shortened without overcoming the shrinkback pressure and causing a manufacturing failure such as residual air in the tire. As a result, the conventional nitrogen gas supply device and hot water supply device for pressurization are not required, and the running cost of the vulcanizing device can be reduced.

低圧スチームの圧力Piは1.0MPa〜1.2MPa(温度換算で184℃〜191℃)であると良い。低圧スチームの圧力Piが1.0MPa未満であるとトレッド内部に含まれる水分や揮発成分の発泡を抑えることが難しくなり、逆に1.2MPaを超えるとカーカス層等のタイヤ構成部材の過加硫を招くことになる。また、高圧スチームの圧力と低圧スチームの圧力との差は0.2MPa〜0.8MPaにすると良い。この差が0.2MPa未満であると過加硫の抑制効果が低下し、逆に0.8MPaを超えると高圧スチーム及び低圧スチームを適切な圧力に設定することが困難になる。一方、飽和蒸気圧Ptはトレッド内部で測定される最も高い温度と等しい温度での飽和蒸気圧である。蒸気圧(ゲージ圧)と温度との関係を図2に示す。   The pressure Pi of the low-pressure steam is preferably 1.0 MPa to 1.2 MPa (184 ° C. to 191 ° C. in terms of temperature). When the pressure Pi of the low pressure steam is less than 1.0 MPa, it becomes difficult to suppress the foaming of moisture and volatile components contained in the tread. Will be invited. The difference between the pressure of the high pressure steam and the pressure of the low pressure steam is preferably 0.2 MPa to 0.8 MPa. If this difference is less than 0.2 MPa, the effect of suppressing overvulcanization is reduced. Conversely, if it exceeds 0.8 MPa, it is difficult to set the high-pressure steam and the low-pressure steam to appropriate pressures. On the other hand, the saturated vapor pressure Pt is a saturated vapor pressure at a temperature equal to the highest temperature measured inside the tread. The relationship between vapor pressure (gauge pressure) and temperature is shown in FIG.

上述した加硫スケジュールはタイヤ内側に充填するスチームに関するものであるが、タイヤ内側からの加熱と同時に金型を外部からも加熱することも行われる。その際、金型のエキスターナル温度は160℃〜185℃にすると良い。このようなエキスターナル温度を前提とする加硫において、上述した高圧スチームと低圧スチームによる加圧工程を適用することにより、シリカ配合のゴムコンパウンドをキャップトレッドに用いた空気入りタイヤを加硫する場合であっても、トレッド内部に含まれる水分や揮発成分の発泡を効果的に防止することができる。   Although the vulcanization schedule described above relates to steam filling the inside of the tire, the mold is also heated from the outside simultaneously with the heating from the inside of the tire. At that time, the external temperature of the mold is preferably 160 to 185 ° C. In vulcanization premised on such an external temperature, by applying the pressurizing process with high pressure steam and low pressure steam described above, a pneumatic tire using a silica compound rubber compound for a cap tread is vulcanized. Even if it exists, the foaming of the water | moisture content contained in the tread and a volatile component can be prevented effectively.

シリカ配合のゴムコンパウンドをキャップトレッドに用いると共に、2枚のカーカス層を備えたタイヤサイズ195/65R15の空気入りタイヤについて、従来例1〜3及び実施例1〜3の加硫方法によりそれぞれタイヤを製造し、キャップトレッド内の気泡の有無を確認した。従来例1〜3及び実施例1〜3において、加硫初期は高圧スチームを用い、加硫後期は低圧スチームを用い、その圧力及び加圧時間を表1の通りに設定した。加硫時のトレッド内部温度は約180℃であり、そのトレッド内部温度と等しい温度での飽和蒸気圧は約0.9MPaである。シリカ配合のゴムコンパウンドとしては、表2の配合を有するゴムコンパウンドを用いた。   A rubber compound containing silica is used as a cap tread, and tires of tire sizes 195 / 65R15 having two carcass layers are respectively vulcanized by the vulcanization methods of Conventional Examples 1-3 and Examples 1-3. It manufactured and confirmed the presence or absence of the bubble in a cap tread. In Conventional Examples 1 to 3 and Examples 1 to 3, high pressure steam was used in the initial stage of vulcanization, low pressure steam was used in the late stage of vulcanization, and the pressure and pressurization time were set as shown in Table 1. The internal temperature of the tread during vulcanization is about 180 ° C., and the saturated vapor pressure at a temperature equal to the internal temperature of the tread is about 0.9 MPa. As the rubber compound containing silica, a rubber compound having the composition shown in Table 2 was used.

Figure 2008044204
Figure 2008044204

Figure 2008044204
Figure 2008044204

表2中、
SBR−1:日本ゼオン(株)製"Nipol 9520"(37.5phr油展)
SBR−2:日本ゼオン(株)製"Nipol NS116R"
カーボンブラック−1:三菱化学(株)製“ダイアブラックA”
カーボンブラック−2:東海カーボン(株)製“シーストKH”
シリカ:日本シリカ(株)製“ニップシールAQ”
シランカップリング剤:デグッサ製“Si69”
活性剤:丸善ケミカル(株)製“ジエチレングリコール”
アロマチックオイル:ジャパンエナジー(株)製“プロセスオイル X−140”
亜鉛華:正同化学工業(株)製“酸化亜鉛3種”
ステアリン酸:花王(株)製“Lunac YA”
老化防止剤:住友化学(株)製“アンチゲン6C”
ワックス:大内新興化学工業(株)製“サンノック”
イオウ:鶴見化学工業(株)製“金華印油入微粉硫黄”
加硫促進剤:大内新興化学工業(株)製“ノクセラーNS−F”
In Table 2,
SBR-1: "Nipol 9520" (37.5phr oil exhibition) manufactured by Nippon Zeon Co., Ltd.
SBR-2: "Nipol NS116R" manufactured by Nippon Zeon Co., Ltd.
Carbon Black-1: “Dia Black A” manufactured by Mitsubishi Chemical Corporation
Carbon Black-2: “Seast KH” manufactured by Tokai Carbon Co., Ltd.
Silica: “Nip seal AQ” manufactured by Nippon Silica Co., Ltd.
Silane coupling agent: “Si69” manufactured by Degussa
Activator: “Diethylene glycol” manufactured by Maruzen Chemical Co., Ltd.
Aromatic oil: “Process Oil X-140” manufactured by Japan Energy Co., Ltd.
Zinc flower: "Zinc oxide 3 types" manufactured by Shodo Chemical Industry Co., Ltd.
Stearic acid: “Lunac YA” manufactured by Kao Corporation
Anti-aging agent: “Antigen 6C” manufactured by Sumitomo Chemical Co., Ltd.
Wax: “Sunnock” manufactured by Ouchi Shinsei Chemical Co., Ltd.
Sulfur: Tsurumi Chemical Co., Ltd. “Jinhua Indian Oil Fine Sulfur”
Vulcanization accelerator: “Noxeller NS-F” manufactured by Ouchi Shinsei Chemical Co., Ltd.

表1に示すように、低圧スチームの圧力Piとトレッド内部温度と等しい温度での飽和蒸気圧PtとがPi>Pt+0.2MPaの条件を満たす実施例1〜3の加硫方法ではキャップトレッド内に気泡が無かった。一方、上記条件を満たしていない従来例1〜3の加硫方法ではキャップトレッド内に気泡が存在していた。   As shown in Table 1, in the vulcanization methods of Examples 1 to 3, the pressure Pi of the low-pressure steam and the saturated vapor pressure Pt at a temperature equal to the internal temperature of the tread satisfy the condition of Pi> Pt + 0.2 MPa. There were no bubbles. On the other hand, bubbles were present in the cap tread in the vulcanization methods of Conventional Examples 1 to 3 that did not satisfy the above conditions.

図1は本発明の空気入りタイヤの加硫方法におけるタイヤの内圧と加硫時間との関係を示すグラフである。FIG. 1 is a graph showing the relationship between tire internal pressure and vulcanization time in the method for vulcanizing pneumatic tires of the present invention. 蒸気圧と温度との関係を示すグラフである。It is a graph which shows the relationship between vapor pressure and temperature.

Claims (3)

シリカ配合のゴムコンパウンドをキャップトレッドに用いた空気入りタイヤを加硫する方法において、金型内に未加硫のタイヤを投入し、該タイヤを圧力1.4MPa〜1.8MPaの高圧スチームで内側から加圧しながら加熱し、該高圧スチームによる加圧工程を2〜8分間維持した後、該タイヤを前記高圧スチームよりも低圧であって下式を満足する低圧スチームで内側から加圧しながら加熱することを特徴とする空気入りタイヤの加硫方法。
Pi>Pt+0.2
Pi:低圧スチームの圧力(MPa)
Pt:トレッド内部温度と等しい温度での飽和蒸気圧(MPa)
In a method of vulcanizing a pneumatic tire using a silica compounded rubber compound as a cap tread, an unvulcanized tire is introduced into a mold, and the tire is placed inside by high-pressure steam at a pressure of 1.4 MPa to 1.8 MPa. The tire is heated while being pressurized, and the pressurizing step with the high-pressure steam is maintained for 2 to 8 minutes, and then the tire is heated while being pressurized from the inside with low-pressure steam satisfying the following formula at a lower pressure than the high-pressure steam. A method for vulcanizing a pneumatic tire.
Pi> Pt + 0.2
Pi: Pressure of low-pressure steam (MPa)
Pt: saturated vapor pressure (MPa) at a temperature equal to the internal temperature of the tread
前記低圧スチームの圧力が1.0MPa〜1.2MPaであることを特徴とする請求項1に記載の空気入りタイヤの加硫方法。   The method for vulcanizing a pneumatic tire according to claim 1, wherein the pressure of the low-pressure steam is 1.0 MPa to 1.2 MPa. 前記金型のエキスターナル温度が160℃〜185℃であることを特徴とする請求項1又は請求項2に記載の空気入りタイヤの加硫方法。   The method for vulcanizing a pneumatic tire according to claim 1 or 2, wherein an external temperature of the mold is 160 ° C to 185 ° C.
JP2006220875A 2006-08-14 2006-08-14 Vulcanization process of pneumatic tire Pending JP2008044204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006220875A JP2008044204A (en) 2006-08-14 2006-08-14 Vulcanization process of pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006220875A JP2008044204A (en) 2006-08-14 2006-08-14 Vulcanization process of pneumatic tire

Publications (1)

Publication Number Publication Date
JP2008044204A true JP2008044204A (en) 2008-02-28

Family

ID=39178398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006220875A Pending JP2008044204A (en) 2006-08-14 2006-08-14 Vulcanization process of pneumatic tire

Country Status (1)

Country Link
JP (1) JP2008044204A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128565A1 (en) * 2009-05-07 2010-11-11 横浜ゴム株式会社 Method of manufacturing pneumatic tire
CN104400943A (en) * 2014-11-18 2015-03-11 山东八一轮胎制造有限公司 All-steel radial tire vulcanizing process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128565A1 (en) * 2009-05-07 2010-11-11 横浜ゴム株式会社 Method of manufacturing pneumatic tire
JP2010260266A (en) * 2009-05-07 2010-11-18 Yokohama Rubber Co Ltd:The Method of manufacturing pneumatic tire
US8652394B2 (en) 2009-05-07 2014-02-18 The Yokohama Rubber Co., Ltd. Method of manufacturing pneumatic tire
CN104400943A (en) * 2014-11-18 2015-03-11 山东八一轮胎制造有限公司 All-steel radial tire vulcanizing process

Similar Documents

Publication Publication Date Title
WO2008133093A1 (en) Pneumatic tire with surface fastener and method of producing the same
JP2003176478A (en) Sealant rubber composition for puncture-preventing sealant, pneumatic tire provided with pressure-sensitive adhesive sealant layer and method for producing the same
JP2010188955A (en) Tire
RU2011111568A (en) METHOD FOR REDUCING THE TEST OF A PROTECTOR DURING A VOLCANIZATION
ATE439402T1 (en) RUBBER COMPOSITION CONTAINING AN ITACONIMIDOMALEINIMIDE
JP2008044204A (en) Vulcanization process of pneumatic tire
JP2009018445A (en) Method of manufacturing pneumatic tire
JP2000061945A (en) Method for producing, molding and curing tire for wheel of transport
JP5314214B1 (en) Heavy duty pneumatic tire and manufacturing method thereof
JP4788230B2 (en) Method for vulcanizing pneumatic tires
JP2014028525A (en) Method of manufacturing base tire and method of manufacturing tire
JP2009190377A (en) Method for producing reclaimed tire
JP2014159524A (en) Rubber composition, method for manufacturing tire using the same, and rubber member for tire using the rubber composition
JP2003170438A (en) Tire manufacturing method and pneumatic tire
JP4807078B2 (en) Pneumatic tire manufacturing method
JP4639849B2 (en) Pneumatic tire manufacturing method
JP2008155567A (en) Manufacturing process of pneumatic tire
JP2007038539A (en) Tire vulcanizing method
EP1424222A1 (en) Pneumatic tire and method of producing the same
JP2005066861A (en) Tire vulcanizing method
JP2016210136A (en) Tire vulcanization method
JP5750970B2 (en) Method for vulcanizing pneumatic tires
KR101817763B1 (en) Method for Curing Winter Tire
JP2008132695A (en) Manufacturing method of pneumatic tire
EP3137273B1 (en) Process for producing tyres for vehicle wheels